JPH02145950A - X-ray photoelectron analyzer - Google Patents

X-ray photoelectron analyzer

Info

Publication number
JPH02145950A
JPH02145950A JP63299292A JP29929288A JPH02145950A JP H02145950 A JPH02145950 A JP H02145950A JP 63299292 A JP63299292 A JP 63299292A JP 29929288 A JP29929288 A JP 29929288A JP H02145950 A JPH02145950 A JP H02145950A
Authority
JP
Japan
Prior art keywords
electron
sample
energy
analyzer
sample surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63299292A
Other languages
Japanese (ja)
Inventor
Fukuo Zenitani
銭谷 福男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP63299292A priority Critical patent/JPH02145950A/en
Publication of JPH02145950A publication Critical patent/JPH02145950A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To enable efficient analysis without limit to an adaptive sample by performing an analysis with a background corrected by a single scanning of a sample surface. CONSTITUTION:A sampled stage 1 is driven two-dimensionally in two directions of x and Y with x-way and y-way drivers 2x and 2y. X-ray photoelectrons of a sample surface are accelerated or decelerated properly with an electron accelerating lens system 4 laced between a sample S and a slit 3s on the electron incident side of an energy analyzer 3 and an image thereof is formed on a surface of the slit 3. A plurality of electron detectors 51, 52 and 53 are arranged in such a direction that an energy spectrum is dispersed with the analyzer 3 and one thereof is placed at a point A corresponding to a peak P and hence, adjacent electron detectors measure a background intensity. Thus, by subtracting an output 1b or Ic of the electron detector at an adjacent point B or C from an output 1a of the electron detector placed at the point A, a true peak height H is determined.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は試料面の元素分布或は元素の結合状態の分布を
測定するのに適したII!光電子分析装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is suitable for measuring the distribution of elements on a sample surface or the distribution of bonding states of elements. Regarding a photoelectron analyzer.

(従来の技術) X線光電子分析法は試料表面の元素組成或は元素の結合
状態を測定する場合に有力な方法である。通常この種の
測定を行う場合、試料をX線で照射し、試料から放出さ
れるX線光電子をエネルギー分析器で分析してX線光電
子のエネルギースペクトルを測定し、エネルギースペク
トルに現われるピークの位置から元素判定を行い、或は
一つの元素のピークの位置のずれからその元素の試料内
での他元素との結合状態の判定を行う。
(Prior Art) X-ray photoelectron analysis is an effective method for measuring the elemental composition or the bonding state of elements on the surface of a sample. Normally, when performing this type of measurement, a sample is irradiated with X-rays, the X-ray photoelectrons emitted from the sample are analyzed with an energy analyzer, the energy spectrum of the X-ray photoelectrons is measured, and the position of the peak that appears in the energy spectrum is measured. Elements are determined based on this, or the bonding state of that element with other elements within the sample is determined based on the shift in the peak position of one element.

所で上述したX線光電子分析法を試料面における元素分
布の測定等に適用する場合は試料面を走査する必要があ
るので、試料面上の各画素域毎にエネルギー分析器でエ
ネルギー走査を行いエネルギースペクトルを測定すると
云う動作を行っていると試料面全体の測定には大へんな
長時間を要することになって実際上実行不可能である。
By the way, when applying the above-mentioned X-ray photoelectron analysis method to the measurement of element distribution on the sample surface, it is necessary to scan the sample surface, so an energy analyzer is used to perform energy scanning for each pixel area on the sample surface. If the operation of measuring the energy spectrum is carried out, it would take a very long time to measure the entire sample surface, which is practically impossible.

従ってX線光電子分析法で試料表面の面分析或は線分析
を行う場合は、エネルギー分析器のエネルギーを測定し
ようとする元素のピーク位置に合せて固定し、試料面の
走査を行うと云う方法が用いられる。しかしX線光電子
のエネルギースペクトルではマトリクス成分および他元
素の情報を含んだ強いバックグラウンド上に各成分元素
のピークが乗っているので、試料全面にわたりバックグ
ラウンドが一定であるような場合は上の方法で得られた
測定結果でも目的元素の分布濃度の相対的な変化が分る
が、バックグラウンド強度が場所によって異る場合には
バックグラウンドの変化と目的元素の濃度変化の合わさ
ったものが目的元素の濃度変化として表わされることに
なり、測定自体の意味がなくなる。このためエネルギー
分析器のエネルギーを目的元素のピークより少し外れた
値に設定して試料面走査を行い、まず試料面のバックグ
ラウンド分布を求めておき、次にエネルギー分析器のエ
ネルギーを目的元素のピークに合せて再び試料面の走査
を行って、前の測定結果を引算して表示すると云った少
くとも2回走査による面分析を行う他なかった。
Therefore, when performing area analysis or line analysis of a sample surface using X-ray photoelectron analysis, the energy of the energy analyzer is fixed to the peak position of the element to be measured, and the sample surface is scanned. is used. However, in the energy spectrum of X-ray photoelectrons, the peaks of each component element are superimposed on a strong background that includes information on matrix components and other elements, so if the background is constant over the entire sample, the above method can be used. The measurement results obtained can also show the relative change in the distribution concentration of the target element, but if the background intensity differs depending on the location, the combination of the background change and the concentration change of the target element is the target element. The measurement itself becomes meaningless as it is expressed as a change in concentration. For this reason, set the energy of the energy analyzer to a value slightly outside the peak of the target element, scan the sample surface, first obtain the background distribution of the sample surface, and then set the energy of the energy analyzer to a value slightly outside the peak of the target element. There was no choice but to perform surface analysis by scanning the sample surface again at least twice in accordance with the peak, and subtracting and displaying the previous measurement results.

(発明が解決しようとする課題) 本発明はX線光電子分析で、試料面の面分析或は線分析
を行うような場合でも、−々エネルギースペクトルの全
体的な測定を行わないで又試料面の複数回走査を行わな
いで、バックグラウンド補正が可能であるX線光電子分
析装置を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention is an X-ray photoelectron analysis method that can be used to perform surface analysis or line analysis of a sample surface without measuring the entire energy spectrum. An object of the present invention is to provide an X-ray photoelectron analyzer that can perform background correction without performing multiple scans.

(課題を解決するための手段) 電子エネルギー分析器において、エネルギースペクトル
分散方向に複数の電子検出器を配置し、それらの一つに
目的元素のX線光電子が入射するように電子エネルギー
分析器の印加電圧を設定し、同電子検出器の出力からそ
れに隣接する電子検出器の出力を引算してバックグラウ
ンド情報を含まない目的元素のピーク検出出力を得るよ
うにした。
(Means for solving the problem) In the electron energy analyzer, a plurality of electron detectors are arranged in the energy spectrum dispersion direction, and the electron energy analyzer is arranged so that the X-ray photoelectron of the target element is incident on one of them. The applied voltage was set, and the output of the adjacent electron detector was subtracted from the output of the same electron detector to obtain the peak detection output of the target element without background information.

(作用) X線光電子のエネルギー分布は一般的に第3図に示され
るような形になっている。こ\でPは目的元素のピーク
で、Bがバックグラウンドである。本発明においては電
子エネルギー分析器で、エネルギースペクトルの分散方
向に複数の電子検出器が配置してあって、その一つが第
3図でピークPに対応するA点に置かれるので、その両
隣の電子検出器はバックグラウンド強度を測定すること
になる。従ってA点に置いた電子検出器の出力raから
隣のB点或は0点の電子検出器の出力Ib或はIcを引
けば真のピーク高さHが求まる。
(Function) The energy distribution of X-ray photoelectrons generally takes the form shown in Figure 3. Here, P is the peak of the target element and B is the background. In the present invention, the electron energy analyzer has a plurality of electron detectors arranged in the dispersion direction of the energy spectrum, and one of them is placed at point A corresponding to peak P in FIG. The electronic detector will measure the background intensity. Therefore, by subtracting the output Ib or Ic of the electron detector at the adjacent point B or 0 from the output ra of the electron detector placed at point A, the true peak height H can be found.

片側の電子検出器の出力を引算する代りに両隣の電子検
出器B、Cの出力の平均(Ib+Ic)/2をIaから
引算すれば尚良い事は云うまでもない。
It goes without saying that it is better to subtract the average (Ib+Ic)/2 of the outputs of the electron detectors B and C on both sides from Ia instead of subtracting the output of the electron detector on one side.

(実施例) 第1図に本発明の一実施例装置を示す。図で1は試料ス
テージでX方向およびX方向の駆動装置2x、2yによ
ってxy2方向に2次元的に駆動される。Sは試料ステ
ージ上に置かれた試料である。3は半球型エネルギー分
析器で、4は試料Sとエネルギー分析器3の電子入射側
スリット3Sとの間に置かれた電子加速レンズ系で試料
面のX線光電子を適当に加速酸は減速してその像をスリ
ット3の面上に形成する。Xは試料面を照射するxlの
X線源である。上の構成によって試料面上の特定の位置
の微小領域から放出されるX線光電子がエネルギー分析
器3のスリット3S上に収束されエネルギー分析器3に
入射せしめられる。
(Embodiment) FIG. 1 shows an apparatus according to an embodiment of the present invention. In the figure, reference numeral 1 denotes a sample stage, which is driven two-dimensionally in two xy directions by X-direction and X-direction driving devices 2x and 2y. S is a sample placed on the sample stage. 3 is a hemispherical energy analyzer, and 4 is an electron accelerating lens system placed between the sample S and the electron incident side slit 3S of the energy analyzer 3, which accelerates the X-ray photoelectrons on the sample surface and decelerates the acid appropriately. and forms its image on the surface of the slit 3. X is an xl X-ray source that irradiates the sample surface. With the above configuration, X-ray photoelectrons emitted from a minute region at a specific position on the sample surface are focused onto the slit 3S of the energy analyzer 3 and made incident on the energy analyzer 3.

エネルギー分析器3のエネルギー出射側でエネルギース
ペクトル像面上に複数の電子検出器51゜52.53が
配置されている。これらの電子検出器はエネルギースペ
クトルの分散方向に並べられている。6はコンピュータ
(CPU)とメモリでCPUは試料ステージをxyX方
向2次元的に駆動してX線ビームによる試料面走査を行
うと共に、試料ステージの位置のデータをアドレスデー
タとして各電子検出器51.52.53の出力をメモリ
に取込む。7はエネルギー分析器3および電子レンズ系
4に印加する電圧の発生電源てあってCPUにより制御
され、中央の電子検出器52に目的元素のX線光電子が
入射するような電圧をエネルギー分析器3およびレンズ
系4に印加する。電子検出器51〜53は何れもチャン
ネルトロン型電子検出器で第2図に示すようにエネルギ
ー分析器3によって形成される電子エネルギーのスペク
トル像で成るエネルギー範囲のX線光電子が入射するよ
うにしである。従って各電子検出器51〜53の出力は
第2図で斜線を入れた帯域の面積At、A2.A3に相
当し、求める目的元素のX線光電子の検出出力Iは面積
A2中の二重斜線領域であるから 1=A2− (A1+A3)/2 で与えられる。CPUは上記Iを算出してメモリに格納
し、テレビモーyでそのデータをメモリから読出し、C
RTに目的元素の濃度分布図として表示する。
A plurality of electron detectors 51, 52, and 53 are arranged on the energy spectrum image plane on the energy emission side of the energy analyzer 3. These electron detectors are aligned in the dispersion direction of the energy spectrum. Reference numeral 6 denotes a computer (CPU) and a memory, and the CPU drives the sample stage two-dimensionally in the xyx directions to scan the sample surface with an X-ray beam, and also uses data on the position of the sample stage as address data for each electron detector 51. 52. Take the output of 53 into memory. Reference numeral 7 denotes a power source for generating voltage to be applied to the energy analyzer 3 and the electron lens system 4, which is controlled by the CPU and applies a voltage to the energy analyzer 3 such that X-ray photoelectrons of the target element are incident on the central electron detector 52. and is applied to the lens system 4. The electron detectors 51 to 53 are all channeltron type electron detectors, and as shown in FIG. be. Therefore, the output of each electron detector 51 to 53 is the area At, A2 . Corresponding to A3, the detection output I of X-ray photoelectrons of the desired target element is given by 1=A2-(A1+A3)/2 since it is a double hatched area in area A2. The CPU calculates the above I, stores it in the memory, reads the data from the memory in TV mode y, and
Display on RT as a concentration distribution map of the target element.

エネルギー分析器3において、二つの検出器51と52
或は52と53七の間の検出電子のエネルギーの差ΔE
はエネルギー分析器に設定したパスエネルギー即ち検出
器52に入射する電子のエネルギーをEとした場合、Δ
EOeEなる関係がある。本発明においてはX線光電子
スペクトルの一つのピークの立上り点より少し離れた所
に検出器51.53を配置する必要があるが、X線光電
子スペクトルのピークの半値幅は元素およびその結合状
態によってはV決っており、ピーク毎に異っている。従
って測定しようとするピークに対して検出器51.53
の位置を変える代りに、レンズ系4による目的のX線光
電子の加速酸は減速を適当にしてエネルギー分析器に入
射するときのエネルギーEを適当に設定し、エネルギー
分析器のバスエネルギーをそれに合せるとEに比例して
ΔEが変わるから、E±ΔEを目的X線光電子のピーク
の立上り点より少し離れた値に合せることができるので
ある。
In the energy analyzer 3, two detectors 51 and 52
Or the energy difference ΔE of detected electrons between 52 and 537
If E is the path energy set in the energy analyzer, that is, the energy of the electrons incident on the detector 52, then Δ
There is a relationship called EOeE. In the present invention, it is necessary to place the detector 51, 53 at a location slightly away from the rising point of one peak of the X-ray photoelectron spectrum, but the half-value width of the peak of the X-ray photoelectron spectrum depends on the elements and their bonding states. V is fixed and differs for each peak. Therefore, for the peak to be measured, the detector 51.53
Instead of changing the position of the target X-ray photoelectrons, the lens system 4 decelerates them appropriately, sets the energy E when it enters the energy analyzer, and adjusts the bus energy of the energy analyzer to that value. Since ΔE changes in proportion to and E, E±ΔE can be adjusted to a value slightly distant from the rising point of the peak of the target X-ray photoelectron.

上述実施例では試料面の走査は試料ステージをxy力方
向駆動することによって行っているが、電子レンズ系2
に偏向電極を配置して電子光学的に試料面を走査しても
よいことは云うまでもない。
In the above embodiment, scanning of the sample surface is performed by driving the sample stage in the x and y force directions, but the electron lens system 2
It goes without saying that a deflection electrode may be disposed at the surface of the sample and the sample surface may be scanned electro-optically.

(発明の効果) 従来はX線光電子分析による面分析、線分析等では通常
バックグラウンド補正は行わないから、分析適応試料は
限られたものとなり、またバックグラウンド補正を行う
にしても複数回の試料面走査を必要としたから大へん非
能率であったが、本発明によれば一回の試料面走査でバ
ックグラウンド補正をした分析が可能なため、適応試料
に制限がなく、分析が能率的に行えるようになった。
(Effect of the invention) Conventionally, background correction is not normally performed in area analysis, line analysis, etc. using X-ray photoelectron analysis, so the samples that can be analyzed are limited, and even if background correction is performed, it requires multiple times. This required scanning the sample surface, which was extremely inefficient, but with the present invention, it is possible to perform analysis with background correction by scanning the sample surface once, so there is no limit to the applicable samples, making analysis more efficient. Now I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例装置の構成を示すブロック図
、第2図は上記実施例の動作説明図、第3図は本発明の
原理説明図である。 1・・・試料ステージ、S・・・試料、2X、2y・・
・X。 y方向駆動装置、3・・・エルギー分析器、4・・・電
子レンズ系、51.52.53・・・電子検出器、6・
・・cpu、7・・・電圧電源。 sI図 代理人  弁理士 縣  浩 介 1135!ff
FIG. 1 is a block diagram showing the configuration of an apparatus according to an embodiment of the present invention, FIG. 2 is a diagram illustrating the operation of the embodiment, and FIG. 3 is a diagram illustrating the principle of the present invention. 1...Sample stage, S...Sample, 2X, 2y...
・X. y-direction drive device, 3... Energy analyzer, 4... Electron lens system, 51.52.53... Electron detector, 6.
... CPU, 7... Voltage power supply. sI diagram agent patent attorney Kosuke Agata 1135! ff

Claims (1)

【特許請求の範囲】[Claims] 電子エネルギー分析器のエネルギースペクトルの分散方
向に複数の電子検出器を配置し、そのうちの一つの電子
検出器の出力から隣接する電子検出器の出力を引算する
演算手段を備えたことを特徴とするX線電子分析装置。
A plurality of electron detectors are arranged in the dispersion direction of the energy spectrum of the electron energy analyzer, and a calculation means is provided for subtracting the output of an adjacent electron detector from the output of one of the electron detectors. X-ray electron analyzer.
JP63299292A 1988-11-26 1988-11-26 X-ray photoelectron analyzer Pending JPH02145950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63299292A JPH02145950A (en) 1988-11-26 1988-11-26 X-ray photoelectron analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63299292A JPH02145950A (en) 1988-11-26 1988-11-26 X-ray photoelectron analyzer

Publications (1)

Publication Number Publication Date
JPH02145950A true JPH02145950A (en) 1990-06-05

Family

ID=17870640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63299292A Pending JPH02145950A (en) 1988-11-26 1988-11-26 X-ray photoelectron analyzer

Country Status (1)

Country Link
JP (1) JPH02145950A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140567A (en) * 2003-11-05 2005-06-02 Jeol Ltd Surface analyzer
JP2009085859A (en) * 2007-10-02 2009-04-23 Jeol Ltd X-ray photoelectron spectroscopic analytic method
JP2011520126A (en) * 2008-05-08 2011-07-14 ケーエルエー−テンカー・コーポレーション In situ differential light method
JP2020060381A (en) * 2018-10-05 2020-04-16 日本電子株式会社 Element map production method and surface analysis device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49118493A (en) * 1973-03-12 1974-11-12
JPS50112094A (en) * 1974-02-07 1975-09-03
JPS55121140A (en) * 1979-03-13 1980-09-18 Jeol Ltd Photoelectric spectroscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49118493A (en) * 1973-03-12 1974-11-12
JPS50112094A (en) * 1974-02-07 1975-09-03
JPS55121140A (en) * 1979-03-13 1980-09-18 Jeol Ltd Photoelectric spectroscope

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005140567A (en) * 2003-11-05 2005-06-02 Jeol Ltd Surface analyzer
JP2009085859A (en) * 2007-10-02 2009-04-23 Jeol Ltd X-ray photoelectron spectroscopic analytic method
JP2011520126A (en) * 2008-05-08 2011-07-14 ケーエルエー−テンカー・コーポレーション In situ differential light method
JP2020060381A (en) * 2018-10-05 2020-04-16 日本電子株式会社 Element map production method and surface analysis device

Similar Documents

Publication Publication Date Title
KR100280164B1 (en) Inspection Method Using Electron Beam and Its Apparatus
US3626184A (en) Detector system for a scanning electron microscope
US4068123A (en) Scanning electron microscope
JP2019035744A (en) Diffraction pattern detection in transmission type charged particle microscope
US4097740A (en) Method and apparatus for focusing the objective lens of a scanning transmission-type corpuscular-beam microscope
JP6782795B2 (en) Sample observation method using scanning electron microscope and scanning electron microscope
JPH02145950A (en) X-ray photoelectron analyzer
US4480220A (en) Electron energy analyzing apparatus
JPH10172492A (en) Electron beam analysis device and electron beam analysis method
JP3494068B2 (en) Charged particle beam equipment
US5895916A (en) Method and apparatus for adjusting electron beam apparatus
JPH1167138A (en) Micro-area observation device
SU682967A1 (en) Electronic raster microscope
JP3741012B2 (en) Electron beam analysis method
JPH01274050A (en) X-ray photoelectron analyzer
JPH10213556A (en) Device and method for analyzing surface element
JP2000292380A (en) Positive electron extinguishment analysing device
JPS6250648A (en) Method for analyzing noticed element in sample by electron ray irradiation
KR830002861Y1 (en) Scanning apparatus for scanning electron microscopes and similar devices
JPH0696711A (en) Display method for image of scanning electron microscope
JPH07260716A (en) Electron beam analyzer
JPS62223961A (en) Scanning type reflecting electron diffraction microscope device
JPS5914222B2 (en) Magnification control device for scanning electron microscopes, etc.
JPS629218B2 (en)
JPH10199463A (en) Image display device by electron beams