JPS62223961A - Scanning type reflecting electron diffraction microscope device - Google Patents

Scanning type reflecting electron diffraction microscope device

Info

Publication number
JPS62223961A
JPS62223961A JP6563586A JP6563586A JPS62223961A JP S62223961 A JPS62223961 A JP S62223961A JP 6563586 A JP6563586 A JP 6563586A JP 6563586 A JP6563586 A JP 6563586A JP S62223961 A JPS62223961 A JP S62223961A
Authority
JP
Japan
Prior art keywords
diffraction
scanning
image
time
primary electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6563586A
Other languages
Japanese (ja)
Inventor
Masakazu Ichikawa
昌和 市川
Takahisa Doi
土井 隆久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6563586A priority Critical patent/JPS62223961A/en
Publication of JPS62223961A publication Critical patent/JPS62223961A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To obtain a reflecting diffraction image from a specific analyzing spot or the diffraction spot intensity without stopping the observation, by fixing the radiation of primary electron beams at a specific analyzing spot every time when the X direction scanning is over, and gaining the signal only at such a time. CONSTITUTION:Every time when a line scanning in the X direction is over, a preset current value is made to flow only in DELTAt time to a deflection coil in the X direction, and a preset current value is made to flow in the DELTAt time also to a deflection coil in the Y direction. Just after that, the deflecting current in Y direction is converted in steps, then the line scanning in X direction is carried out again, and such operations are repeated. Therefore, beams 4 can be fixed the radiation onto a specific analyzing spot on a sample 7 without stopping the scanning of the primary electron beams 4. And a control signal from a converting circuit 22 is received at a two-dimension image display device 21, and only the reflecting diffraction image from the specific analyzing spot is displayed there. Furthermore, the signal is picked up in parallel by a control circuit 23, and the intensity variation of a specific diffraction spot obtained from the specific analyzing spot is examined.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は試料表面の結晶性を分析する場合などに利用さ
れろ走査型反射電子回折顕微装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in a scanning-type backscattered electron diffraction microscope used for analyzing the crystallinity of a sample surface.

〔従来の技術〕[Conventional technology]

従来の走査型反射電子回折顕微装置の基本的な植成を第
4図に示す、第4図装置は次のように動作する。加速?
!!源1を有する電子銃2から放出される一次電子ビー
ム4は収束レンズ3により真空容器6内にある試料7の
表面に収束される。走査電源16により一次電子ビーム
用偏向コイル群5を動作させて一次電子ビーム4を試料
7の表面上で走査する。このとき第5図に示すように、
一次電子ビーム用偏向コイル群5中のX方向偏向コイル
に鋸歯状の電流を流し、一次電子ビーム4をX方向にラ
イン状に走査する。この1つのライン状走査が終った直
後に、Y方向偏向コイルにステツプ状に増加する電流を
流し、Y方向にわずかに一次電子ビーAs 4を偏向す
る。これらの操作を繰り返すことにより、試料7のXY
平面上を一次電子ビーts 4は走査する。そのとき得
られる試料7の吸収電流信号、あるいは2次電子信号を
陰極線管(以下CRTと略称する)15の輝度変調信号
にかえてCRT15上に試料7の走査電子顕微像を得る
。この像から試料7上の分析すべき場所を選択する。こ
の分析点に一次電子ビームを固定照射することによって
得られる反射回折線8は蛍光板9上に反射回折像として
のぞき窓1oを通して観察される。この反射回折像を解
析することによって試料7の表面上の任意の場所の結晶
状態(試料7表面部分を構成する原子の配列状態)を分
析することが可能となる。さらに半透明反射鏡19゜光
学レンズ11.アパーチャ12を使用して上記反射回折
像中の特定の回折スポットを選び、光ファイバ13によ
り光電変換素子(例えば光電子増倍管)14に導き電気
信号に変換し、この電気信号を一次電子ビーム4の走査
に同期させてCRT15の輝度変調信号にかえろことに
よってCRT15上に回折顕微像が得られる。この回折
顕微像から試料7の表面の結晶分布が分かる。また蒸着
銃17により試料7上に物質18を蒸着することにより
、試料7の物質18の結晶成長過程を上記回折顕微像を
使用してその場で観察することもできる。なお、この種
の装置として関連するものには例えば[ジャパニーズ・
ジャーナル・オブ・アプライド・フイジイクス(Jap
anese Journal ofApplied P
hysics) 23巻(1984)第913〜920
頁が挙げられる。
The basic setup of a conventional scanning backscattered electron diffraction microscope device is shown in FIG. 4. The device in FIG. 4 operates as follows. acceleration?
! ! A primary electron beam 4 emitted from an electron gun 2 having a source 1 is focused by a converging lens 3 onto the surface of a sample 7 located within a vacuum vessel 6 . The primary electron beam deflection coil group 5 is operated by the scanning power supply 16 to scan the primary electron beam 4 over the surface of the sample 7. At this time, as shown in Figure 5,
A sawtooth current is passed through the X-direction deflection coil in the primary electron beam deflection coil group 5, and the primary electron beam 4 is scanned in a line in the X direction. Immediately after this one linear scan is completed, a stepwise increasing current is applied to the Y-direction deflection coil to slightly deflect the primary electron beam As 4 in the Y-direction. By repeating these operations, the XY
The primary electron beats 4 scan the plane. The absorption current signal or secondary electron signal of the sample 7 obtained at that time is converted into a brightness modulation signal of a cathode ray tube (hereinafter abbreviated as CRT) 15 to obtain a scanning electron microscopic image of the sample 7 on the CRT 15. The location on the sample 7 to be analyzed is selected from this image. A reflected diffraction line 8 obtained by fixedly irradiating this analysis point with a primary electron beam is observed as a reflected diffraction image on a fluorescent screen 9 through a viewing window 1o. By analyzing this reflection diffraction image, it becomes possible to analyze the crystalline state (the arrangement state of atoms constituting the surface portion of the sample 7) at any location on the surface of the sample 7. In addition, a translucent reflector 19° optical lens 11. A specific diffraction spot in the reflected diffraction image is selected using an aperture 12, guided to a photoelectric conversion element (for example, a photomultiplier tube) 14 through an optical fiber 13, and converted into an electric signal, and this electric signal is converted into a primary electron beam 4. A diffraction microscopic image is obtained on the CRT 15 by changing the brightness modulation signal of the CRT 15 in synchronization with the scanning. The crystal distribution on the surface of sample 7 can be seen from this diffraction microscopic image. Furthermore, by depositing the substance 18 on the sample 7 with the vapor deposition gun 17, the crystal growth process of the substance 18 on the sample 7 can be observed on the spot using the above-mentioned diffraction microscopic image. In addition, related devices of this type include, for example, [Japanese
Journal of Applied Physics (Jap
anese Journal of Applied P
hysics) Volume 23 (1984) No. 913-920
Pages are mentioned.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように走査型反射電子回折顕微装置は、試料表面の
結晶状態および試料7上の物質18の結晶成長過程をミ
クロに調べる上で有力な装置であるが、従来装置には次
に述べるような問題点があった。試料7上の動的過程、
例えば物質18の結晶成長過程を調べるとき、上記回折
顕微像により結晶成長過程を像として観察する必要があ
ると同時に、特定の分析点からの上記反射回折像の変化
すなわち結晶状態の変化を知ることもきわめて重要であ
る。回折顕微像をll!察している最中は一次電子ビー
ls 4は試料7上を走査しているので、特定の分析点
からの反射回折像の変化を知ることができない。また特
定の分析点からの反射回折像の変化を調べるときは一次
電子ビーム4を試料7上に固定照射しているため回折顕
微像をI!J察することができないという問題点があっ
た。
In this way, the scanning backscattered electron diffraction microscope is an effective device for microscopically investigating the crystalline state of the sample surface and the crystal growth process of the substance 18 on the sample 7, but conventional devices have the following disadvantages. There was a problem. Dynamic process on sample 7,
For example, when investigating the crystal growth process of the substance 18, it is necessary to observe the crystal growth process as an image using the diffraction microscopic image, and at the same time, it is necessary to know the change in the reflection diffraction image from a specific analysis point, that is, the change in the crystal state. is also extremely important. A diffraction microscopic image! During analysis, the primary electron beam ls 4 is scanning over the sample 7, so changes in the reflection diffraction image from a specific analysis point cannot be known. In addition, when investigating changes in the reflection diffraction image from a specific analysis point, the primary electron beam 4 is fixedly irradiated onto the sample 7, so the diffraction microscopic image can be measured using I! There was a problem that J could not be detected.

本発明の目的は、従来技術での上記した問題点を解決し
、走査電子顕微像のm察を中断することなく、特定の分
析点からの上記反射回折像あるいは回折スポット強度を
得ることができる走査型反射電子回折顕微装置を提供す
ることにある。
An object of the present invention is to solve the above-mentioned problems in the prior art, and to obtain the above-mentioned reflection diffraction image or diffraction spot intensity from a specific analysis point without interrupting the observation of the scanning electron microscopic image. An object of the present invention is to provide a scanning-type reflection electron diffraction microscope device.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、一次電子ビームを試料上でまずX方向にラ
イン状に走査し、その後にY方向にステップ状に走査し
、それを繰り返すことによって走査電子顕微像を得ると
き、X方向の走査を終了するたびに、特定の分析点に一
次電子ビー21を固定照射し、かつそのときのみ信号を
取得することにより達成される。
The above purpose is to first scan the primary electron beam on the sample in the X direction in a line shape, then scan in the Y direction in a step shape, and repeat this to obtain a scanning electron microscope image. This is achieved by fixedly irradiating a specific analysis point with the primary electron beam 21 each time the analysis is completed, and acquiring a signal only at that time.

〔作用〕[Effect]

上記発明においては、一次電子ビームが試料上の特定の
分析点に固定照射している時間は、1つのX方向走査と
次のX方向走査との間の時間、すなわちミリ秒オーダで
あり、実質的に走査電子顕微像の観察を中断することな
く、特定の分析点からの上記反射回折像あるいは上記回
折スポット強度変化を得ることができる。
In the above invention, the time during which the primary electron beam is fixedly irradiating a specific analysis point on the sample is the time between one X-direction scan and the next X-direction scan, that is, on the order of milliseconds, and is substantially The reflection diffraction image or the change in diffraction spot intensity from a specific analysis point can be obtained without interrupting the observation of the scanning electron microscopic image.

〔実施例〕〔Example〕

以下、本発明の一実施例を第J図、第2図により説明す
る。第1図において20は蛍光板9上の反射回折像をモ
ニタするテレビカメラ、21はこの反射回折像を一時的
に蓄積して表示する二次元画像表示装置、22は1つの
X方向走査を終了するごとに、特定の分析点に一次電子
ビーt−,4を固定照射するように制御するための切替
え回路、23は一次電子ビームが走査しているとき、固
定照射しているとき、の信号を振分ける制御回路であり
、その他は第4図の従来例と同じである。切替え回路2
2においては第2図に示すような操作を行う。まず上記
走査電子顕微像上で例えば固定照射モードにより上記反
射回折像を取得したい特定の分析点を決定する。このと
き、一次電子ビーム用偏向コイル群5のX方向及びY方
向偏向コイルには特定の偏向電流が流れており、これら
の偏向電流値が特定の分析点に対応することになる。
An embodiment of the present invention will be described below with reference to FIG. J and FIG. 2. In FIG. 1, 20 is a television camera that monitors the reflected diffraction image on the fluorescent screen 9, 21 is a two-dimensional image display device that temporarily accumulates and displays this reflected diffraction image, and 22 is a device that completes one X-direction scan. A switching circuit 23 controls the fixed irradiation of the primary electron beam t-, 4 to a specific analysis point for each analysis point. This is a control circuit for distributing the data, and the rest is the same as the conventional example shown in FIG. Switching circuit 2
In step 2, the operations shown in FIG. 2 are performed. First, a specific analysis point at which the reflection diffraction image is to be obtained is determined on the scanning electron microscope image, for example, in a fixed irradiation mode. At this time, specific deflection currents are flowing through the X-direction and Y-direction deflection coils of the primary electron beam deflection coil group 5, and these deflection current values correspond to specific analysis points.

そこで、これらの偏向電流値を記憶しておき、1つのX
方向のライン走査が終了するごとにX方向偏向コイルに
上記設定電流値をΔtの時間だけ流し、また同時にY方
向偏向コイルにも設定電流値をΔtの時間だけ流す。こ
の直後Y方向の偏向電流をステップ状に変化させ、さら
にX方向のライン走査を再び行い、この操作を繰り返す
、このような操作を行うことによって実質的に一次電子
ビー114の走査を中断することなく、試料7上の特定
の分析点に一次電子ビー1% 4を固定照射できる。
Therefore, these deflection current values are memorized and one
Every time line scanning in the direction is completed, the set current value is applied to the X-direction deflection coil for a time period of Δt, and at the same time, the set current value is applied to the Y-direction deflection coil for a time period of Δt. Immediately after this, the deflection current in the Y direction is changed stepwise, and the line scanning in the X direction is performed again, and this operation is repeated.By performing such an operation, the scanning of the primary electron beam 114 is substantially interrupted. 1% 4 of primary electron beams can be fixedly irradiated onto a specific analysis point on the sample 7.

しかし、このとき、テレビカメラ20には上記操作の全
過程での反射回折像がモニタされるので、二次元画像表
示装置21において切替え回路22から制御信号を受け
、一次電子ビー1z 4が固定照射しているときのみ信
号を蓄積記憶することによって、ある特定の分析点から
の上記反射回折像のみを表示する。またゲート回路23
において、切替え回路22から制御信号を受け、一次電
子ビーts 4が試料7上を走査しているときのみ(i
号をCRTL5に送るようにすることによって、上記固
定照射に伴う余分な信号を除去した上記回折顕微像を得
ることができろ。さらに、制御回路23により一次電子
ビーム4を固定照射したときの信号を並列して取得する
ことにより、上記分析点から得られる特定の回折スポッ
トの強度変化を調べることもできる。
However, at this time, since the television camera 20 monitors the reflected diffraction image during the entire process of the above operation, the two-dimensional image display device 21 receives a control signal from the switching circuit 22, and the primary electron beam 1z4 is fixedly irradiated. By accumulating and storing signals only when the analysis is being performed, only the reflection diffraction image from a specific analysis point is displayed. Also, the gate circuit 23
, a control signal is received from the switching circuit 22, and only when the primary electron beats 4 are scanning over the sample 7 (i
By sending the signal to the CRTL 5, it is possible to obtain the above-mentioned diffraction microscopic image from which unnecessary signals accompanying the above-mentioned fixed irradiation have been removed. Furthermore, by acquiring signals in parallel when the primary electron beam 4 is fixedly irradiated by the control circuit 23, it is also possible to examine the intensity change of a specific diffraction spot obtained from the above-mentioned analysis point.

第3図は本発明の他の実施例を示す構成図である。ここ
ではテレビカメラ20の前段にある特定の電位を印加す
ると光を通す光スイツチング機構24(例えばポッケル
ズセル)を設け、切替え回路22からの制御信号により
、一次電子ビーム4が試料7上の特定の分析点に固定照
射されたときのみ光を通過させて反射回折像を観察する
。このとき反射回折像を観察する二次元画像表示装置2
1は通常のテレビ受像器で良い。
FIG. 3 is a block diagram showing another embodiment of the present invention. Here, an optical switching mechanism 24 (for example, a Pockels cell) that allows light to pass when a specific potential is applied is provided in front of the television camera 20, and a control signal from a switching circuit 22 causes the primary electron beam 4 to conduct a specific analysis on the sample 7. Only when a fixed point is irradiated, light is allowed to pass through and the reflected diffraction image is observed. Two-dimensional image display device 2 for observing the reflection diffraction image at this time
1 can be an ordinary television receiver.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明による装置は、1つのX方向
のライン走査を終了するごとに、測定したい特定の分析
点に一次電子ビームを固定照射し、そのときのみ信号を
取得することにより、試料表面上の動的過程、例えば物
質の結晶成長過程を、走査電子顕微像を観察しながら、
かつ特定の分析点からの反射回折像よりその点の結晶状
態変化も調べることができるという極めて優れた利点を
持つ。
As described above, the apparatus according to the present invention fixedly irradiates a specific analysis point to be measured with a primary electron beam every time one line scan in the X direction is completed, and acquires a signal only at that time. Dynamic processes on the sample surface, such as the crystal growth process of materials, can be observed while observing scanning electron microscopy images.
It also has the extremely excellent advantage of being able to examine changes in the crystal state at a specific analysis point from a reflection diffraction image from that point.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成を示す概略縦断面図、
第2図は本実施例における偏向電流の動作を示す特性図
、第3図は他の実施例の構成を示す概略縦断面図、f5
4図は従来装置のホ5成を示す概略縦断面図、及び第5
図は従来装置における偏向電流の動作を示す特性図であ
る。 1・・・加速電源、2・・・電子銃、3・・・収束レン
ズ、4・・・一次電子ビーム、5・・・一次電子ビーム
用偏向コイル群、6・・・真空容器、7・・・試料、8
・・・反射回折線、9・・・蛍光板、10・・・のぞき
窓、11・・・光学レンズ、12・・・アパーチャ、1
3・・・光ファイバ、14・・・光電変換素子、15・
・・lI3極線管、16・・・走査電源、17・・・蒸
着銃、18・・・物質、19・・・半透明反射鏡、20
・・・テレビカメラ、2J・・・二次元画像表示装置、
22・・・切替え回路、23・・・制御回路1、−\
FIG. 1 is a schematic longitudinal sectional view showing the configuration of an embodiment of the present invention;
FIG. 2 is a characteristic diagram showing the behavior of the deflection current in this embodiment, and FIG. 3 is a schematic vertical cross-sectional view showing the configuration of another embodiment, f5
Figure 4 is a schematic vertical sectional view showing the 5th configuration of the conventional device, and the 5th
The figure is a characteristic diagram showing the behavior of deflection current in a conventional device. DESCRIPTION OF SYMBOLS 1... Accelerating power supply, 2... Electron gun, 3... Converging lens, 4... Primary electron beam, 5... Deflection coil group for primary electron beam, 6... Vacuum vessel, 7... ...Sample, 8
...Reflection diffraction line, 9... Fluorescent screen, 10... Peephole, 11... Optical lens, 12... Aperture, 1
3... Optical fiber, 14... Photoelectric conversion element, 15.
...lI triode ray tube, 16...scanning power source, 17...evaporation gun, 18...substance, 19...semi-transparent reflector, 20
...TV camera, 2J...Two-dimensional image display device,
22...Switching circuit, 23...Control circuit 1, -\

Claims (1)

【特許請求の範囲】[Claims] 1、一次電子ビームを収束レンズ及び偏向系を介して試
料表面上の所定領域に所定角度で照射し、試料表面で反
射される反射電子回折線による回折像を蛍光板上に形成
し、この蛍光板上の反射回折像の中の特定の回折スポッ
トからの発生を光電変換素子により電気信号に変換し走
査電子顕微像を得る走査型反射電子回折顕微装置におい
て、一次電子ビームをまずX方向にライン状に走査し、
1つのX方向走査を終了後Y方向にステップ状に走査し
それを繰り返すことによって走査電子顕微像を得るとき
、1つのX方向の走査を終了するごとに、特定の分析点
に上記一次電子ビームを固定照射し、そのときのみ信号
を取得することにより、走査電子顕微像の観察を中断す
ることなく特定の分析点からの反射回折像あるいは回折
スポット強度を得ることができるようにしたことを特徴
とする走査型反射電子回折顕微装置。
1. A primary electron beam is irradiated onto a predetermined area on the sample surface at a predetermined angle through a converging lens and a deflection system, and a diffraction image is formed on a fluorescent screen by reflected electron diffraction rays reflected from the sample surface. In a scanning electron diffraction microscope device that obtains a scanning electron microscopic image by converting the generation from a specific diffraction spot in a reflection diffraction image into an electrical signal using a photoelectric conversion element, a primary electron beam is first converted into a line in the X direction. scan,
When obtaining a scanning electron microscope image by scanning stepwise in the Y direction after completing one X direction scan and repeating the process, the primary electron beam is applied to a specific analysis point each time one X direction scan is completed. By fixedly irradiating and acquiring the signal only at that time, it is possible to obtain the reflected diffraction image or diffraction spot intensity from a specific analysis point without interrupting the observation of the scanning electron microscopic image. A scanning backscattered electron diffraction microscope device.
JP6563586A 1986-03-26 1986-03-26 Scanning type reflecting electron diffraction microscope device Pending JPS62223961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6563586A JPS62223961A (en) 1986-03-26 1986-03-26 Scanning type reflecting electron diffraction microscope device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6563586A JPS62223961A (en) 1986-03-26 1986-03-26 Scanning type reflecting electron diffraction microscope device

Publications (1)

Publication Number Publication Date
JPS62223961A true JPS62223961A (en) 1987-10-01

Family

ID=13292678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6563586A Pending JPS62223961A (en) 1986-03-26 1986-03-26 Scanning type reflecting electron diffraction microscope device

Country Status (1)

Country Link
JP (1) JPS62223961A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206551A (en) * 1988-02-12 1989-08-18 Shimadzu Corp Surface analyzer
JPH01276559A (en) * 1988-04-27 1989-11-07 Shimadzu Corp Diffraction electron detector
JPH05128991A (en) * 1991-08-09 1993-05-25 Hikari Gijutsu Kenkyu Kaihatsu Kk Real-time surface monitoring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206551A (en) * 1988-02-12 1989-08-18 Shimadzu Corp Surface analyzer
JPH01276559A (en) * 1988-04-27 1989-11-07 Shimadzu Corp Diffraction electron detector
JPH05128991A (en) * 1991-08-09 1993-05-25 Hikari Gijutsu Kenkyu Kaihatsu Kk Real-time surface monitoring device

Similar Documents

Publication Publication Date Title
Hayes et al. The scanning electron microscope: principles and applications in biology and medicine
US20090026369A1 (en) Electron Beam Inspection System and an Image Generation Method for an Electron Beam Inspection System
US4880977A (en) Analytical electron microscope
US3748467A (en) Scanning electron microscope
JPS62223961A (en) Scanning type reflecting electron diffraction microscope device
JPH04259743A (en) Scanning type reflecting electron-diffraction microscope
EP0241060B1 (en) Apparatus for energy-selective visualisation
JPH09106777A (en) Electron multiplier for use with electron microscope
EP3985711A1 (en) Charged particle beam device
US4006357A (en) Apparatus for displaying image of specimen
WO2018193605A1 (en) Charged-particle beam device and charged-particle beam device condition-setting method
JP4129088B2 (en) Scanning transmission electron microscope
JPS5923444A (en) Scanning type reflected electron diffraction microscope
JPS60230346A (en) Scanning-type reflected-electron-diffracting microscope
JPH1167138A (en) Micro-area observation device
JPH0586022B2 (en)
JPS62198043A (en) Three-dimensional observation device
JP2000292380A (en) Positive electron extinguishment analysing device
JPS62110249A (en) Scanning electron reflection difraction microscopic device
JPH0636726A (en) Scanning microscope
JPS5914222B2 (en) Magnification control device for scanning electron microscopes, etc.
JP2000228165A (en) Electron beam device
JPS60138252U (en) Sample image display device in particle beam equipment
JPH11283545A (en) Electron image monitoring device
JPH10199463A (en) Image display device by electron beams