JPS62110249A - Scanning electron reflection difraction microscopic device - Google Patents

Scanning electron reflection difraction microscopic device

Info

Publication number
JPS62110249A
JPS62110249A JP60248813A JP24881385A JPS62110249A JP S62110249 A JPS62110249 A JP S62110249A JP 60248813 A JP60248813 A JP 60248813A JP 24881385 A JP24881385 A JP 24881385A JP S62110249 A JPS62110249 A JP S62110249A
Authority
JP
Japan
Prior art keywords
diffraction
reflected
image
reflection
scanning electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60248813A
Other languages
Japanese (ja)
Inventor
Masakazu Ichikawa
昌和 市川
Takahisa Doi
土井 隆久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60248813A priority Critical patent/JPS62110249A/en
Publication of JPS62110249A publication Critical patent/JPS62110249A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To always enable the identification of the analysed portion having reflection diffraction pattern, in the diffraction microscopic pattern, by combining a rotatable semitransparent mirror and an optical lens. CONSTITUTION:The reflection diffraction pattern on the fluorescent screen 9 is focused on the focal plane A by means of the optical lens 15. Where, a part of the light from the reflection diffraction pattern is reflected by the semitransparent mirror 17 provided between the focal plane A and the optical lens 15 so as to be focused on the focal plane B too. A specified diffraction spot or a part of the diffraction spot is selected roughly by moving the aperture 11 on the focal plane and precisely by rotating the semitransparent mirror 17 as indicated by the arrow. This light is transmitted to the photoelectric transducer element 12 through the optical fiber 16 to obtain the diffraction microscopic pattern. Thereby the reflection diffraction pattern can be observed always on the focal plane A.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は試料表面の結晶性を分析する場合などに利用さ
れる走査型反射電子回折顕微装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an improvement in a scanning-type backscattered electron diffraction microscope used for analyzing the crystallinity of a sample surface.

〔発明の背景〕[Background of the invention]

従来の走査型反射電子回折顕微装置の基本的な構成を第
1図に示す、第1図装置は次のように動作する6加速電
源1を有する電子銃2から放出される一次電子ビーム4
は収束レンズ3により真空容器6内にある試料7の表面
に収束される。走査1’l!g14により一次電子ビー
ム用偏向コイル群5を動作させて一次電子ビーl、 4
を試料7の表面上で走査させる。そのとき得られる試料
7の吸収電流信号、あるいは2次電子信号を陰極線管(
以下CRTL、、略称する)13の輝度変調信号にかえ
てCRT]3上に試料7の走査電子顕微像を得る。
The basic configuration of a conventional scanning backscattered electron diffraction microscope device is shown in FIG. 1. The device in FIG.
is focused by the converging lens 3 onto the surface of the sample 7 in the vacuum container 6. Scan 1'l! g14 operates the primary electron beam deflection coil group 5 to generate the primary electron beam l, 4.
is scanned over the surface of sample 7. The absorbed current signal or secondary electron signal of sample 7 obtained at that time is transmitted to the cathode ray tube (
A scanning electron microscope image of the sample 7 is obtained on the CRT] 3 instead of the brightness modulation signal of the CRT 13 (hereinafter abbreviated as CRTL).

この像から試料7の分析すべき場所を選択する。The location of sample 7 to be analyzed is selected from this image.

この分析点に一次電子ビーtz 4を固定照射すること
によって得られる反射回折線8は蛍光板9上に反射回折
像としてのぞき窓10を通して線察される。この回折像
を解析することによって試料7の表面上の任意の場所の
結晶状態(試料7表面部分を構成する元素の配列状態)
を分析することが可能となる。さらに光学レンズ15.
アパーチャ11を使用して上記反射回折像中の特定の回
折スポットを選び、光ファイバ16により光電変換素子
(例えばフォトマルチプライヤ)12に導き電気信号に
変換し、この電気信号を一次電子ビーム4の走査に同期
させてCRTL3の輝度変調(1号にかえることによっ
てCR’I”13上に回折顕微像が得られる。この回折
顕微像から試料7の表面の結晶分布が分かり、試料7の
表面の結晶解析の有力な子役となる。
A reflected diffraction line 8 obtained by fixedly irradiating the primary electron beam tz 4 at this analysis point is observed through a peephole 10 as a reflected diffraction image on a fluorescent screen 9. By analyzing this diffraction image, we can determine the crystalline state at any location on the surface of sample 7 (the arrangement state of the elements constituting the surface part of sample 7).
It becomes possible to analyze. Furthermore, optical lens 15.
A specific diffraction spot in the reflected diffraction image is selected using an aperture 11, guided to a photoelectric conversion element (for example, a photomultiplier) 12 through an optical fiber 16, and converted into an electrical signal. By changing the brightness modulation of CRTL3 to No. 1 in synchronization with scanning, a diffraction microscopic image can be obtained on CR'I"13. From this diffraction microscopic image, the crystal distribution on the surface of sample 7 can be understood. Becomes an influential child actor in crystal analysis.

このように走査型反射電子回折顕微装置は、試料表面の
結晶状態をミクロに調べるよで有力な装置であるが、従
来装置には次に述べるような問題点があった。即ち、蛍
光板9上の反射回折像の一部が、光学レンズ15.アパ
ーチャ11と光ファイバ16から成る回折顕微像取得用
の検出器によりさえぎられるため、反射回折像の詳しい
*?%には上記検出器を反射回折像をさえぎらないよう
に動かす必要があり、そのときは回折顕微像が取得でき
ないという問題点があった6なお、この種の装置として
関連するものには例えば「ジオパニーズ・ジャーナル・
オブ・アプライド・フイジクス(J apaneqe 
J ow+++*l of Applied Phys
ics) 23巻(1984)第913〜920頁が挙
げられる。
As described above, the scanning backscattered electron diffraction microscope is a powerful device for microscopically examining the crystalline state of the surface of a sample, but conventional devices have the following problems. That is, a part of the reflected diffraction image on the fluorescent screen 9 is reflected by the optical lens 15. The detailed *? %, it was necessary to move the detector so as not to block the reflection diffraction image, and in that case there was a problem that a diffraction microscopic image could not be obtained. Geopanese Journal
of applied physics
J ow+++*l of Applied Phys
ics), Vol. 23 (1984), pp. 913-920.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来技術での上記した問題点を解決し
、反射回折像の観察と回折顕微像の取得を互いに干渉な
く同時に行うことができる走査型反射電子回折顕微装置
を提供することにある。
An object of the present invention is to solve the above-mentioned problems in the prior art and to provide a scanning-type backscattered electron diffraction microscope device that can simultaneously observe a reflection diffraction image and acquire a diffraction microscopic image without mutual interference. be.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、上記目的を達成するために、蛍光板−
ヒの反射回折像の発光の一部分を半透明反射鏡により反
射し、この反射された発光のうち特定の回折スポット、
あるいは回折スポットの一部の発光を半透明反射鏡の回
転と、光学レンズの組み合せにより、アパーチャを通過
させて光電変換素子に厚く構成とすることにある。
The feature of the present invention is that, in order to achieve the above object,
A part of the emitted light from the reflection diffraction image of H is reflected by a semi-transparent reflector, and a specific diffraction spot of this reflected emitted light is
Alternatively, the light emitted from a part of the diffraction spot may be passed through an aperture by a combination of the rotation of a semi-transparent reflecting mirror and an optical lens to form a thick structure in the photoelectric conversion element.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第2図により説明する。第2
図において、17は照射光のつれ一部を通過、一部を反
射する半透明反射鏡であり、その他は第1図従来例と同
じである。蛍光板9上に反射回折像は光学レンズ15に
より結像面A上に結像される。このとき結像面Aと光学
レンズ15の間に半透明反射鏡17を設置することによ
り反射回折像の発光の一部を反射し、反射回折像を結像
面B上にもM像する。反射回折像中の特定の回折スボツ
1−あるいは回折スポットの一部は、まず粗くはアパー
チャ11を結像面一ヒで移動させることにより、精密に
は半透明反射鏡17を矢印で示すごとくに回転すること
によって選択される。この発光を光ファイバ16によっ
て、光?F!変換素子12に導くことにより回折顕微像
を得る。このとき反射回折像は結像面A上で常時観察す
ることができる。
An embodiment of the present invention will be described below with reference to FIG. Second
In the figure, numeral 17 is a semi-transparent reflecting mirror that passes part of the irradiated light and reflects part of it, and the rest is the same as the conventional example shown in Figure 1. The diffraction image reflected on the fluorescent screen 9 is formed on the imaging plane A by the optical lens 15. At this time, by installing a semi-transparent reflecting mirror 17 between the imaging plane A and the optical lens 15, a part of the emitted light of the reflected diffraction image is reflected, and the reflected diffraction image is also formed as an M image on the imaging plane B. A specific diffraction spot 1 or a part of the diffraction spot in the reflected diffraction image is first roughly moved by moving the aperture 11 across the imaging plane, and more precisely by moving the semi-transparent reflecting mirror 17 as shown by the arrow. Selected by rotating. This light emission is transmitted through the optical fiber 16 into light? F! By guiding it to the conversion element 12, a diffraction microscopic image is obtained. At this time, the reflection diffraction image can be observed on the imaging plane A at all times.

第3図は本発明の他の実施例を示す構成図で、これは半
透明反射鏡を反射回折像の結像面Aの後方に設置したも
のである。このとき、結像面F3上に反射回折像を結像
させるために光学レンズ[5)、 かさらに゛必要となる。
FIG. 3 is a block diagram showing another embodiment of the present invention, in which a semi-transparent reflecting mirror is installed behind the imaging plane A of the reflected diffraction image. At this time, an optical lens [5] or more is required to form a reflected diffraction image on the imaging plane F3.

第4図は、さらに本発明の他の実施例の構成図で、蛍光
板9上の反射回折像の発光の一部分を半透明反射鏡17
により反射させた後に、光学レンズ15により結像面B
上に反射回折像を結像させたものである。
FIG. 4 is a block diagram of still another embodiment of the present invention, in which a part of the light emitted from the reflected diffraction image on the fluorescent screen 9 is reflected by a semi-transparent reflecting mirror 17.
After being reflected by the optical lens 15, the image forming plane B
A reflection diffraction image is formed on top.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明による装置は、回転可能な半
透明反射鏡と光学レンズを組み合せることにより、回折
顕微像の取得と反射回折像の観察を互いに干渉すること
なく行い、反射回折像を得た分析部分を常に回折顕微像
中で確認でき表面微小領域の結晶状態を容易にするとい
う極めて優れた利点を持つ。
As described above, the apparatus according to the present invention uses a combination of a rotatable semi-transparent reflector and an optical lens to acquire a diffraction microscopic image and observe a reflected diffraction image without interfering with each other. This method has the extremely excellent advantage of being able to constantly confirm the obtained analysis area in a diffraction microscopic image, making it easier to determine the crystalline state of minute areas on the surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置の構成を示す概略縦断面図。 第2図、第:3図、第・1図はそれぞれ本発明の実施例
の構成を示すR略縦断面図である。 1・・・加速電源、2・・・電子銃、3・・・収束レン
ズ、4・・・−次電子ビー11.5・・・−次電子ビー
ム用偏向コイル群、6・・・真空4躇、7・・・試料、
8・・・反射回折線、9・・・蛍光板、】O・・・のぞ
き窓、11・・・アパーチャ、12・・・光電変換素子
、13・・・陰極線管(CRT)14・・・走査線源、
15・・・光学レンズ、16・・・光フ猶1 閃 第 2  の χ 3 (2)
FIG. 1 is a schematic vertical sectional view showing the configuration of a conventional device. FIG. 2, FIG. 3, and FIG. 1 are R schematic vertical cross-sectional views showing the configuration of an embodiment of the present invention, respectively. DESCRIPTION OF SYMBOLS 1... Accelerating power supply, 2... Electron gun, 3... Converging lens, 4... -order electron beam 11.5... -order electron beam deflection coil group, 6... Vacuum 4 hesitation, 7...sample,
8... Reflected diffraction line, 9... Fluorescent screen, ]O... Peephole, 11... Aperture, 12... Photoelectric conversion element, 13... Cathode ray tube (CRT) 14... Scanning source,
15...Optical lens, 16...Optical lens 1 Flash 2nd χ 3 (2)

Claims (1)

【特許請求の範囲】[Claims] 一次電子ビームを収束レンズ及び偏向系を介して試料表
面上の所定領域に所定角度で照射し、試料表面で反射さ
れる反射電子回折線による回折像を蛍光板上に形成し、
この蛍光板上の反射回折像の中の特定の回折スポットか
らの発光を光電変換素子により電気信号に変換し走査電
子顕微像を得る走査型反射電子回折顕微装置において、
上記蛍光の反射回折像の発光を半透明反射鏡により一部
分反射し、この反射された発光の中の特定の回折スポッ
トからの発光あるいは発光の一部を上記光電変換素子に
導いて走査電子顕微像を得るようにしたことを特徴とす
る走査型反射電子回折顕微装置。
A primary electron beam is irradiated onto a predetermined area on the sample surface at a predetermined angle through a converging lens and a deflection system, and a diffraction image is formed on a fluorescent screen by reflected electron diffraction rays reflected from the sample surface.
In a scanning electron diffraction microscope device that converts light emitted from a specific diffraction spot in the reflection diffraction image on the fluorescent screen into an electrical signal using a photoelectric conversion element to obtain a scanning electron microscopic image,
Part of the emitted light of the reflection diffraction image of the fluorescence is reflected by a semi-transparent reflecting mirror, and part of the emitted light from a specific diffraction spot in the reflected light is guided to the photoelectric conversion element to form a scanning electron microscope image. A scanning backscattered electron diffraction microscope apparatus characterized in that it obtains the following:
JP60248813A 1985-11-08 1985-11-08 Scanning electron reflection difraction microscopic device Pending JPS62110249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60248813A JPS62110249A (en) 1985-11-08 1985-11-08 Scanning electron reflection difraction microscopic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60248813A JPS62110249A (en) 1985-11-08 1985-11-08 Scanning electron reflection difraction microscopic device

Publications (1)

Publication Number Publication Date
JPS62110249A true JPS62110249A (en) 1987-05-21

Family

ID=17183787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60248813A Pending JPS62110249A (en) 1985-11-08 1985-11-08 Scanning electron reflection difraction microscopic device

Country Status (1)

Country Link
JP (1) JPS62110249A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018020626A1 (en) * 2016-07-28 2018-02-01 株式会社 日立ハイテクノロジーズ Charged-particle beam apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018020626A1 (en) * 2016-07-28 2018-02-01 株式会社 日立ハイテクノロジーズ Charged-particle beam apparatus
US11282671B2 (en) 2016-07-28 2022-03-22 Hitachi High-Tech Corporation Charged-particle beam apparatus

Similar Documents

Publication Publication Date Title
US4211924A (en) Transmission-type scanning charged-particle beam microscope
JP2004301862A (en) Apparatus for analyzing surface of electrically insulated sample
JP2001110351A (en) Scanning electron microscope
US4382182A (en) Method of displaying an image of phase contrast in a scanning transmission electron microscope
JPS62110249A (en) Scanning electron reflection difraction microscopic device
US5675148A (en) Scanning reflection electron diffraction microscope
JP2966438B2 (en) Scanning interference electron microscope
JPS5923444A (en) Scanning type reflected electron diffraction microscope
JPS62223961A (en) Scanning type reflecting electron diffraction microscope device
JPS60230346A (en) Scanning-type reflected-electron-diffracting microscope
JPS6056344A (en) Scanning type reflecting electron diffraction microscope apparatus
JPS58204454A (en) Reflected electron diffraction microscopic device of scanning type
JPH1167138A (en) Micro-area observation device
JPS61250952A (en) Electron microscope
JPS6335481Y2 (en)
JPS61269842A (en) Electron microscope
JPS586267B2 (en) scanning electron microscope
JPH06283128A (en) Electron microscope
JPS63314747A (en) Scanning type reflected electron diffraction microscope device
JPH082603Y2 (en) X-ray analyzer
JPH07161332A (en) Electron beam radiating analyzer
JP2000228165A (en) Electron beam device
JPS6125043A (en) Crystal-orientation determining method by scanning electron microscope and scanning electron microscope employed
JPH02204954A (en) Scanning type penetrative electron microscopic method
JPS5851452A (en) Analytic electron microscope