JPH02204954A - Scanning type penetrative electron microscopic method - Google Patents

Scanning type penetrative electron microscopic method

Info

Publication number
JPH02204954A
JPH02204954A JP1023036A JP2303689A JPH02204954A JP H02204954 A JPH02204954 A JP H02204954A JP 1023036 A JP1023036 A JP 1023036A JP 2303689 A JP2303689 A JP 2303689A JP H02204954 A JPH02204954 A JP H02204954A
Authority
JP
Japan
Prior art keywords
image
electron beam
electron
scanning
specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1023036A
Other languages
Japanese (ja)
Inventor
Masahito Tomita
富田 雅人
Takayoshi Hayashi
林 孝好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1023036A priority Critical patent/JPH02204954A/en
Publication of JPH02204954A publication Critical patent/JPH02204954A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an image of as high in resolution as that of a conventional high-resolution penetrative electron microscopic image from a barrel of a penetrative electron microscope by scanning a specimen with a converged electron beam according to program, and sensing a scan image for the image drawn by the converged electron beam on the undersurface of the specimen. CONSTITUTION:An electron beam 10 generated from an electron gun 9 is contracted by an irradiative lens system 11 and irradiated onto a specimen 13. An image drawn under the specimen 13 upon penetration thereof is enlarged by a focusing lens system 14 to a magnification of ten thousand through one million and focused on a sensor 15. At this time, the specimen 13 is scanned with converged electrons by sending signals from a scanning signal generator 16 to a deflector 12, and lattice image can be obtained at any point in the specified region. This lattice image can be observed ocularly in the same manner as a conventional high-resolution penetrative electron microscopic image by performing high speed scanning with electron beam 10 any by observing on a fluorescent plate with an appropriate image remaining time. The scanning signal generator 16 is programmable, and the scanning region can be specified in any desired configuration.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は電子顕微鏡法に係わり、特に微小部分析を行
うに好適な分析装置を備えた走査型透過電子顕微鏡法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to electron microscopy, and more particularly to scanning transmission electron microscopy equipped with an analysis device suitable for microscopic analysis.

[従来の技術および発明が解決しよとする課題]従来の
走査型透過電子顕微鏡法は、専用機あるいは透過型電子
顕微鏡に付属装置を装着した顕微鏡を用いて行われてい
た。走査型透過電子顕微鏡の専用機は、透過型電子顕微
鏡に比べて、結晶方位と入射電子線との関係を正確に合
わせる機構の操作が難しいと共に、透過型電子顕微鏡の
高分解能を容易に得ることができないといった欠点があ
った。一方、透過型電子顕微鏡に付属装置を装着した顕
微鏡にあっては、タングステンやLaB、のフィラメン
トの電子銃を使用しているために輝度が充分でなく、し
かも真空度が悪い(10−’Torr台)く、専用機(
例えば英国V、C,社のHB 501型機)はどの微小
部の分析(集束電子線の径0 、5 nm)はできない
などの問題があった。また、−船内には透過型電子顕微
鏡の対物レンズポールピースは、超高分解能用と分析用
(走査型透過用)で異なるためにその両立はできない。
[Prior Art and Problems to be Solved by the Invention] Conventional scanning transmission electron microscopy has been carried out using a dedicated machine or a microscope equipped with an attached device to a transmission electron microscope. Compared to transmission electron microscopes, dedicated scanning transmission electron microscopes have a mechanism that is difficult to operate to accurately adjust the relationship between the crystal orientation and the incident electron beam, and it is difficult to easily obtain the high resolution of transmission electron microscopes. The disadvantage was that it was not possible to On the other hand, a transmission electron microscope equipped with an accessory device uses a tungsten or LaB filament electron gun, which results in insufficient brightness and poor vacuum (10-'Torr). machine), dedicated machine (
For example, the HB 501 model manufactured by V.C., UK) has problems such as the inability to analyze very small parts (the diameter of the focused electron beam is 0 and 5 nm). Furthermore, the objective lens pole pieces of transmission electron microscopes on board the ship are different for ultra-high resolution and analysis (scanning transmission), so they cannot be used at the same time.

また、従来の技術では、透過型電子顕微鏡を走査型透過
方式で駆動する場合に、走査信号と同期させたCRTな
どに、透過電子像、二次電子像や分析器からの元素像を
描く方式を用いていた。
In addition, in conventional technology, when driving a transmission electron microscope using a scanning transmission method, a method of drawing a transmission electron image, a secondary electron image, or an elemental image from an analyzer on a CRT or the like synchronized with a scanning signal is used. was used.

結局、このような従来技術では、オングストロームオー
ダーの集束電子線での分析と透過型電子顕微鏡の高い分
解能を得ることが困難であった。
In the end, with such conventional techniques, it is difficult to perform analysis using a focused electron beam on the order of angstroms and to obtain the high resolution of a transmission electron microscope.

この発明の目的は、′21!界放射型電子銃のような小
さな仮想点光源を持つ電子銃で得られる集束電子線を走
査することにより、透過型電子顕微鏡の高分解能像で分
析位置を指定して、目標とする部位のオングストローム
オーダーの正確な微小部分析を可能にすることにある。
The purpose of this invention is '21! By scanning a focused electron beam obtained by an electron gun with a small virtual point light source such as a field-emission electron gun, the analysis position can be specified in the high-resolution image of a transmission electron microscope, and the angstrom of the target area can be determined. The goal is to enable order-accurate microscopic analysis.

そしてこの発明では、干渉性の良い電子線を用いること
で11−程度に集束しても高い分解能の像が得られるよ
うにし、その集束電子線を試料上で走査させることによ
って、蛍光板やフィルムなどの検出器の上に、通常の高
分解能透過型電子顕微鏡像と同程度の高い分解能の像を
透過型電子顕微鏡の鏡体によって得ることを可能とした
In this invention, by using an electron beam with good coherence, it is possible to obtain a high-resolution image even when focused to about 11-degrees, and by scanning the focused electron beam over a sample, fluorescent screens, films, etc. It is now possible to use the mirror body of a transmission electron microscope to obtain an image on the detector with a resolution as high as that of a normal high-resolution transmission electron microscope.

[課題を解決するための手段] この発明の走査型透過電子顕微鏡法は、電子線を発生す
る発生手段と、この発生手段が発生した電子線を試料に
集束する集束手段と、試料像を拡大投影する拡大手段と
、試料像を検出する検出手段と、試料に照射する電子を
偏向する偏向手段を備えた電子顕微鏡において、 前記偏向手段によって、集束電子線を試料上にてプログ
ラマブルに走査させて、集束電子線が試料下面に作る像
の走査像を得ることを特徴とする。
[Means for Solving the Problems] The scanning transmission electron microscopy method of the present invention includes a generating means for generating an electron beam, a focusing means for focusing the electron beam generated by the generating means on a sample, and an enlarged sample image. In an electron microscope equipped with an enlargement means for projecting, a detection means for detecting a sample image, and a deflection means for deflecting electrons irradiated onto the sample, the deflection means causes a focused electron beam to be programmably scanned over the sample. , is characterized by obtaining a scanning image of the image formed by the focused electron beam on the lower surface of the sample.

[作用] この発明による走査型透過電子顕微鏡法は、微小部の電
子回折、集束電子回折、エネルギー分散型X線分析、波
長分散型X線分析、電子エネルギー損失分光、オージェ
電子分光、カソードルミネッセンスなどの集束した電子
線をプローブとした分析を行う際に、透過型電子顕微鏡
の持つ高い分解能で分析点を指定して、正確な微小部分
析を可能とする。
[Operation] The scanning transmission electron microscopy method according to the present invention can be applied to microscopic electron diffraction, focused electron diffraction, energy dispersive X-ray analysis, wavelength dispersive X-ray analysis, electron energy loss spectroscopy, Auger electron spectroscopy, cathodoluminescence, etc. When performing analysis using a focused electron beam as a probe, the high resolution of a transmission electron microscope allows for accurate analysis of microscopic parts by specifying the analysis point.

[実施例] 以下、この発明の実施例を図面に基づいて説明する。[Example] Embodiments of the present invention will be described below based on the drawings.

まず、この発明の実施に用いる電子顕微鏡について説明
する。
First, an electron microscope used to implement this invention will be explained.

第1図において9は電子銃(例えば、電界放射型電子銃
)であり、干渉性が高く、高密度の電子線を発生する。
In FIG. 1, reference numeral 9 denotes an electron gun (for example, a field emission type electron gun), which generates a highly coherent and high-density electron beam.

この電子銃9から発生した電子線10は、集束レンズ(
図示せず)と対物レンズの前磁場(図示せず)より形成
された照射レンズ系11によって約1nmの大きさに縮
小され、試料13に照射される。前記試料13を透過し
て試料13の下にできる像は、結像レンズ系14により
1万〜100万倍程度に拡大され、検出器15に結像さ
れる。この時、上記像の結像条件は通常の高分解能透過
電子顕微鏡像を得るための条件と同一であり、試料13
に入射する電子線を集束するために、照射レンズ系の条
件が異なるだけである。
The electron beam 10 generated from this electron gun 9 is directed through a focusing lens (
It is reduced to a size of about 1 nm by an irradiation lens system 11 formed by a front magnetic field (not shown) and an objective lens (not shown), and is irradiated onto a sample 13. The image transmitted through the sample 13 and formed below the sample 13 is magnified approximately 10,000 to 1,000,000 times by an imaging lens system 14 and is focused on a detector 15 . At this time, the imaging conditions for the above image are the same as those for obtaining a normal high-resolution transmission electron microscope image, and sample 13
Only the conditions of the irradiation lens system are different in order to focus the electron beam incident on the .

電流密度が高く、干渉性の高い電子銃9を用いることに
よって、集束した電子線の内に高分解能像を観察するこ
とができる。
By using the electron gun 9 with high current density and high coherence, a high-resolution image can be observed within the focused electron beam.

検出器15としては、蛍光板やフィルムの他に電気的あ
るいは光学的なものなどがある。12は偏向器、16は
走査信号発生器であり、走査信号発生器16から偏向B
12に信号を送ることによって、試料13上にて集束電
子を走査し、指定した領域内のすべての点について上記
格子像を得ることができる。電子線10を高速走査し、
適当な残像時間の蛍光板で観察することによって、上記
格子像は通常の高分解能透過電子顕微鏡像と同様に肉眼
で観察することができる。また、フィルムにも記録でき
る。
The detector 15 may be an electrical or optical detector in addition to a fluorescent screen or film. 12 is a deflector, and 16 is a scanning signal generator.
By sending a signal to 12, it is possible to scan the sample 13 with focused electrons and obtain the above-mentioned lattice images for all points within the designated area. Scanning the electron beam 10 at high speed,
By observing with a fluorescent screen with an appropriate afterimage time, the lattice image can be observed with the naked eye in the same way as an ordinary high-resolution transmission electron microscope image. It can also be recorded on film.

走査信号発生器16は、プログラマブルで任意の形状に
走査領域を指定できるようになっている。
The scanning signal generator 16 is programmable and can designate a scanning area in any shape.

例えば、走査範囲内の任意の点をスキップしたり、ある
いは電子線10を停止あるいは滞在時間を変化すること
ができ、格子像等によって分析点の指定ができる。また
、上記滞在時間を調整することによって、特定部分だけ
について電子線10の照射による損傷や汚染を軽減した
り、逆に強めることができるようになっている。
For example, it is possible to skip any point within the scanning range, or the electron beam 10 can be stopped or the dwell time can be changed, and analysis points can be specified using a lattice image or the like. Furthermore, by adjusting the residence time, damage and contamination caused by irradiation of the electron beam 10 can be reduced or strengthened only in specific parts.

17は、指定された分析点から発生する蛍光X線を測定
するX線分光器であり、18は、試料13を透過した電
子を検出器15の下にて測定する電子線エネルギー損失
分光器であり、これらの測定によって、組成分析などが
行なわれる。また、これらを電子線の走査に同期させる
ことによって元素像を得られる。
17 is an X-ray spectrometer that measures fluorescent X-rays generated from a designated analysis point, and 18 is an electron beam energy loss spectrometer that measures electrons that have passed through the sample 13 under the detector 15. These measurements are used to perform compositional analysis. Furthermore, elemental images can be obtained by synchronizing these with electron beam scanning.

このような電子顕微鏡は次のように用いる(第2図およ
び第3図参照)。
Such an electron microscope is used as follows (see FIGS. 2 and 3).

集束電子線1が試料上の点3を照射している時、通常の
結像像条件で電子顕微鏡に結像面にできる像を5(第2
図(b)参照)とする。この像5の大きさは集束電子線
1の径である。偏向器12によって、試料13上の点3
から点4に照射位置を走査すると、像もこれに対応して
像面の6(第26図(b)参照)に移る。第2図(c)
は積分走査像7を表す。
When the focused electron beam 1 is irradiating a point 3 on the sample, the image formed on the imaging surface of the electron microscope under normal imaging conditions is 5 (second
(see figure (b)). The size of this image 5 is the diameter of the focused electron beam 1. By the deflector 12, the point 3 on the sample 13 is
When the irradiation position is scanned from point 4 to point 4, the image also moves correspondingly to point 6 on the image plane (see FIG. 26(b)). Figure 2(c)
represents the integral scan image 7.

偏向器12による走査は、第3図(a)、(b)(C)
に示すようないくつかの経路、あるいは速度で行う。
The scanning by the deflector 12 is shown in FIGS. 3(a), (b), and (C).
Perform several routes or speeds as shown in .

第3図(a)の走査は図中の左方から右方に向かう一方
向の走査であり、同図(b)の走査は走査方向が交互に
変化する走査であり、同図(C)の走査は部分的にスキ
ップして走査しない領域8をつ(る走査である。
The scan in Figure 3(a) is a one-way scan from the left to the right in the figure, and the scan in Figure 3(b) is a scan in which the scanning direction changes alternately. The scanning is a scanning in which a region 8 is not scanned by partially skipping.

このような経路あるいは速度で走査することによって、
これらの像の重ね合わせである像面の積分走査像7は、
通常の透過電子顕微鏡と同等でかつその一部分に対する
電子線の照射量が制御できることになる。
By scanning with such a path or speed,
The integral scanning image 7 of the image plane, which is a superposition of these images, is
It is equivalent to a normal transmission electron microscope, and the amount of electron beam irradiation to a portion of the microscope can be controlled.

そして、X線分光器17や電子線エネルギー損失分光&
’(18による測定によって、組成分析などを行う。ま
た、これらを電子線の走査に同期させることによって元
素像を得る。
Then, an X-ray spectrometer 17, an electron beam energy loss spectrometer &
'(18) performs compositional analysis, etc. Also, by synchronizing these with the scanning of the electron beam, an elemental image is obtained.

[発明の効果] 以上、説明したようにこの発明による走査型透過電子顕
微鏡法は、微小部の電子回折、集束電子回折、エネルギ
ー分散型X線分析、波長分散型X線分析、電子エネルギ
ー損失分光、オージェ電子分光、カソードルミネッセン
スなどの集束した電子線をプローブとした分析を行う際
に、透過型電子顕微鏡の持つ高い分解能で分析点を指定
するため、正確な微小部分析が可能となる。
[Effects of the Invention] As explained above, the scanning transmission electron microscopy method according to the present invention can be applied to microscopic electron diffraction, focused electron diffraction, energy dispersive X-ray analysis, wavelength dispersive X-ray analysis, and electron energy loss spectroscopy. When performing analysis using a focused electron beam as a probe, such as Auger electron spectroscopy, cathodoluminescence, etc., the high resolution of a transmission electron microscope allows for accurate analysis of microscopic areas.

また、この時に問題となる電子線による試料の汚染や損
傷を部分的に制御することもできる。
Furthermore, it is also possible to partially control contamination and damage to the sample caused by the electron beam, which is a problem at this time.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の走査型透過電子顕微鏡法の実施例を説
明するための図であり、第1図は走査型透過電子顕微鏡
の概略構成図、第2図(a)、  (b)、(C)は電
子線の照射位置と電子顕微鏡の結像面との関係の説明図
、第3図は(a)、(b)。 (C)は電子線の異なる走査経路の説明図である。 2・・・偏向器、13・・・試料、 4・・・結像レンズ系、15・・・検出器、6・・・走
査信号発生器、17・・・X線分光器、8・・・電子エ
ネルギー損失分光器。
The drawings are diagrams for explaining an embodiment of the scanning transmission electron microscope method of the present invention, and FIG. 1 is a schematic configuration diagram of the scanning transmission electron microscope, and FIGS. ) is an explanatory diagram of the relationship between the irradiation position of the electron beam and the imaging plane of the electron microscope, and FIGS. 3(a) and 3(b). (C) is an explanatory diagram of different scanning paths of the electron beam. 2... Deflector, 13... Sample, 4... Imaging lens system, 15... Detector, 6... Scanning signal generator, 17... X-ray spectrometer, 8...・Electron energy loss spectrometer.

Claims (1)

【特許請求の範囲】 電子線を発生する発生手段と、この発生手段が発生した
電子線を試料に集束する集束手段と、試料像を拡大投影
する拡大手段と、試料像を検出する検出手段と、試料に
照射する電子を偏向する偏向手段を備えた電子顕微鏡に
おいて、 前記偏向手段によって、集束電子線を試料上にてプログ
ラマブルに走査させて、集束電子線が試料下面に作る像
の走査像を得ることを特徴とする走査型透過電子顕微鏡
法。
[Claims] A generating means for generating an electron beam, a focusing means for focusing the electron beam generated by the generating means on a sample, an enlarging means for projecting an enlarged sample image, and a detecting means for detecting the sample image. , an electron microscope equipped with a deflection means for deflecting electrons irradiated onto a sample, wherein the deflection means programmably scans a focused electron beam on the sample to create a scanned image of an image formed by the focused electron beam on the lower surface of the sample. Scanning transmission electron microscopy characterized by obtaining.
JP1023036A 1989-02-01 1989-02-01 Scanning type penetrative electron microscopic method Pending JPH02204954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1023036A JPH02204954A (en) 1989-02-01 1989-02-01 Scanning type penetrative electron microscopic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1023036A JPH02204954A (en) 1989-02-01 1989-02-01 Scanning type penetrative electron microscopic method

Publications (1)

Publication Number Publication Date
JPH02204954A true JPH02204954A (en) 1990-08-14

Family

ID=12099243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1023036A Pending JPH02204954A (en) 1989-02-01 1989-02-01 Scanning type penetrative electron microscopic method

Country Status (1)

Country Link
JP (1) JPH02204954A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57212754A (en) * 1981-06-24 1982-12-27 Hitachi Ltd Electron-beam controller for electron microscope
JPS63100362A (en) * 1986-06-27 1988-05-02 Jeol Ltd Material inspecting method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57212754A (en) * 1981-06-24 1982-12-27 Hitachi Ltd Electron-beam controller for electron microscope
JPS63100362A (en) * 1986-06-27 1988-05-02 Jeol Ltd Material inspecting method

Similar Documents

Publication Publication Date Title
JP3888980B2 (en) Material identification system
JP2010033725A (en) Charged corpuscular ray apparatus
CN114113185A (en) Imaging method for realizing zoom scanning of scanning electron microscope
JP6876418B2 (en) Image acquisition method and electron microscope
JP3101114B2 (en) Scanning electron microscope
JPH05109378A (en) Electron microscopic image observing method and its apparatus
US4880977A (en) Analytical electron microscope
JPH0235419B2 (en)
US5081354A (en) Method of determining the position of electron beam irradiation and device used in such method
JP4129088B2 (en) Scanning transmission electron microscope
JPH02204954A (en) Scanning type penetrative electron microscopic method
US4006357A (en) Apparatus for displaying image of specimen
JPH11135052A (en) Scanning electron microscope
JP2006156134A (en) Reflection imaging electron microscope
JP2002015691A (en) Scanning electron microscope
EP3379557A1 (en) Scanning transmission electron microscope and method for high throughput acquisition of electron scattering angle distribution images
JP2019169362A (en) Electron beam device
JP4413887B2 (en) Material identification system
JPH05258700A (en) Scanning image observing method and scanning electron microscope
JPH06283128A (en) Electron microscope
JPS62223961A (en) Scanning type reflecting electron diffraction microscope device
JPH06150869A (en) Scanning electron microscope
JP4111778B2 (en) Observation method of a sample partially processed into a thin film by a focused ion beam device using an electron microscope
JPH0636726A (en) Scanning microscope
JPS586267B2 (en) scanning electron microscope