JPH10172492A - Electron beam analysis device and electron beam analysis method - Google Patents

Electron beam analysis device and electron beam analysis method

Info

Publication number
JPH10172492A
JPH10172492A JP8325059A JP32505996A JPH10172492A JP H10172492 A JPH10172492 A JP H10172492A JP 8325059 A JP8325059 A JP 8325059A JP 32505996 A JP32505996 A JP 32505996A JP H10172492 A JPH10172492 A JP H10172492A
Authority
JP
Japan
Prior art keywords
electron beam
sample
analysis
electron
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8325059A
Other languages
Japanese (ja)
Other versions
JP3454052B2 (en
Inventor
Hisaya Murakoshi
久弥 村越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32505996A priority Critical patent/JP3454052B2/en
Publication of JPH10172492A publication Critical patent/JPH10172492A/en
Application granted granted Critical
Publication of JP3454052B2 publication Critical patent/JP3454052B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable precise analysis by measuring a sample displacement quantity by means of an information detecting device such as a characteristics X-ray, a secondary electron having higher detection efficiency than an Auger electron, or a transmission electron and correcting a analysis position. SOLUTION: When an analysis start signal is fed to a control unit 24, the control unit 24 perform sample irradiation when an electron beam is statically stopped at a position corresponding to a cross marker address, i.e., at an analysis position. A characteristics X-ray 12 generated by a sample due to an electron beam irradiation is detected by an X-ray detector 13, information of element distribution can be obtained by an intensity rate of a characteristics X-ray corresponding to a target element. After an electron beam is statically stopped about 10 seconds and analyzed, fetching of X-ray detecting signal is stopped, an electron beam is sample-scanned at the same magnification, a sample scan image is obtained again, and it is stored in a video memory of 1024×1024 picture elements in the control unit 24. Displacement with the previous scan image can be prevented because a drift quantity can be obtained from correlation of the sample scan image stored in two video memories, for example.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電子線による分析方
法および装置に係り、特に試料の元素組成を正確に分析
する電子線分析方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an analysis method and apparatus using an electron beam, and more particularly to an electron beam analysis method and apparatus for accurately analyzing the elemental composition of a sample.

【0002】[0002]

【従来の技術】試料に電子線を照射して、試料より発生
する特性X線やオージェ電子などのエネルギースペクト
ルを計測することにより、試料の元素組成を分析するこ
とができる。分析の位置分解能を向上させるためには、
電子線を試料上に極微小プローブにして照射する必要が
ある。電界放出型電子銃を搭載した電子顕微鏡では、電
子線プローブのサイズを1nm以下に絞ることができる
ので、1nm領域での元素組成も分析できるようになっ
た。しかし、検出される信号が弱いため、高精度分析の
ためには、測定に多大な時間を要していた。
2. Description of the Related Art The element composition of a sample can be analyzed by irradiating the sample with an electron beam and measuring the energy spectrum of characteristic X-rays and Auger electrons generated from the sample. In order to improve the position resolution of the analysis,
It is necessary to irradiate an electron beam on the sample with a micro probe. In an electron microscope equipped with a field emission electron gun, the size of an electron beam probe can be reduced to 1 nm or less, so that the element composition in a 1 nm region can be analyzed. However, since the detected signal is weak, a large amount of time is required for measurement for high-accuracy analysis.

【0003】[0003]

【発明が解決しようとする課題】そのため、試料台や電
子線の安定度不足から、分析中に電子線の試料照射位置
が分析開始の位置からずれる恐れがあった。さらに、特
性X線やオージェ電子などの分析信号が微弱なので、分
析信号自身から分析位置の変化を検出することもほとん
ど不可能であった。このため、位置分解能の高い正確な
分析ができなくなるという問題が生じていた。
For this reason, there is a risk that the sample irradiation position of the electron beam may deviate from the analysis start position during the analysis due to insufficient stability of the sample stage and the electron beam. Furthermore, since the analysis signals such as characteristic X-rays and Auger electrons are weak, it is almost impossible to detect a change in the analysis position from the analysis signals themselves. For this reason, there has been a problem that accurate analysis with high positional resolution cannot be performed.

【0004】[0004]

【課題を解決するための手段】本発明は特性X線あるい
はオージェ電子より検出効率が高い二次電子あるいは透
過電子等の検出手段により、短時間で試料変位量を計測
して分析位置を補正することを特徴とするものである。
SUMMARY OF THE INVENTION The present invention corrects the analysis position by measuring the amount of sample displacement in a short time by means of detecting secondary electrons or transmitted electrons having higher detection efficiency than characteristic X-rays or Auger electrons. It is characterized by the following.

【0005】[0005]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

〈実施例1〉図1に本発明の一実施例の電子線分析装置
を示す。この実施例は電子源として電界放出電子源を用
いた走査型透過電子顕微鏡を用いた実施例である。電界
放出電子源1から放出された電子線は、静電レンズ2に
より所望の加速電圧まで加速された後、コンデンサーレ
ンズ3,対物レンズ5で試料7へ照射される。電子線は
偏向器4により、試料7上を二次元的に走査される。
<Embodiment 1> FIG. 1 shows an electron beam analyzer according to an embodiment of the present invention. This embodiment is an embodiment using a scanning transmission electron microscope using a field emission electron source as an electron source. The electron beam emitted from the field emission electron source 1 is accelerated to a desired accelerating voltage by the electrostatic lens 2, and then is irradiated on the sample 7 by the condenser lens 3 and the objective lens 5. The electron beam is two-dimensionally scanned on the sample 7 by the deflector 4.

【0006】試料7を透過した透過電子14は検出器1
5で検出された後、信号増幅器21で増幅される。増幅
された映像信号は制御部24を通して表示装置25に供
給されて輝度変調信号となる。電子線の偏向走査は制御
部24により、偏向信号発生器10から送られる偏向信
号で電子線を制御することによって行われる。同時に、
表示装置25には電子線走査と同期した偏向信号が供給
され、試料走査像が表示装置25に形成される。以上は
走査型透過電子顕微鏡の基本構成である。
The transmitted electrons 14 transmitted through the sample 7 are detected by the detector 1
After being detected at 5, the signal is amplified by the signal amplifier 21. The amplified video signal is supplied to the display device 25 through the control unit 24 and becomes a luminance modulation signal. The deflection scanning of the electron beam is performed by the control unit 24 controlling the electron beam with a deflection signal sent from the deflection signal generator 10. at the same time,
A deflection signal synchronized with electron beam scanning is supplied to the display device 25, and a sample scan image is formed on the display device 25. The above is the basic configuration of the scanning transmission electron microscope.

【0007】次に、図2を用いて、本発明による分析手
順について説明する。まず、制御部24により偏向信号
発生器10を通じて偏向器4に供給される偏向信号によ
り、電子線を試料上に定められた倍率で走査することに
より、表示装置25には図2(a)に示すような試料走
査像が得られる。この走査像を得るための走査時間は1
秒以内であり、この像より分析試料を観察する。
Next, the analysis procedure according to the present invention will be described with reference to FIG. First, the electron beam is scanned on the sample at a predetermined magnification by the deflection signal supplied to the deflector 4 through the deflection signal generator 10 by the control unit 24, so that the display device 25 has the configuration shown in FIG. A sample scan image as shown is obtained. The scanning time for obtaining this scanning image is 1
Within seconds, the analysis sample is observed from this image.

【0008】走査像上には、図2(b)に示すようなク
ロスマーカが輝度変調信号に重畳されて表示され、クロ
スマーカを分析位置に合わせることにより分析位置の決
定を行う。この走査像は例えば制御部24内の1024
画素×1024画素のビデオメモリA(図示せず)に記
憶される。
On the scanned image, a cross marker as shown in FIG. 2B is displayed superimposed on the luminance modulation signal, and the analysis position is determined by adjusting the cross marker to the analysis position. This scanned image is, for example, 1024 in the control unit 24.
It is stored in a video memory A (not shown) of pixels × 1024 pixels.

【0009】次に、分析開始の信号を制御部24に送る
と、制御部24はクロスマーカのアドレスに対応した位
置、すなわち分析位置に電子線を静止したまま試料照射
する(図2(c))。電子線照射による励起により試料
より発生した特性X線12はX線検出器13で検出され
て、例えば図5のような特性X線スペクトルが得られ
る。着目する元素に対応する特性X線の強度比より元素
分布の情報が得られる。
Next, when an analysis start signal is sent to the control unit 24, the control unit 24 irradiates the sample with the electron beam stationary at a position corresponding to the address of the cross marker, that is, the analysis position (FIG. 2C). ). The characteristic X-rays 12 generated from the sample by excitation by electron beam irradiation are detected by the X-ray detector 13, and a characteristic X-ray spectrum as shown in FIG. 5 is obtained, for example. Information on element distribution can be obtained from the intensity ratio of characteristic X-rays corresponding to the element of interest.

【0010】X線検出系のエネルギー分解能を高い条件
で計測するためには、通常X線計数率は1000cps 程
度にする必要がある。一方、計数率の揺らぎは計数率の
平方根で表されるので、例えば、0.3%の精度で分析
するためには計数が100,000カウント必要となり、計測
時間は少なくとも100秒程度必要になる。試料台のド
リフト量を0.02nm/secとすると、0.2nm の位
置ずれを補正するためには、10秒間隔で補正しなけれ
ばならない。
In order to measure the energy resolution of the X-ray detection system under high conditions, the X-ray counting rate usually needs to be about 1000 cps. On the other hand, the fluctuation of the counting rate is represented by the square root of the counting rate. For example, in order to analyze with 0.3% accuracy, 100,000 counting is required, and the measuring time is required at least about 100 seconds. Assuming that the drift amount of the sample stage is 0.02 nm / sec, it must be corrected at intervals of 10 seconds in order to correct the displacement of 0.2 nm.

【0011】そこで10秒ほど電子線を静止して分析し
た後、X線検出信号の取り込みを停止して、同じ倍率で
電子線を試料走査して再び試料走査像を求め、制御部2
4内の1024画素×1024画素のビデオメモリB
(図示せず)に記憶させる(図2(d))。前回の走査
像との位置ずれは、例えばビデオメモリAとビデオメモ
リBに記憶された試料走査像の相互相関をとることによ
って、試料のドリフト量を計算することができる。
Therefore, after the electron beam is stopped and analyzed for about 10 seconds, the capture of the X-ray detection signal is stopped, the sample is scanned with the electron beam at the same magnification, and a sample scan image is obtained again.
Video memory B of 1024 pixels x 1024 pixels in 4
(Not shown) (FIG. 2D). The positional deviation from the previous scan image can be calculated, for example, by calculating the cross-correlation between the sample scan images stored in the video memory A and the video memory B, thereby calculating the drift amount of the sample.

【0012】次の分析には、計算されたドリフト量に相
当する励磁電流を走査コイルに加算して供給することに
よって、図2(e)に示すように電子線照射位置を補正
する。この補正を10秒間の分析毎に行うことによっ
て、位置ずれのない正確な分析を行うことができる。
In the next analysis, the electron beam irradiation position is corrected as shown in FIG. 2 (e) by adding an excitation current corresponding to the calculated drift amount to the scan coil and supplying it. By performing this correction every analysis for 10 seconds, accurate analysis without positional displacement can be performed.

【0013】〈実施例2〉第二実施例はX線の面分析の
位置補正に関するものである。図3を用いて、本発明に
よる分析手順について述べる。
<Second Embodiment> A second embodiment relates to position correction in X-ray surface analysis. The analysis procedure according to the present invention will be described with reference to FIG.

【0014】まず、図3(a)に示すような試料走査像
により分析位置を観察し、面分析位置を決定する。この
走査像を得るための走査時間は1秒以内である。走査像
は例えば1024画素×1024画素のビデオメモリA
に記憶される。
First, an analysis position is observed from a sample scanning image as shown in FIG. 3A, and a surface analysis position is determined. The scan time for obtaining this scan image is within one second. The scanned image is, for example, a video memory A of 1024 pixels × 1024 pixels.
Is stored.

【0015】次に、例えば、64nm×64nmの領域
を1nm間隔に電子線を走査して、約40秒でこの領域
を分析する。特定元素xの特性X線エネルギーに対応し
たエネルギー領域E1,E2間の信号量がアドレスと対
応づけて64画素×64画素のビデオメモリM1に記憶
されるとともに、表示部25には輝度変調されて表示さ
れる(図3(b))。
Next, for example, a region of 64 nm × 64 nm is scanned with an electron beam at intervals of 1 nm, and this region is analyzed in about 40 seconds. The signal amount between the energy regions E1 and E2 corresponding to the characteristic X-ray energy of the specific element x is stored in the video memory M1 of 64 × 64 pixels in association with the address, and the display unit 25 performs luminance modulation. It is displayed (FIG. 3B).

【0016】ここで分析を停止して、分析位置を確認す
るための試料走査を行う。この走査像は1024画素×
1024画素のビデオメモリBに記憶される(図3
(c))。例えばビデオメモリAとBに記憶された試料
走査像の相互相関をとることによって、試料のドリフト
量dを計算することができる。
At this point, the analysis is stopped, and the sample is scanned to confirm the analysis position. This scanning image is 1024 pixels ×
It is stored in the video memory B of 1024 pixels (FIG. 3
(C)). For example, by calculating the cross-correlation between the sample scan images stored in the video memories A and B, the drift amount d of the sample can be calculated.

【0017】次の分析には、計算されたドリフト量に相
当する励磁電流を走査コイルに加算して供給することに
よって、図3(d)に示すように電子線照射位置をずら
して照射し、分析位置のずれを補正する。この補正を定
められた時間間隔毎に行うことによって、位置ずれのな
い正確な分析を行うことができる(図3(e))。
In the next analysis, an excitation current corresponding to the calculated drift amount is added to the scan coil and supplied, so that the electron beam irradiation position is shifted as shown in FIG. Correct the displacement of the analysis position. By performing this correction at predetermined time intervals, it is possible to perform accurate analysis without positional deviation (FIG. 3E).

【0018】〈実施例3〉第三実施例はX線の面分析の
位置補正に関するものである。図4を用いて、本発明に
よる分析手順について述べる。
<Embodiment 3> The third embodiment relates to position correction in X-ray plane analysis. The analysis procedure according to the present invention will be described with reference to FIG.

【0019】まず、試料走査像により分析位置を観察
し、面分析位置を決定する。次に、電子線を試料に走査
して照射する。特定元素zの特性X線エネルギーに対応
したエネルギー領域E1,E2間の信号量がアドレスと
対応づけて128画素×128画素のビデオメモリM1
に記憶されるとともに表示部24には輝度変調されて表
示される。また同時に得られる透過走査像も128画素
×128画素のビデオメモリA1に格納される(図4
(a))。
First, the analysis position is observed from the sample scanning image, and the surface analysis position is determined. Next, the sample is irradiated with an electron beam by scanning. The signal amount between the energy regions E1 and E2 corresponding to the characteristic X-ray energy of the specific element z is associated with the address and the video memory M1 of 128 × 128 pixels
Are displayed on the display unit 24 while being luminance-modulated. The transmission scan image obtained at the same time is also stored in the video memory A1 of 128 × 128 pixels (FIG. 4).
(A)).

【0020】次に、同じように試料走査して再び試料走
査像が128画素×128画素のビデオメモリA2に、
X線像が128画素×128画素のビデオメモリM2
に、それぞれ格納される(図4(b))。このような走
査をN回行い、N番目の試料走査像が128画素×12
8画素のビデオメモリAnに、X線像が128画素×1
28画素のビデオメモリMnに、それぞれ格納される
(図4(c))。
Next, the sample is scanned in the same manner, and the sample scan image is again stored in the video memory A2 of 128 pixels × 128 pixels.
Video memory M2 with X-ray image of 128 × 128 pixels
(FIG. 4B). Such scanning is performed N times, and the N-th sample scanning image is 128 pixels × 12 pixels.
X-ray image is 128 pixels x 1 in 8-pixel video memory An
Each is stored in the video memory Mn of 28 pixels (FIG. 4C).

【0021】試料のドリフト量はまず透過走査像A1に
対し、A2との相互相関をとることによって、A1に対
する試料のドリフト量d2を計算する。透過走査像A1
に対する相互相関をAnまで行い、A1に対するN番目
の透過走査像Anのドリフト量dNまで計算する。次に
128画素×128画素のX線像M1の所望の領域例え
ば、中央の64画素×64画素を選択し、この画像に対
しドリフト量d2だけずらして64画素×64画素のX
線像M2が重ねられる。この操作をN−1回行い、N番
目のX線像MnがX線像M1にドリフト量dnだけずら
して重ねられる(図4(d))。
The amount of drift of the sample is calculated by first cross-correlating the transmission scanning image A1 with A2, thereby calculating the amount of drift d2 of the sample with respect to A1. Transmission scanning image A1
Is performed up to An, and the drift amount dN of the N-th transmission scanning image An with respect to A1 is calculated. Next, a desired region of the X-ray image M1 of 128 pixels × 128 pixels, for example, a central 64 pixels × 64 pixels is selected, and the image is shifted by a drift amount d2 to obtain an X-ray of 64 pixels × 64 pixels.
The line image M2 is superimposed. This operation is performed N-1 times, and the N-th X-ray image Mn is superimposed on the X-ray image M1 with a drift amount dn (FIG. 4D).

【0022】上記の操作は、新しい画像を取り込む毎に
行うか、あるいは全ての画像を取り込んだ後に行っても
よい。これらの操作により、分析位置ずれのない条件で
SNの良いX線像が得られ、高精度な二次元元素分析を
行うことができる。
The above operation may be performed each time a new image is captured, or may be performed after all images have been captured. By these operations, an X-ray image with a good SN can be obtained under the condition that there is no analysis position shift, and highly accurate two-dimensional elemental analysis can be performed.

【0023】なお、本実施例では透過走査像を格納する
ビデオメモリとX線像を格納するビデオメモリの画素数
を等しくしたが、単位画素に検出されるX線カウント数
を増加させる目的で、X線像を格納するビデオメモリの
画素数を透過走査像を格納するビデオメモリの画素数よ
り少なくしてもよい。
In this embodiment, the number of pixels of the video memory for storing the transmission scanning image and the number of pixels of the video memory for storing the X-ray image are equal. However, in order to increase the number of X-rays detected in a unit pixel, The number of pixels of the video memory storing the X-ray image may be smaller than the number of pixels of the video memory storing the transmission scanning image.

【0024】以上の実施例では、試料の位置検出手段と
して試料を透過した透過電子14を透過電子検出器15
で検出していたが、試料から発生した二次電子16を二
次電子検出器17で検出して得られる二次電子像を用い
る走査型電子顕微鏡においても、同様な構成で本発明を
実施することができる。
In the above embodiment, the transmission electrons 14 transmitted through the sample are used as the position detection means of the sample.
The present invention is implemented with a similar configuration in a scanning electron microscope using a secondary electron image obtained by detecting a secondary electron 16 generated from a sample by a secondary electron detector 17. be able to.

【0025】また、以上の実施例では、試料の分析手段
として試料より発生した特性X線12をX線検出器13
で検出して用いていたが、試料より発生したオージェ電
子18をオージェ電子検出器19で検出して得られるス
ペクトルを用いても、同様な構成で本発明を実施するこ
とができる。
In the above embodiment, the characteristic X-rays 12 generated from the sample are analyzed by the X-ray detector 13 as means for analyzing the sample.
However, the present invention can be implemented with a similar configuration by using a spectrum obtained by detecting Auger electrons 18 generated from a sample by an Auger electron detector 19.

【0026】[0026]

【発明の効果】以上説明したように、本発明の電子線分
析装置では、特性X線あるいはオージェ電子より検出効
率が高い二次電子あるいは透過電子等の情報検出手段に
より試料変位量を計測して分析位置を補正することによ
り正確な分析を行うことができる。
As described above, in the electron beam analyzer of the present invention, the amount of sample displacement is measured by information detecting means such as secondary electrons or transmitted electrons having higher detection efficiency than characteristic X-rays or Auger electrons. Correct analysis can be performed by correcting the analysis position.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す電子線分析装置のブロッ
ク図。
FIG. 1 is a block diagram of an electron beam analyzer showing an embodiment of the present invention.

【図2】本発明の第一実施例の分析手順を示す説明図。FIG. 2 is an explanatory diagram showing an analysis procedure according to the first embodiment of the present invention.

【図3】本発明の第二実施例の分析手順を示す説明図。FIG. 3 is an explanatory diagram showing an analysis procedure according to a second embodiment of the present invention.

【図4】本発明の第三実施例の分析手順を示す説明図。FIG. 4 is an explanatory diagram showing an analysis procedure according to a third embodiment of the present invention.

【図5】特性X線スペクトルを示すスペクトル図。FIG. 5 is a spectrum diagram showing a characteristic X-ray spectrum.

【符号の説明】[Explanation of symbols]

1…電界放出電子源、2…静電レンズ、3…コンデンサ
ーレンズ、4…偏向器、5…対物レンズ、6…絞り、7
…試料、8…高圧電源、9…コンデンサーレンズ駆動電
源、10…偏向信号発生器、11…対物レンズ駆動電
源、12…X線、13…X線検出器、14…透過電子、
15…透過電子検出器、16…二次電子、17…二次電
子検出器、18…オージェ電子、19…オージェ電子検
出器、20…増幅器、21…増幅器、22…増幅器、2
3…増幅器、24…制御部、25…表示部。
DESCRIPTION OF SYMBOLS 1 ... Field emission electron source, 2 ... Electrostatic lens, 3 ... Condenser lens, 4 ... Deflector, 5 ... Objective lens, 6 ... Aperture, 7
... sample, 8 ... high voltage power supply, 9 ... condenser lens driving power supply, 10 ... deflection signal generator, 11 ... objective lens driving power supply, 12 ... X-ray, 13 ... X-ray detector, 14 ... transmission electron,
Reference numeral 15: transmitted electron detector, 16: secondary electron, 17: secondary electron detector, 18: Auger electron, 19: Auger electron detector, 20: amplifier, 21: amplifier, 22: amplifier, 2
3 ... amplifier, 24 ... control unit, 25 ... display unit.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI G01N 23/227 G01N 23/227 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI G01N 23/227 G01N 23/227

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】電子線を試料に照射し、試料から発生する
特性X線あるいはオージェ電子を検出して試料の元素組
成を分析する電子線分析装置において、特性X線あるい
はオージェ電子より検出効率が高い位置検出手段により
試料変位量を計測して分析位置を補正することを特徴と
する電子線分析装置。
An electron beam analyzer for irradiating a sample with an electron beam and detecting characteristic X-rays or Auger electrons generated from the sample and analyzing the elemental composition of the sample has a detection efficiency higher than that of the characteristic X-rays or Auger electrons. An electron beam analyzer characterized in that an analysis position is corrected by measuring a sample displacement amount by a high position detecting means.
【請求項2】請求項1記載の電子線分析装置において、
位置検出手段は電子線で試料上を走査して得られる二次
電子あるいは透過電子を検出する手段からなることを特
徴とする電子線分析装置。
2. The electron beam analyzer according to claim 1, wherein
An electron beam analyzer, wherein the position detecting means comprises means for detecting secondary electrons or transmitted electrons obtained by scanning the sample with an electron beam.
【請求項3】請求項2記載の電子線分析装置において、
電子線で試料上を走査している間は元素組成分析を行わ
ないことを特徴とする電子線分析装置。
3. The electron beam analyzer according to claim 2, wherein
An electron beam analyzer wherein elemental composition analysis is not performed while a sample is being scanned with an electron beam.
【請求項4】電子線を試料上に走査し、試料から発生す
る特性X線あるいはオージェ電子の信号から試料の元素
組成の二次元分布像を表示する電子線分析装置におい
て、上記信号と独立して検出される上記信号より検出効
率が高い位置検出手段により試料変位量を計測して電子
線走査位置を補正することを特徴とする電子線分析装
置。
4. An electron beam analyzer which scans a sample with an electron beam and displays a two-dimensional distribution image of the elemental composition of the sample from a characteristic X-ray or Auger electron signal generated from the sample. An electron beam analyzing apparatus for measuring an amount of displacement of a sample by a position detecting means having a higher detection efficiency than the signal detected and correcting an electron beam scanning position.
【請求項5】請求項4記載の電子線分析装置において、
位置検出手段は試料上を走査して得られる二次電子ある
いは透過電子であることを特徴とする電子線分析装置。
5. The electron beam analyzer according to claim 4, wherein
An electron beam analyzer wherein the position detecting means is a secondary electron or a transmitted electron obtained by scanning a sample.
【請求項6】電子線を試料に照射し、試料から発生する
特性X線等の信号から試料の元素組成等を分析する電子
線分析装置において、上記信号より検出効率が高い位置
検出手段により試料変位量を計測して分析位置を補正す
ることを特徴とする電子線分析方法。
6. An electron beam analyzer for irradiating a sample with an electron beam and analyzing the elemental composition of the sample from a signal such as characteristic X-rays generated from the sample. An electron beam analysis method characterized in that an analysis position is corrected by measuring a displacement amount.
【請求項7】請求項6記載の電子線分析方法において、
位置検出手段は試料上を走査して得られる二次電子走査
像あるいは透過走査像であることを特徴とする電子線分
析方法。
7. The electron beam analyzing method according to claim 6, wherein
An electron beam analysis method, wherein the position detecting means is a secondary electron scanning image or a transmission scanning image obtained by scanning a sample.
【請求項8】請求項7記載の電子線分析方法において、
試料上を走査している間は特性X線等の信号を検出しな
いことを特徴とする電子線分析方法。
8. The electron beam analyzing method according to claim 7, wherein
An electron beam analysis method, wherein a signal such as a characteristic X-ray is not detected while scanning a sample.
【請求項9】電子線を試料上に走査し、試料から発生す
る特性X線等の信号から試料の元素組成等の二次元分布
像を表示する電子線分析方法において、上記信号と独立
して検出される上記信号より検出効率が高い位置検出手
段により試料変位量を計測して電子線走査位置を補正す
ることを特徴とする電子線分析方法。
9. An electron beam analysis method for scanning an electron beam on a sample and displaying a two-dimensional distribution image of an element composition and the like of the sample from a signal such as characteristic X-rays generated from the sample. An electron beam analysis method, comprising: measuring a sample displacement amount by position detection means having a detection efficiency higher than the detected signal to correct an electron beam scanning position.
JP32505996A 1996-12-05 1996-12-05 Electron beam analyzer Expired - Fee Related JP3454052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32505996A JP3454052B2 (en) 1996-12-05 1996-12-05 Electron beam analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32505996A JP3454052B2 (en) 1996-12-05 1996-12-05 Electron beam analyzer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001280892A Division JP3741012B2 (en) 2001-09-17 2001-09-17 Electron beam analysis method

Publications (2)

Publication Number Publication Date
JPH10172492A true JPH10172492A (en) 1998-06-26
JP3454052B2 JP3454052B2 (en) 2003-10-06

Family

ID=18172701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32505996A Expired - Fee Related JP3454052B2 (en) 1996-12-05 1996-12-05 Electron beam analyzer

Country Status (1)

Country Link
JP (1) JP3454052B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086126A (en) * 2001-09-07 2003-03-20 Hitachi Ltd Charged particle beam microscope and charged particle beam microscopic method
US7235784B2 (en) 2004-10-12 2007-06-26 Hitachi High-Technologies Corporation Transmission electron microscope and image observation method using it
JP2007303910A (en) * 2006-05-10 2007-11-22 Shimadzu Corp Surface analyzer
JP2008039439A (en) * 2006-08-02 2008-02-21 Shimadzu Corp Two-dimensional mapping analyzer
JP2008187200A (en) * 2008-04-23 2008-08-14 Nippon Telegr & Teleph Corp <Ntt> Charged particle beam drawing method using charged particle beam drawing apparatus
JP2011510321A (en) * 2008-01-22 2011-03-31 アプライド マテリアルズ イスラエル リミテッド System and method for material analysis of fine elements
JP2012149910A (en) * 2011-01-17 2012-08-09 Jeol Ltd Data processing method in electronic probe microanalyzer and electronic probe microanalyzer
WO2013077217A1 (en) * 2011-11-25 2013-05-30 株式会社日立ハイテクノロジーズ Charged-particle radiation apparatus
JP2013527472A (en) * 2011-04-14 2013-06-27 コセム カンパニー リミテッド Integrated device of scanning electron microscope and X-ray analyzer
JP2014082134A (en) * 2012-10-17 2014-05-08 Fujitsu Ltd Electronic device and method for irradiating electron beam
JP2022119426A (en) * 2021-02-04 2022-08-17 日本電子株式会社 Analysis device and image processing method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086126A (en) * 2001-09-07 2003-03-20 Hitachi Ltd Charged particle beam microscope and charged particle beam microscopic method
US7235784B2 (en) 2004-10-12 2007-06-26 Hitachi High-Technologies Corporation Transmission electron microscope and image observation method using it
JP4706552B2 (en) * 2006-05-10 2011-06-22 株式会社島津製作所 Surface analyzer
JP2007303910A (en) * 2006-05-10 2007-11-22 Shimadzu Corp Surface analyzer
JP2008039439A (en) * 2006-08-02 2008-02-21 Shimadzu Corp Two-dimensional mapping analyzer
JP2011510321A (en) * 2008-01-22 2011-03-31 アプライド マテリアルズ イスラエル リミテッド System and method for material analysis of fine elements
JP2008187200A (en) * 2008-04-23 2008-08-14 Nippon Telegr & Teleph Corp <Ntt> Charged particle beam drawing method using charged particle beam drawing apparatus
JP2012149910A (en) * 2011-01-17 2012-08-09 Jeol Ltd Data processing method in electronic probe microanalyzer and electronic probe microanalyzer
JP2013527472A (en) * 2011-04-14 2013-06-27 コセム カンパニー リミテッド Integrated device of scanning electron microscope and X-ray analyzer
EP2697815A1 (en) * 2011-04-14 2014-02-19 Coxem Co., Ltd Combine apparatus of scanning electron microscope and energy dispersive x-ray spectroscopy
EP2697815A4 (en) * 2011-04-14 2014-09-10 Coxem Co Ltd Combine apparatus of scanning electron microscope and energy dispersive x-ray spectroscopy
WO2013077217A1 (en) * 2011-11-25 2013-05-30 株式会社日立ハイテクノロジーズ Charged-particle radiation apparatus
CN103999186A (en) * 2011-11-25 2014-08-20 株式会社日立高新技术 Charged-particle radiation apparatus
JP2014082134A (en) * 2012-10-17 2014-05-08 Fujitsu Ltd Electronic device and method for irradiating electron beam
JP2022119426A (en) * 2021-02-04 2022-08-17 日本電子株式会社 Analysis device and image processing method

Also Published As

Publication number Publication date
JP3454052B2 (en) 2003-10-06

Similar Documents

Publication Publication Date Title
US7375330B2 (en) Charged particle beam equipment
US7435957B2 (en) Charged particle beam equipment and charged particle microscopy
EP1672672A2 (en) Charged particle beam apparatus, method of displaying sample image, and method of measuring image shift sensitivity
US8080790B2 (en) Scanning electron microscope
JP3454052B2 (en) Electron beam analyzer
US7714289B2 (en) Charged particle beam apparatus
JP3904021B2 (en) Electron beam analysis method
US8450685B2 (en) Electron probe microanalyzer and data processing method implemented therein
US4097740A (en) Method and apparatus for focusing the objective lens of a scanning transmission-type corpuscular-beam microscope
KR100274265B1 (en) Converged ion beam device
US5128545A (en) Method and apparatus for background correction in analysis of a specimen surface
JP2001210263A (en) Scanning electron microscope, its dynamic focus control method and shape identifying method for semiconductor device surface and cross section
JP3741012B2 (en) Electron beam analysis method
JP2002286663A (en) Sample analysis and sample observation apparatus
JP2009002658A (en) Observation method of membrane sample
JP2005026192A (en) Charged particle beam device
JPS63116348A (en) View matching device of electron beam device
JPH02145950A (en) X-ray photoelectron analyzer
JPH0696711A (en) Display method for image of scanning electron microscope
JP2023181757A (en) Charged particle beam device and image acquisition method
SU1091251A1 (en) Process for microanalyzing heterophase objects
JPS5833657B2 (en) Scanning electron microscope
JPH10213556A (en) Device and method for analyzing surface element
JP2000100695A (en) Method and device for charged beam drawing
GB2170596A (en) Measuring dimensions with electron microscope

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees