JP2007303910A - Surface analyzer - Google Patents

Surface analyzer Download PDF

Info

Publication number
JP2007303910A
JP2007303910A JP2006131285A JP2006131285A JP2007303910A JP 2007303910 A JP2007303910 A JP 2007303910A JP 2006131285 A JP2006131285 A JP 2006131285A JP 2006131285 A JP2006131285 A JP 2006131285A JP 2007303910 A JP2007303910 A JP 2007303910A
Authority
JP
Japan
Prior art keywords
image
sample
dimensional
positional deviation
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006131285A
Other languages
Japanese (ja)
Other versions
JP4706552B2 (en
Inventor
Kenji Yamada
賢志 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2006131285A priority Critical patent/JP4706552B2/en
Publication of JP2007303910A publication Critical patent/JP2007303910A/en
Application granted granted Critical
Publication of JP4706552B2 publication Critical patent/JP4706552B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To correct properly positional deviation of a characteristic X-ray image by detecting accurately deviation of an image for correction caused by drift, even when an image has an almost uniform pattern in one direction. <P>SOLUTION: When two SEM images at separated times are acquired, existence of translation symmetry of the images is detected (S1), and in the case where the translation symmetry exists (YES in S2), two-dimensional image matching by a mutual correlation method is performed to the two SEM images, to thereby calculate a positional deviation quantity and the direction (S3), and then one-dimensional image matching restricted to a direction having a small variation is executed, to thereby calculate the positional deviation quantity (S4). A result of the two-dimensional image matching is corrected by using the result, to thereby determine the deviation quantity and the direction (S5), and two-dimensional/one-dimensional matching is repeated until the specified number of times is reached (S6). A laser irradiation position at the two-dimensional scanning time is finely adjusted, based on positional deviation information determined in this way, to thereby correct the deviation of the characteristic X-ray image. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、試料の表面分析を行う表面分析装置に関し、さらに詳しくは、試料表面に電子線、陽子線、イオン線、高速原子線、α線、X線などの励起線を照射し、それによって試料から放出される特性X線やオージェ電子などを検出し、さらに励起線の照射位置を試料表面上で移動させることで試料の二次元範囲の表面画像を得る表面分析装置に関する。   The present invention relates to a surface analysis apparatus that performs surface analysis of a sample, and more specifically, irradiates a sample surface with excitation beams such as an electron beam, a proton beam, an ion beam, a fast atom beam, an α-ray, and an X-ray, thereby The present invention relates to a surface analysis apparatus that detects characteristic X-rays, Auger electrons, and the like emitted from a sample and obtains a surface image of a two-dimensional range of the sample by moving the irradiation position of the excitation beam on the sample surface.

電子線等の粒子線やX線などの電磁波を励起線として試料に照射し、そこから放出される種々の粒子やX線を検出して画像化する表面分析装置として様々な種類の装置が実用化されている。例えば電子線マイクロアナライザ(EPMA:電子線プローブ微小部分析装置などともいう)では、微小径に集束させた電子線を励起線として試料に照射する。電子線の照射位置からは試料に含まれる元素に特有のエネルギーを有する特性X線が発生するため、この特性X線を検出してそのエネルギー及び強度を分析することにより、試料上の微小領域に含まれる元素の同定や定量を行うことができる。そして、試料上の所定の二次元範囲内で電子線の照射位置を走査して同様の分析を繰り返すことにより、該範囲内のそれぞれ異なる微小領域に含まれる元素やその含有量を調べることができ、それに基づいて試料上の所定範囲の元素の分布状態を示す元素マッピング像などを作成することができる。   Various types of devices are put to practical use as surface analyzers that irradiate a sample with an electron beam or other electromagnetic waves such as X-rays as excitation rays and detect and image various particles and X-rays emitted from the sample. It has become. For example, in an electron beam microanalyzer (also referred to as EPMA: electron beam probe microanalyzer), a sample is irradiated with an electron beam focused to a minute diameter as an excitation beam. Since characteristic X-rays having energy peculiar to the elements contained in the sample are generated from the irradiation position of the electron beam, the characteristic X-rays are detected and analyzed for the energy and intensity, so that a minute region on the sample is detected. The contained elements can be identified and quantified. Then, by scanning the irradiation position of the electron beam within a predetermined two-dimensional range on the sample and repeating the same analysis, the elements contained in different microregions within the range and their contents can be examined. Based on this, an element mapping image showing a distribution state of elements in a predetermined range on the sample can be created.

一般に、励起線照射に対応して試料から放出される特性X線やオージェ電子は、同様に試料から放出される二次電子や反射電子などに比べてかなり信号強度が弱い。そのため、実用的なS/N比の表面画像を得るためには或る程度の時間に亘って検出信号を積算する必要があり、1枚の精細な表面画像の取得に比較的長い時間を要する。そのため、画像取得中の試料の熱膨張や周囲の電磁的な条件の変動等により、本来同一範囲の画像信号を得ている筈のものが時間経過とともに徐々に位置ずれを生じるという現象(以下、本明細書ではこの現象をドリフトという)が起こり易い。   In general, characteristic X-rays and Auger electrons emitted from a sample in response to excitation beam irradiation have a much weaker signal intensity than secondary electrons and reflected electrons emitted from the sample. Therefore, in order to obtain a surface image with a practical S / N ratio, it is necessary to integrate the detection signals over a certain period of time, and it takes a relatively long time to acquire one fine surface image. . Therefore, due to thermal expansion of the sample during image acquisition, fluctuations in the surrounding electromagnetic conditions, etc., the phenomenon that the image signal that originally obtained the image signal in the same range gradually shifts in position over time (hereinafter, In this specification, this phenomenon is called drift).

いま1枚の特性X線による表面画像の取得中に、図10(a)に矢印で示すように円形状や矩形状の画像パターンが移動するドリフトが起こったものとする。このようにシフトしてゆく画像信号を積算すると、それにより得られた画像は図10(b)に示すように画像パターンに歪みが発生したり空間分解能が低下したりする要因となる。こうしたドリフトの影響を軽減するために、例えば従来、特許文献1に記載のように走査像を経時的に演算処理してずれ量を求め、このずれ量を補正するように電子線の照射軸の調整を行う方法が知られている。しかしながら、特性X線のように弱い信号強度に基づく走査像ではずれ量を求めることは難しい。そこで、信号強度が比較的高いために短時間で取得できる二次電子等によるSEM画像を利用してずれ量を算出して補正を行うことが考えられる(特許文献2など参照)。   Assume that during the acquisition of a surface image using one characteristic X-ray, a drift occurs in which a circular or rectangular image pattern moves as indicated by an arrow in FIG. When the image signals that are shifted in this way are integrated, the image obtained thereby causes distortion in the image pattern or reduction in spatial resolution as shown in FIG. 10B. In order to reduce the influence of such drift, for example, conventionally, as described in Patent Document 1, a scan image is subjected to arithmetic processing over time to obtain a deviation amount, and the electron beam irradiation axis is corrected so as to correct the deviation amount. A method of performing the adjustment is known. However, it is difficult to obtain the shift amount in a scanned image based on weak signal intensity such as characteristic X-rays. Therefore, it is conceivable to perform correction by calculating a deviation amount using an SEM image of secondary electrons or the like that can be acquired in a short time because the signal intensity is relatively high (see Patent Document 2, etc.).

即ち、特性X線による表面画像(特性X線画像)の撮影前又は撮影中に、一定時間間隔で二次電子などによるSEM画像を撮影して補正用画像とし、この補正用画像を利用して撮影中の電子線照射位置のずれの量及び方向を求める。そして、その求まったずれの量及び方向を打ち消すように試料を保持する試料ステージの移動位置又は偏向レンズによる電子線の偏向を修正しながら、特性X線等による画像信号の収集を実行して得られた信号を各画素毎に積算してゆき、最終的に高いS/N比の特性X線画像を形成する。   That is, before or during imaging of a surface image (characteristic X-ray image) by characteristic X-rays, SEM images by secondary electrons or the like are taken at regular time intervals to obtain correction images, and this correction image is used. The amount and direction of displacement of the electron beam irradiation position during imaging are obtained. Then, while correcting the moving position of the sample stage holding the sample or the deflection of the electron beam by the deflecting lens so as to cancel the obtained amount and direction of the deviation, the image signal is collected by characteristic X-rays and the like. The obtained signals are integrated for each pixel to finally form a characteristic X-ray image having a high S / N ratio.

上述のように時間的に異なる時点で得られた2枚の補正用画像の間のずれの量及び方向を算出するために、従来から、二次元離散フーリエ変換/逆変換を用いた相互相関法などの二次元画像マッチングの手法が利用されている。図10に示したような通常の画像パターンであれば、そうした手法によりかなり正確にずれの量及び方向を計算することができる。ところが、画像パターンの性質によっては位置ずれを正確に求めることができない場合がある。   Conventionally, a cross-correlation method using a two-dimensional discrete Fourier transform / inverse transform in order to calculate the amount and direction of deviation between two correction images obtained at different points in time as described above. Two-dimensional image matching methods such as are used. In the case of a normal image pattern as shown in FIG. 10, the amount and direction of deviation can be calculated fairly accurately by such a method. However, there are cases where the positional deviation cannot be obtained accurately depending on the nature of the image pattern.

例えば図9(a)に示すような、半導体基板表面等の拡大画像では、或る一方向に殆ど一様な画像パターンであって、その方向への二次元画像マッチングの精度は著しく低い。このように画像パターンが或る方向に殆ど変化がない、つまり並進対称性を有するものである場合、その方向への位置ずれを正確に求めることができないためにドリフト補正の精度も低下してしまうという問題がある。   For example, an enlarged image of a semiconductor substrate surface or the like as shown in FIG. 9A has an almost uniform image pattern in a certain direction, and the accuracy of two-dimensional image matching in that direction is extremely low. As described above, when the image pattern has almost no change in a certain direction, that is, has a translational symmetry, the position correction in that direction cannot be obtained accurately, and the accuracy of drift correction also decreases. There is a problem.

特開昭63−190236号公報JP-A-63-190236 特開平05−290787号公報JP 05-290787 A

本発明は上記課題を解決するために成されたものであり、その目的とするところは、画像パターンが並進対称性を有するような試料についても、高い精度で以て位置ずれの量及び方向を求めてドリフト補正を行うことができる表面分析装置を提供することにある。   The present invention has been made to solve the above-mentioned problems, and the object of the present invention is to determine the amount and direction of positional deviation with high accuracy even for a sample in which an image pattern has translational symmetry. An object of the present invention is to provide a surface analysis apparatus that can obtain and correct drift.

上記課題を解決するために成された本発明は、励起線を試料に照射する励起線照射部と、該励起線の照射によって試料から放出された特性X線や所定の粒子による相対的に弱い信号を検出する検出部と、を含み、前記励起線の照射位置を試料面上の所定範囲で移動するように試料と励起線との相対位置関係を二次元走査することにより前記所定範囲に対応する試料の表面画像を取得する表面分析装置において、
a)1枚の表面画像の取得の前及び途中に、前記励起線の照射に応じて試料から得られる所定の粒子による相対的に強い信号を検出し、該信号に基づいて前記所定範囲に対応する補正用画像をそれぞれ作成する補正用画像取得手段と、
b)前記補正用画像取得手段により異なる時点で得られた複数の補正用画像に対し、画像パターンを比較して並進対称性を有するか否かを判断する並進対称性検出手段と、
c)並進対称性が有ると判断された場合に、複数の補正用画像に対する二次元的な画像マッチングにより求まる位置ずれ情報と、並進対称性がみられる方向に限定した一次元的な画像マッチングにより求まる位置ずれ情報とにより、位置ずれの量及び方向を算出する位置ずれ情報算出手段と、
d)前記1枚の表面画像の取得のための二次元走査に際し、前記位置ずれ情報に基づく各画素の位置ずれを補正するように試料の移動及び/又は励起線の偏向を微調整しながら走査を実行する制御手段と、
を備えることを特徴としている。
The present invention, which has been made to solve the above-mentioned problems, is relatively weak due to an excitation-ray irradiation unit that irradiates a sample with excitation rays, and characteristic X-rays or predetermined particles emitted from the sample by irradiation of the excitation rays. A detection unit for detecting a signal, and corresponding to the predetermined range by two-dimensional scanning the relative positional relationship between the sample and the excitation line so that the irradiation position of the excitation line is moved within the predetermined range on the sample surface In the surface analyzer that acquires the surface image of the sample to be
a) Before and during the acquisition of one surface image, a relatively strong signal from a predetermined particle obtained from the sample in response to the irradiation of the excitation beam is detected, and the predetermined range is handled based on the signal Correction image acquisition means for creating each correction image to be performed,
b) Translation symmetry detection means for comparing a plurality of correction images obtained at different time points by the correction image acquisition means to determine whether or not the image pattern has translational symmetry;
c) When it is determined that there is translational symmetry, it is based on positional deviation information obtained by two-dimensional image matching for multiple correction images and one-dimensional image matching limited to the direction in which translational symmetry is seen. Misregistration information calculating means for calculating the amount and direction of misregistration based on the obtained misregistration information;
d) During the two-dimensional scanning for acquiring the one surface image, scanning is performed while finely adjusting the movement of the sample and / or the deflection of the excitation line so as to correct the positional deviation of each pixel based on the positional deviation information. Control means for executing
It is characterized by having.

本発明に係る表面分析装置において、励起線とは電子線のほか、例えば陽子線、イオン線、高速原子線、α線、X線などを用いることができる。また、「試料から放出された特性X線や所定の粒子による相対的に弱い信号」とは、例えば特性X線のほか、オージェ電子などによる信号のことをいう。一方、「試料から得られる所定の粒子による相対的に強い信号」とは例えば二次電子や反射電子などによる信号のことをいう。   In the surface analysis apparatus according to the present invention, in addition to the electron beam, for example, a proton beam, an ion beam, a fast atom beam, an α-ray, an X-ray or the like can be used as the excitation beam. The “relatively weak signal due to the characteristic X-rays and predetermined particles emitted from the sample” refers to, for example, signals due to Auger electrons in addition to characteristic X-rays. On the other hand, the “relatively strong signal due to predetermined particles obtained from a sample” refers to a signal due to, for example, secondary electrons or reflected electrons.

本発明に係る表面分析装置では、或る時間だけ隔てて得られた2枚の補正用画像に基づいて画像マッチングを利用して位置ずれ情報(ずれの量(大きさ)と方向)を求めるが、その際に、並進対称性検出手段は画像パターンが並進対称性を有しているか否かを判定する。ここで並進対称性とは、二次元画像中の上下方向、左右方向、又は斜め方向など一定の方向に画像パターンを平行移動しても殆どパターンに変化がみられないことをいう。但し、或る一方向に完全に一様なパターンである場合には、その方向への平行移動が生じると位置ずれの検出が不可能であることは明らかである。したがって、ここでの並進対称性の判定とは、そうした完全な並進対称性の有無の判定ではなく、或る程度、並進対称性を有しているとみなし得るか否かを判定するものである。   In the surface analysis apparatus according to the present invention, positional deviation information (amount (size) and direction of deviation) is obtained by using image matching based on two correction images obtained at a certain time interval. At that time, the translational symmetry detecting means determines whether or not the image pattern has translational symmetry. Here, the translational symmetry means that the pattern hardly changes even when the image pattern is translated in a certain direction such as the vertical direction, the horizontal direction, or the oblique direction in the two-dimensional image. However, when the pattern is completely uniform in a certain direction, it is clear that the position shift cannot be detected when the translation in that direction occurs. Therefore, the determination of the translational symmetry here is not a determination of the presence or absence of such complete translational symmetry but a determination as to whether or not it can be considered to have a certain degree of translational symmetry. .

並進対称性が無いとみなせる場合には、複数の補正用画像に対する二次元的な画像マッチングによる位置ずれ情報を算出するだけであるが、並進対称性が有るとみなせる場合には、二次元的な画像マッチングによる位置ずれ情報を算出するほか、並進対称性がみられる方向、つまりは画像パターンの変動量が相対的に小さな方向に限定した一次元的な画像マッチングによる位置ずれ情報の算出も行う。こうした一次元的な画像マッチングによれば、二次元的な画像マッチングでは変動量の大きい方向に埋もれて(マスキングされて)しまって反映されにくい、変動量が小さい方向の位置ずれを捉え易く、そのずれの量と方向とを高い精度で検出することができる。こうして求めた一次元的な画像マッチングによる位置ずれ情報により、二次元的な画像マッチングにより得られた位置ずれ情報を修正することで、並進対称性の有る画像についても位置ずれの量と方向とを正確に求めることができる。   When it can be considered that there is no translational symmetry, it only calculates misalignment information by two-dimensional image matching for a plurality of correction images, but when it can be considered that there is translational symmetry, it is two-dimensional. In addition to calculating misregistration information by image matching, misregistration information is also calculated by one-dimensional image matching limited to a direction in which translational symmetry is observed, that is, a direction in which the variation amount of the image pattern is relatively small. According to such one-dimensional image matching, in two-dimensional image matching, it is easy to capture the positional deviation in the direction of small fluctuation, which is buried (masked) in the direction of large fluctuation and difficult to be reflected. The amount and direction of deviation can be detected with high accuracy. By correcting the misalignment information obtained by two-dimensional image matching based on the misalignment information obtained by the one-dimensional image matching thus obtained, the amount and direction of misregistration can also be obtained for an image having translational symmetry. It can be determined accurately.

もちろん、二次元的な画像マッチングによる位置ずれの計算と一次元的な画像マッチングによる位置ずれの計算とを繰り返すことにより、計算の精度を一層向上させることができる。こうして補正用画像に基づいて位置ずれ情報が得られたならば、制御手段は、1枚の表面画像の取得のための二次元走査に際し、上記のように修正された位置ずれ情報に基づいて各画素の位置ずれを補正するように試料の移動及び/又は励起線の偏向を微調整しながら走査を実行する。これにより、それまでのドリフトによる画像の位置ずれが補正により軽減される。   Of course, the calculation accuracy can be further improved by repeating the calculation of the positional deviation by two-dimensional image matching and the calculation of the positional deviation by one-dimensional image matching. When the positional deviation information is obtained based on the correction image in this way, the control unit performs each of the two-dimensional scanning for obtaining one surface image based on the positional deviation information corrected as described above. Scanning is performed while finely adjusting the movement of the sample and / or the deflection of the excitation line so as to correct the positional deviation of the pixels. Thereby, the positional deviation of the image due to the drift up to that time is reduced by the correction.

このようにして本発明に係る表面分析装置によれば、従来方法では正確な位置ずれ補正が困難であった並進対称性を有するような画像であっても、ドリフトに起因する画像パターンの位置ずれの量と方向とを正確に検出することができる。それにより、こうした特定の性質の画像パターンを持つ画像についても、積算処理の結果得られる特性X線画像などの表面画像の歪みや空間分解能の低下を抑制することができる。   As described above, according to the surface analysis apparatus of the present invention, even if the image has translational symmetry, which is difficult to accurately correct the positional deviation by the conventional method, the positional deviation of the image pattern due to the drift. It is possible to accurately detect the amount and direction. Thereby, also for an image having an image pattern with such a specific property, distortion of a surface image such as a characteristic X-ray image obtained as a result of integration processing and a decrease in spatial resolution can be suppressed.

本発明に係る表面分析装置の一実施例である電子線マイクロアナライザについて、図面を参照して説明する。図1は本実施例による電子線マイクロアナライザの要部の構成図である。   An electron beam microanalyzer that is an embodiment of a surface analysis apparatus according to the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of a main part of an electron beam microanalyzer according to the present embodiment.

この装置において、電子銃1から放出された励起線としての電子線Eは、偏向コイル2を経て対物レンズ3によって集束されて試料ステージ4上に載置されている試料Sの上面に照射される。試料ステージ4はモータを含むステージ駆動部5の駆動力により、X軸、Y軸、Z軸の三軸方向に移動可能となっており、X軸−Y軸方向への移動により試料S上での電子線Eの照射位置が変更(走査)され、Z軸方向への移動により照射径が変更される。試料Sに微小径の電子線Eが照射されたとき、その照射位置において試料Sに含まれる元素に特有の波長の特性X線が放出され、この特性X線はX線検出器6により検出される。   In this apparatus, an electron beam E as an excitation beam emitted from the electron gun 1 is focused by the objective lens 3 through the deflection coil 2 and irradiated onto the upper surface of the sample S placed on the sample stage 4. . The sample stage 4 can be moved in the three axial directions of the X axis, the Y axis, and the Z axis by the driving force of the stage driving unit 5 including a motor, and is moved on the sample S by the movement in the X axis-Y axis direction. The irradiation position of the electron beam E is changed (scanned), and the irradiation diameter is changed by movement in the Z-axis direction. When the sample S is irradiated with the electron beam E having a small diameter, a characteristic X-ray having a wavelength peculiar to the element contained in the sample S is emitted at the irradiation position, and this characteristic X-ray is detected by the X-ray detector 6. The

X線検出器6による検出信号はパーソナルコンピュータ(PC)10に機能的に含まれるデータ処理部12に送られ、データ処理部12ではその検出値に基づいた元素の同定処理や定量処理などが実行されるとともに、後述するように二次元走査により得られる結果に基づいて各元素のマッピング像などの試料画像(本発明における表面画像)が作成される。   A detection signal from the X-ray detector 6 is sent to a data processing unit 12 that is functionally included in a personal computer (PC) 10, and the data processing unit 12 executes element identification processing and quantitative processing based on the detection value. At the same time, a sample image (surface image in the present invention) such as a mapping image of each element is created based on the result obtained by two-dimensional scanning, as will be described later.

一方、電子線Eの照射によって試料Sからは二次電子や反射電子も発生する。これら電子は電子検出器7により検出される。この電子検出器7の検出信号は画像信号処理部16に送られ、画像信号処理部16は後述するように二次元走査による試料Sの表面上のSEM像を作成する。このSEM像はPC10に送られて補正演算処理部13に入力される。補正演算処理部13はSEM像を構成するデータに基づいて所定の演算処理を実行することで位置ずれ補正に必要な情報を求める。   On the other hand, secondary electrons and reflected electrons are also generated from the sample S by irradiation with the electron beam E. These electrons are detected by the electron detector 7. The detection signal of the electron detector 7 is sent to the image signal processing unit 16, and the image signal processing unit 16 creates an SEM image on the surface of the sample S by two-dimensional scanning as will be described later. The SEM image is sent to the PC 10 and input to the correction calculation processing unit 13. The correction calculation processing unit 13 obtains information necessary for correction of misalignment by executing a predetermined calculation process based on data constituting the SEM image.

PC10は、各部の動作を制御する中央制御部11、データ処理部12、補正演算処理部13を機能的に含むほか、操作部14、表示部15などが接続されている。偏向コイル制御部18はこの中央制御部11の統括的な制御の下に、偏向コイル2へ供給する励磁電流を制御することで試料Sに照射される電子線Eを磁場によって二次元的に曲げ、それにより電子線Eの照射位置を走査し得る。また試料ステージ制御部19は同じく中央制御部11の統括的な制御の下に、ステージ駆動部5の動作を制御し、試料S上で電子線Eの当たる位置を走査する。このように試料S上での電子線E照射位置の二次元的な走査は偏向コイル2の制御と試料ステージ4の駆動制御のいずれでも行うことができるが、前者は後者よりも走査速度は速いが走査可能範囲は狭い。したがって、通常、画像を取得したい目的範囲が或る程度広い場合には、基本的には試料ステージ4の駆動制御で二次元走査を行い、必要に応じて電子線Eの偏向を利用する。   The PC 10 functionally includes a central control unit 11 that controls the operation of each unit, a data processing unit 12, and a correction calculation processing unit 13, and an operation unit 14, a display unit 15, and the like are connected thereto. The deflection coil control unit 18 controls the excitation current supplied to the deflection coil 2 under the overall control of the central control unit 11 to bend the electron beam E irradiated on the sample S two-dimensionally by a magnetic field. Thereby, the irradiation position of the electron beam E can be scanned. Similarly, the sample stage control unit 19 controls the operation of the stage driving unit 5 under the overall control of the central control unit 11 to scan the position on the sample S where the electron beam E hits. Thus, the two-dimensional scanning of the electron beam E irradiation position on the sample S can be performed by either the control of the deflection coil 2 or the drive control of the sample stage 4, but the former has a higher scanning speed than the latter. However, the scannable range is narrow. Therefore, normally, when the target range for which an image is desired to be acquired is somewhat wide, basically, the two-dimensional scanning is performed by the drive control of the sample stage 4, and the deflection of the electron beam E is used as necessary.

次に、上記構成を有する本実施例の電子線マイクロアナライザにおいて試料S上の表面画像(特性X線画像)を取得する際の特徴的な動作について、図2〜図7を参照して説明する。図2は画像取得動作のタイミング図、図3は位置ずれ補正情報算出の際の概略フローチャート、図4は並進対称性の検出動作の説明図、図5は並進対称性がある画像間の相関状態を示す図、図6及び図7は並進対称性がある場合の位置ずれ算出方法を説明するための図である。   Next, a characteristic operation when acquiring a surface image (characteristic X-ray image) on the sample S in the electron beam microanalyzer of the present embodiment having the above-described configuration will be described with reference to FIGS. . FIG. 2 is a timing chart of the image acquisition operation, FIG. 3 is a schematic flowchart for calculating misregistration correction information, FIG. 4 is an explanatory diagram of a translational symmetry detection operation, and FIG. 5 is a correlation state between images having translational symmetry. FIG. 6 and FIG. 7 are diagrams for explaining a positional deviation calculation method when there is translational symmetry.

電子線Eの照射に対応して試料Sから放出される特性X線は強度が弱いため、試料S上の目的範囲の二次元走査を繰り返してその範囲内の各微小領域に対応して得られた特性X線検出信号を微小領域毎に積算することで目的範囲の表面画像を形成する。このため、1枚の特性X線画像(表面画像)を取得するのには或る程度の時間が掛かり、その間にドリフトによって画像ずれが生じる可能性が高い。   Since the characteristic X-rays emitted from the sample S in response to the irradiation with the electron beam E have a low intensity, the two-dimensional scanning of the target range on the sample S is repeated and obtained corresponding to each minute region in the range. The characteristic X-ray detection signals are integrated for each minute region to form a surface image in the target range. For this reason, it takes a certain amount of time to acquire one characteristic X-ray image (surface image), and there is a high possibility that an image shift occurs due to drift during that time.

そこで、本実施例による電子線マイクロアナライザでは、図2(a)に示すように、1枚の特性X線画像の取得期間W1を複数に分割して(w1、w2、…)それぞれの間に休止期間を設け、図2(b)、(c)に示すように、その休止期間及び特性X線画像取得開始前に補正用画像としてのSEM画像の取得期間u1、u2、…及び補正演算処理期間を設けるようにする。電子線Eの照射に対応して試料Sから放出される二次電子や反射電子による信号強度は特性X線に比べて遙かに強いため、SEM画像は短時間でS/N比が比較的高いものを得ることができる。   Therefore, in the electron microanalyzer according to the present embodiment, as shown in FIG. 2A, the acquisition period W1 of one characteristic X-ray image is divided into a plurality (w1, w2,...) Between each. As shown in FIGS. 2 (b) and 2 (c), a pause period is provided, and SEM image acquisition periods u1, u2,... Provide a period. Since the signal intensity due to the secondary electrons and reflected electrons emitted from the sample S in response to the irradiation with the electron beam E is much stronger than the characteristic X-ray, the SEM image has a relatively low S / N ratio in a short time. You can get something expensive.

まず特性X線画像取得開始前のSEM画像取得期間u1において、中央制御部11の指示を受けた試料ステージ制御部19の制御の下に、試料S上の目的範囲内で電子線Eの照射位置が二次元的に走査されるようにステージ駆動部5が試料ステージ4を移動させる。この二次元走査の際に電子線Eの照射に応じて試料S上から出た二次電子及び反射電子は電子検出器7により検出され、画像信号処理部16で目的範囲のSEM画像が作成される。ここでは最初に作成されるSEM画像をU1と呼ぶ。このSEM画像U1は補正演算処理部13に入力されて、例えばフレームメモリに一旦格納される。   First, in the SEM image acquisition period u1 before the start of characteristic X-ray image acquisition, the irradiation position of the electron beam E within the target range on the sample S under the control of the sample stage control unit 19 that has received an instruction from the central control unit 11 The stage drive unit 5 moves the sample stage 4 so that the sample stage 4 is scanned two-dimensionally. During this two-dimensional scanning, secondary electrons and reflected electrons emitted from the sample S in response to the irradiation of the electron beam E are detected by the electron detector 7, and an SEM image of the target range is created by the image signal processing unit 16. The Here, the SEM image created first is called U1. The SEM image U1 is input to the correction calculation processing unit 13 and temporarily stored in, for example, a frame memory.

分割された1回目の特性X線画像取得期間w1で試料S上の目的範囲内の二次元走査に対応する特性X線の検出が実行された後に1回目の休止期間に入ると、2回目のSEM画像取得期間u2において上記と同様にして目的範囲のSEM画像が取得される。ここでは2回目に取得されるSEM画像をU2と呼ぶ。このSEM画像U2が補正演算処理部13に入力されると、補正演算処理部13では先にフレームメモリに保存されたSEM画像U1と合わせた2枚のSEM画像U1、U2を用いて次のような補正演算処理を実行する。   In the first characteristic X-ray image acquisition period w1, the detection of characteristic X-rays corresponding to two-dimensional scanning within the target range on the sample S is executed, and then the first pause period is entered. In the SEM image acquisition period u2, the SEM image in the target range is acquired in the same manner as described above. Here, the SEM image acquired for the second time is referred to as U2. When the SEM image U2 is input to the correction calculation processing unit 13, the correction calculation processing unit 13 uses the two SEM images U1 and U2 combined with the SEM image U1 previously stored in the frame memory as follows. Corrective correction processing is executed.

一般に、2枚の画像のパターンの位置ずれの量と方向とを算出するためには、前述のように相互相関法などの二次元画像マッチング手法が用いられる。しかしながら、通常の画像であればそうした手法により精度良く位置ずれの量及び方向を求めることができるが、並進対称性を有する画像の場合には位置ずれが正しく求まらない。そこで、本実施例の表面分析装置では、以下のように特徴的な手法により2枚のSEM画像から位置ずれの情報を求めるようにしている。   In general, a two-dimensional image matching method such as a cross-correlation method is used as described above in order to calculate the amount and direction of positional deviation between the patterns of two images. However, in the case of a normal image, the amount and direction of misregistration can be obtained with high accuracy by such a method, but in the case of an image having translational symmetry, misregistration cannot be obtained correctly. In view of this, in the surface analysis apparatus of the present embodiment, positional deviation information is obtained from two SEM images by a characteristic method as follows.

まず補正演算処理部13は、2枚のSEM画像U1、U2に基づいて並進対称性の有無の検出を行う(ステップS1)。即ち、両画像U1、U2の各画素において相互相関関数の勾配ベクトルをそれぞれ求め、これらを測定値とした主成分分析を行う。これにより例えば図4に示すような、第i(i=1,2)主成分ベクトルα↑、第i因子θ(>0)が求まる(但し本明細書中ではA↑はベクトルAを表すものとする)。なお、α↑は正規直交基底を構成することに注意する。このとき第1因子θと第2因子θとを比較し、θ>>θであれば並進対称性があると判断する(ステップS2でYES)。具体的には例えばθ≧θ×100であるときに並進対称性があると判断することができるが、この判断条件は適宜に変更してもよい。 First, the correction calculation processing unit 13 detects the presence or absence of translational symmetry based on the two SEM images U1 and U2 (step S1). That is, the gradient vector of the cross-correlation function is obtained for each pixel of both the images U1 and U2, and the principal component analysis using these as measured values is performed. As a result, for example, as shown in FIG. 4, the i-th (i = 1, 2) principal component vector α i ↑ and the i-th factor θ i (> 0) are obtained. To represent). Note that α i ↑ constitutes an orthonormal basis. At this time, the first factor θ 1 and the second factor θ 2 are compared, and if θ 1 >> θ 2 , it is determined that there is translational symmetry (YES in step S2). Specifically, for example, it can be determined that there is translational symmetry when θ 1 ≧ θ 2 × 100, but this determination condition may be changed as appropriate.

並進対称性が有ると判断された場合には、図5に三次元的に示すように相互相関関数形状が尾根状となる。そのため、相互相関関数のピークを探索してもα↑方向への変動量がα↑方向への変動量に埋もれてしまって正しく検出することができない。そこで、補正演算処理部13は、一旦、2枚のSEM画像U1、U2に対し相互相関法による二次元的な画像マッチングを行って位置ずれの量及び方向を算出した(ステップS3)後に、画像パターンの変動量が小さいα↑方向に限定した一次元的な画像マッチングを実行することで位置のずれ量を算出し(ステップS4)、その結果を用いて二次元画像マッチングの結果を修正して位置のずれ量及び方向を求める(ステップS5)。そして、このような二次元/一次元マッチングを規定の回数に達するまで繰り返す(ステップS6)。 If it is determined that there is translational symmetry, the cross-correlation function shape becomes a ridge shape as shown three-dimensionally in FIG. For this reason, even if the peak of the cross correlation function is searched, the fluctuation amount in the α 2 ↑ direction is buried in the fluctuation amount in the α 1 ↑ direction and cannot be detected correctly. Therefore, the correction calculation processing unit 13 performs the two-dimensional image matching by the cross-correlation method on the two SEM images U1 and U2 to calculate the amount and direction of the positional deviation (step S3), and then the image The amount of positional deviation is calculated by executing one-dimensional image matching limited to the α 2 ↑ direction where the pattern variation is small (step S4), and the result of the two-dimensional image matching is corrected using the result. The amount of displacement and the direction of the position are obtained (step S5). Such two-dimensional / one-dimensional matching is repeated until a predetermined number of times is reached (step S6).

ステップS3〜S5の処理を一例を挙げて具体的に説明する。2枚の補正用画像f、gの間の位置ずれの計算は次の式で表されるf、gの相互相関
[f,g](x,y)=Σf(x’−x,y'−y)g(x’,y’)
=F −1{F[f](−u,−v)F[g](u,v)}(x,y) …(1)
のピークの位置を求めることによって行われる。但し、(1)式でΣはx’,y’についての総和、F、F −1はそれぞれ二次元離散フーリエ変換とその逆変換である。そこでSEM画像U1、U2に対応する二次元画像h、hの二次元的な相互相関関数をC[h;h]で表す。
The processing of steps S3 to S5 will be specifically described with an example. The calculation of the misregistration between the two correction images f and g is the cross-correlation of f and g expressed by the following equation: C 2 [f, g] (x, y) = Σf (x′−x, y′−y) g (x ′, y ′)
= F 2 −1 {F 2 [f] (−u, −v) F 2 [g] (u, v)} (x, y) (1)
This is done by determining the position of the peak. In Equation (1), Σ is the sum of x ′ and y ′, and F 2 and F 2 −1 are the two-dimensional discrete Fourier transform and its inverse transform, respectively. Therefore, the two-dimensional cross-correlation function of the two-dimensional images h 1 and h 2 corresponding to the SEM images U 1 and U 2 is represented by C 2 [h 1 ; h 2 ].

また、画像hのd↑方向への平行移動をS[h;d↑]、図6(a)、(b)に示すように画像hの直線L上に限定した、つまり直線Lを含む垂直断面内での表面輪郭線を表す(1変数)プロファイルをR[h;L]で表し、位置ずれをα↑方向に限定した相互相関関数をC[h,h;α↑]で表す。
[f,g;α↑](t)=Σ{ΣR[f;L](t’−t)R[g;L](t’)}
=Σ{F −1{F[R[f;L]](−u)F[R[g;L]](u)}(t)} …(2)
但し、(2)式で1つ目のΣはiについての総和、2つ目のΣはt’についての総和、F、F −1はそれぞれ一次元離散フーリエ変換とその逆変換である。
Further, the parallel movement of the image h in the d ↑ direction is limited to S [h; d ↑] on the straight line L of the image h as shown in FIGS. 6A and 6B, that is, the vertical including the straight line L. A profile (one variable) representing a surface contour line in the cross section is represented by R [h; L], and a cross-correlation function in which the positional deviation is limited to the α 2 ↑ direction is represented by C 1 [h 1 , h 2 ; α 2 ↑ ]
C 1 [f, g; α 2 ↑] (t) = Σ {ΣR [f; L i ] (t′−t) R [g; L i ] (t ′)}
= Σ {F 1 −1 {F 1 [R [f; L i ]] (− u) F 1 [R [g; L i ]] (u)} (t)} (2)
In equation (2), the first Σ is the sum for i, the second Σ is the sum for t ′, and F 1 and F 1 −1 are the one-dimensional discrete Fourier transform and its inverse transform, respectively. .

またL(i=1,2,…)はα↑方向に平行な直線のうち、fのプロファイルR[f;L]の変動量が大きいものを何本か選び出したものである。即ち、図7に示すように、二次元画像上においてα↑方向に平行な直線はほぼ無数に引くことができるが、その方向に一様でない画像パターンが存在するような直線は変動量が相対的に大であり、そうした画像パターンが存在しないような直線は変動量が小である。但し、近接した直線のみを選択すると精度が悪くなるから、存在するのであれば互いに離れた直線を選択するのが望ましい。 In addition, L i (i = 1, 2,...) Is selected from some straight lines parallel to the α 2 ↑ direction that have a large fluctuation amount of the profile R [f; L i ] of f. That is, as shown in FIG. 7, a straight line parallel to the α 2 ↑ direction can be drawn innumerably on a two-dimensional image, but a straight line having a non-uniform image pattern in the direction has a variation amount. A straight line that is relatively large and does not have such an image pattern has a small amount of variation. However, if only adjacent straight lines are selected, the accuracy deteriorates. Therefore, it is desirable to select straight lines separated from each other if they exist.

上記のような定義の下に、2枚の画像f、gの間の位置ずれの量と方向とを含むずれベクトルd↑は次の手順で求めることができる。即ち、
:=g; d↑=0
とし、収束するまでn=0,1,2,…について、(1)式に基づきC[f,g]を最大化するα↑方向へのずれベクトルλ↑を求める。
:=S[g;λ↑]
↑ :=d↑+λ
これにより上記ステップS3における二次元的な画像マッチングによる位置ずれ情報が求まる。次いで、(2)式に基づきC[f,g;α↑]を最大化するα↑方向へのずれ量tを求める。
n+1 :=S[g ;tα↑]
n+1↑ :=d ↑+tα
これにより上記ステップS4における一次元的な画像マッチングによるずれ量が求まるとともにステップS5におけるずれ量の修正が達成される。
Under the above definition, the displacement vector d n ↑ including the amount and direction of the displacement between the two images f and g can be obtained by the following procedure. That is,
g 0 : = g; d 0 ↑ = 0
For n = 0, 1, 2,... Until convergence, a shift vector λ n ↑ in the α 2 ↑ direction that maximizes C 2 [f, g n ] is obtained based on the equation (1).
g n * : = S [g n ; λ n ↑]
d n * ↑: = d n ↑ + λ n
Thereby, the positional deviation information by the two-dimensional image matching in step S3 is obtained. Next, a shift amount t n in the α 2 ↑ direction that maximizes C 1 [f, g * ; α 2 ↑] is obtained based on the equation (2).
g n + 1 : = S [g n * ; t n α n ↑]
d n + 1 ↑: = d n * ↑ + t n α n
As a result, the amount of deviation due to one-dimensional image matching in step S4 is determined, and correction of the amount of deviation in step S5 is achieved.

ステップS6からS2に戻る場合には、上記手順の処理を繰り返せばよい。この繰り返しにより位置ずれの計算精度を一層向上させることができるが、この繰り返しは必須ではない。   In the case of returning from step S6 to S2, the above procedure may be repeated. This repetition can further improve the calculation accuracy of the positional deviation, but this repetition is not essential.

なお、ステップS2で並進対称性が無いと判断された場合には、ステップS7に進んで、通常の二次元的な画像マッチングによる位置ずれ情報の算出のみを実行すればよい。   If it is determined in step S2 that there is no translational symmetry, the process proceeds to step S7, and only the calculation of positional deviation information by normal two-dimensional image matching needs to be executed.

上述したようにして並進対称性を考慮して算出された位置ずれ情報(位置ずれの量及び方向)は中央制御部11に送られ、メモリ等に記憶される。次の特性X線画像取得期間w2において特性X線の検出を再開して二次元走査を行う際に、中央制御部11はメモリに記憶してある位置ずれ情報に基づいて各画素の補正量(つまり想定される位置ずれを打ち消せる移動量と方向)算出し、各画素に対応する特性X線を得るように電子線Eの照射位置を決める際に各画素毎の補正量の分だけ試料ステージ4の駆動量又は偏向コイル2の制御量を調整する。これにより、特性X線画像取得期間w2においてはSEM画像U2が取得される時点までに生じたドリフトの影響は軽減される。特にそのドリフトの方向が画像パターンの並進対称性の方向であった場合でも、精度の高い補正が可能となり、特性X線画像取得期間w1で得られる画像と特性X線画像取得期間w2で得られる画像との間の位置ずれは殆どなくなる。   The positional deviation information (amount and direction of positional deviation) calculated in consideration of translational symmetry as described above is sent to the central control unit 11 and stored in a memory or the like. In the next characteristic X-ray image acquisition period w2, when the characteristic X-ray detection is restarted and two-dimensional scanning is performed, the central control unit 11 determines the correction amount of each pixel (based on the positional deviation information stored in the memory). That is, when the irradiation position of the electron beam E is determined so as to obtain a characteristic X-ray corresponding to each pixel, the sample stage is calculated by the correction amount for each pixel. 4 or the control amount of the deflection coil 2 is adjusted. Thereby, in the characteristic X-ray image acquisition period w2, the influence of the drift that has occurred until the SEM image U2 is acquired is reduced. In particular, even when the direction of drift is the direction of translational symmetry of the image pattern, highly accurate correction is possible, and the image obtained in the characteristic X-ray image acquisition period w1 and the characteristic X-ray image acquisition period w2 are obtained. There is almost no displacement from the image.

分割された特性X線画像取得期間w2を経て2回目の休止期間に入ると、上記と同様に新たにSEM画像取得期間u3において新たなSEM画像U3が取得される。直前の特性X線画像取得期間w2中にドリフトが生じていれば、SEM画像U2とU3との間にも画像のずれがある。そこで、SEM画像U1、U3を用いて上記と同様の補正処理を実行して新たな位置ずれ情報を求め、これに基づいて次の特性X線画像取得期間w3における二次元走査時の補正を実行する。   When the second pause period starts after the divided characteristic X-ray image acquisition period w2, a new SEM image U3 is newly acquired in the SEM image acquisition period u3 as described above. If there is a drift during the immediately preceding characteristic X-ray image acquisition period w2, there is also an image shift between the SEM images U2 and U3. Therefore, correction processing similar to the above is performed using the SEM images U1 and U3 to obtain new misalignment information, and based on this, correction during two-dimensional scanning in the next characteristic X-ray image acquisition period w3 is performed. To do.

このようにして1枚の特性X線画像を取得する期間の途中でそれまでに生じたドリフトの影響を軽減することにより、最終的に積算処理により得られる特性X線画像での歪みなどを少なくすることができ、また空間分解能も高くすることができる。   In this way, by reducing the influence of drift that has occurred so far during the period of acquiring one characteristic X-ray image, the distortion in the characteristic X-ray image finally obtained by the integration process can be reduced. The spatial resolution can also be increased.

上述した本発明による補正方法による画像歪み低減効果をシミュレーションにより検証した結果を図8及び図9に示す。図8及び図9はそれぞれ通常画像及び並進対称画像に対する検証結果であり、いずれも(a)は初期画像、(b)は特性X線画像取得中の或る時点での画像である。そして、この両画像を元に上述したように位置ずれ情報を求め、この情報に基づいて電子線の照射位置を修正した場合に得られる画像をシミュレーションにより計算して求めたのが(c)である。いずれにおいても、(a)の状態から(b)の状態にドリフトが生じているものが、補正の結果(c)に示すようにほぼ初期画像と同じ位置に戻っていることが分かる。即ち、通常画像のみならず、従来方法では補正が困難であった並進対称画像でもドリフト補正が達成されている。   8 and 9 show the results of verifying the image distortion reduction effect by the correction method according to the present invention described above by simulation. FIGS. 8 and 9 are the verification results for the normal image and the translational symmetric image, respectively. (A) is the initial image, and (b) is the image at a certain point in time during the acquisition of the characteristic X-ray image. Then, as described above, the positional deviation information is obtained based on both images, and the image obtained when the irradiation position of the electron beam is corrected based on this information is obtained by calculating by simulation in (c). is there. In any case, it can be seen that the drift from the state (a) to the state (b) has returned almost to the same position as the initial image as shown in the correction result (c). That is, the drift correction is achieved not only in the normal image but also in the translational symmetric image, which is difficult to be corrected by the conventional method.

上記実施例は本発明の一実施例であり、本発明の趣旨の範囲で適宜変形、修正、追加を行っても本願特許請求の範囲に包含されることは当然である。   The above-described embodiment is an embodiment of the present invention, and it is obvious that the present invention is encompassed in the scope of claims of the present application even if appropriate changes, modifications, and additions are made within the scope of the present invention.

本発明の一実施例による電子線マイクロアナライザの要部の構成図。The block diagram of the principal part of the electron beam microanalyzer by one Example of this invention. 本実施例の電子線マイクロアナライザにおける画像取得動作のタイミング図。The timing diagram of the image acquisition operation | movement in the electron beam microanalyzer of a present Example. 本実施例の電子線マイクロアナライザにおける位置ずれ補正情報算出の際の概略フローチャート。4 is a schematic flowchart for calculating misalignment correction information in the electron beam microanalyzer of the present embodiment. 本実施例の電子線マイクロアナライザにおける並進対称性の検出動作の説明図。Explanatory drawing of the detection operation | movement of the translational symmetry in the electron beam microanalyzer of a present Example. 本実施例の電子線マイクロアナライザにおいて並進対称性がある画像間の相関状態を示す図。The figure which shows the correlation state between the images which have translational symmetry in the electron beam microanalyzer of a present Example. 本実施例の電子線マイクロアナライザにおいて並進対称性がある場合の位置ずれ算出方法を説明するための図。The figure for demonstrating the position shift calculation method in case there exists translational symmetry in the electron beam microanalyzer of a present Example. 本実施例の電子線マイクロアナライザにおいて並進対称性がある場合の位置ずれ算出方法を説明するための図。The figure for demonstrating the position shift calculation method in case there exists translational symmetry in the electron beam microanalyzer of a present Example. 通常画像に対する本実施例による位置ずれ補正方法の検証結果を示す図。The figure which shows the verification result of the position shift correction method by a present Example with respect to a normal image. 並進対称画像に対する本実施例による位置ずれ補正方法の検証結果を示す図。The figure which shows the verification result of the position shift correction method by a present Example with respect to a translation symmetrical image. ドリフトによる画像ずれの問題点を説明するための模式図。The schematic diagram for demonstrating the problem of the image shift by drift.

符号の説明Explanation of symbols

1…電子銃
2…偏向コイル
3…対物レンズ
4…試料ステージ
5…ステージ駆動部
6…X線検出器
7…電子検出器
E…電子線
10…PC
11…中央制御部
12…データ処理部
13…補正演算処理部
14…操作部
15…表示部
16…画像信号処理部
18…偏向コイル制御部
19…試料ステージ制御部

DESCRIPTION OF SYMBOLS 1 ... Electron gun 2 ... Deflection coil 3 ... Objective lens 4 ... Sample stage 5 ... Stage drive part 6 ... X-ray detector 7 ... Electron detector E ... Electron beam 10 ... PC
DESCRIPTION OF SYMBOLS 11 ... Central control part 12 ... Data processing part 13 ... Correction calculation processing part 14 ... Operation part 15 ... Display part 16 ... Image signal processing part 18 ... Deflection coil control part 19 ... Sample stage control part

Claims (1)

励起線を試料に照射する励起線照射部と、該励起線の照射によって試料から放出された特性X線や所定の粒子による相対的に弱い信号を検出する検出部と、を含み、前記励起線の照射位置を試料面上の所定範囲で移動するように試料と励起線との相対位置関係を二次元走査することにより前記所定範囲に対応する試料の表面画像を取得する表面分析装置において、
a)1枚の表面画像の取得の前及び途中に、前記励起線の照射に応じて試料から得られる所定の粒子による相対的に強い信号を検出し、該信号に基づいて前記所定範囲に対応する補正用画像をそれぞれ作成する補正用画像取得手段と、
b)前記補正用画像取得手段により異なる時点で得られた複数の補正用画像に対し、画像パターンを比較して並進対称性を有するか否かを判断する並進対称性検出手段と、
c)並進対称性が有ると判断された場合に、複数の補正用画像に対する二次元的な画像マッチングにより求まる位置ずれ情報と、並進対称性がみられる方向に限定した一次元的な画像マッチングにより求まる位置ずれ情報とにより、位置ずれの量及び方向を算出する位置ずれ情報算出手段と、
d)前記1枚の表面画像の取得のための二次元走査に際し、前記位置ずれ情報に基づく各画素の位置ずれを補正するように試料の移動及び/又は励起線の偏向を微調整しながら走査を実行する制御手段と、
を備えることを特徴とする表面分析装置。

An excitation beam irradiating unit that irradiates the sample with an excitation beam; and a detection unit that detects a characteristic X-ray emitted from the sample by irradiation of the excitation beam and a relatively weak signal due to predetermined particles. In the surface analysis apparatus for acquiring a surface image of the sample corresponding to the predetermined range by two-dimensional scanning the relative positional relationship between the sample and the excitation line so as to move the irradiation position of the sample in a predetermined range on the sample surface,
a) Before and during the acquisition of one surface image, a relatively strong signal from a predetermined particle obtained from the sample in response to the irradiation of the excitation beam is detected, and the predetermined range is handled based on the signal Correction image acquisition means for creating each correction image to be performed,
b) Translation symmetry detection means for comparing a plurality of correction images obtained at different time points by the correction image acquisition means to determine whether or not the image pattern has translational symmetry;
c) When it is determined that there is translational symmetry, it is based on positional deviation information obtained by two-dimensional image matching for multiple correction images and one-dimensional image matching limited to the direction in which translational symmetry is seen. Misregistration information calculating means for calculating the amount and direction of misregistration based on the obtained misregistration information;
d) During the two-dimensional scanning for acquiring the one surface image, scanning is performed while finely adjusting the movement of the sample and / or the deflection of the excitation line so as to correct the positional deviation of each pixel based on the positional deviation information. Control means for executing
A surface analysis apparatus comprising:

JP2006131285A 2006-05-10 2006-05-10 Surface analyzer Active JP4706552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006131285A JP4706552B2 (en) 2006-05-10 2006-05-10 Surface analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006131285A JP4706552B2 (en) 2006-05-10 2006-05-10 Surface analyzer

Publications (2)

Publication Number Publication Date
JP2007303910A true JP2007303910A (en) 2007-11-22
JP4706552B2 JP4706552B2 (en) 2011-06-22

Family

ID=38837957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006131285A Active JP4706552B2 (en) 2006-05-10 2006-05-10 Surface analyzer

Country Status (1)

Country Link
JP (1) JP4706552B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149910A (en) * 2011-01-17 2012-08-09 Jeol Ltd Data processing method in electronic probe microanalyzer and electronic probe microanalyzer
CN107655918A (en) * 2017-09-04 2018-02-02 北京农业质量标准与检测技术研究中心 Heavy metal-polluted soil energy spectrum determines method and device
US10903038B2 (en) 2018-03-26 2021-01-26 Shimadzu Corporation Charged particle beam axial alignment device, charged particle beam irradiation device and charged particle beam axial alignment method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0943173A (en) * 1995-07-28 1997-02-14 Jeol Ltd Auger electron spectroscope
JPH10172492A (en) * 1996-12-05 1998-06-26 Hitachi Ltd Electron beam analysis device and electron beam analysis method
JP2000106121A (en) * 1998-07-29 2000-04-11 Jeol Ltd Electron microscope or analogous equipment thereof
JP2000294185A (en) * 1999-04-05 2000-10-20 Canon Inc Analyzer and transmission electron microscope
JP2001357382A (en) * 2000-06-15 2001-12-26 Hitachi Ltd Method for positioning picture in comparing inspection, comparing inspection method and comparing inspection, device
JP2003223630A (en) * 2002-01-30 2003-08-08 Hitachi Ltd Method and device for pattern inspection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0943173A (en) * 1995-07-28 1997-02-14 Jeol Ltd Auger electron spectroscope
JPH10172492A (en) * 1996-12-05 1998-06-26 Hitachi Ltd Electron beam analysis device and electron beam analysis method
JP2000106121A (en) * 1998-07-29 2000-04-11 Jeol Ltd Electron microscope or analogous equipment thereof
JP2000294185A (en) * 1999-04-05 2000-10-20 Canon Inc Analyzer and transmission electron microscope
JP2001357382A (en) * 2000-06-15 2001-12-26 Hitachi Ltd Method for positioning picture in comparing inspection, comparing inspection method and comparing inspection, device
JP2003223630A (en) * 2002-01-30 2003-08-08 Hitachi Ltd Method and device for pattern inspection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149910A (en) * 2011-01-17 2012-08-09 Jeol Ltd Data processing method in electronic probe microanalyzer and electronic probe microanalyzer
CN107655918A (en) * 2017-09-04 2018-02-02 北京农业质量标准与检测技术研究中心 Heavy metal-polluted soil energy spectrum determines method and device
US10903038B2 (en) 2018-03-26 2021-01-26 Shimadzu Corporation Charged particle beam axial alignment device, charged particle beam irradiation device and charged particle beam axial alignment method

Also Published As

Publication number Publication date
JP4706552B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
US10469777B2 (en) Methods, systems and devices relating to distortion correction in imaging devices
JP2006058210A (en) Charged particle beam microscopic method, charged particle beam microscopic device, length measuring method, and length measuring instrument
US7521678B2 (en) Charged particle beam apparatus, charged particle beam focusing method, microstructure measuring method, microstructure inspecting method, semiconductor device manufacturing method, and program
US20060219907A1 (en) Charged particle beam apparatus, method of displaying sample image, and method of measuring image shift sensitivity
JP5603421B2 (en) Charged particle beam equipment with automatic aberration correction method
EP2639814A1 (en) Charged particle optical equipment and method for measuring lens aberration
US7288763B2 (en) Method of measurement accuracy improvement by control of pattern shrinkage
JP4692374B2 (en) Surface analyzer
JP5563995B2 (en) Data processing method in electronic probe microanalyzer and electronic probe microanalyzer
US9110384B2 (en) Scanning electron microscope
JP2021097039A (en) Improvement method of transmission kikuchi diffraction pattern
JP4194526B2 (en) Charged particle beam adjustment method and charged particle beam apparatus
KR20170028459A (en) Image processor, method for generating pattern using self-organizing lithographic techniques and computer program
JP4706552B2 (en) Surface analyzer
JP2008039439A (en) Two-dimensional mapping analyzer
JP2011242352A (en) Method and apparatus for measuring pattern dimension, program for making computer execute method for measuring pattern dimension, and recording medium for recording the same
JP6770482B2 (en) Charged particle beam device and scanning image distortion correction method
JP2009135273A (en) Pattern size measuring method, and scanning electron microscope
US8884223B2 (en) Methods and apparatus for measurement of relative critical dimensions
JP6207893B2 (en) Template creation device for sample observation equipment
JP2022033027A (en) Methods and systems for generating calibration data for wafer analysis
US11114276B2 (en) Apparatus, method, and program for processing and observing cross section, and method of measuring shape
WO2015037313A1 (en) Scanning transmission electron microscope and aberration measurement method therefor
JP6565601B2 (en) Image correction device
JP2005294085A (en) Scanning electron beam interference device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101125

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110228

R151 Written notification of patent or utility model registration

Ref document number: 4706552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151