JPH02145936A - Sample cooling using cryogenic refrigerating machine - Google Patents

Sample cooling using cryogenic refrigerating machine

Info

Publication number
JPH02145936A
JPH02145936A JP63298322A JP29832288A JPH02145936A JP H02145936 A JPH02145936 A JP H02145936A JP 63298322 A JP63298322 A JP 63298322A JP 29832288 A JP29832288 A JP 29832288A JP H02145936 A JPH02145936 A JP H02145936A
Authority
JP
Japan
Prior art keywords
sample
container
refrigerating machine
helium gas
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63298322A
Other languages
Japanese (ja)
Other versions
JPH0619313B2 (en
Inventor
Tsutomu Ueno
勉 上野
Hideari Horinouchi
秀有 堀之内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagase and Co Ltd
Nagase Sangyo KK
Original Assignee
Nagase and Co Ltd
Nagase Sangyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagase and Co Ltd, Nagase Sangyo KK filed Critical Nagase and Co Ltd
Priority to JP63298322A priority Critical patent/JPH0619313B2/en
Publication of JPH02145936A publication Critical patent/JPH02145936A/en
Publication of JPH0619313B2 publication Critical patent/JPH0619313B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To enable cooling at an even temperature regardless of a shape and size of a sample by cooling the sample immersed in a smaller container using a feed through and a metal seal ring through a heat exchange with helium. CONSTITUTION:A chamber flange 10 with a feed through 9 is mounted at the tip of a refrigerating machine 1 as a small vacuum closed container with a seamless indium plated metal ring 11 interposed between the flange and a small container 6. A sample holder 2 is mounted in the container 6 and a measuring lead 3 attached to a sample is made to communicate with a measuring device outside the refrigerating machine 1 and a helium gas is sealed into the container 6 with a metallic capillary tube 8 from outside the refrigerating machine 1 after being replaced with air. Then, after a vacuum exhaustion 4 is computed inside the refrigerating machine 1, a cryogenic refrigerator is started to perform a physical characteristic measurement of the sample under a very low temperature. Thus, the sample is cooled at an even temperature without limit of a shape and size, thereby creating a technique handily and easily to eliminate external withdrawal of the lead 3 and a leakage of the helium gas.

Description

【発明の詳細な説明】 発明の技術分野 極低温冷凍機を用いて、研究及び開発用の試料の極低温
下の物性測定を行う場合、その試料を均一に冷却し、計
測する方法を必要としている。
[Detailed Description of the Invention] Technical Field of the Invention When measuring the physical properties of a sample for research and development at extremely low temperatures using a cryogenic refrigerator, a method for uniformly cooling and measuring the sample is needed. There is.

技術の背景 成型固体、塊状多孔体、薄膜、粉体及び流体などの形状
をしている試料を、極低温冷凍機を用いて均一な温度分
布に容易に冷却し、それらの物質を計測する方法が望ま
れていた。
Background of the technology A method for easily cooling samples in the shape of molded solids, bulk porous bodies, thin films, powders, fluids, etc. to a uniform temperature distribution using a cryogenic refrigerator, and then measuring these substances. was desired.

従来技術と問題点 前述の問題解決点を明確にするため、従来の試料の冷却
方法について図1、図2にしだがって説明する。冷却方
法には、熱伝導冷却とヘリウムガス熱交換冷却がある。
Prior Art and Problems In order to clarify the solutions to the above-mentioned problems, a conventional method for cooling a sample will be explained with reference to FIGS. 1 and 2. Cooling methods include heat conduction cooling and helium gas heat exchange cooling.

先づ、熱伝導冷却について説明する。(図1参照) 1、 極低温冷凍機(1)の先端に、試料を直接付けた
試料ホルダー(2)を付ける。物性測定するための計測
リード(3)を試料に付けて、極低温冷凍機(1)の外
部へ取出し、計測器へ連絡する。
First, thermal conduction cooling will be explained. (See Figure 1) 1. Attach the sample holder (2) with the sample directly attached to the tip of the cryogenic refrigerator (1). A measurement lead (3) for measuring physical properties is attached to the sample, taken out of the cryogenic refrigerator (1), and connected to a measuring instrument.

2、 極低温冷凍機(1)の内部を真空排気装置(4)
によって、真空排気する。その後、極低温冷凍機(1)
と圧縮機ユニット(5)で構成されている極低温冷凍装
置を起動させる。この時、試料は熱伝導によって冷却さ
れ、極低温下の物性測定を行う。
2. Vacuum exhaust device (4) inside the cryogenic refrigerator (1)
Evacuate the tank by using After that, the cryogenic refrigerator (1)
and a compressor unit (5). At this time, the sample is cooled by thermal conduction, and physical properties are measured at extremely low temperatures.

この熱伝導冷却方法は、試料の形状が成型固体のみに限
定される。しかも、その大きさも均一な温度分布にする
という観点から制限されてしまう。
This heat conduction cooling method is limited to the shape of the sample being a molded solid. Moreover, its size is also limited from the viewpoint of achieving uniform temperature distribution.

次に、ヘリウムガスによる熱交換冷却について説明する
。(図2参照) 3、極低温冷凍機(1)の先端に、試料を小型容器(6
)の中の試料ホルダー(2)に付ける。小型容器(6)
を真空密閉にする為に、通常そのフランジ面ニインジウ
ム線(7〕を用いてシールする。インジウム線は、フラ
ンジ面の円周長に合せて、その長さを切り、リング状に
してシール・リングとして使う。インジウム線のシール
・リングの接合部は互いに斜めに合せるようにする。こ
の小型真空密閉容器にする作業は、高度の熟練を要する
。試料に付けた計測リード(3)は、極低温冷凍機(1
)の外部へ取出し、計測器へ連絡する。
Next, heat exchange cooling using helium gas will be explained. (See Figure 2) 3. Place the sample in a small container (6) at the tip of the cryogenic refrigerator (1).
) in the sample holder (2). Small container (6)
In order to vacuum-tightly seal the flange surface, the indium wire (7) is usually used to seal the flange surface.The indium wire is cut to match the circumference of the flange surface, made into a ring shape, and sealed. Use it as a ring.The joints of the indium wire seal rings should be aligned diagonally to each other.Creating this small vacuum sealed container requires a high degree of skill.The measurement lead (3) attached to the sample should be Low temperature refrigerator (1
) and contact the measuring instrument.

4、 小型容器(6)へ極低温冷凍機(1)の外部より
金属性キャピラリー管(8)を用いてヘリウムガスを導
入し、小型容器(6)の中の空気と置換しておく。
4. Introduce helium gas into the small container (6) from the outside of the cryogenic refrigerator (1) using a metal capillary tube (8) to replace the air in the small container (6).

5、 極低温冷凍機(1)の内部を真空排気装置(4)
によって、真空排気する。その後、極低温冷凍装置を起
動させる。この時、小型真空密閉容器は、熱伝導によっ
て冷却される。その中のヘリウムガスも冷却される。そ
の結果として、試料はヘリウムガスによる熱交換によっ
て冷却され、極低温下の物性測定を行うことができる。
5. Vacuum exhaust device (4) inside the cryogenic refrigerator (1)
Evacuate the tank by using Then, start up the cryogenic freezing equipment. At this time, the small vacuum sealed container is cooled by heat conduction. The helium gas inside it is also cooled. As a result, the sample is cooled by heat exchange with helium gas, making it possible to measure physical properties at extremely low temperatures.

このヘリウムガス熱交換冷却方法は、上述の熱伝導冷却
方法の不充分なところを補う方法であるが、小型真空密
閉容器をヘリウムガスの漏れをなくす技術が困難である
。また、試料を交換する際に、小型容器(6)のフラン
ジ面にインジウム線が展性のある金属なので、それが付
着しフランジ面から取除く作業が煩わしい。計測リード
(3)を小型容器の外部へ取出す加工技術が高度でなけ
れば、ヘリウムガスの漏れの原因になる事などの問題点
があった発明の目的 本発明の冷却方法は、極低温冷凍機(1)を用いて成型
固体、塊状多孔体、薄膜、粉体及び流体などの形状をし
ている試料をヘリウムガスとの熱交換によって、均一な
温度に冷却し、■。
This helium gas heat exchange cooling method is a method that compensates for the insufficiency of the above-mentioned heat conduction cooling method, but it is difficult to develop a technology to prevent leakage of helium gas from a small vacuum sealed container. Furthermore, when replacing the sample, the indium wire, which is a malleable metal, adheres to the flange surface of the small container (6), making it troublesome to remove it from the flange surface. Unless the processing technology for taking out the measurement lead (3) to the outside of the small container is sophisticated, there may be problems such as leakage of helium gas.Purpose of the InventionThe cooling method of the present invention can be used in a cryogenic refrigerator. Using (1), samples in the shape of molded solids, bulk porous bodies, thin films, powders, fluids, etc. are cooled to a uniform temperature by heat exchange with helium gas;

2゜ その物性測定を容易にする手段であり、極低温実験を効
率よく行うことにある。
2゜It is a means to facilitate the measurement of physical properties and to conduct cryogenic experiments efficiently.

発明の具体的な方法 以下本発明の特徴とする実施例を図面に基づいて説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Practical Methods of the Invention Examples featuring the present invention will be described below with reference to the drawings.

図3は本発明の一実施例を図示したものである。FIG. 3 illustrates an embodiment of the present invention.

極低温冷凍機(1〕の先端に、計測リード(3)を導入
するためのフィードスルー(9〕を付けたチャンバー7
ランジαQを、小型容器(6)フランジの間に、継目な
しのインジウムメツキされた金属シール・リングODを
挟み、小型真空密閉容器にして取付ける。試料を付けた
試料ホルダー(2)は小型容器(6)の中に付ける。試
料に付けた計測リード(3)は極低温冷凍機(1)の外
部へ取出し、計測器へ連絡する。極低温冷凍機(1)の
外部から金属性キャピラリー管(8)を用いてヘリウム
ガスを小型容器(6)へ空気との置換を行った後に、封
入する。
Chamber 7 with a feedthrough (9) for introducing the measurement lead (3) at the tip of the cryogenic refrigerator (1)
Lunge αQ is installed as a small vacuum-tight container by sandwiching a seamless indium-plated metal seal ring OD between the flanges of the small container (6). The sample holder (2) with the sample attached is placed inside the small container (6). The measurement lead (3) attached to the sample is taken out of the cryogenic refrigerator (1) and connected to the measuring instrument. After replacing helium gas with air from the outside of the cryogenic refrigerator (1) into a small container (6) using a metal capillary tube (8), it is sealed.

極低温冷凍機(1)の内部を真空排気装置(4)によっ
て、真空排気する。その後、極低温冷凍装置を起動させ
、極低温下の試料の物性測定を行う。すなわち、試料の
雪囲気が冷却されたヘリウムガスとなり、試料の形状や
大きさに制限を受けずに、均一な温度に試料を冷却する
事が可能になる。また、フィードスルー(9)を用いる
ことにより、計測リード(3〕を小型容器(6)の外部
へ取出す加工技術が容易になる。
The inside of the cryogenic refrigerator (1) is evacuated by a vacuum evacuation device (4). After that, the cryogenic freezing equipment is activated and the physical properties of the sample are measured at cryogenic temperatures. In other words, the snow surrounding the sample becomes cooled helium gas, making it possible to cool the sample to a uniform temperature without being restricted by the shape or size of the sample. Further, by using the feedthrough (9), the processing technique for taking out the measurement lead (3) to the outside of the small container (6) becomes easy.

金属シール・リングQl)を用いることにより、小型容
器〔6)を完全な小型真空密閉にすることが可能なので
、ヘリウムガスの漏れをなくす技術が、簡便になる。尚
、金属シール・リングαDは50回以上の再使用が可能
なので経済的でもある。
By using the metal seal ring Ql), it is possible to make the small container [6] completely small and vacuum-tight, thereby simplifying the technique for eliminating helium gas leakage. Incidentally, the metal seal ring αD can be reused more than 50 times, so it is also economical.

(発明の効果) 以上のように、フィードスルー(9)や金属シール・リ
ングα0を用いた小型容器(6)の中にヘリウムガスを
封入し、小型容器(6)の中に付けた試料をヘリウムガ
スとの熱交換によって冷却することにより、成型固体、
塊状多孔体、薄膜、粉体及び流体などの試料の形状や大
きさを問わずに、均一な温度に冷却する事が可能になる
(Effect of the invention) As described above, helium gas is sealed in the small container (6) using the feedthrough (9) and the metal seal ring α0, and the sample attached to the small container (6) is Shaped solid by cooling by heat exchange with helium gas,
It becomes possible to cool samples such as bulk porous bodies, thin films, powders, and fluids to a uniform temperature regardless of their shape or size.

小型真空密閉容器にするフィードスルー(9)や金属シ
ール・リング00は市販されているが、極低温冷凍装置
の生成する極低温(−269℃)での信頼性については
今まで保証されてはいなかったが、極低温下でも充分使
用可能である。従って、極低温下の物性測定を行う実験
者が容易にしかも効率よく測定を行う為に、充分に有効
な手段である。
Feedthrough (9) and metal seal ring 00, which make small vacuum-tight containers, are commercially available, but their reliability at the extremely low temperatures (-269°C) generated by cryogenic refrigeration equipment has not been guaranteed until now. However, it can be used satisfactorily even at extremely low temperatures. Therefore, it is a sufficiently effective means for experimenters who measure physical properties at extremely low temperatures to conduct measurements easily and efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

図1及び図2は、従来の構成図、図3はこの発明の一実
施例を示す図である。 1、極低温冷凍機、2.試料ホルダー13.計測リード
、4.真空排気装置、5.圧縮機ユニット。
1 and 2 are conventional configuration diagrams, and FIG. 3 is a diagram showing an embodiment of the present invention. 1. Cryogenic refrigerator, 2. Sample holder 13. Measurement lead, 4. Vacuum exhaust device, 5. compressor unit.

Claims (1)

【特許請求の範囲】[Claims] 極低温冷凍機を用いて、試料の物性測定をする際の試料
の冷却方法
How to cool a sample when measuring its physical properties using a cryogenic refrigerator
JP63298322A 1988-11-28 1988-11-28 Sample cooling device using a cryogenic refrigerator Expired - Lifetime JPH0619313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63298322A JPH0619313B2 (en) 1988-11-28 1988-11-28 Sample cooling device using a cryogenic refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63298322A JPH0619313B2 (en) 1988-11-28 1988-11-28 Sample cooling device using a cryogenic refrigerator

Publications (2)

Publication Number Publication Date
JPH02145936A true JPH02145936A (en) 1990-06-05
JPH0619313B2 JPH0619313B2 (en) 1994-03-16

Family

ID=17858152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63298322A Expired - Lifetime JPH0619313B2 (en) 1988-11-28 1988-11-28 Sample cooling device using a cryogenic refrigerator

Country Status (1)

Country Link
JP (1) JPH0619313B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04258103A (en) * 1991-02-12 1992-09-14 Sumitomo Heavy Ind Ltd Cooling device of superconducting coil
CN110864959A (en) * 2019-10-28 2020-03-06 散裂中子源科学中心 Sample changing method and system for low-temperature environment equipment and application

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296544U (en) * 1985-12-04 1987-06-19
JPH01213543A (en) * 1988-02-22 1989-08-28 Chino Corp Low-temperature testing instrument

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296544U (en) * 1985-12-04 1987-06-19
JPH01213543A (en) * 1988-02-22 1989-08-28 Chino Corp Low-temperature testing instrument

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04258103A (en) * 1991-02-12 1992-09-14 Sumitomo Heavy Ind Ltd Cooling device of superconducting coil
JP2551875B2 (en) * 1991-02-12 1996-11-06 住友重機械工業株式会社 Superconducting coil cooling device
CN110864959A (en) * 2019-10-28 2020-03-06 散裂中子源科学中心 Sample changing method and system for low-temperature environment equipment and application

Also Published As

Publication number Publication date
JPH0619313B2 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
US6332324B1 (en) Cryostat and magnetism measurement apparatus using the cryostat
CN110042459A (en) Gallium nitride production system and its method for filling ammonia
US2543825A (en) X-ray diffraction apparatus
JPH02145936A (en) Sample cooling using cryogenic refrigerating machine
US4944155A (en) Vacuum separator for dewar flask cold exchange systems
JPS6314858A (en) Vacuum deposition device
Hernandez et al. Bottom-loading dilution refrigerator with ultrahigh vacuum deposition capability
CN106483693A (en) The detection means of mesomorphic state and its detection method in liquid crystal panel
JPH01156678A (en) Cryogenic lsi testing system
JPH10267443A (en) Cryostat
US3036933A (en) Vacuum evaporation method
JPS6246265Y2 (en)
JPH02111873A (en) Knudsen-type vaporization source device for vapor deposition device
JP2786249B2 (en) Vacuum processing equipment
JPH037816Y2 (en)
RU2198356C2 (en) Cryostat
JP2000357607A (en) Withstand voltage evaluation method for current introducing terminal and withstand voltage evaluation device
JPS59138956A (en) Quantitative determination of hydrogen in molten metal
US3123957A (en) Apparatus for processing a plurality of articles or materials
JPH10104138A (en) Apparatus for analyzing cooled sample
Neher et al. Techniques useful in evacuating and pressurizing metal chambers
JPH10293167A (en) Dewar for electronic spin resonance device
JPH05231757A (en) Cryostat device
RU1786383C (en) Method for storing samples and relevant device
JPS57204399A (en) Evacuation method for vacuum heat-insulation device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 15