JP2551875B2 - Superconducting coil cooling device - Google Patents

Superconducting coil cooling device

Info

Publication number
JP2551875B2
JP2551875B2 JP3104042A JP10404291A JP2551875B2 JP 2551875 B2 JP2551875 B2 JP 2551875B2 JP 3104042 A JP3104042 A JP 3104042A JP 10404291 A JP10404291 A JP 10404291A JP 2551875 B2 JP2551875 B2 JP 2551875B2
Authority
JP
Japan
Prior art keywords
superconducting coil
superconducting
cooling
helium
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3104042A
Other languages
Japanese (ja)
Other versions
JPH04258103A (en
Inventor
順二 桜庭
山田  豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP3104042A priority Critical patent/JP2551875B2/en
Publication of JPH04258103A publication Critical patent/JPH04258103A/en
Application granted granted Critical
Publication of JP2551875B2 publication Critical patent/JP2551875B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導コイルの冷却装
置に関し、特に蓄冷式冷凍機による冷却に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device for a superconducting coil, and more particularly to cooling by a regenerator.

【0002】[0002]

【従来技術】従来、超電導物質を線材化して巻き、超電
導コイル1として強磁場を発生させることは知られてい
る。この強磁場を産業的に応用した例がリニアモーター
カーである。また、超電導物質の臨界磁場を測定する為
の測定装置として強磁場を発生させる物性測定装置の需
要が近年延びている。
2. Description of the Related Art Conventionally, it is known that a superconducting substance is formed into a wire and wound to generate a strong magnetic field as the superconducting coil 1. An example of industrial application of this strong magnetic field is the linear motor car. Further, in recent years, the demand for a physical property measuring device for generating a strong magnetic field as a measuring device for measuring the critical magnetic field of a superconducting substance has been increasing.

【0003】これらに使用される超電導コイル1の冷却
方法を図3に示す。液体へリウム5を液体ヘリウム貯蔵
容容器7からトランスファーチューブ6を介して真空容
器の内側容器4(以下単に内側容器4という)に供給
し、液体ヘリウム5に超電導コイル1を浸漬して自然対
流を利用した浸漬冷却方式を採っている。超電導コイル
1に対して電流は電流リード9によって供給されてい
る。そして、超電導コイル1は、常温空間からの熱侵入
を減少させる為、クライオスタット(断熱真空容器)2
の中に設置される。クライオスタットは、通常超電導コ
イル1を浸漬している約4.2Kの液体ヘリウム5の内
側容器4と、常温からの輻射熱を抑える為の熱シールド
3を備えている。この熱シールド3の冷却方式は図示し
ないが液体窒素等による。この装置でも液体へリウム5
の気化により、内側容器4内の圧力が高くなるので、ヘ
リウムガス8を逃している。従って、液体ヘリウム5の
供給が不可欠であり、長時間の運転に際しては定期的に
供給する必要があった。高価な液体ヘリウム5の消耗が
ランニングコストの上昇を招くと共に、液体ヘリウム5
の取り扱いには熟練を要するなど、システムの稼働上大
きな問題であった。
A cooling method of the superconducting coil 1 used for these is shown in FIG. Liquid helium 5 is supplied from a liquid helium storage container 7 through a transfer tube 6 to an inner container 4 (hereinafter simply referred to as inner container 4) of a vacuum container, and the superconducting coil 1 is immersed in the liquid helium 5 for natural convection. The immersion cooling method used is adopted. Current is supplied to the superconducting coil 1 by a current lead 9. The superconducting coil 1 has a cryostat (adiabatic vacuum container) 2 in order to reduce heat invasion from the room temperature space.
Installed inside. The cryostat is equipped with an inner container 4 of liquid helium 5 of about 4.2K in which the superconducting coil 1 is normally immersed, and a heat shield 3 for suppressing radiant heat from room temperature. The heat shield 3 is cooled by liquid nitrogen or the like although not shown. Liquid Helium 5
Due to the vaporization, the pressure inside the inner container 4 increases, so that the helium gas 8 escapes. Therefore, the supply of liquid helium 5 is indispensable, and it was necessary to supply it periodically during long-term operation. The consumption of expensive liquid helium 5 causes an increase in running cost, and liquid helium 5
It was a big problem in the operation of the system that it required skill to handle.

【0004】図4に示す従来例は、物性測定装置用の超
電導コイルである。また、物性測定用サンプル16を頻
繁に変えたり、液体ヘリウム5に漬けたくない場合等を
考慮して物性測定用サンプル16を専用に冷却する蓄冷
式冷凍機13と超電導コイル1を冷却する液体ヘリウム
5の気化をできるだけ防ぐためにシールド冷却用冷凍機
17を備えていて熱シールド3を冷却している。この装
置は、超電導コイル1の下から物性測定用サンプル16
を出し入れする為、内側容器4、熱シールド3、3およ
び真空容器2の底を凹ませてある。そして下から物性測
定用サンプル16を冷やす物性測定装置をつけた蓄冷式
冷凍機13を手動リフター25によって昇降させる。
The conventional example shown in FIG. 4 is a superconducting coil for a physical property measuring apparatus. Further, in consideration of the case where the physical property measuring sample 16 is frequently changed or the liquid physical helium 5 is not desired to be immersed, the regenerator 13 for exclusively cooling the physical property measuring sample 16 and the liquid helium for cooling the superconducting coil 1 are considered. In order to prevent vaporization of 5 as much as possible, a shield cooling refrigerator 17 is provided to cool the heat shield 3. This device is provided with a sample 16 for measuring physical properties from below the superconducting coil 1.
The bottom of the inner container 4, the heat shields 3 and 3, and the vacuum container 2 are recessed in order to take in and out. Then, the regenerator 13 equipped with a physical property measuring device for cooling the physical property measuring sample 16 from below is moved up and down by the manual lifter 25.

【0005】[0005]

【発明が解決しようとする課題】図4に示す従来例で
も、液体へリウム5の供給は不可欠であり、液体へリウ
ム5を取り扱わなければならない。また、超電導コイル
1を液体へリウム5に浸漬して冷やす為の装置は大きく
なり、またその液体ヘリウム5の気化を防ぐ為のシール
ド冷却用冷凍機17を配設し稼働させるには、更に大型
化しコスト高となった。
In the conventional example shown in FIG. 4 as well, the supply of liquid helium 5 is indispensable, and the liquid helium 5 must be handled. Further, a device for immersing the superconducting coil 1 in the liquid 5 to cool it becomes large, and in order to install and operate the shield cooling refrigerator 17 for preventing vaporization of the liquid helium 5, a larger device is required. Cost increased.

【0006】[0006]

【課題を解決するための手段】蓄冷式冷凍機(13)の
冷却ステージに超電導コイル(1)を固着し、他の冷却
ステージに超電導コイル(1)を包囲する熱シールド
(3)を固着し、該熱シールド(3)を包囲する真空容
器(2)を通して超電導コイル(1)に接続する電流リ
ード(9)によってなることを特徴とする。
A superconducting coil (1) is fixed to a cooling stage of a regenerator (13), and a heat shield (3) surrounding the superconducting coil (1) is fixed to another cooling stage. , A current lead (9) connected to the superconducting coil (1) through a vacuum vessel (2) surrounding the heat shield (3).

【0007】[0007]

【実施例】本発明の請求項1の実施例を図1に示す。超
電導コイル1は、酸化物系高温超電導物質を線状化して
巻いたコイルであり、中央に貫通孔を持つ円筒形に形成
する。この超電導コイル1の下端を蓄冷式冷凍機13の
第二段冷却ステージ14に密接にねじ止めする。真空容
器2は、ステンレス製で超電導コイル1を真空中に被包
する。熱シールド3は、薄い銅製でコップ状に形成し、
超電導コイル1を直接内包して、開口部の端部を第一段
冷却ステージ15に密着にねじ止めする。電流リード9
は、超電導コイル1に接続し電流を供給する。電流リー
ド9は外部に、保護抵抗12、遮断機11、電源10に
接続している。蓄冷式冷凍機13は、駆動部を真空容器
2の外側に出し、フレキシブルホース19、19によっ
て圧縮機18と接続している。物性測定用サンプル16
は超電導物質で、臨界磁場を測定する為に超電導コイル
1によって強磁場をかける。物性測定用サンプル16
は、第二段冷却ステージ14に取り外し可能に固着され
ている。
FIG. 1 shows an embodiment of claim 1 of the present invention. The superconducting coil 1 is a coil formed by linearly winding an oxide-based high temperature superconducting substance, and is formed in a cylindrical shape having a through hole in the center. The lower end of the superconducting coil 1 is tightly screwed to the second cooling stage 14 of the regenerator 13. The vacuum container 2 is made of stainless steel and encloses the superconducting coil 1 in a vacuum. The heat shield 3 is made of thin copper in a cup shape,
The superconducting coil 1 is directly included, and the end of the opening is screwed to the first cooling stage 15 in close contact. Current lead 9
Is connected to the superconducting coil 1 to supply a current. The current lead 9 is externally connected to the protective resistor 12, the breaker 11, and the power supply 10. The regenerator 13 has a drive unit that is exposed to the outside of the vacuum container 2 and is connected to the compressor 18 by flexible hoses 19 and 19. Sample 16 for measuring physical properties
Is a superconducting substance, and a strong magnetic field is applied by the superconducting coil 1 to measure the critical magnetic field. Sample 16 for measuring physical properties
Are detachably fixed to the second cooling stage 14.

【0008】本発明の請求項2の実施例を図2に示す。
この実施例は三段式冷凍機を使用した例であり、強磁場
中の物性を測定する装置で、超電導コイル1は、第三段
冷却ステージ21にねじ止め固着する。内側容器4は、
インジュウムシート20を挟んで第二段冷却ステージ1
4に気密にねじ止めする。物性測定用サンプル16は超
電導物質で、臨界磁場を測定する為に超電導コイル1に
よって強磁場をかける。物性測定用サンプル16は、第
三段冷却ステージ21に取り外し可能に固着されてい
る。ヒータ線22は、第三段冷却ステージ21下部に巻
き付け、真空容器2の外側より、電流をコントロールで
きる。ヘリウム導入管23は、密閉された内側容器4内
にヘリウムガス8を導入する為の管である。その他の構
造は請求項1に示すものと同様である。
An embodiment of claim 2 of the present invention is shown in FIG.
This embodiment is an example of using a three-stage refrigerator, and is a device for measuring physical properties in a strong magnetic field. The superconducting coil 1 is screwed and fixed to a third cooling stage 21. The inner container 4 is
Second cooling stage 1 with indium sheet 20 in between
Screw it tightly to 4. The physical property measurement sample 16 is a superconducting substance, and a strong magnetic field is applied by the superconducting coil 1 to measure the critical magnetic field. The physical property measurement sample 16 is detachably fixed to the third cooling stage 21. The heater wire 22 is wound around the lower part of the third cooling stage 21, and the current can be controlled from the outside of the vacuum container 2. The helium introducing pipe 23 is a pipe for introducing the helium gas 8 into the sealed inner container 4. Other structures are similar to those shown in claim 1.

【0009】[0009]

【作 用】昭和61年に、30K程度の温度でも超電導
現象を起こす高温超電導物質が発見されてから数年を経
て、半永久的に使用できる超電導物質の線材化が実現さ
れつつある。高温超電導物質の中には、液体窒素温度の
77K付近で超電導状態を示すものがある。従って、今
まで液体へリウム5で冷却するか、あるいは複雑な冷凍
機等を使用して4.2Kまで温度を下げる必要がなくな
り、20Kまで下げる簡便な小型の蓄冷式冷凍機でも超
電導状態の実現が可能となった。ただし、この20Kの
冷凍機は被冷却物の熱容量が大きければ、到達温度の2
0Kはある程度上昇する。
[Operation] A few years have passed since the discovery of a high-temperature superconducting material that causes a superconducting phenomenon even at a temperature of about 30K in 1986, and it has become possible to realize a semi-permanently usable superconducting material. Some high-temperature superconducting materials show a superconducting state near liquid nitrogen temperature of 77K. Therefore, it is no longer necessary to cool the liquid to 5 with liquidium or to use a complicated refrigerator or the like to lower the temperature to 4.2K, and to realize a superconducting state even with a simple compact regenerator that lowers it to 20K. Became possible. However, if this 20K refrigerator has a large heat capacity of the object to be cooled,
0K will rise to some extent.

【0010】本発明の請求項1の作用を図1により説明
する。真空容器2内部を、図示しない真空ポンプで真空
にし、空気による熱伝導を遮断する。次に蓄冷式冷凍機
13を稼働して第二段冷却ステージ14を極低温として
それに固着する超電導コイル1を冷却する。また、常温
からの輻射熱を防ぐ為、熱シールド3を第一段冷却ステ
ージ15によって冷却する。電流リード9から、電流を
流してやると超電導コイル1から強磁場を発生する。
The operation of claim 1 of the present invention will be described with reference to FIG. The inside of the vacuum container 2 is evacuated by a vacuum pump (not shown) to block heat conduction by air. Next, the regenerator 13 is operated to bring the second cooling stage 14 to an extremely low temperature to cool the superconducting coil 1 fixed to it. In addition, the heat shield 3 is cooled by the first cooling stage 15 in order to prevent radiant heat from room temperature. When a current is applied from the current lead 9, a strong magnetic field is generated from the superconducting coil 1.

【0011】本発明の請求項2の作用を図2により説明
する。真空容器2内部を真空にしたあと、ヘリウム導入
管23によって内側容器4内を別途真空にする。次に蓄
冷式冷凍機13を稼働して十分に冷却した後にヘリウム
導入管23を通じてヘリウムガス8を内側容器4内に充
満させる。これによって、ヘリウムガス8による熱伝導
が行なわれる。また、ヒータ線22を第三段冷却ステー
ジ21下部に巻き付けているが、ヒー夕線22に流す電
流をコントロールすることで、任意の温度に設定するこ
とが可能である。(液体ヘリウム5では4.2K以外の
温度をとることは、非常に困難である。)
The operation of claim 2 of the present invention will be described with reference to FIG. After the inside of the vacuum container 2 is evacuated, the inside of the inner container 4 is separately evacuated by the helium introducing pipe 23. Next, the regenerator 13 is operated and sufficiently cooled, and then the helium gas 8 is filled in the inner container 4 through the helium introducing pipe 23. Thereby, heat conduction by the helium gas 8 is performed. Further, although the heater wire 22 is wound around the lower part of the third cooling stage 21, it is possible to set an arbitrary temperature by controlling the current flowing through the heater wire 22. (It is very difficult to take temperatures other than 4.2K with liquid helium 5.)

【0012】[0012]

【効 果】真空容器2の効果は、空気による熱伝導の防
止であり、熱シールド3の効果は輻射熱の防止、蓄冷式
冷凍機13による超電導コイル1の直接冷却が可能にな
った。従って、液体ヘリウム5が不要になり、ランニン
グコストの減少や液体へリウム5の取り扱いの手間もな
くなり、それに伴う大きな装置も不要となって小型化や
コストダウンも可能になった。また、請求項2の効果は
内側容器4内のヘリウムガス8の熱伝導により、急速な
冷却が可能となることや、ヒータ線22によって任意の
温度を設定することが可能である。加えて、超電導コイ
ル1と物性測定用サンプル16が、夫々ヘリウムガス8
と接触する面積と第三段冷却ステージ21と接触する面
積やヒータ線22の位置や大きさを選択すれば、超電導
コイル1と物性測定用サンプル16の温度を違う温度に
設定することも可能である。
[Effect] The effect of the vacuum container 2 is to prevent heat conduction by air, the effect of the heat shield 3 is to prevent radiant heat, and the superconducting coil 1 can be directly cooled by the regenerator 13. Therefore, the liquid helium 5 becomes unnecessary, the running cost is reduced and the labor for handling the liquid helium 5 is eliminated, and a large device accompanying it is not required, and the size and cost can be reduced. Further, the effect of the second aspect is that the heat conduction of the helium gas 8 in the inner container 4 enables rapid cooling, and the heater wire 22 can set an arbitrary temperature. In addition, the superconducting coil 1 and the sample 16 for measuring physical properties are respectively replaced by helium gas 8
It is also possible to set the temperatures of the superconducting coil 1 and the physical property measurement sample 16 to different temperatures by selecting the area in contact with the third cooling stage 21, the position and size of the heater wire 22, and the like. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の請求項1の概略断面図。FIG. 1 is a schematic sectional view of claim 1 of the present invention.

【図2】本発明の請求項2の概略断面図。FIG. 2 is a schematic sectional view of claim 2 of the present invention.

【図3】従来例の概略断面図。FIG. 3 is a schematic sectional view of a conventional example.

【図4】従来例の概略断面図。FIG. 4 is a schematic sectional view of a conventional example.

【符号の説明】[Explanation of symbols]

1 超電導コイル 2 真空容器 3 熱シールド 4 内側容器 5 液体ヘリウム 6 トランスファーチューブ 7 液体ヘリウム貯蔵容器 8 ヘリウムガス 9 電流リード 10 電源 11 遮断機 12 保護抵抗 13 蓄冷式冷凍機 14 第二段冷却ステージ 15 第一段冷却ステージ 16 物性測定用サンプル 17 シールド冷却用冷凍機 18 圧縮機 19 フレキシブルホース 20 インジュウムシート 21 第三段冷却ステージ 22 ヒータ線 23 ヘリウム導入管 24 安全弁 25 手動リフター 1 superconducting coil 2 vacuum container 3 heat shield 4 inner container 5 liquid helium 6 transfer tube 7 liquid helium storage container 8 helium gas 9 current lead 10 power supply 11 circuit breaker 12 protection resistance 13 regenerator 14 second stage cooling stage 15th 1st-stage cooling stage 16 Physical property measurement sample 17 Shield cooling refrigerator 18 Compressor 19 Flexible hose 20 Indium sheet 21 Third stage cooling stage 22 Heater wire 23 Helium introduction pipe 24 Safety valve 25 Manual lifter

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 蓄冷式冷凍機(13)の冷却ステージに
超電導コイル(1)を固着し、他の冷却ステージに超電
導コイル(1)を包囲する熱シールド(3)を固着し、
該熱シールド(3)を包囲する真空容器(2)を通して
超電導コイル(1)に接続する電流リード(9)によっ
てなることを特徴とする超電導コイルの冷却装置。
1. A superconducting coil (1) is fixed to a cooling stage of a regenerator (13), and a heat shield (3) surrounding the superconducting coil (1) is fixed to another cooling stage,
A cooling device for a superconducting coil, comprising a current lead (9) connected to the superconducting coil (1) through a vacuum container (2) surrounding the heat shield (3).
【請求項2】 請求項1において、超電導コイル(1)
を包囲する真空容器(2)の内側容器(4)を気密と
し、該内側容器(4)内と真空容器(2)の外側に通ず
るヘリウム導入管(23)を接続し、真空容器(2)内
にヒータ線(22)を配設することを特徴とする超電導
コイルの冷却装置。
2. The superconducting coil (1) according to claim 1.
The inner container (4) of the vacuum container (2) surrounding the container is made airtight, and a helium introducing pipe (23) communicating with the inside of the inner container (4) and the outside of the vacuum container (2) is connected to form a vacuum container (2). A cooling device for a superconducting coil, characterized in that a heater wire (22) is provided therein.
JP3104042A 1991-02-12 1991-02-12 Superconducting coil cooling device Expired - Lifetime JP2551875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3104042A JP2551875B2 (en) 1991-02-12 1991-02-12 Superconducting coil cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3104042A JP2551875B2 (en) 1991-02-12 1991-02-12 Superconducting coil cooling device

Publications (2)

Publication Number Publication Date
JPH04258103A JPH04258103A (en) 1992-09-14
JP2551875B2 true JP2551875B2 (en) 1996-11-06

Family

ID=14370167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3104042A Expired - Lifetime JP2551875B2 (en) 1991-02-12 1991-02-12 Superconducting coil cooling device

Country Status (1)

Country Link
JP (1) JP2551875B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220310294A1 (en) * 2019-07-10 2022-09-29 Mitsubishi Electric Corporation Superconducting magnet

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2756551B2 (en) * 1992-10-20 1998-05-25 住友重機械工業株式会社 Conduction-cooled superconducting magnet device
US5623240A (en) * 1992-10-20 1997-04-22 Sumitomo Heavy Industries, Ltd. Compact superconducting magnet system free from liquid helium
JP2756552B2 (en) * 1992-10-20 1998-05-25 住友重機械工業株式会社 Conduction-cooled superconducting magnet device
JP4808465B2 (en) * 2005-11-01 2011-11-02 株式会社神戸製鋼所 Cryogenic equipment
JP6163693B2 (en) * 2014-03-26 2017-07-19 大陽日酸株式会社 Space environment test equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265204A (en) * 1988-07-05 1990-03-05 General Electric Co <Ge> Superconductive magnet for magnetic resonance not using extremely low temperature agent
JPH02145936A (en) * 1988-11-28 1990-06-05 Nagase Sangyo Kk Sample cooling using cryogenic refrigerating machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265204A (en) * 1988-07-05 1990-03-05 General Electric Co <Ge> Superconductive magnet for magnetic resonance not using extremely low temperature agent
JPH02145936A (en) * 1988-11-28 1990-06-05 Nagase Sangyo Kk Sample cooling using cryogenic refrigerating machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220310294A1 (en) * 2019-07-10 2022-09-29 Mitsubishi Electric Corporation Superconducting magnet
US11961661B2 (en) * 2019-07-10 2024-04-16 Mitsubishi Electric Corporation Superconducting magnet

Also Published As

Publication number Publication date
JPH04258103A (en) 1992-09-14

Similar Documents

Publication Publication Date Title
JP3867158B2 (en) Cryogenic container and magnetometer using the same
US11035598B2 (en) Method and apparatus for cryogenic cooling of HTS devices immersed in liquid cryogen
JP5228177B2 (en) Cryogenic cooling method and apparatus for high temperature superconductor devices
JPH04350906A (en) Method and apparatus for cooling oxide superconducting coil
JP2551875B2 (en) Superconducting coil cooling device
EP0820071A2 (en) Cooling method and energizing method of superconductor
JP3374273B2 (en) High magnetic field low temperature physical property measurement device
US4680936A (en) Cryogenic magnet systems
JPH10335137A (en) Cooling method and conducting method for superconductor
US5237825A (en) Method and apparatus for cryogenically cooling samples
JP6104007B2 (en) Current supply device
Edelman A dilution microcryostat-insert
Krusius et al. Properties of sintered copper powders and their application in a nuclear refrigerator with precise temperature control
Jirmanus Introduction to laboratory cryogenics
JP4098690B2 (en) Scanning probe microscope
JP2551875C (en)
JPH08248001A (en) Apparatus for measuring physical properties under magnetic field
JP4488695B2 (en) Cryogenic cooling device
JP2582377B2 (en) Low temperature physical property measurement device
JPH06302869A (en) Superconducting magnet cooling system
JP2001066354A (en) Cryogenic container for superconducting quantum interference device storage
JPS61208206A (en) Superconductive magnet
JP3170949B2 (en) Cooling device for AC magnets using oxide superconducting wires
JPH0599580A (en) Looped heat pipe
JP2619431B2 (en) Low temperature constant temperature equipment for special environment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 15