JPH02145430A - 乾電池用二酸化マンガンの製造方法 - Google Patents

乾電池用二酸化マンガンの製造方法

Info

Publication number
JPH02145430A
JPH02145430A JP63297876A JP29787688A JPH02145430A JP H02145430 A JPH02145430 A JP H02145430A JP 63297876 A JP63297876 A JP 63297876A JP 29787688 A JP29787688 A JP 29787688A JP H02145430 A JPH02145430 A JP H02145430A
Authority
JP
Japan
Prior art keywords
manganese dioxide
manganese
treatment
bulk density
mineral acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63297876A
Other languages
English (en)
Inventor
Ryohei Ishikawa
石川 遼平
Yutaka Tsukuda
築田 裕
Hiroshi Ochiai
弘 落合
Hiroyuki Miura
三浦 裕行
Satoru Hatayama
悟 畑山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Denki Kogyo Co Ltd
Original Assignee
Chuo Denki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Denki Kogyo Co Ltd filed Critical Chuo Denki Kogyo Co Ltd
Priority to JP63297876A priority Critical patent/JPH02145430A/ja
Publication of JPH02145430A publication Critical patent/JPH02145430A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、安価な化成二酸化マンガンを原料とする乾電
池用二酸化マンガンの製造方法に関し、より詳しくは、
従来のものに比べて不純物含有量が少なく、より高活性
の乾電池用二酸化マンガンの製造方法に関する。
[従来の技術] 乾電池の陽極活物質として用いられる二酸化マンガンは
高い純度と活性を有していなければならず、このような
要求を満たすものとして、従来は主に電解法により製造
された電解二酸化マンガンが用いられてきた。電解二酸
化マンガンはT型の結晶構造を有し、良好な電池性能を
発揮するが、製造時に多量の電力を消費するため製造コ
ストが高く、比較的安価な製品である乾電池の製造にと
って、低コストで製造でき、かつ二酸化マンガンに匹敵
しうる電池性能を示す二酸化マンガンが求められている
この要請に応じて、電解を利用せず、化学反応のみで電
気化学的に活性な乾電池用二酸化マンガンを低コストで
製造する各種の方法が提案されており、この方法で製造
された二酸化マンガンを化成二酸化マンガンと称してい
る。
化成二酸化マンガンは、一般にそのままでは嵩密度が小
さいため、乾電池への充填量が少なくなり、放電寿命が
短くなるなど、乾電池用としての品質が不十分である。
そのため、重質化処理により嵩密度を高めることが必要
とされている。
特開昭60−221324号公報には、マンガン鉱石も
しくはマンガン塩などのマンガン化合物を400℃以上
の温度で焙焼した後、鉱酸で酸処理して得た二酸化マン
ガンを原料とし、これを1〜10トン/dの圧力下にロ
ールプレスにより圧縮成形し、次いで成形体を所望の粒
度に粉砕して重質化することからなる、乾電池用の化成
二酸化マンガンの製造方法が開示されている。上記方法
で酸処理後に得られた化成二酸化マンガンは、嵩密度が
0.7 g/d以下と非常に小さく、充填性が悪いため
、重質化処理により嵩密度(タップ後の嵩密度、以下タ
ップ嵩密度という)を1.6〜2.0 g/ajlに高
めて、電気化学的に活性で充填性にも優れたものとする
のである。
この方法で採用している重質化処理は物理的な方法であ
り、クロレート法などの化学的な重質化と異なり、高価
な薬品を多量に使用する必要がないことから、経済的に
有利である。
上記特開昭60−221324号公報に記載の方法にお
いて、酸処理工程は具体的には次のようにして行ねれる
。まず、焙焼生成物(Mn304. Mn1O1などの
低次マンガン酸化物)を鉱酸水溶液中で攪拌することに
より酸処理して、これを可溶性の2価マンガン塩とMn
0zとに不均化分解させる。焙焼生成物がMntOsで
ある場合、硫酸による酸処理では次の反応が起こる。
MnxO3+HtSO4−MnSO4+Mn0g+Hz
O固形分を分離して二酸化マンガツを回収し、次いで水
洗し、さらにアルカリにより中和して二酸化マンガン粒
子に付着している酸を除去する。
[発明が解決しようとする課題] 上述した化成二酸化マンガンを原料とする乾電池用二酸
化マンガンの製造方法では、重質化処理によりタップ嵩
密度を16〜2.0 g/cdに高めることにより、電
解二酸化マンガンに匹敵する放電特性を得ることができ
るが、電池性能のなお一層の改善が望まれている。本発
明の目的は、上記の乾電池用化成二酸化マンガンの製造
方法において、放電特性がさらに改善された生成物を得
ることのできる方法を開発することである。
[IK題を解決するための手段] 本発明者らは、特開昭60−221324号公報に記載
の従来法で得られた化成二酸化マンガンの品質について
検討した結果、洗浄処理を十分に行っても不純物の含有
量が比較的多く、それにより放電特性が十分に発揮され
ていないことを見出した。その原因は次のように考えら
れる。すなわち、鉱酸での酸処理により得られた二酸化
マンガンは、上記反応式に示すようにMn分の一部が酸
処理中に粒子から溶出するため、ポーラスであり、嵩密
度は非常に近い。これを水洗後にアルカリ水溶液で中和
すると、中和で生成した塩が二酸化マンガン結晶の内部
に入り込み、その後の重質化処理での圧縮成形時に結晶
の内部に閉じ込められてしまう。
その後、所望粒度までの粉砕時に、閉じ込められた塩の
一部は粒子表面に出てくるが、通常は粉砕後には洗浄を
行わないので、粒子表面および粒子内部のいずれの塩も
乾電池用二酸化マンガンの製品中に残留したままとなる
。その結果、二酸化マンガンの不純物含有量が比較的高
く、放電特性が悪化するのではないかと推測された。
本発明者らはさらに検討した結果、鉱酸で処理した二酸
化マンガンを、水洗後、まず圧縮成形することにより、
鉱酸イオンの一部を結晶内部にとり残し、乾電池放電時
のイオン伝導性を良くし、さらに粉砕後に中和処理する
ことにより、従来よりやや高純度で、しかも嵩密度は従
来と全く変わらない、電気化学的により高活性の乾電池
用化成二酸化マンガンが得られることを見出し、本発明
を完成させた。
ここに、本発明の要旨とするところは、マンガン化合物
を400℃以上の温度で焙焼後、鉱酸で処理して得られ
た二酸化マンガンを、鉱酸から分離した後、水洗し、次
いで0.25トン/cm4以上の圧力下でロールプレス
により圧縮成形し、所望の粒度に粉砕した後、アルカリ
性水溶液による中和処理を行うことを特徴とする、乾電
池用二酸化マンガンの製造方法である。
[作用] 以下、本発明について詳細に説明する。
本発明の乾電池用二酸化マンガンの製造方法は、本発明
の特徴である中和処理を重質化後に行うことを除いては
、前述した特開昭60−221324号に記載の方法に
従って製造することができる。次に、この化成二酸化マ
ンガンの製造方法を簡単に説明するが、詳細はこの公報
を参照されたい。
まず原料のマンガン化合物(例、硫酸マンガン、炭酸マ
ンガン、硝酸マンガンなどのマンガン塩、または軟マン
ガン鉱、炭酸(菱)マンガン鉱などのマンガン鉱石〉を
400℃以上の温度で通常は大気中で焙焼して、Mn3
O4および/またはMn2O3を生成させる。必要な焙
焼温度は原料の種類により異なる。次の酸処理工程で二
酸化マンガンの歩留まりを高くするには、Mn2O3の
割合が可及的に高いことが好ましい。焙焼生成物の組成
は焙焼温度に依存し、焙焼温度が800℃以下ではMn
2O3が主生成物であり、それより温度が高くなるとM
n5O4が生成するようになるので、Mn2O3を多く
含む生成物が得られるように焙焼条件を選択することが
好ましい。そのため、分解温度が850℃である硫酸マ
ンガンの場合には、まず850℃以上の高温で焙焼して
Mn+Oaを主成分とする熱分解生成物を得た後、より
低温での酸化焙焼によりMnzOsを主体とする生成物
を得ることが好ましい。
焙焼で得られたMn2O3および/またはMn、lOn
を次いで鉱酸水溶液(例、硫酸、塩酸、硝酸など)で処
理して、Mnを不溶性のMnO□と可溶性の2価Mn塩
とに不均化分解させる。固形分を溶液から分離・回収し
、水で洗浄すると、電気化学的に活性なT−結晶形の化
成二酸化マンガンが粉末状で得られる。
こうして得られた化成二酸化マンガンは、前述したよう
に嵩密度が0.7 g/cd以下と非常に小さく、充填
性が非常に悪いため、重質化処理により嵩密度を高める
ことが必要である。従来法では、酸処理中に二酸化マン
ガンに付着した酸を中和してから重質化処理を行うが、
本発明の方法では、上述した理由によりまず重質化処理
を行い、最後に中和を行う。
重質化処理は、常法により乾燥した二酸化マンガン粉末
を、0.25 )ン/cd以上の加圧下でロールプレス
により圧縮成形することにより行う。ロールプレス法に
より圧縮成形を行うと、特公昭47−2420号に記載
のようなブリケット化法の場合に必要であった添加剤(
潤滑剤および結合剤)が必要なく、しかも均一に圧縮す
ることができる点で有利である。ロールプレス成形は、
所望の重質化が得られるまで、繰り返し行うことができ
る。
この圧縮成形時の圧力が0.251−774未満である
と、成形を反復しても重質化が実質的に起こらず、嵩密
度、従って乾電池への充填量が不足し、乾電池用途には
不適当な製品となる。好ましい圧力は、7〜80)ン/
−である。
圧縮成形により得られた成形体を、次いで適当な粉砕手
段により所望の粒度まで粉砕する。乾電池用二酸化マン
ガン粉末は、平均粒径約30〜40/Jlll程度とす
ることが好ましい。この粉砕は、例えば、振動ボールミ
ルを利用して行うことができる。
所望により、粉砕した二酸化マンガン粒子を分級して、
過大粒子あるいは過小粒子を除去することにより、粒度
調整を行ってもよい。
所望粒度とした二酸化マンガン粉末を最後に中和する。
中和処理自体は従来法と同様に実施すればよい。すなわ
ち、水に二酸化マンガン粉末を分散させ、中和に必要な
量の適当なアルカリ (例、水酸化ナトリウムもしくは
水酸化アンモニウムなど)の水溶液を添加し、数分〜数
時間攪拌することにより行う。
中和処理後、二酸化マンガン粉末を分離し、水洗し、乾
燥し、必要に応じて解砕・分級すると、乾電池用二酸化
マンガンが得られる。
こうして得られた二酸化マンガンは、圧縮成形・粉砕後
に中和・水洗を行うことから、従来法に比べて不純物含
有量がやや少なくなっている。また、圧縮成形を先に行
うにもかかわらず、中和後の二酸化マンガンの嵩密度は
、従来法により中和後に圧縮成形を行う場合と比べて実
質的に同等である、すなわち、中和処理中に嵩密度の低
下は起こらないことが判明した。その結果、得られた二
酸化マンガンは、従来法で得られた乾電池用化成二酸化
マンガンに比べてさらに改善された放電特性を示す。
以下に、実施例を挙げて本発明を具体的に説明する。実
施例中の%は、特に指定しない限り重量%である。なお
嵩密度は、タップ嵩密度(100nmのシリンダに入れ
て20mmの高さから300回落下させた時の嵩密度)
と、このようなタッピングなしの嵩密度を併記した。
犬1■ 硫酸マンガン水溶液を石灰により中和し、多硫化石灰で
浄化することにより不純物を除去し、精製硫酸マンガン
水溶液を得た。この硫酸マンガン水溶液を加熱濃縮する
と、硫酸マンガン1水塩の結晶(MnSOa・R20)
が晶析した。この結晶を600℃で1時間加熱脱水して
無水塩(MnSO4)を得た。
こうして得た硫酸マンガン無水塩1kgを空気雰囲気下
において1000℃で1時間焙焼することにより、Mn
Jnを生成させ、次いでこれをさらに空気中、700℃
で2時間酸化焙焼して、Mn2O3を得た。
得られた粉末状のMn2030.487kgに水を加え
てスラリー化し、このスラリーを80℃に加熱する。
次いで、18N硫酸を使用して80℃で1.5時間の酸
処理を攪拌下に行った。この処理中、液中に抽出された
MnSO4の溶液濃度がMnとして80g/A以下に維
持されるように水および硫酸の添加を調節した。硫酸の
合計添加量は0.5βであった。その後、固形分を濾過
により回収し、水洗し、90℃で10時間乾燥して、嵩
密度が0.65g/LJAの二酸化マンガン粉末(水分
1.5〜2.5%)0.25kgを得た。
この乾燥二酸化マンガン粉末をロールプレスにより圧力
10トン/ c4で5回圧縮成形した。得られた成形体
を解砕機で粉砕後、150メソシユ以下に分級すること
により、嵩密度1.25g/ctA、タップ嵩密度1.
95g/adの二酸化マンガン粉末が得られた。
この二酸化マンガン粉末を水でスラリー化し、液温25
℃で5%水酸化アンモニウム水溶液を添加してpHを7
.0とした後、1時間攪拌して中和処理を行った。中和
処理後、上記と同様に濾過、水洗、乾燥を行ったのち、
解砕し、150メソシユ以下に分級することにより、嵩
密度1.25g/cj、タソプ嵩密度1.95g/c1
1、純度92.7%の二酸化マンガン粉末を得た。
上記方法で得られた化成二酸化マンガンを陽極活物質と
して用いてR20サイズ(単1型)の塩化亜鉛乾電池(
電解液:30%ZnC1z 、MnO2充填量:30g
/セル)を作製し、2オームでの低抵抗(重負荷)放電
および10オームでの高抵抗(軽負荷)連続放電試験に
より放電性能(放電時間に対する電位の変化)を測定し
た。
比較のために、電解法で得られた二酸化マンガン(嵩密
度1.68g/aJ、純度91.5%)および従来法に
より得られた化成二酸化マンガン(中和処理を加圧成形
の前に実施した以外は上記と同じ方法で製造したもの、
嵩密度1.26g/ctl、タップ密度1.97g/c
d、純度92.0%)についても、上記と同じ放電試験
を行った。試験結果を第1図(2オーム連続放電試験)
と第2図(10オーム連続放電試験)に示す。
第1図および第2図より明らかなように、本発明の方法
により得られた二酸化マンガンは、電解法により得られ
た二酸化マンガンおよび従来法による二酸化マンガンの
いずれよりも優れた放電特性を示す。
より具体的に説明すると、2オ一ム連続放電持続時間は
、電解性二酸化マンガンでは360分、従来法による化
成二酸化マンガンでは370分であったのに対し、本発
明の方法で製造した化成二酸化マンガンでは410分と
大幅に伸びた。10オーム連続放電持続時間は、電解性
二酸化マンガンおよび従来法化成二酸化マンガンでは共
に56時間であったのに対し、本発明の方法で得られた
二酸化マンガンでは58時間であった。
[発明の効果] 以上に説明したように、本発明によれば、中和処理を重
質化処理後に行うことにより、従来の化成二酸化マンガ
ンに比べて放電特性が顕著に改善された化成二酸化マン
ガンを得ることができる。
しかも、重質化処理後に中和を行っても、中和処理中の
嵩密度の低下は起こらず、乾電池の充填量への悪影響は
ない。このように、本発明は従来の方法において単に工
程を入れ替えただけであるが、その効果には予想外なも
のがある。本発明の方法により、電解性二酸化マンガン
より優れた電池性能を示す二酸化マンガンを、電解工程
を経ることなく経済的に製造することができる。
【図面の簡単な説明】
第1図および第2図は、それぞれ実施例での2オーム連
続放電試験結果および10オーム連続放電試験結果を示
すグラフである。

Claims (1)

    【特許請求の範囲】
  1. (1)マンガン化合物を400℃以上の温度で焙焼後、
    鉱酸で処理して得られた二酸化マンガンを、鉱酸から分
    離した後、水洗し、次いで0.25トン/cm^2以上
    の圧力下でロールプレスにより圧縮成形し、所望の粒度
    に粉砕した後、アルカリ性水溶液による中和処理を行う
    ことを特徴とする、乾電池用二酸化マンガンの製造方法
JP63297876A 1988-11-25 1988-11-25 乾電池用二酸化マンガンの製造方法 Pending JPH02145430A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63297876A JPH02145430A (ja) 1988-11-25 1988-11-25 乾電池用二酸化マンガンの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63297876A JPH02145430A (ja) 1988-11-25 1988-11-25 乾電池用二酸化マンガンの製造方法

Publications (1)

Publication Number Publication Date
JPH02145430A true JPH02145430A (ja) 1990-06-04

Family

ID=17852261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63297876A Pending JPH02145430A (ja) 1988-11-25 1988-11-25 乾電池用二酸化マンガンの製造方法

Country Status (1)

Country Link
JP (1) JPH02145430A (ja)

Similar Documents

Publication Publication Date Title
JP3489685B2 (ja) マンガン酸リチウム及びその製造方法ならびにそれを用いてなるリチウム電池
CA2221825C (en) Spheroidally agglomerated basic cobalt (ii) carbonate and spheroidally agglomerated cobalt (ii) hydroxide, process for their production and their use
US6048643A (en) Process for preparing lithium intercalation compounds
JP2002060225A (ja) コバルト酸リチウム凝集体、コバルト酸化物凝集体及びそれらの製造方法並びに該コバルト酸リチウム凝集体を用いてなるリチウム電池
JP4435926B2 (ja) 高結晶性チタン酸リチウム
JPH11292547A (ja) コバルト酸リチウムおよびその製造方法ならびにそれを用いてなるリチウム電池
CN114361441A (zh) 一种原位包覆单晶高镍三元正极材料的制备方法
EP1243556B1 (en) Method for producing lithium manganate
JPH11292549A (ja) 水酸化コバルトおよびその製造方法
JP2004010375A (ja) 四酸化三コバルトの製造方法及びコバルト酸リチウムの製造方法
JPH02145430A (ja) 乾電池用二酸化マンガンの製造方法
JPH0675400B2 (ja) 乾電池用の活性化化学処理二酸化マンガンとその製造方法
JPH082921A (ja) リチウムマンガン複合酸化物およびその製造方法並びにその用途
KR101480109B1 (ko) 재순환 공정을 이용한 이차전지 양극재용 나노 이산화망간(cmd) 제조방법
CN115210186A (zh) 用于过渡金属氧化物脱锂的方法
JP2001240417A (ja) マンガン酸リチウムの製造方法及び該マンガン酸リチウムを用いてなるリチウム電池
JP2638624B2 (ja) マンガン電池用正極合剤の製造方法
JP3269427B2 (ja) 酸化銀とその製造方法
JPS62187118A (ja) 二酸化マンガンの製造法
KR101480110B1 (ko) 동종결정성장을 이용한 이차전지 양극재용 나노 이산화망간(cmd) 제조방법
JPS6230624A (ja) 乾電池用マンガン酸化物
JPH0555983B2 (ja)
JPH02145429A (ja) 乾電池用マンガン酸化物及びその製造方法
JPH0617236B2 (ja) 乾電池用二酸化マンガンの製造方法
CN115849324A (zh) 一种磷酸锰铁锂前驱体及其制备方法和应用