JPH02143417A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02143417A
JPH02143417A JP29792088A JP29792088A JPH02143417A JP H02143417 A JPH02143417 A JP H02143417A JP 29792088 A JP29792088 A JP 29792088A JP 29792088 A JP29792088 A JP 29792088A JP H02143417 A JPH02143417 A JP H02143417A
Authority
JP
Japan
Prior art keywords
layer
insulating layer
single crystal
recesses
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29792088A
Other languages
Japanese (ja)
Inventor
Kazuhiko Shirakawa
一彦 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP29792088A priority Critical patent/JPH02143417A/en
Publication of JPH02143417A publication Critical patent/JPH02143417A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To leave single crystal unremoved only within recesses when a semiconductor device having an Si layer on an insulating layer is manufactured, by forming the insulating layer on an Si substrate, forming recesses in the regions of the insulating layer where elements are to be formed, depositing a polycrystalline Si layer on the whole surface including the recesses and melting and curing the polycrystalline Si to convert the same into single crystal. CONSTITUTION:An insulating layer 2 is formed on one surface of an Si substrate 2 either by thermal oxidation of the substrate 1 or by a CVD process. Recesses 16 are formed in element forming regions of the insulating layer so that each recess has configurations corresponding to those of the element to be formed there. A polycrystalline Si layer 3 is deposited on the whole surface including the recesses 16 and covered with an anti-reflection insulating layer 4. A laser beam 5 is applied to the surface so that the layer 3 is molten and cured to provide a single crystal Si layer. While the layer 3 is molten, the part of the layer 3 present on the layer 2 also flows into the recesses 16 whereby the surface is flattened substantially. Then, the single crystal Si layer other than the parts thereof present in the recesses 16 is removed by an RIE process such that only the single crystal Si as required is left unremoved within the recesses 16.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は半導体装置の製造方法に関する。さらに詳し
くは、絶縁層上にシリコン層を有する構造(以下Sol
構造という)の半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a method of manufacturing a semiconductor device. More specifically, a structure having a silicon layer on an insulating layer (hereinafter Sol
The present invention relates to a method for manufacturing a semiconductor device (hereinafter referred to as "structure").

(ロ)従来の疲術 Sol構造を有する半導体装置は、第3図(a)〜(e
)に示される方法により製造されている。
(b) A semiconductor device having a conventional Sol structure is shown in FIGS. 3(a) to (e).
) is manufactured by the method shown in

まず、シリコン基板lの上に層間絶縁膜2を形成し、そ
の上に多結晶シリコン膜3を形成し、さらに最上層にビ
ームの反射を防止する酸化膜4を形成した後、この構造
の表面側へエネルギービーム例えばレーザービーム5を
照射(同図(a)) して、多結晶シリコン膜3を溶融
固化させて、単結晶シリコン膜8を形成する。
First, an interlayer insulating film 2 is formed on a silicon substrate l, a polycrystalline silicon film 3 is formed on it, and an oxide film 4 for preventing beam reflection is formed on the top layer, and then the surface of this structure is An energy beam, such as a laser beam 5, is irradiated to the side (FIG. 2(a)) to melt and solidify the polycrystalline silicon film 3, thereby forming a single crystal silicon film 8.

次に、最上層の反射防止膜4を除去し、単結晶シリコン
膜8の表面を露出させて、その上に全面にわたって酸化
膜6を形成する。その後、フォトレノストのマスクを介
して素子領域を露出し、反応性イオンエツチング(以下
RIE)などの方法によって素子領域のみ形成する。こ
の酸化膜6の上に、さらに全面にP S Ga4を常圧
CVD法などによって形成し、その膜を表面から全面均
一にRIEによって除去し酸化膜6の表面を露出させる
と、酸化膜6の周辺にP S G膜7のザイドウォール
7゛か形成される(同図(b))。
Next, the uppermost antireflection film 4 is removed to expose the surface of the single crystal silicon film 8, and an oxide film 6 is formed over the entire surface thereof. Thereafter, the element region is exposed through a photorenost mask, and only the element region is formed by a method such as reactive ion etching (hereinafter referred to as RIE). On this oxide film 6, P S Ga4 is further formed on the entire surface by atmospheric pressure CVD, etc., and the film is uniformly removed from the entire surface by RIE to expose the surface of the oxide film 6. A Zidewall 7' of the PSG film 7 is formed around the periphery (FIG. 6(b)).

この状態で単結晶シリコン膜8を、RIEによってエツ
チングすることによって、酸化膜6とサイドウオールP
SG膜7°の下側のみ残して単結晶シリコン膜8°が形
成される。このとき、RIEの条件によって単結晶シリ
コン膜8°の周辺をわずかにサイドウオールPSG膜7
′の内側に入り込ませることができる。その後サイドウ
オールPSG膜7°を除去し、単結晶シリコン膜8゛の
周辺部のみ露出させ、サイドチャンネル防止用の不純物
9のイオン注入を行う(同図(C))。
In this state, the single crystal silicon film 8 is etched by RIE to form the oxide film 6 and the sidewall P.
A single crystal silicon film 8° is formed leaving only the lower side of the SG film 7°. At this time, depending on the RIE conditions, a slight sidewall PSG film 7 is formed around the single crystal silicon film 8°.
′ can be inserted inside. Thereafter, the sidewall PSG film 7° is removed, only the peripheral portion of the single crystal silicon film 8° is exposed, and impurity 9 for preventing side channels is ion-implanted (FIG. 4(C)).

その後単結晶シリコン膜8°以外の部分を絶縁膜10で
埋め込んで、酸化膜6を除去し、単結晶シリコン膜8″
の表面を露出させる(同図(d))。
After that, the portion of the single crystal silicon film other than 8° is buried with an insulating film 10, the oxide film 6 is removed, and the single crystal silicon film 8″
(d) of the same figure.

それ以降通常のMOSFET形成方法によってSO■構
造の素子が形成される(同図(e))。第4図にこの素
子の部分平面構成説明図を示す。
Thereafter, an SO2 structure element is formed by a normal MOSFET forming method (FIG. 4(e)). FIG. 4 shows a partial plan view of the structure of this element.

(ハ)発明が解決しようとする課題 素子の微細化がすすむことでチャンネル幅が狭くなって
くると上記のごとき従来方式の素子間分離技術では、サ
イドチャンネル防止用に注入された不純物が、素子形成
工程中の熱処理によってチャンネル部へ拡散し、基板濃
度が変化してしまうことになり、素子特性に悪影響を及
ぼしてしまう。
(c) Problems to be Solved by the Invention As device miniaturization progresses, the channel width becomes narrower. Due to heat treatment during the formation process, it diffuses into the channel portion and changes the substrate concentration, which adversely affects device characteristics.

また、従来方式においては工程が複雑化して、長時間の
工程を必要とするため、素子性能の信頼性の低下を招く
等の問題が生じる。
Further, in the conventional method, the process is complicated and requires a long time, which causes problems such as a decrease in reliability of device performance.

この発明はかかる状況に鑑みなされたものであり、素子
の微細化か図れ集積度を向上し、高信頼性を有しつるS
ol構造の半導体装置の製造方法を提供しようとするも
のである。
This invention was made in view of the above situation, and it is possible to miniaturize elements, improve the degree of integration, and provide highly reliable S.
The present invention aims to provide a method for manufacturing a semiconductor device having an OL structure.

(ニ)課題を解決するための手段 かくしてこの発明によれば、シリコン基板上に絶縁層を
形成し、この絶縁層の素子形成予定域に予め凹部養形成
した後、上記絶縁層上に多結晶シリコン層を積層し、こ
の多結晶シリコン層を溶融固化して単結晶シリコン層と
した後、該単結晶シリコン層をエツチング処理に付すこ
とにより、上記凹部にのみ単結晶シリコン層を残存形成
することを特徴とする半導体装置の製造方法が提供され
る。
(d) Means for Solving the Problems Thus, according to the present invention, an insulating layer is formed on a silicon substrate, a recess is formed in advance in the area where elements are to be formed in this insulating layer, and then a polycrystalline layer is formed on the insulating layer. After laminating silicon layers and melting and solidifying this polycrystalline silicon layer to form a single crystal silicon layer, the single crystal silicon layer is subjected to an etching treatment to form a single crystal silicon layer remaining only in the recessed portion. A method for manufacturing a semiconductor device is provided.

この発明において、絶縁層への凹部の形成は、フォトレ
ジストマスク等を用いたRIE等の当該分野で通常用い
られるエツチング技術により達成できる。上記凹部は、
意図する素子を形成しうるに充分な形状、大きさ、深さ
で形成される。この凹部は例えば溝状であってもよい。
In the present invention, the formation of recesses in the insulating layer can be achieved by etching techniques commonly used in the field, such as RIE using a photoresist mask or the like. The above recess is
The shape, size, and depth are sufficient to form the intended element. This recess may be, for example, groove-shaped.

上記凹部の深さを調節することにより、該凹部内に形成
される単結晶シリコン層を、絶縁層と面一状態にまたは
絶縁層表面よりも低い状態に形成できることがこの発明
の1つの特徴である。
One feature of the present invention is that by adjusting the depth of the recess, the single crystal silicon layer formed in the recess can be formed flush with the insulating layer or lower than the surface of the insulating layer. be.

この発明において、上記のごとく素子領域用凹部が形成
された絶縁層上には、CVD法等公知の方法により多結
晶シリコン層が積層される。この多結晶シリコン層は次
いで溶融固化されて単結晶シリコン層とされる。この溶
融固化条件は当該分野での通常の条件で行われる。
In this invention, a polycrystalline silicon layer is laminated by a known method such as a CVD method on the insulating layer in which the element region recesses are formed as described above. This polycrystalline silicon layer is then melted and solidified into a single crystalline silicon layer. This melting and solidifying condition is carried out under the usual conditions in the field.

上記のごとく得られる絶縁層上の単結晶シリコン層は、
RYE等当該分野で公知の方法により除去される。この
除去は、上記凹部以外の絶縁層表面が露出するまで行わ
れる。上記除去により、凹部内にのみ単結晶シリコン層
が形成され、1つの凹部に形成される単結晶シリコン層
が他の凹部に形成される単結晶シリコン層から絶縁層に
より隔絶して形成されることになり、同時に素子間分離
が達成される。
The single crystal silicon layer on the insulating layer obtained as above is
It is removed by methods known in the art such as RYE. This removal is performed until the surface of the insulating layer other than the recessed portions is exposed. By the above removal, a single crystal silicon layer is formed only in the recess, and the single crystal silicon layer formed in one recess is separated from the single crystal silicon layer formed in another recess by an insulating layer. At the same time, isolation between elements is achieved.

この発明において、上記のごとく隔絶状態で得られる個
々の残存単結晶シリコン層には、当該分野で公知の材料
および方法を用いてき図する素子が形成される。
In the present invention, the individual remaining monocrystalline silicon layers, obtained in isolation as described above, are formed with primary elements using materials and methods known in the art.

(ホ)作用 この発明によれば、素子形成予定域用の四部が予め設け
られた絶縁層上に、多結晶シリコン層を積層し、該シリ
コン層を溶融することにより上記凹部内にシリコンが流
れ込み、次いで固化されることにより上記絶縁層が単結
晶シリコン層で被覆されることとなる。このとき凹部に
は単結晶シリコン層が厚く形成される。次いで絶縁層上
の被覆単結晶シリコン層をその全面にわたって均一に除
去して、絶縁層表面を露出することにより、上記凹部内
にのみ単結晶シリコン層が残存することになる。
(e) Effect According to the present invention, a polycrystalline silicon layer is laminated on an insulating layer in which four parts for the intended element formation area are provided in advance, and by melting the silicon layer, silicon flows into the recessed part. Then, the insulating layer is covered with a single crystal silicon layer by solidification. At this time, a thick single crystal silicon layer is formed in the recess. Next, the covering single crystal silicon layer on the insulating layer is removed uniformly over the entire surface to expose the surface of the insulating layer, so that the single crystal silicon layer remains only in the recess.

以下実施例によりこの発明の詳細な説明するが、これに
よりこの発明は限定されるものではない。
The present invention will be described in detail below with reference to Examples, but the present invention is not limited thereby.

(へ)実施例 第1図(a)〜(g)はこの発明の方法の一実施例を、
断面構成ぶ四回により示す工程説明図、第2図は、この
発明の一例の方法により製造された半導体装置の一実施
例の部分平面構成説明図である。
(f) Example Figure 1 (a) to (g) shows an example of the method of this invention.
FIG. 2, which is a step explanatory diagram showing the cross-sectional configuration four times, is a partial plan view explanatory diagram of an embodiment of a semiconductor device manufactured by the method of one example of the present invention.

これらの図において半導体装置は、シリコン基板lと絶
縁層2,14と、拡散層13°、8°と、ゲト酸化膜1
1と、ゲート電極12と、配線層15とから主として構
成されている。
In these figures, the semiconductor device includes a silicon substrate l, insulating layers 2 and 14, diffusion layers 13° and 8°, and a gate oxide film 1.
1, a gate electrode 12, and a wiring layer 15.

製造方法について説明する。The manufacturing method will be explained.

シリコン基板lの一方の表面には、絶縁層2を形成した
。この形成はシリコン基板lを熱酸化して形成してもよ
いしCVDなどによっても形成してもよい。次いでこの
絶縁層2に意図する素子領域の形に相当する形状で凹部
16を形成した(第1図(a))。この形成はフォトレ
ジストマスクを介して露光したRIEなどの方法によっ
て行うことができる。
An insulating layer 2 was formed on one surface of the silicon substrate 1. This formation may be performed by thermally oxidizing the silicon substrate 1, or may be formed by CVD or the like. Next, a recess 16 was formed in this insulating layer 2 in a shape corresponding to the intended element region (FIG. 1(a)). This formation can be performed by a method such as RIE in which exposure is performed through a photoresist mask.

次いで上記絶縁層2上に基板シリコンを積層するのであ
るが、まずこの基板シリコンは、絶縁層上に多結晶シリ
コン層3を積層し、この多結晶シリコン層3上に反射防
止用の絶縁層4を形成した後、該絶縁層4上からレーザ
ービーム5を照射して、上記多結晶シリコン層3を溶融
固化して単結晶シリコン層とすることにより形成される
(同図(b))。上記溶融の際に絶縁層2に形成した素
子領域用凹部16に溶融シリコンが流れ込んで単結晶シ
リコンの表面が平坦に近付く(同図(C))。この後基
板シリコン8を表面から均一に全面除去していくと、基
板シリコン8の一番厚い部分すなわち、素子領域用凹部
16にのみ、基板シリコン8が残される。この除去の方
法には、RIE法を採用した。次に基板シリコン8の表
面より、不純物9を注入することで、拡散層8°を形成
した(同図(d))。
Next, a silicon substrate is laminated on the insulating layer 2. First, a polycrystalline silicon layer 3 is laminated on the insulating layer, and an antireflection insulating layer 4 is formed on the polycrystalline silicon layer 3. After forming the polycrystalline silicon layer 3, a laser beam 5 is irradiated from above the insulating layer 4 to melt and solidify the polycrystalline silicon layer 3 to form a single crystal silicon layer (FIG. 2(b)). During the above melting, the molten silicon flows into the element region recess 16 formed in the insulating layer 2, and the surface of the single crystal silicon approaches a flat surface (FIG. 4(C)). After that, when the substrate silicon 8 is uniformly removed from the entire surface, the substrate silicon 8 is left only in the thickest part of the substrate silicon 8, that is, in the element region recess 16. The RIE method was used for this removal method. Next, an impurity 9 was implanted from the surface of the silicon substrate 8 to form a diffusion layer 8° (FIG. 4(d)).

次にこの拡散層8°の上面にゲート酸化膜11を形成し
、このゲート酸化膜Uの上層にはドーピングされた多結
晶シリコンまたは各種金属などの電極層12を積層した
。次いでこの電極の上から不純物イオン13を注入する
ことによって、拡散層13′を形成した(同図(e))
Next, a gate oxide film 11 was formed on the upper surface of this diffusion layer 8°, and an electrode layer 12 made of doped polycrystalline silicon or various metals was laminated on the gate oxide film U. Next, by implanting impurity ions 13 from above this electrode, a diffusion layer 13' was formed (FIG. 2(e)).
.

上記得られた構造の半導体層の上面にさらに絶縁層14
を被覆形成した(同図(f))。この絶縁層14はCV
D法を用いることよって形成された酸化膜であって、こ
れにコンタクトホールを形成している。
An insulating layer 14 is further provided on the upper surface of the semiconductor layer of the structure obtained above.
A coating was formed ((f) in the same figure). This insulating layer 14 is CV
This is an oxide film formed using the D method, and a contact hole is formed in this oxide film.

次にコンタクトホールを含む領域において、配線層15
を形成した(同図(g))。この配線層15はコンタク
トホールにおいて、拡散層13°と電気的に接続されて
いる。
Next, in the region including the contact hole, the wiring layer 15
was formed ((g) in the same figure). This wiring layer 15 is electrically connected to the diffusion layer 13° through a contact hole.

上述したように、絶縁層2に予め素子領域用凹部16を
形成することによって、溶融させたシリコンが流れ込み
、その部分の多結晶シリコン層を厚く形成できる。この
後シリコン層の表面から均一に除去することによって、
素子領域のみシリコン基板8(単結晶シリコン層)を残
す素子間分離が簡単に行えることとなった。このシリコ
ン基板8の除去方法に、熱酸化とフッ酸エツチングを用
いて、拡散層8′の表面とその周辺部の絶縁層2(酸化
膜)との高さを同じ高さに揃えることが可能となり、表
面の平坦化と素子間分離工程を同時に実現することがで
きる。また、素子領域用凹部16の深さを調節すること
によって、拡散層8′の周辺の絶縁層2を、拡散層8゛
の表面よりも高い位置に形成することも可能である。そ
の効果として、ゲートのサイドチャンネルを防止するこ
とができるという利点を有する。
As described above, by forming the element region recess 16 in advance in the insulating layer 2, molten silicon flows into the insulating layer 2, and the polycrystalline silicon layer can be formed thickly in that portion. After this, by uniformly removing from the surface of the silicon layer,
It is now possible to easily separate devices by leaving only the silicon substrate 8 (single-crystal silicon layer) in the device region. By using thermal oxidation and hydrofluoric acid etching as the method for removing the silicon substrate 8, it is possible to align the height of the surface of the diffusion layer 8' and the insulating layer 2 (oxide film) in the surrounding area to the same height. Therefore, surface planarization and element isolation process can be realized at the same time. Furthermore, by adjusting the depth of the element region recess 16, it is also possible to form the insulating layer 2 around the diffusion layer 8' at a position higher than the surface of the diffusion layer 8'. This has the advantage that side channels of the gate can be prevented.

(ト)発明の効果 この発明によれば、サイドチャンネル防止用にシリコン
基板側壁への不純物イオン注入を必要としない。またシ
リコン基板の表面と周辺の絶縁層との表面を同じ高さに
揃える平坦化と、素子間分離を同時に行うことができ、
製造工程が簡単化され、半導体装置の信頼性を向上する
ことができる。
(G) Effects of the Invention According to the present invention, it is not necessary to implant impurity ions into the side wall of the silicon substrate to prevent side channels. In addition, it is possible to simultaneously perform planarization, which aligns the surface of the silicon substrate and the surface of the surrounding insulating layer to the same height, and isolation between elements.
The manufacturing process is simplified and the reliability of the semiconductor device can be improved.

その結果半導体装置の微細化が効率良く図れ、さらに集
積度を格段に向上でき、半導体装置の高機能化を図るこ
とができる。
As a result, the semiconductor device can be miniaturized efficiently, the degree of integration can be significantly improved, and the functionality of the semiconductor device can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(g)はこの発明の方法の一実施例を、
断面構成説明図により示す工程説明図、第2図は、この
発明の一例の方法により製造された半導体装置の一実施
例の部分平面構成説明図、第3図(a)〜(e)は従来
例の製造工程説明図、第4図は従来例の部分平面構成説
明図である。 !・・・・・・シリコンJ[, 2,4,10,14・・・・・・絶縁層、3・・・・・
・多結晶シリコン層、5・・・・・・レーザービーム、
6・・・・・・酸化膜、      7゛・・・・・・
PSG膜、8・・・・・・単結晶シリコン層、 8°、13′・・・・・・拡散層、 9.13・・・・・・不純物イオン注入、■1・・・・
・・ゲート酸化膜、  12・・・・・・ゲート電極、
15・・・・・・配線層、      I6・・・・・
・素子領域用凹部。 第 図 !1  図 (a) 〜1 〜1 〜1
FIGS. 1(a) to (g) show an embodiment of the method of this invention,
2 is an explanatory diagram of a partial planar configuration of an embodiment of a semiconductor device manufactured by the method of one example of the present invention, and FIGS. FIG. 4 is an explanatory diagram of the manufacturing process of the example, and FIG. 4 is a partial plane configuration explanatory diagram of the conventional example. !・・・・・・Silicon J[, 2, 4, 10, 14...Insulating layer, 3...
・Polycrystalline silicon layer, 5... Laser beam,
6... Oxide film, 7゛...
PSG film, 8... single crystal silicon layer, 8°, 13'... diffusion layer, 9.13... impurity ion implantation, ■1...
...Gate oxide film, 12...Gate electrode,
15...Wiring layer, I6...
・Concave part for element area. Diagram! 1 Figure (a) ~1 ~1 ~1

Claims (1)

【特許請求の範囲】[Claims] 1、シリコン基板上に絶縁層を形成し、この絶縁層の素
子形成予定域に予め凹部を形成した後、上記絶縁層上に
多結晶シリコン層を積層し、この多結晶シリコン層を溶
融固化して単結晶シリコン層とした後、該単結晶シリコ
ン層をエッチング処理に付すことにより、上記凹部にの
み単結晶シリコン層を残存形成することを特徴とする半
導体装置の製造方法。
1. After forming an insulating layer on a silicon substrate and forming a concave portion in advance in the area where elements are to be formed in this insulating layer, a polycrystalline silicon layer is laminated on the insulating layer, and this polycrystalline silicon layer is melted and solidified. 1. A method of manufacturing a semiconductor device, comprising: forming a single-crystal silicon layer by etching the single-crystal silicon layer, thereby forming the single-crystal silicon layer remaining only in the recessed portion.
JP29792088A 1988-11-24 1988-11-24 Manufacture of semiconductor device Pending JPH02143417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29792088A JPH02143417A (en) 1988-11-24 1988-11-24 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29792088A JPH02143417A (en) 1988-11-24 1988-11-24 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02143417A true JPH02143417A (en) 1990-06-01

Family

ID=17852803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29792088A Pending JPH02143417A (en) 1988-11-24 1988-11-24 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02143417A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289168A (en) * 1996-02-23 1997-11-04 Semiconductor Energy Lab Co Ltd Semiconductor thin film, its forming method, semiconductor device and its forming method
JP2003234478A (en) * 2002-02-08 2003-08-22 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing the same
JP2003234477A (en) * 2002-02-08 2003-08-22 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing the same
JP2003257865A (en) * 2001-12-28 2003-09-12 Semiconductor Energy Lab Co Ltd Semiconductor device and production system thereof
JP2003297751A (en) * 2002-01-28 2003-10-17 Semiconductor Energy Lab Co Ltd Semiconductor device and method for forming semiconductor device
JP2003338508A (en) * 2002-02-22 2003-11-28 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same
JP2004006726A (en) * 2002-03-26 2004-01-08 Semiconductor Energy Lab Co Ltd Semiconductor display and its manufacturing process
JP2004006644A (en) * 2002-01-28 2004-01-08 Semiconductor Energy Lab Co Ltd Semiconductor device and its fabricating method
JP2004088084A (en) * 2002-06-25 2004-03-18 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
US7372073B2 (en) 1996-02-23 2008-05-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film, semiconductor device and manufacturing method thereof
JP2009049398A (en) * 2007-07-26 2009-03-05 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
US7615384B2 (en) 2002-03-26 2009-11-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device and method of manufacturing the same
US7737506B2 (en) 2002-01-28 2010-06-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7749818B2 (en) 2002-01-28 2010-07-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7795734B2 (en) 2002-01-28 2010-09-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289168A (en) * 1996-02-23 1997-11-04 Semiconductor Energy Lab Co Ltd Semiconductor thin film, its forming method, semiconductor device and its forming method
US7372073B2 (en) 1996-02-23 2008-05-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film, semiconductor device and manufacturing method thereof
JP2003257865A (en) * 2001-12-28 2003-09-12 Semiconductor Energy Lab Co Ltd Semiconductor device and production system thereof
JP2019068092A (en) * 2002-01-28 2019-04-25 株式会社半導体エネルギー研究所 Semiconductor element
JP2011101057A (en) * 2002-01-28 2011-05-19 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2003297751A (en) * 2002-01-28 2003-10-17 Semiconductor Energy Lab Co Ltd Semiconductor device and method for forming semiconductor device
US7795734B2 (en) 2002-01-28 2010-09-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7749818B2 (en) 2002-01-28 2010-07-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
JP2004006644A (en) * 2002-01-28 2004-01-08 Semiconductor Energy Lab Co Ltd Semiconductor device and its fabricating method
US7737506B2 (en) 2002-01-28 2010-06-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7709895B2 (en) 2002-02-08 2010-05-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having insulating stripe patterns
JP2003234477A (en) * 2002-02-08 2003-08-22 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing the same
JP2003234478A (en) * 2002-02-08 2003-08-22 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing the same
JP2003338508A (en) * 2002-02-22 2003-11-28 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same
US7615384B2 (en) 2002-03-26 2009-11-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device and method of manufacturing the same
JP2004006726A (en) * 2002-03-26 2004-01-08 Semiconductor Energy Lab Co Ltd Semiconductor display and its manufacturing process
JP2004088084A (en) * 2002-06-25 2004-03-18 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
JP2009049398A (en) * 2007-07-26 2009-03-05 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JPH02143417A (en) Manufacture of semiconductor device
JPH0210575B2 (en)
US5004703A (en) Multiple trench semiconductor structure method
JPH0715953B2 (en) Rewritable memory device and manufacturing method thereof
US4810668A (en) Semiconductor device element-isolation by oxidation of polysilicon in trench
JPS63299144A (en) Method of separating interface sealed by oxide protective layer for pad
JPH02277253A (en) Manufacture of semiconductor device
JPH0555361A (en) Semiconductor device and manufacture thereof
JP2812013B2 (en) Method for manufacturing semiconductor device
JPH04209534A (en) Manufacture of semiconductor device
KR0183718B1 (en) Method of manufacturing semiconductor device
JPH1092806A (en) Method of forming semiconductor element isolation region
JP2000049296A (en) Manufacture of semiconductor device
JP2643015B2 (en) Method of manufacturing complete dielectric isolation substrate
JPS6246543A (en) Manufacture of semiconductor device
JPH08264634A (en) Separate formation in semiconductor device
US20040135199A1 (en) Semiconductor devices and methods of forming a trench in a semiconductor device
JPS62130537A (en) Method of separating elements of integrated circuit
JPH0521592A (en) Manufacture of semiconductor device and semiconductor device
JPH0442948A (en) Manufacture of semiconductor device
JPS6116545A (en) Manufacture of semiconductor integrated device
KR100224651B1 (en) Method of manufacturing semiconductor device
JPH0330300B2 (en)
JPH0481329B2 (en)
JPH0529452A (en) Manufacturing method of semiconductor device