JPH02139852A - Electrode of plastic battery and its manufacture - Google Patents

Electrode of plastic battery and its manufacture

Info

Publication number
JPH02139852A
JPH02139852A JP63291692A JP29169288A JPH02139852A JP H02139852 A JPH02139852 A JP H02139852A JP 63291692 A JP63291692 A JP 63291692A JP 29169288 A JP29169288 A JP 29169288A JP H02139852 A JPH02139852 A JP H02139852A
Authority
JP
Japan
Prior art keywords
metal foil
current collector
electrode
active material
conductive polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63291692A
Other languages
Japanese (ja)
Inventor
Akira Sumiya
住谷 明
Minoru Oda
稔 織田
Shinji Higo
肥後 信司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP63291692A priority Critical patent/JPH02139852A/en
Publication of JPH02139852A publication Critical patent/JPH02139852A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0464Electro organic synthesis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To enhance electrical continuity and decrease the contact resistance by interposing a conductive highmolecular film having a larger conductivity than the active substance between a highmolecular current-collecting member and a metal foil terminal. CONSTITUTION:On a metal foil terminal B a conductive highmolecular film C having a larger conductivity than an active substance A1 is educted by means of electrolytic polymerization method. The surface of a highmolecular current- collecting member A2 consisting of conductive highmolecular film, wherein the conductivity of a highmolecular composite film A12 is larger than the substance A1, is over lapped on the surface of the film C, and put in close contact, and thus an electrode is fabricated. This provides good electrical continuity with the contact resistance lessened.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、導電性高分子膜を活物質とするプラスチック
電池の電極に係Jつつ、珠に、プラスチック電池の信頼
性を向上せしめるプラスチック電池の電極及びその製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Fields] The present invention relates to electrodes of plastic batteries that use conductive polymer films as active materials, and particularly relates to plastic batteries that improve the reliability of plastic batteries. The present invention relates to an electrode and a method for manufacturing the same.

E従来の技術] 従来、この種のプラスチックT、1.l!!のTL極と
してよく知られる構成を1図面(第3図及び第4図)を
参照し、以下説明する。第3図の’CtMは、導電性高
分子膜でなる活物”αA1と$/i伝導度が前記活物質
A1より大きい導電性高分子・膜でなる高分子集電体A
2とからなる高分子複合膜A I 2と。
E. Prior Art] Conventionally, this type of plastic T, 1. l! ! A configuration well known as a TL pole will be described below with reference to one drawing (FIGS. 3 and 4). 'CtM in Fig. 3 is an active material "αA1" made of a conductive polymer film and a polymer current collector A made of a conductive polymer/film having a conductivity of $/i larger than that of the active material A1.
A polymer composite membrane A I 2 consisting of 2 and 2.

11j記高分子復合tlQA12の高分子集電体A2の
端部に密着してなる金属箔端子Bヒから構成さtしてい
る。また、第4図の電極は、金属箔集電体A3上に導電
性高分子膜でなる活物質AIを密着せしめ、更に、前記
金属箔集電体A3の端部に金属箔端子Bを密着せしめた
構成である。上記において一般に、導電性高分子膜でな
る活物’J A lとしては、58+造法の容易さ、化
学的安定性、電池特性等からポリアニリンが有望と考え
られている。しかしながら、ポリアニリンは電気伝導度
が小さいため、別途、電気伝導度がポリアニリンより大
きい集電体を設け、これにポリアニリンを密着せしめる
構成が有利である。そこで前記集電体と−で、電気伝導
度がポリアニリンより大きい導電性高分子であるポリピ
ロール等の膜を採用するもの(?i′!3図の構成のA
2)や、更に金属箔や金帆仮を採用するもの(第4図の
構成のA3)がある。尚、珠に前者ポリピロールとポリ
アニリンとのD /J。
It consists of a metal foil terminal B which is closely attached to the end of the polymer current collector A2 of the polymer decomposition tlQA12 described in 11j. In addition, the electrode shown in FIG. 4 has an active material AI made of a conductive polymer film closely attached to a metal foil current collector A3, and further a metal foil terminal B is closely attached to an end of the metal foil current collector A3. This is a perfect configuration. In the above, polyaniline is generally considered to be a promising active substance 'J A1 made of a conductive polymer film because of the ease of the 58+ manufacturing method, chemical stability, battery characteristics, etc. However, since polyaniline has low electrical conductivity, it is advantageous to separately provide a current collector whose electrical conductivity is higher than that of polyaniline, and to adhere the polyaniline to this collector. Therefore, between the current collector and -, a film made of polypyrrole or the like, which is a conductive polymer with higher electrical conductivity than polyaniline, is used (?i'! A of the configuration shown in Figure 3).
2), and one that uses metal foil or gold foil (A3 with the configuration shown in Figure 4). In addition, the beads are D/J of the former polypyrrole and polyaniline.

膜を用いるプラスチック電池については、これが、金属
箔や金属板を’A 2体とする電極(つより。
For plastic batteries that use membranes, this is an electrode made of metal foil or metal plate.

第4図の電極)と比較し、U量、かつ、低コスト、更に
は形状ら自在に変更し得るという優れた特性を備えてい
る点に鑑み9本発明者等は、1足前多種多様の提案を行
っている。
Compared to the electrode shown in Figure 4), the present inventors have developed a wide variety of We are making proposals.

次に、かかる構成のtL極の一般的な製造方法について
説明すれば、前者第3図の電極の製造方法は、ニッケル
等の金属電極上に、竜角¥宙合法等により、電気伝導度
が活物質A1より大きい導電性1高分子膜でなる高分子
集電体A2と、導電性高分子膜でなるtFj記活物質A
Iとを順次析出せしめて高分子複合膜A12を製造し1
次に前記金属電極上から前記高分子複合膜A12をal
lぎ取り、最後に前記高分子複合膜AI2の高分子、!
IS電体A2の端部に金属箔端子Bを密着せしめて電極
を装造する構成である6後者第4図のプラスチック電池
の電極の製造方法は、ニッケル等の金属箔集電体A3上
に、電解重合法等により、導電性高分子膜でなる前記活
物質AIを析出せしめて活物質被贋金属箔婁電体A13
を製造した後、前記活物實被覆金属箔事を体A13の金
属箔集電体A3の端部に金属箔端子Bを密着せしめて電
極を製造する構成である。
Next, to explain the general manufacturing method of the tL pole with such a configuration, the former method of manufacturing the electrode shown in FIG. A polymer current collector A2 made of a conductive polymer film larger than the active material A1, and a tFj active material A made of a conductive polymer film.
A polymer composite film A12 is produced by sequentially depositing I and I.
Next, the polymer composite film A12 is applied from above the metal electrode.
Finally, remove the polymer of the polymer composite film AI2!
The method for manufacturing the electrode of the plastic battery shown in FIG. The active material AI made of a conductive polymer film is deposited by an electrolytic polymerization method or the like to form an active material-covered metal foil electrical body A13.
After manufacturing the active substance coated metal foil, a metal foil terminal B is closely attached to the end of the metal foil current collector A3 of the body A13 to manufacture an electrode.

1発明が解決しようとする課題] しかしながら、かがる従来のプラスチック電池の電極に
おいては、前者第3図の構成の電極の場合は、高分子集
電体A2と金属箔端子Bとの間で、他方、後者第4図の
構成の電極の場りは、活物質A1と金属箔集電体A3と
の間において接触不良等のため、内部抵抗が発生し、こ
の結果、充電の際、電流が不安定となるばかりでなく、
充電が充分にされず出力密度が小さくなるという不都合
が生じている。
1. Problems to be Solved by the Invention] However, in the conventional plastic battery electrode, in the case of the former electrode having the configuration shown in FIG. On the other hand, in the latter electrode structure shown in FIG. 4, internal resistance occurs due to poor contact between the active material A1 and the metal foil current collector A3, and as a result, the current decreases during charging. Not only becomes unstable, but
There is an inconvenience that charging is not performed sufficiently and the output density is reduced.

本発明は、かかる従来の問題点に着眼し、内部抵抗を小
さくすることができる。従って出力密度を大きくでき、
かつ、信頼性の高いプラス千り電池の74h及びその製
造方法を提供することを目的とする。
The present invention focuses on such conventional problems and can reduce internal resistance. Therefore, the power density can be increased,
Another object of the present invention is to provide a highly reliable 74H positive battery and a method for manufacturing the same.

[課題を解決するための手段] 上記目的を達成するため9本発明に係わるプラスチック
電池の電極及びその製造方法は、第1図及び第2図を参
照し説明すれば、先ず、電極は。
[Means for Solving the Problems] In order to achieve the above object, nine plastic battery electrodes and a manufacturing method thereof according to the present invention will be described with reference to FIGS. 1 and 2. First, the electrodes will be described.

第1図において、導電性高分子膜でなる活物質Alと電
気伝導度が前記li!l物質A1より大きい導電性高分
子膜でなる高分子集電体A2とからなる高分子複合膜A
12と、前記高分子複合膜A12の高分子集電体A2の
端部に密着してなる金属箔端子Bとから購成さtLるプ
ラスチ7り電池の電極において、前記高分子集電体A2
と金属箔端子Bとの間に、電気伝導度が活物1iAIよ
り大きい導電性高分子膜Cを介在せしめ、前記高分子集
電体A2と、前記導電性高分子膜Cと、前記金属箔端子
Bとを順次V着せしめた構成とした。また第2図に示す
電極のように、金属箔集電体A3上に導電性高分子膜で
なる活物質AIを密着せしめ、更に、前記金属箔集電体
A3の端部に金属箔端子Bを密着せしめてなるプラスチ
ック電池の電極においては、前記活物質A1と前記金属
箔基TL体A3との間に、を低伝導度が活物質A1より
大きい導電性高分子膜Cを介在せしめ、前記活物′tT
、AIと。
In FIG. 1, the active material Al made of a conductive polymer film and the electric conductivity are li! A polymer composite film A consisting of a polymer current collector A2 made of a conductive polymer film larger than the substance A1
12 and a metal foil terminal B that is in close contact with the end of the polymer current collector A2 of the polymer composite film A12,
and the metal foil terminal B, a conductive polymer film C having a higher electrical conductivity than the active material 1iAI is interposed, and the polymer current collector A2, the conductive polymer film C, and the metal foil The structure is such that terminals B and V are sequentially connected to each other. Further, as in the electrode shown in FIG. 2, an active material AI made of a conductive polymer film is closely attached to a metal foil current collector A3, and a metal foil terminal B is attached to the end of the metal foil current collector A3. In the electrode of a plastic battery made of the active material A1 and the metal foil-based TL body A3, a conductive polymer film C having a lower conductivity higher than that of the active material A1 is interposed between the active material A1 and the metal foil-based TL body A3; Living things'tT
, with AI.

前記導電性高分子膜Cと、前記金属箔集電体A3とを順
次密着せしめた構成であってもよい。次にかかる電極の
製造方法は、前者の電極の製造方法にあっては、(イ)
金属箔端7−Bに、TL解重合法により、電気r云導度
が活物質A1より大きい導電性高分子膜Cを析出せしめ
る第1工程と、(ロ)前記導電性高分子膜Cの面に、高
分子複合膜A12の電気伝導度が活物質A1より大きい
導電性高分子膜でなる高分子集電体A2の面を重ね合ノ
フせで密着せしめる第2工程との2工程により電極を製
造する構成とした。また後者の電極の製造方法にあって
は、(イ)金属箔集電体A3上に、電気伝導度が活物質
A1より大きい導電性高分子膜Cと、導電性高分子膜で
なる活物質A1とを、TL解重合法により、順次析出せ
しめる第1工程と。
The conductive polymer film C and the metal foil current collector A3 may be successively brought into close contact with each other. The next method for manufacturing such an electrode is (a) in the case of the former method for manufacturing an electrode.
A first step of depositing a conductive polymer film C having a higher electrical conductivity than the active material A1 on the metal foil end 7-B by a TL depolymerization method; The electrode is formed by two steps: a second step in which the surface of the polymer current collector A2, which is made of a conductive polymer film whose electrical conductivity is higher than that of the active material A1, is brought into close contact with the surface of the polymer composite film A12 by overlapping and notching. The structure was designed to manufacture. In the latter method of manufacturing an electrode, (a) a conductive polymer film C having a higher electrical conductivity than the active material A1 is placed on the metal foil current collector A3, and an active material made of the conductive polymer film. A1 and A1 are sequentially precipitated by the TL depolymerization method.

口)前記金属箔集電体A3の面の端部に、金属箔端子B
を重ね合わせて密着せしめる第2工程との2工程により
電極を製造する構成としたつ[fヤ用] かかる構成のプラスチック電池の電極であれば、前者第
1図の構成の電極の場合、高分子集電体A2と金属箔端
子Bとの間には導電性高分子膜Cが密着しているため、
他方、後者第4図の構成の電極の場合は、活物質A1と
金属箔集電体A3との間に導電性高分子膜Cが密着して
いるため、接触不良等が発生し難く、従って内部抵抗を
低く押さえることができ、この結果、充電の際、電流は
安定化し、かつ、充電が充分にされるため出力密度を大
きくすることができる。そして9本発明に隻ずく製造方
法によtしば、共にわずか2工程のみでかかる電極を容
易に、かつ、確実に製造することができる。
) A metal foil terminal B is attached to the end of the surface of the metal foil current collector A3.
In the case of an electrode for a plastic battery having such a structure, the former electrode having the structure shown in FIG. Since the conductive polymer film C is in close contact between the molecular current collector A2 and the metal foil terminal B,
On the other hand, in the case of the latter electrode having the configuration shown in FIG. 4, since the conductive polymer film C is in close contact between the active material A1 and the metal foil current collector A3, poor contact etc. are unlikely to occur. The internal resistance can be kept low, and as a result, the current is stabilized during charging, and the charging is sufficient, so the output density can be increased. According to the manufacturing method of the present invention, such an electrode can be easily and reliably manufactured in only two steps.

1実施例] 以下1本発明に係わるプラスチック電池の電極及びその
製造方法の実施例をまとめて説明する。
1 Example] Hereinafter, 1 example of a plastic battery electrode and a manufacturing method thereof according to the present invention will be described.

先ず、請求項1のプラスチック電池の電極及び請求項3
のそのl#遣方法の実施例を第1図を参照し説明する。
First, the electrode of the plastic battery of claim 1 and claim 3.
An embodiment of the l# usage method will be described with reference to FIG.

尚、説明を容易にするため、(A)高分子被覆金属箔端
子CBの作製と、(B)プラス−1−ツク電池の作製と
、(C)前記プラスチック電池の効果とに分ける。
For ease of explanation, the explanation will be divided into (A) the production of the polymer-coated metal foil terminal CB, (B) the production of the positive one-cell battery, and (C) the effects of the plastic battery.

(A)高分子被覆金属箔端子CBの作製・・p−トルエ
ンスルホン酸ナトリウム0.8moQ/′Qと、ビロー
ル0.25moQ/Qとを水に溶解した電解液により、
TL極の金属端子Bなる厚さ10/I mのニッケル板
上に、電気化学的合成法によりポリピロール膜Cを重合
し析出せしめる。重合電圧は、2.OV、重8−電気量
は3.Oc/′cm”である。
(A) Preparation of polymer-coated metal foil terminal CB: using an electrolytic solution in which 0.8 moQ/'Q of sodium p-toluenesulfonate and 0.25 moQ/Q of virol were dissolved in water.
A polypyrrole film C is polymerized and deposited by electrochemical synthesis on a 10/I m thick nickel plate serving as the metal terminal B of the TL pole. The polymerization voltage is 2. OV, heavy 8 - quantity of electricity is 3. Oc/'cm''.

(B)プラスチック電池の(ヤ製・・先ず、高分子複合
膜A12は、TL電気化学的合成法より、二lケル箔上
にポリピロール膜A2を13−)ルエンスルホン酸ナト
リウム1.0moQ、/σと、ピロル0,25moQ/
Qとを含む電解液から、重合電気量3.Oc/cm”で
合成し、続いてポリピロール膜A2上にポリアニリン膜
AIをp−)ルエンスルホン酸1.0mo Q/Qと、
アニリン05 m o Q / Qとを溶解した水−メ
タノール混合1容媒から重合電気量5 c 、/ c 
m ”で合成した後、ニンケル箔を取り除きt%られる
。プラスチック電池は、上記(A)で得られる高分子被
覆金属端子CB(正極端子である)と、前記のポリピロ
ールA2とポリアニリンA1との高分子複合膜AI2と
を、高分子複合膜A12のポリピロールA2の端部が高
分子被覆金属端子CBのポリピロール膜Cに重なるよう
に密着せしめ、これらを正極とし、電池の電解液として
p 11を調整した硫酸亜鉛水溶液を用い、セパレータ
ーを挟んで、亜鉛板(負極)と層状に4.Hみ合わせて
プラスチック電池を作製する。
(B) Plastic battery (manufactured by Ya... First, the polymer composite membrane A12 was prepared using the TL electrochemical synthesis method. Polypyrrole membrane A2 was coated on a 2L Kel foil with 13-) sodium luenesulfonate 1.0 moQ, / σ and pyrrol 0.25moQ/
From an electrolytic solution containing Q, the amount of polymerization electricity is 3. Then, a polyaniline film AI was synthesized on the polypyrrole film A2 with p-) luenesulfonic acid 1.0 mo Q/Q,
Polymerization electricity amount 5 c,/c from 1 volume of water-methanol mixture in which aniline 05 mo Q/Q is dissolved
m'', the Nikel foil is removed and the plastic battery is made by combining the polymer-coated metal terminal CB (positive electrode terminal) obtained in (A) above with the polypyrrole A2 and polyaniline A1. The molecular composite membrane AI2 is brought into close contact with the polymer composite membrane A12 so that the end of the polypyrrole A2 overlaps the polypyrrole membrane C of the polymer-coated metal terminal CB, and these are used as the positive electrode, and p11 is adjusted as the electrolyte of the battery. Using the zinc sulfate aqueous solution prepared above, a plastic battery is produced by layering the zinc plate (negative electrode) with a separator in between for 4 hours.

(C)プラスチック電池の効果・・電池のエネルギー密
度は、一定電圧1.5■で充電しr: i&、定電流0
 、 1 m A / c m ”で端子電圧が0.7
5Vになるまで放電し、この間に得られる電気量から計
算する。上、記(B)の条件で作製したプラスチック電
池の場合、エネルギー密度は平均で154.4QAh/
kgであり、充電の際の電流は安定していた。これに対
し、正極端子として、高分子で被覆していない通常のニ
ッケル板を使用し、正極と負極とを層状に組み合わせた
従来の電極(第3図参照)を用いて作製したプラスチ/
り電池は、エネルギー密度が104.6Ah、/kgと
小さい上に、充電の際に大きく不安定な電流が流れる場
合が多く、その場合には、充放電ができず、電池として
働かなかった。次に、請求項2のプラスチック電池の電
極及び請求項4のその製造方法の実施例であるが、これ
は上記実施例の説明(B)で得られる高分子複合膜A1
2において、ニッケル箔を前記高分子複合膜AI2から
取り除くことなく、そのまま高分子複合膜被覆金属箔集
電体CA13とし、前記ニッケル箔の端部にニアケル端
子Bを密着させたものである。この実施例電極で構成し
たプラスチック電池の効果もまた上記実施例同様、従来
の1を極(第4図参照)を用いて作製したプラスチック
電池と比較し、充電の際の電流は安定している。
(C) Effects of plastic batteries...The energy density of the battery is charged at a constant voltage of 1.5■ r: i&, constant current of 0
, 1 mA/cm” and the terminal voltage is 0.7
Discharge until the voltage reaches 5V, and calculate from the amount of electricity obtained during this time. In the case of the plastic battery produced under the conditions (B) above, the energy density was 154.4QAh/on average.
kg, and the current during charging was stable. On the other hand, a plasti/electrode made using a conventional electrode (see Figure 3), which uses an ordinary nickel plate not coated with polymer as the positive electrode terminal, and combines a positive electrode and a negative electrode in a layered manner.
In addition to having a low energy density of 104.6 Ah/kg, batteries often have a large and unstable current flowing during charging, in which case they cannot be charged or discharged and do not function as a battery. Next, an example of a plastic battery electrode according to claim 2 and a manufacturing method thereof according to claim 4, which is a polymer composite membrane A1 obtained in the explanation (B) of the above example.
In No. 2, the nickel foil was not removed from the polymer composite film AI2, and was used as a metal foil current collector CA13 coated with the polymer composite film, and the Niacel terminal B was closely attached to the end of the nickel foil. Similar to the above example, the effect of the plastic battery constructed using the electrodes of this example is that the current during charging is stable compared to the conventional plastic battery manufactured using the 1-electrode (see Figure 4). .

[発明の効果1 以上説明したように、本発明に係わるプラスチ/り電池
の電極は、請求項1記載の電極は、金属端子とその表面
に被覆された導電性高分子膜とは完全に密着して一体化
しているため導通がよくなり、また前記高分子と高分子
集電体についても高分子接触であるため接触抵抗を少な
くすることができる。他方、請求項2記載の電極もまた
活物質と、導電性高分子膜と、金属箔、lA主体とが完
全に密着して一体化しているため導通がよくなり、更に
順次電気伝導度が大きくなるように構成しであるため内
部抵抗を低減することができる。次に。
[Effect of the Invention 1] As explained above, the electrode of the plastic/rechargeable battery according to the present invention is such that the metal terminal and the conductive polymer film coated on the surface of the electrode are in complete contact with each other. Because they are integrated, conduction is improved, and since the polymer and the polymer current collector are in contact with the polymer, contact resistance can be reduced. On the other hand, the electrode according to claim 2 also has good conductivity because the active material, the conductive polymer film, the metal foil, and the 1A main body are completely integrated and in close contact with each other, and the electrical conductivity is gradually increased. Since the structure is configured such that the internal resistance can be reduced. next.

本発明に係わるプラスチック電池の電極の製造方法によ
れば、僅か2工程の製造工程でかがる利点を備えた電極
を容易に、かつ、確実に製造することができる。
According to the method for manufacturing an electrode for a plastic battery according to the present invention, an electrode having the above advantages can be easily and reliably manufactured in only two manufacturing steps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明に係わるプラスチック電池の
?l電極の断面図、第3図及び第4図は従来のプラスチ
ック電池の電極の断面図である。 A1・・・・活物質 A2・・・・高分子集電体 A12・・・高分子複合膜 A3・・・・金属箔集電体 A13・・・活物質被覆金属箔集電体 B・・・・・金属箔端子 C・・・・・導電性高分子膜 CB・・・・高分子被覆金属箔端子
1 and 2 show the plastic battery according to the present invention. Figures 3 and 4 are cross-sectional views of electrodes of conventional plastic batteries. A1...Active material A2...Polymer current collector A12...Polymer composite membrane A3...Metal foil current collector A13...Active material coated metal foil current collector B... ...Metal foil terminal C...Conductive polymer film CB...Polymer coated metal foil terminal

Claims (4)

【特許請求の範囲】[Claims] (1)導電性高分子膜でなる活物質A1と電気伝導度が
前記活物質A1より大きい導電性高分子膜でなる高分子
集電体A2とからなる高分子複合膜A12と、前記高分
子複合膜A12の高分子集電体A2の端部に密着してな
る金属箔端子Bとから構成されるプラスチック電池の電
極において、前記高分子集電体A2と金属箔端子Bとの
間に、電気伝導度が活物質A1より大きい導電性高分子
膜Cを介在せしめ、前記高分子集電体A2と、前記導電
性高分子膜Cと、前記金属箔端子Bとを順次密着せしめ
た構成を特徴とするプラスチック電池の電極。
(1) A polymer composite film A12 consisting of an active material A1 made of a conductive polymer film and a polymer current collector A2 made of a conductive polymer film whose electrical conductivity is higher than that of the active material A1; In a plastic battery electrode composed of a metal foil terminal B in close contact with an end of a polymer current collector A2 of a composite membrane A12, between the polymer current collector A2 and the metal foil terminal B, A structure in which the polymer current collector A2, the conductive polymer film C, and the metal foil terminal B are successively brought into close contact with each other, with a conductive polymer film C having a higher electrical conductivity than the active material A1 interposed therebetween. Characteristic plastic battery electrodes.
(2)金属箔集電体A3上に導電性高分子膜でなる活物
質A1を密着せしめ、更に、前記金属箔集電体A3の端
部に金属箔端子Bを密着せしめてなるプラスチック電池
の電極において、前記活物質A1と前記金属箔集電体A
3との間に、電気伝導度が活物質A1より大きい導電性
高分子膜Cを介在せしめ、前記活物質A1と、前記導電
性高分子膜Cと、前記金属箔集電体A3とを順次密着せ
しめた構成を特徴とするプラスチック電池の電極。
(2) A plastic battery made by closely adhering an active material A1 made of a conductive polymer film onto a metal foil current collector A3, and further adhering a metal foil terminal B to the end of the metal foil current collector A3. In the electrode, the active material A1 and the metal foil current collector A
A conductive polymer film C having a higher electrical conductivity than the active material A1 is interposed between the active material A1, the conductive polymer film C, and the metal foil current collector A3 in order. A plastic battery electrode characterized by a close-contact structure.
(3)(イ)金属箔端子Bに、電解重合法により、電気
伝導度が活物質A1より大きい導電性高分子膜Cを析出
せしめる第1工程と、 (ロ)前記導電性高分子膜Cの面に、高分子複合膜A1
2の電気伝導度が活物質A1より大きい導電性高分子膜
でなる高分子集電体A2の面を重ね合わせて密着せしめ
る第2工程と、 以上の2工程により、請求項1記載のプラスチック電池
の電極を製造したことを特徴とするプラスチック電池の
電極の製造方法。
(3) (a) A first step of depositing a conductive polymer film C having a higher electrical conductivity than the active material A1 on the metal foil terminal B by an electrolytic polymerization method; (b) the conductive polymer film C Polymer composite membrane A1 is placed on the surface of
2. The plastic battery according to claim 1, wherein the surfaces of the polymer current collector A2 made of a conductive polymer film having a higher electrical conductivity than the active material A1 are overlapped and brought into close contact with each other. A method for manufacturing an electrode for a plastic battery, characterized in that the electrode is manufactured by:
(4)(イ)金属箔集電体A3上に、電気伝導度が活物
質A1より大きい導電性高分子膜Cと、導電性高分子膜
でなる活物質A1とを、電解重合法により、順次析出せ
しめる第1工程と、(ロ)前記金属箔集電体A3の面の
端部に、金属箔端子Bを重ね合わせて密着せしめる第2
工程と、 以上の2工程により、請求項2記載のプラスチック電池
の電極を製造したことを特徴とするプラスチック電池の
電極の製造方法。
(4) (a) On the metal foil current collector A3, a conductive polymer film C having a higher electrical conductivity than the active material A1 and an active material A1 made of the conductive polymer film are placed on the metal foil current collector A3 by an electrolytic polymerization method. a first step of sequentially depositing the metal foil, and (b) a second step of overlapping and closely contacting the metal foil terminal B to the edge of the surface of the metal foil current collector A3.
A method for manufacturing an electrode for a plastic battery, characterized in that the electrode for a plastic battery according to claim 2 is manufactured by the above two steps.
JP63291692A 1988-11-18 1988-11-18 Electrode of plastic battery and its manufacture Pending JPH02139852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63291692A JPH02139852A (en) 1988-11-18 1988-11-18 Electrode of plastic battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63291692A JPH02139852A (en) 1988-11-18 1988-11-18 Electrode of plastic battery and its manufacture

Publications (1)

Publication Number Publication Date
JPH02139852A true JPH02139852A (en) 1990-05-29

Family

ID=17772171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63291692A Pending JPH02139852A (en) 1988-11-18 1988-11-18 Electrode of plastic battery and its manufacture

Country Status (1)

Country Link
JP (1) JPH02139852A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4024600A4 (en) * 2020-03-19 2024-05-01 Lg Energy Solution, Ltd. Positive electrode current collector having conductive anti-corrosion layer formed on tab, positive electrode comprising same, and lithium secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4024600A4 (en) * 2020-03-19 2024-05-01 Lg Energy Solution, Ltd. Positive electrode current collector having conductive anti-corrosion layer formed on tab, positive electrode comprising same, and lithium secondary battery

Similar Documents

Publication Publication Date Title
JP3428448B2 (en) Electrode structure and battery using the same
JP2003510768A (en) Lithium secondary battery having individual cells connected to each other, and a clock, a computer, and a communication device equipped with such a battery
JPH06310126A (en) Nonaquous electrolytic secondary battery
JPH06260168A (en) Lithium secondary battery
JPH02139852A (en) Electrode of plastic battery and its manufacture
JPS59228353A (en) Flat type battery
JPS636752A (en) Conductive polymer electrode
JP3240650B2 (en) Manufacturing method of solid state secondary battery
JPS59173944A (en) Secondary battery
JPH10302841A (en) Secondary lithium battery
JP2932563B2 (en) Lithium iron sulfide battery
JPS618854A (en) Cell and its manufacturing method
JP2000353539A (en) Electrode wound type secondary battery
CN214411296U (en) Button lithium secondary battery
CN216980813U (en) Anti-permeation corrosion tab of soft-packaged lithium ion battery cell
JPS6345755A (en) Layer built dry cell
JP2949767B2 (en) Lead battery manufacturing method
JP2819201B2 (en) Lithium secondary battery
JP3412473B2 (en) Non-aqueous electrolyte battery using thin electrodes
JPH03176965A (en) Sealed lead-acid battery
JPH06196203A (en) Bipolar type sealed storage battery
JPS59173962A (en) Secondary battery
JPS594453Y2 (en) battery
JPS6380474A (en) Manufacture of electrode for cell
JPS5826461Y2 (en) Battery with spiral-wound electrode group