JPH03176965A - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JPH03176965A
JPH03176965A JP1314095A JP31409589A JPH03176965A JP H03176965 A JPH03176965 A JP H03176965A JP 1314095 A JP1314095 A JP 1314095A JP 31409589 A JP31409589 A JP 31409589A JP H03176965 A JPH03176965 A JP H03176965A
Authority
JP
Japan
Prior art keywords
lead
electrode plate
positive electrode
acid battery
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1314095A
Other languages
Japanese (ja)
Inventor
Katsuo Kasai
笠井 勝夫
Shigeru Sasabe
笹部 繁
Kenjiro Kishimoto
岸本 健二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP1314095A priority Critical patent/JPH03176965A/en
Publication of JPH03176965A publication Critical patent/JPH03176965A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PURPOSE:To improve capacity efficiency, extend the life for use in floating, and improve the charge/discharge efficiency by sandwiching a woven fabric with two frame-shaped or lattice-shaped lead plates, and partially penetrating and connecting them. CONSTITUTION:A nonwoven fabric sheet 1 formed by plating lead on the surfaces of glass fibers by the wet process is sandwiched from both sides with positive electrode plate lattices 2 made of a Pb-Sn alloy and expand-machined, it is pressurized, pressed and pinched, they are partially spot-welded 5 to connect skeletons of the lattices 2, and two single electrode plates 4 allowing the contact current collection from the sheet 1 are integrated to obtain a current collecting member. Paste is impregnated, aged and hardened to obtain an unformed positive electrode plate. The positive electrode plate is kept in contact with the sheet 1 for electron conduction, and it can be discharged by a lug 3 made of a lead alloy. The positive electrode plate, a negative electrode plate and a separator are combined to form an electrode group, it is inserted into a battery jar, a cover is stuck, and an electrolyte is filled to obtain a lead-acid battery.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は密閉形鉛蓄電池に関するもので、コンピュータ
ー、通信機器等のバックアップ電源として使用され、特
にフロート使用での長い寿命が要求される密閉形鉛蓄電
池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a sealed lead-acid battery, which is used as a backup power source for computers, communication equipment, etc., and is particularly required to have a long life when used as a float. It is related to.

従来技術とその問題点 密閉形鉛蓄電池は通常、充電終期に正極板で発生する酸
素ガスを負極板に移動させて、負極活物質と反応させ酸
素ガスを消費せしめると共に負極板を放電状態にし、負
極板からの水素ガヌの発生を抑制するいわゆる「02サ
イクp」を用いてm間化している。
Conventional technology and its problems Sealed lead-acid batteries normally move oxygen gas generated on the positive electrode plate at the end of charging to the negative electrode plate, react with the negative electrode active material, consume the oxygen gas, and put the negative electrode plate in a discharge state. The so-called "02 cycle p" is used to suppress the generation of hydrogen gas from the negative electrode plate.

密閉形鉛蓄電池の容量は一般に、正極板、負極板および
セパレータでh′4成される極群に含まれる電解液凰(
こよって決定されるが、その寿命ハ、電解液の枯汎、負
極板のサルフェーシロン、正極活物質の軟化、正極格子
の腐食、それに伴うグロース(いわゆる極板の伸び)に
よるストラップ下での正・負両極板のショート等によっ
て支配される。特に、フロート使用での寿命は、主とし
て正極格子の腐食、グロースtこよるストラップ下での
正・負両極板のンヨートによって支配されている。この
ような寿命モードを改善するため従来、 (1)正極板の厚さそのものを厚くすることによって、
グロース量を抑制する。
The capacity of a sealed lead-acid battery is generally determined by the electrolyte contained in the electrode group consisting of a positive electrode plate, a negative electrode plate, and a separator.
The lifespan is determined by the expansion of the electrolyte, the sulfation of the negative electrode plate, the softening of the positive electrode active material, the corrosion of the positive electrode grid, and the growth (so-called elongation of the electrode plate) under the strap. It is dominated by short circuits between the positive and negative polar plates. In particular, the life when using a float is mainly controlled by corrosion of the positive electrode grid and corrosion of the positive and negative electrode plates under the strap due to growth. Conventionally, in order to improve this life mode, (1) by increasing the thickness of the positive electrode plate itself,
Control the amount of growth.

(2)格子の耐食性を改善し、機械的強度を高くするた
め、Snの量を多くする。
(2) In order to improve the corrosion resistance of the lattice and increase its mechanical strength, the amount of Sn is increased.

(3)  負極板の極群ストラップの下に絶縁性樹脂シ
ョート防止板を押入する。
(3) Push the insulating resin short-circuit prevention plate under the electrode group strap of the negative electrode plate.

(4)  正極板の大きさを、グロースしてもよいよう
に電橋内寸よりも充分に小さな寸法にする。
(4) Make the size of the positive electrode plate sufficiently smaller than the internal dimensions of the electric bridge so that it can be grown.

等の方法がとられている。しかしながら、(1)は正極
板が厚くなるので電池が大きくなり、重さも重くなり、
(2)は高価になり、しかも鋳造性に問題があり、(3
)の方法はシ賓−トに至る時期を遅くする効果は1υ」
待されるものの、グロースした格子によって電檀が変形
することがあり、(4)は極板の大きさが小さくなるの
で電池の容量が少なくなる、という欠点を有している。
The following methods have been adopted. However, in (1), the positive electrode plate becomes thicker, making the battery larger and heavier.
(2) is expensive and has problems with castability;
) method has the effect of delaying the arrival of guests by 1υ.
Although expected, the growing lattice may deform the electric dandelion, and (4) has the disadvantage that the size of the electrode plate becomes smaller, resulting in a decrease in battery capacity.

鉛蓄電池用極板に使用されているペーメト式極板は通常
、鋳造またはエキスバンドされた、鉛合金からなる格子
に、ペースト状の活物質を塗着した後)熟成・乾燥・化
成して製造されているが、この格子はその製法上の制約
から、それを構成する骨を余り細くすることができない
ので極板に占める格子の比率を小さくできない。
Pemet type electrode plates used in lead-acid battery plates are usually manufactured by applying a paste-like active material to a cast or expanded lead alloy grid, then aging, drying, and chemically forming it. However, due to limitations in the manufacturing method of this lattice, the bones that make up the lattice cannot be made very thin, so the ratio of the lattice to the electrode plate cannot be reduced.

このことは、極板の単位体積当たりの活物質比率を大き
くできないため電池としては得られる容量が小さくなる
事を意味しており、さらに、格子目が粗くなるため活物
質と集電体との距離が長くなるので充放電の効率が低く
なるという欠点を有している。
This means that the ratio of active material per unit volume of the electrode plate cannot be increased, which means that the capacity obtained as a battery will be small.Furthermore, since the lattice mesh becomes coarser, the active material and current collector It has the disadvantage that the charging and discharging efficiency is low because the distance is long.

また、鋳造またはエキスバンドされた格子は活物質との
接触面積が小さいので、特に、アンチモンフリー系合金
の場合、活物質よりも格子腐食層が優先して放電するい
わゆる「バリヤーレイヤー」を生じ早期に寿命になると
いう欠点がある。
In addition, since cast or expanded lattices have a small contact area with the active material, especially in the case of antimony-free alloys, a so-called "barrier layer" in which the lattice corrosion layer preferentially discharges over the active material may occur, resulting in an early stage. The disadvantage is that it has a limited lifespan.

発明の目的 木兄Φ]はこれらの欠点を克服したものであり、特に容
積効率に優れ、フロート使用での寿命が長い廉価な密閉
形鉛蓄電池を提供することを目的とするものである。
OBJECT OF THE INVENTION The object of the invention is to overcome these drawbacks, and to provide an inexpensive sealed lead-acid battery that has excellent volumetric efficiency and a long life when used as a float.

さらに本発明は、特に格子の骨を極端に細くし1かつ格
子の極板に占める割合を小さくし、充放電の効率を向上
させた、アンチモンフリー系合金の場合の格子腐食層が
優先して放電するいわゆる「バリヤーレイヤー」を生じ
早期に寿命になるという欠点のない密閉形鉛蓄電池を提
供することを目的とするものである。
Furthermore, the present invention is particularly advantageous in that the lattice corrosion layer is prioritized in the case of antimony-free alloys in which the lattice bones are made extremely thin and their proportion to the electrode plates of the lattice is reduced to improve charging and discharging efficiency. The object of the present invention is to provide a sealed lead-acid battery that does not have the disadvantage of causing a so-called "barrier layer" that discharges and prematurely reaching the end of its life.

発明の(16成 本発明tこよる密閉形鉛蓄電池は、負極板の接続耳部が
鉛または鉛合金からなり、正極板が、非伝導性m維の表
面に伝導性被膜を付着せしめることにより電子伝導性と
した伝導性繊維からなる不織布と、不織布と電子の移動
が可能であ5 る如くその両側から不縁布を挟んで不織布から接触集電
する2枚の枠状鉛板あるいは格子状鉛板との両者で一体
に構成した集電部材、および該集電部材に含浸された活
物質とからなり、かつ2枚の枠状鉛板あるいは格子状鉛
板は前記不織布を貫通して部分的に互いに接合されてい
ることを特徴とするものであり、2枚の枠状鉛板あるい
は格子状鉛板のうち少なくとも一方が接続用耳部を有す
るものが好適で、また正極板と負極板とがセパレータを
介して20に9/dm2以上の緊圧で重ね合わされてい
ることを特徴とするものである。
The sealed lead-acid battery according to the present invention has a negative electrode plate whose connecting ear is made of lead or a lead alloy, and whose positive electrode plate has a conductive coating attached to the surface of non-conductive m-fibers. A nonwoven fabric made of conductive fibers is made conductive, and two frame-shaped lead plates or lattice-shaped lead plates are used to collect current from the nonwoven fabric by sandwiching the nonwoven fabric from both sides so that electrons can move between the nonwoven fabric and the nonwoven fabric. It consists of a current collecting member integrated with the plate, and an active material impregnated in the current collecting member, and the two frame-shaped lead plates or lattice-shaped lead plates partially penetrate the nonwoven fabric. It is preferable that at least one of the two frame-shaped lead plates or the lattice-shaped lead plate has a connecting tab, and the positive electrode plate and the negative electrode plate are connected to each other. are superimposed on 20 with a separator interposed therebetween at a pressure of 9/dm2 or more.

実施例1 直径0.5μmのガラス繊維の表面に0.2μmの厚さ
に鉛メツキし、これを法式で抄造して連続した不織布シ
ート1を用意した。この不織布シート1は、2(H9/
dm2の加圧下での厚さtil、211ffl。
Example 1 The surface of a glass fiber having a diameter of 0.5 μm was plated with lead to a thickness of 0.2 μm, and a continuous nonwoven fabric sheet 1 was prepared by paper-forming this by a method. This nonwoven fabric sheet 1 is 2 (H9/
Thickness under pressure of dm2 til, 211ffl.

多孔度は92%であり・その最大孔径は18μmであっ
た。別に、P b −0,06wt%0a−0,5wt
%Sn合金からなるエキスバンド加工した正極板=6 用格子2を用意した。この格子2は、厚さが0.7咽で
あり、第1図に示すように中央部6(耳に当たる部分)
でつながった2枚の単極板4から構成されている。
The porosity was 92% and the maximum pore size was 18 μm. Separately, P b -0,06wt%0a-0,5wt
A grid 2 for an expanded positive electrode plate made of a %Sn alloy and having a size of 6 was prepared. This grid 2 has a thickness of 0.7 mm, and as shown in FIG.
It consists of two monopolar plates 4 connected by.

この格子2を用いて前記不織布シート1をその両側から
挟んで加圧・圧着・挟持し、部分的にスポット溶接して
格子の管同士を接合すると共に不織布シート1からの接
触集電を可能とした2枚の単極板4を一体化した集電部
材を得た。
Using this grid 2, the nonwoven fabric sheet 1 is pressed, crimped, and clamped by sandwiching it from both sides, and spot welding is carried out partially to join the pipes of the grid and to enable contact current collection from the nonwoven fabric sheet 1. A current collecting member was obtained in which two monopolar plates 4 were integrated.

なお、5はスポット溶接部である。次にこれにペースト
を含浸し、熟成、硬化して、本発明による未化改正極板
Aを得た。極板の寸法は、巾38闘、長さ68闘、厚さ
1.5闘であった。未化威圧極板Aは、不織布シート1
と電子伝導可能なように接触しており、鉛合金からなる
耳3で充放電可能である。
In addition, 5 is a spot welding part. Next, this was impregnated with a paste, aged and hardened to obtain an uncured modified electrode plate A according to the present invention. The dimensions of the electrode plate were 38 mm wide, 68 mm long, and 1.5 mm thick. Unformed intimidating electrode plate A is non-woven fabric sheet 1
It is in contact with the battery so that it can conduct electrons, and can be charged and discharged using the ear 3 made of a lead alloy.

常法により伝導性の不織布を用いていない鋳造法による
同じ寸法の従来の未化威圧極板Bを得た。
A conventional unconverted high-pressure electrode plate B having the same dimensions was obtained by casting using a conventional method without using a conductive nonwoven fabric.

このようにして得られた2種類の正極板と従来の方法に
よる負極板および直径1pm以下のガラス繊維90%、
直径19pmのガラス繊維10%からなる抄造式のセパ
レータとを組み合わせて極群を構成し、′ti&檜に挿
入、蓋を接着し電解液を注入して2種類の未化成密閉形
鉛蓄電池を得た。次にこの電池を電楯内化威して本発明
による密閉形鉛蓄電池Aおよび従来の密閉形鉛蓄電池B
を得た。この時、セパレータが極板を圧迫する力、即ち
緊圧は両電池とも30ke/dm2であった。
Two types of positive electrode plates obtained in this way, a negative electrode plate prepared by the conventional method, and 90% glass fiber with a diameter of 1 pm or less,
Combined with a paper-made separator made of 10% glass fiber with a diameter of 19 pm to form a pole group, insert it into 'ti & cypress, glue the lid, and inject electrolyte to obtain two types of unformed sealed lead-acid batteries. Ta. Next, this battery is integrated into a shield to form a sealed lead-acid battery A according to the present invention and a conventional sealed lead-acid battery B.
I got it. At this time, the force with which the separator pressed the electrode plate, ie, the pressure, was 30 ke/dm2 for both batteries.

得られた電池の容量を〃4べたところ第1表に示す結果
を得た。なお、容量試駆は、従来の密閉形鉛蓄電池Bの
容量4 AH/20 HRを基準に、本発明による密閉
形鉛蓄電池Aも同じ条件で試験した。
When the capacity of the obtained battery was tested, the results shown in Table 1 were obtained. Note that the capacity test was based on the capacity of the conventional sealed lead acid battery B of 4 AH/20 HR, and the sealed lead acid battery A according to the present invention was also tested under the same conditions.

以下余白 第 表 また、この2種類の密閉形鉛蓄電池をフロト寿命試験し
たところ、第2図に示す結果を得た。フロート寿命試験
は、セル当り2.30Vの一定電圧で連続過充電し、6
週間毎に5時間率で容量を調べた。周囲温度は、促進の
ため40℃とした。なお、図へのグロソトは便宜上6週
間毎に行い、容量は初期容量に対する割合(%)で表し
た(以下、同じ)。
Table in the margin below: When these two types of sealed lead-acid batteries were subjected to a float life test, the results shown in FIG. 2 were obtained. The float life test was conducted by continuously overcharging at a constant voltage of 2.30V per cell, and
Capacity was checked at a weekly rate of 5 hours. The ambient temperature was 40° C. for acceleration. Note that, for convenience, the plotting in the figure was performed every 6 weeks, and the capacity was expressed as a percentage (%) of the initial capacity (the same applies hereinafter).

実施例2 実施例1で用いた不織布ンー11の代わりに、直径0.
5μmのガラス単繊維の表面ンこ約0.2μmの厚さに
酸化第2錫を被覆した繊維を用い、湿式で抄造して連続
不織布ノートを用意した。この被放には、金属錫ンこ苅
して弗素を約45モ/l’%ドープしてあった。この不
織布シートと実施例1で用いた、pb−o、06wt%
ca−o、swt%Sn合金カラなるエキスバンド加工
した正極板用格子とを組合せ、前記不織布シートをその
両側から挟んで加工・圧着・挟持し、部分的にスポット
溶接して格子の管同士を接合すると共1こ不織布シート
からの接触集電を可能とし、次にこれにペーストを含浸
し、熟成、硬化して、本発明による未化改正極板Xを得
、これを用いた本発明による密閉形鉛蓄電池Xを得た。
Example 2 Instead of the nonwoven fabric 11 used in Example 1, a diameter of 0.
A continuous nonwoven fabric notebook was prepared by wet papermaking using a fiber coated with stannic oxide to a thickness of approximately 0.2 μm on the surface of a 5 μm single glass fiber. For this exposure, a metal tin plate was doped with about 45 mo/l'% of fluorine. This nonwoven fabric sheet and pb-o used in Example 1, 06wt%
ca-o, swt%Sn alloy color expanded positive electrode plate grid, processed, crimped and clamped with the non-woven fabric sheet sandwiched from both sides, and partially spot welded to connect the tubes of the grid. While bonding, contact current collection from the nonwoven fabric sheet is made possible, and then this is impregnated with paste, aged and cured to obtain the uncured modified electrode plate A sealed lead acid battery X was obtained.

緊圧は5Gkq/dm2であった。なお、この極板の寸
法は、巾43朋、長さ75馴、厚さ1.5咽であった。
The strain pressure was 5Gkq/dm2. The dimensions of this electrode plate were a width of 43 mm, a length of 75 mm, and a thickness of 1.5 mm.

使用した電権の正極板格子が面する内寸は、巾方向で4
5咄であるので、極板の巾方向の余裕は、密閉形鉛蓄電
池Xの場合2咽、従来例の場合に10− は7關であった。また、負極板極群ストフップ下面と正
極板親骨上部との距離は本発明の場合5闘、従来例の場
合には12閤であった。更に、本発明の密閉形鉛蓄電池
Xではショート防止板は使用しなかったが、従来の密閉
形鉛蓄電池Bの場合には使用した。
The internal dimension of the power supply used, facing the positive plate grid, is 4 in the width direction.
5, the margin in the width direction of the electrode plates was 2 degrees in the case of the sealed lead-acid battery X, and 7 degrees in the case of the conventional example. Further, the distance between the lower surface of the negative electrode plate group stopper and the upper part of the positive electrode plate rib was 5 distances in the case of the present invention, and 12 distances in the case of the conventional example. Furthermore, the short-circuit prevention plate was not used in the sealed lead-acid battery X of the present invention, but was used in the case of the conventional sealed lead-acid battery B.

得られた電池の容量は、第2表に示す通りであった。ま
た、この密閉形鉛蓄電池Xをフロト寿命試験したところ
、第2図に示す結果を得た。フロート寿命試験は、実施
例1と同じとした。
The capacity of the obtained battery was as shown in Table 2. Further, when this sealed lead acid battery X was subjected to a float life test, the results shown in FIG. 2 were obtained. The float life test was the same as in Example 1.

第  2  表 実施例3 実施例2で用いた本発明による未化成正極板Xと従来の
方法による負極板および直径1μm以下のガラス繊維9
0%、直径15μmのガラス繊維10%からなる抄造式
のセパレータとを組み合わせて極群を構成するに際し、
種々の目付は量のセパレータを使って緊圧の異なる密閉
形鉛蓄電池0. D、 EおよびFを得た。これらの電
池の緊圧はそれぞれ、 0 : 10 kL;I/ dm2 D : 20#9/dm2 E : 40 kg/ c1m2 F : 50 kg/ dm2 であった。
Table 2 Example 3 Unformed positive electrode plate X according to the present invention used in Example 2, negative electrode plate prepared by conventional method, and glass fiber 9 with a diameter of 1 μm or less
0%, and a paper-made separator made of 10% glass fiber with a diameter of 15 μm to form a pole group.
Sealed lead-acid batteries with different pressures are manufactured using separators of various weights. D, E and F were obtained. The strain pressures of these batteries were 0: 10 kL; I/dm2 D: 20#9/dm2 E: 40 kg/c1m2 F: 50 kg/dm2.

この4種類の密閉形鉛蓄電池をフロート寿命試験したと
ころ、第3図に示す結果を得た。フロート寿命試験は、
実施例1と同じとした。
When these four types of sealed lead-acid batteries were subjected to a float life test, the results shown in FIG. 3 were obtained. Float life test
The same as in Example 1 was used.

本発明の密閉形鉛蓄電池に用いる正極板は、非伝導性繊
維の表面に伝導性被膜を付着せしめることにより電子伝
導性とした伝導性繊維からなる不織布、不織布と電子の
移動が可能である如くその両側から不織布を挟んで不織
布から接触集電する2枚の枠状鉛板あるいは格子状鉛板
との両者で一体に構成した集電部材、および該集電部材
1こ含浸された活物質とからなり、かつ2枚の枠状鉛板
あるいは格子状鉛板は前記不織布を貫通して部分的に互
いに接合することによって構成されており、負極板の接
続耳部は鉛または鉛合金からなっている。
The positive electrode plate used in the sealed lead-acid battery of the present invention is a nonwoven fabric made of conductive fibers that has been made electron conductive by attaching a conductive film to the surface of nonconductive fibers, and is made of a nonwoven fabric that can transfer electrons. A current collecting member integrally composed of two frame-shaped lead plates or lattice-shaped lead plates that collect contact current from the nonwoven fabric with a nonwoven fabric sandwiched between the nonwoven fabric from both sides, and an active material impregnated with the current collecting member 1. and two frame-shaped lead plates or lattice-shaped lead plates are constructed by penetrating the non-woven fabric and partially joining each other, and the connecting ears of the negative electrode plate are made of lead or a lead alloy. There is.

集電体の一部を構成する不織布は、電子伝導性でなけれ
ばならない。電子伝導性の不織布を得るには、実施例1
のように非伝導性繊維であるガラス繊維の表面に鉛メツ
キしこれを湿式で抄造してもよく、あるいは実施例2の
ようにガラス単繊維の表面に酸化第2錫を被覆した繊維
を用いて湿式で抄造してもよい。その被覆は電池の充放
電反応に関与せず長期間に渡って安定で腐食せず、かつ
伝導性の高いものが最も好ましい。この点で、酸化第2
錫に3酸化アンチモンや弗素をドーピングした被覆は最
適なものの6 −つである。
The nonwoven fabric that forms part of the current collector must be electronically conductive. Example 1 to obtain an electronically conductive nonwoven fabric
As shown in Example 2, the surface of glass fiber, which is a non-conductive fiber, may be plated with lead and then formed into paper using a wet process. Alternatively, as in Example 2, a fiber whose surface is coated with tin oxide may be used as a single glass fiber. It may also be wet-formed. Most preferably, the coating does not take part in the charging/discharging reactions of the battery, is stable over a long period of time, does not corrode, and has high conductivity. In this respect, the oxidized second
The most suitable coating is tin doped with antimony trioxide or fluorine.

電子伝導性の不縁布を得るために、鉛の繊維そのものを
使用することも当然者えられないことはない。鉛の繊維
そのもので製作した不織布が使用できれば理想的である
。しかしなから、鉛の繊維を使用してそれを不織布状に
したものは、密度が高くなり、活物質を充填する容積が
従来の鋳造あるいはエキスバンド法1こよって得られる
格子に比べ多くなく、容量を増加させることができない
ばかりか、強度が低くて取扱い性も悪いので好ましくな
い。
Naturally, it is not inconceivable to use lead fiber itself in order to obtain an electronically conductive non-woven fabric. It would be ideal if a non-woven fabric made from lead fiber itself could be used. However, when lead fibers are used and made into a non-woven fabric, the density is high and the volume filled with active material is not as large as in the lattice obtained by conventional casting or expanded banding methods. Not only is it not possible to increase the capacity, but the strength is low and the handleability is also poor, which is not preferable.

従って、非伝導性繊維として好ましいのは、機械的強度
が高く、不織布にした時に高い多孔度が得られるもので
あり、実施例で用いた微細なガラス繊維は最適なものの
−っであるが、鉛蓄電池での酸化雰囲気で安定な材料で
あれば使用でき、チタン酸カリウムのライメカ−(それ
は例えば大板化学■からティスモという商品名で市販さ
れている)も使用できる。使用する繊維の直径は活物質
との接触密度を高くするため14− 細いほうが好ましい。推奨できるのは、直径か0.2μ
m〜20μm1より好ましくは0.5μm〜5μmで、
長さは0.1〜5 tnmの単繊維から湿式でシート状
にしたものである。この場合、取扱い性向上のため必要
に応じてバインダーを使用してもよいが、活物質との伝
導性を確保するため最小限に止めるべきである。
Therefore, the preferred non-conductive fibers are those with high mechanical strength and high porosity when made into a non-woven fabric, and although the fine glass fibers used in the examples are optimal, Any material that is stable in the oxidizing atmosphere of a lead-acid battery can be used, including potassium titanate Limeka (which is commercially available from Ohita Kagaku ■ under the trade name Tismo). The diameter of the fibers used is preferably small in order to increase the contact density with the active material. The recommended diameter is 0.2μ
m to 20 μm1, preferably 0.5 μm to 5 μm,
The sheet is formed from single fibers having a length of 0.1 to 5 tnm using a wet method. In this case, a binder may be used if necessary to improve handling properties, but it should be kept to a minimum in order to ensure conductivity with the active material.

この不織布と電子の移動が可能である如くその両側から
不織布を挟んで不織布から接触集電する2枚の枠状鉛板
あるいは格子状鉛板とを一体1こ構成するに当り、2枚
の枠状鉛板あるいは格子状鉛板は不織布を貫通して一部
分で互いに接合されていなければならない。これは、不
織布との接触による集電な完全なものとし、さらeこそ
れを電池の寿命期間中維持するために必要であるからで
ある。2枚の枠状鉛板あるいは格子状鉛板は不織布を貫
通しての一部分での一体化を確保する方法は、実施例に
示したスポット溶接の他、抵抗溶接、ハンダ付は等f4
mAの方法が採用できる。
In order to construct one piece of this non-woven fabric and two frame-shaped lead plates or grid-shaped lead plates that sandwich the non-woven fabric from both sides and collect current from the non-woven fabric by contact so that electrons can move, the two frames are used. The shaped lead plates or lattice shaped lead plates must pass through the non-woven fabric and be joined to each other at some points. This is necessary to ensure complete current collection through contact with the non-woven fabric and to maintain it throughout the life of the battery. In addition to spot welding shown in the example, resistance welding, soldering, etc. can be used to ensure the integration of two frame-shaped lead plates or lattice-shaped lead plates by penetrating the nonwoven fabric at a portion.
mA method can be adopted.

この電子伝導性を有する不織布をその両側から加圧・圧
着・挟持し、不織布からの電子の移動を可能tこする2
枚の枠状鉛板あるいは格子状鉛板は、実施例に示したエ
キヌバンド法によるものだけでなく、打抜き法や鋳造に
よるものでもよい。枠状鉛板あるいは格子状鉛板は、純
鉛、Pb−Ga5あるいはPb−(3a−8n系の鉛合
金が使用できる。
This electronically conductive nonwoven fabric is pressed, crimped, and sandwiched from both sides to enable the movement of electrons from the nonwoven fabric.2
The frame-shaped lead plate or lattice-shaped lead plate is not only formed by the Echinu band method shown in the embodiment, but may also be formed by punching or casting. For the frame-shaped lead plate or grid-shaped lead plate, pure lead, Pb-Ga5, or Pb-(3a-8n series lead alloy) can be used.

さらに、前記枠状鉛板あるいは格子状鉛板は少なくとも
一つの接続用耳部な有していなければならない。本発明
による密閉形鉛蓄電池の負極格子は、鉛またはその合金
で構成されているので正極格子の耳部もまた、鉛または
その合金で構成した方が通常の溶接、キャスト・オン・
ストラップ等の方法で接続でき好都合であるからである
Furthermore, the frame-shaped lead plate or grid-shaped lead plate must have at least one connecting ear. Since the negative electrode grid of the sealed lead-acid battery according to the present invention is made of lead or its alloy, it is preferable that the ears of the positive electrode grid also be made of lead or its alloy.
This is because it can be conveniently connected by a method such as a strap.

本発明による密閉形鉛蓄電池は、容積効率が従来品に比
べ、実施例1によれば約12%、実施例2によれば約2
8%も、それぞれ優れている。これは、本発明によれば
、格子の孔容積が従来のものにくらべ10%近くも増え
ており、また70−ト使用での正極格子のグローヌによ
る寿命規制を考慮しなくてもよいので、同じ大きさのN
槽に従来よりも大きな寸法の極板を挿入することができ
るためである。というのは、従来の鋳造格子の場合には
活物質の充填容積割合は80%程度であったのに対し、
本発明の密閉形鉛蓄電池に用いる正極格子の場合には、
不織布と枠状鉛板あるいは格子状鉛板とを合せてもその
割合を90%近くにもすることができ、かつ不織布が電
子伝導性であるので、活物質と集電体との接触数も桁違
いに多いからである。
The sealed lead-acid battery according to the present invention has a volumetric efficiency of about 12% according to Example 1 and about 2% according to Example 2 compared to conventional products.
8% is also excellent. This is because according to the present invention, the pore volume of the lattice is increased by nearly 10% compared to the conventional one, and there is no need to take into account the Grone life limit of the positive electrode lattice when using a 70-meter electrode. N of the same size
This is because it is possible to insert a larger size electrode plate into the tank than in the past. This is because in the case of conventional cast grids, the filling volume ratio of the active material was about 80%,
In the case of the positive electrode grid used in the sealed lead acid battery of the present invention,
Even if the nonwoven fabric and the frame-shaped lead plate or grid-shaped lead plate are combined, the ratio can be as high as nearly 90%, and since the nonwoven fabric is electronically conductive, the number of contacts between the active material and the current collector can be reduced. This is because there are many orders of magnitude more.

しかもこのよう1こ格子の割合を少なくしたとしてもな
お、腐食に使われる電流は少なく、活物質の充電に使わ
れる電流は多くなり、結局充電効率が向上しているから
であり、かつその耐食性自身も格段にすぐれているから
であると推定される。このように構成すれば、活物質と
集電体との接触数か桁違いに多くなるため、充放電の効
率は改善され、アンチモンフリー系合金が17 有している、格子腐食層か優先して放電するいわゆる「
バリヤーレイヤー」を生じ早期に寿命になるという欠点
が克服される。
Moreover, even if the ratio of 1 grid is reduced, the current used for corrosion is still small and the current used for charging the active material is large, resulting in an improvement in charging efficiency, and its corrosion resistance. It is presumed that this is because he himself is exceptionally good. With this configuration, the number of contacts between the active material and the current collector increases by an order of magnitude, improving charging and discharging efficiency, and giving priority to the lattice corrosion layer that antimony-free alloys have. The so-called "
This overcomes the shortcomings of "barrier layer" formation and premature end of life.

実際、密閉形鉛蓄電池AおよびXの寿命になった原因は
、正極活物質の軟化と不織布シートを挟持している格子
小骨の腐食および電解液の枯渇であり、密閉形鉛蓄電池
Xはシ1−ト防止板を使用していないにもかかわらず、
負極スフツブ下部でのショートは生じなかった。これは
、用いた酸化第2錫を被覆した繊維を用いた不織布シー
トの多孔度が高く、かつその被覆が電池の充放電反応に
関与せず安定で腐食せず、充電効率が向上しているから
であり、その上その耐食性自身も格段にすぐれているこ
とによる効果であると推定される。
In fact, the causes of the shortened lifespans of sealed lead-acid batteries A and − Despite not using a toe prevention plate,
No short circuit occurred at the bottom of the negative electrode tube. This is due to the high porosity of the nonwoven fabric sheet made of fibers coated with tin oxide, and the coating does not take part in the charging/discharging reactions of the battery, making it stable and free from corrosion, improving charging efficiency. It is presumed that this effect is due to the fact that it has excellent corrosion resistance.

正極格子を構成する、不織布と枠状鉛板あるいは格子状
鉛板との電気的な接続を維持し続けるためには、緊圧は
20 k’V’ dm2以上、より好ましくは30&g
/dm2以上にすべきである。緊圧が20kg/dm2
よりも低いと、長期にわたって過充18− 電された場合、不織布と枠状鉛板あるいは格子状鉛板と
の[気的な接続が失われることがあるからである。緊圧
が20k(7/dm2以上、より好ましくは30kg/
dm2以上かかっていれば、不織布と鉛格子との電気的
な接続も維持できるからである。このことは、実施例5
から明らかである。
In order to continue to maintain the electrical connection between the nonwoven fabric and the frame-shaped lead plate or grid-shaped lead plate constituting the positive electrode grid, the tension should be 20 k'V' dm2 or more, more preferably 30 &g.
/dm2 or more. Tight pressure is 20kg/dm2
If it is lower than 18-, the electrical connection between the nonwoven fabric and the frame-shaped lead plate or grid-shaped lead plate may be lost if the non-woven fabric is overcharged for a long period of time. The tension is 20k (7/dm2 or more, more preferably 30kg/dm2 or more)
This is because if it is dm2 or more, the electrical connection between the nonwoven fabric and the lead grid can be maintained. This is shown in Example 5.
It is clear from this.

本発明による密閉形鉛蓄電池は、従来のように格子のS
n量を増加させる必要もなく、またショート防止板も不
要であり極めて廉価である。
The sealed lead-acid battery according to the present invention has a lattice S
There is no need to increase the amount of n, there is no need for a short-circuit prevention plate, and the cost is extremely low.

発明の効果 以上詳述したように本発明によれば、特に容積効率に優
れ、フロート使用での寿命が長い廉価な密閉形鉛蓄電池
を提供することが可能で、さらに本発明は、特に格子の
骨を極端に細くし、かつ格子の極板に占める割合を小さ
くシ、充放電の効率を向上させ、アンチモンフリー系合
金の場合の格子腐食層が優先して放電するいわゆる「バ
リヤーレイヤー」を生じ早期に寿命になるという欠点の
ない廉価な密閉形鉛蓄電池を提供することができるので
、その工業的価値は大きい。
Effects of the Invention As detailed above, according to the present invention, it is possible to provide an inexpensive sealed lead-acid battery that is particularly excellent in volumetric efficiency and has a long life when used as a float. By making the bones extremely thin and making the ratio of the lattice to the electrode plates small, the efficiency of charging and discharging is improved, creating a so-called "barrier layer" where the lattice corrosion layer in the case of antimony-free alloys discharges preferentially. Since it is possible to provide an inexpensive sealed lead-acid battery that does not have the disadvantage of premature end of life, its industrial value is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の密閉形鉛蓄電池に用いる極板の構造を
示す要部破断斜視図、第4図は同側面図、第2図および
第6図は密閉形鉛蓄電池のフロート寿命特性を示す図で
ある。 電池A:本発明による密閉形鉛蓄電池 電池X:本発明による密閉溶鉛@電池 電池B:従来の密閉形鉛蓄電池 電池Ci : 10#/dm2の緊圧で組み立てた本発
明ケこよる密閉形鉛蓄電池。 電池D : 20kg/dm2の緊圧で組み立てた本発
明による密閉形鉛蓄電池 電池E : 4[]kg/dm2の緊圧で組み立てた本
発明による密閉形鉛蓄電池 電池F : 50&g/dm2の緊圧で組み立てた本発
明による密閉形鉛蓄電池
Fig. 1 is a cutaway perspective view of the main part showing the structure of the electrode plate used in the sealed lead-acid battery of the present invention, Fig. 4 is a side view of the same, and Figs. 2 and 6 show the float life characteristics of the sealed lead-acid battery. FIG. Battery A: Sealed lead-acid battery according to the present invention Battery X: Sealed molten lead @ battery according to the present invention Battery B: Conventional sealed lead-acid battery Battery Ci: Sealed type according to the present invention assembled under a pressure of 10#/dm2 Lead acid battery. Battery D: A sealed lead-acid battery according to the present invention assembled under a pressure of 20 kg/dm2 Battery E: A sealed lead-acid battery according to the present invention assembled under a pressure of 4 kg/dm2 Battery F: A sealed lead-acid battery according to the present invention assembled under a pressure of 50 kg/dm2 A sealed lead-acid battery according to the present invention assembled with

Claims (1)

【特許請求の範囲】 1)負極板の接続耳部が鉛または鉛合金からなり、正極
板が、非伝導性繊維の表面に伝導性被膜を付着せしめる
ことにより電子伝導性とした伝導性繊維からなる不織布
と、不織布と電子の移動が可能である如くその両側から
不織布を挟んで不織布から接触集電する2枚の枠状鉛版
あるいは格子状鉛板との両者で一体に構成した集電部材
、および該集電部材に含浸された活物質とからなり、か
つ2枚の枠状鉛版あるいは格子状鉛板は前記不織布を貫
通して部分的に互いに接合されていることを特徴とする
密閉形鉛蓄電池。 2)2枚の枠状鉛版あるいは格子状鉛板のうち少なくと
も一方が、接続用耳部を有する請求項1記載の密閉形鉛
蓄電池。 3)正極板と負極板とがセパレータを介して20kg/
dm^2以上の緊圧で重ね合わされている請求項1又は
請求項2記載の密閉形鉛蓄電池。
[Claims] 1) The connecting ear of the negative electrode plate is made of lead or a lead alloy, and the positive electrode plate is made of conductive fibers made electronically conductive by attaching a conductive film to the surface of the non-conductive fibers. and two frame-shaped lead plates or lattice-shaped lead plates that collect current from the non-woven fabric by sandwiching the non-woven fabric from both sides so that electrons can move between the non-woven fabric and the non-woven fabric. , and an active material impregnated in the current collecting member, and the two frame-shaped lead plates or lattice-shaped lead plates penetrate the nonwoven fabric and are partially joined to each other. lead-acid battery. 2) The sealed lead-acid battery according to claim 1, wherein at least one of the two frame-shaped lead plates or the two grid-shaped lead plates has a connecting ear. 3) The positive electrode plate and the negative electrode plate are separated by a separator and weigh 20 kg/
The sealed lead-acid battery according to claim 1 or 2, wherein the batteries are stacked together under a pressure of dm^2 or more.
JP1314095A 1989-12-01 1989-12-01 Sealed lead-acid battery Pending JPH03176965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1314095A JPH03176965A (en) 1989-12-01 1989-12-01 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1314095A JPH03176965A (en) 1989-12-01 1989-12-01 Sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH03176965A true JPH03176965A (en) 1991-07-31

Family

ID=18049183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1314095A Pending JPH03176965A (en) 1989-12-01 1989-12-01 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH03176965A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005149980A (en) * 2003-11-18 2005-06-09 Japan Vilene Co Ltd Current collector with terminal, electrochemical element using this
JP2015534704A (en) * 2012-09-20 2015-12-03 アークアクティブ リミテッド Method for forming an electrical connection to a conductive fiber electrode and the electrode thus formed
JP2016105364A (en) * 2014-12-01 2016-06-09 株式会社Gsユアサ Lead acid battery
CN106099119A (en) * 2016-07-12 2016-11-09 河北金星电源有限公司 A kind of long-life pole plate for lead-acid storage battery and manufacture method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005149980A (en) * 2003-11-18 2005-06-09 Japan Vilene Co Ltd Current collector with terminal, electrochemical element using this
JP2015534704A (en) * 2012-09-20 2015-12-03 アークアクティブ リミテッド Method for forming an electrical connection to a conductive fiber electrode and the electrode thus formed
JP2016105364A (en) * 2014-12-01 2016-06-09 株式会社Gsユアサ Lead acid battery
CN106099119A (en) * 2016-07-12 2016-11-09 河北金星电源有限公司 A kind of long-life pole plate for lead-acid storage battery and manufacture method thereof

Similar Documents

Publication Publication Date Title
EP2313353B1 (en) Method for producing an electrode for lead-acid battery
US3486940A (en) Storage battery having a positive electrode comprising a supporting base of titanium nitride having a surface film of non-polarizing material
CN108736016B (en) Current collector and positive electrode plate and battery core prepared by using same
JP2000100429A (en) Electrode structure and secondary battery
JPH09232003A (en) Lithium secondary battery
US4861690A (en) Lightweight battery construction
US20100062335A1 (en) Bipolar battery
US4717633A (en) Electrode structure for lightweight storage battery
JPH03176965A (en) Sealed lead-acid battery
US4873161A (en) Positive paste with lead-coated glass fibers
JPH0765821A (en) Lead storage battery
JPH03285263A (en) Collector for lead-acid battery
JP2020095849A (en) battery
EP0122281B1 (en) Titanium wire reinforced lead composite electrode structure
JP2001023605A (en) Manufacture of battery
JP3637603B2 (en) Lead acid battery
JPS63148556A (en) Paste type lead acid battery
JPH02253569A (en) Manufacture of solid state secondary battery
JPH03173065A (en) Sealed lead-acid battery
JP2704802B2 (en) Method for manufacturing current collector for secondary battery
JP2002164079A (en) Control valve type lead-acid battery
JP2001273886A (en) Sealed lead storage battery
JPH0822816A (en) Square sealed battery
JP2002260671A (en) Lead-acid battery
CN112310405A (en) Current collector of lead-acid storage battery, manufacturing method, tool and battery