JPH09232003A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH09232003A
JPH09232003A JP8113695A JP11369596A JPH09232003A JP H09232003 A JPH09232003 A JP H09232003A JP 8113695 A JP8113695 A JP 8113695A JP 11369596 A JP11369596 A JP 11369596A JP H09232003 A JPH09232003 A JP H09232003A
Authority
JP
Japan
Prior art keywords
electrode material
material layer
negative electrode
positive electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8113695A
Other languages
Japanese (ja)
Inventor
Hideyuki Teraoka
秀幸 寺岡
Yoshiaki Machiyama
美昭 町山
Mitsuru Koseki
満 小関
Tatsuo Horiba
達雄 堀場
Koki Tamura
弘毅 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP8113695A priority Critical patent/JPH09232003A/en
Publication of JPH09232003A publication Critical patent/JPH09232003A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery having a structure for decreasing the current loss in a collector part and able to take out heavy current. SOLUTION: A lithium secondary battery is provided with a laminated body in which a base plate 4 in which a positive electrode material layer 1 is arranged on only one surface, and having electronic conductivity, at least one base plate 5 in which a positive electrode material layer 1 is arranged on one surface and a negative electrode material layer 2 is arranged on the other surface, and having electronic conductivity, and a base plate 5 in which a negative electrode material layer 2 is arranged on only one surface are so laminated that all positive electrode material layers 1 may face the negative electrode material layers 2 through lithium ion conductive electrolytic layers 3 and that respective base plates and the positive electrode material layers 1 and the negative electrode material layers 2 may not brought in direct-contact with each other, and at least the positive electrode material layers, the negative electrode material layers and the electrolytic layers of the laminated body are shut off from the outside air.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
に関し、特にその構造の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to improvement of its structure.

【0002】[0002]

【従来の技術】リチウム二次電池は、エネルギー密度が
高く、また電池の軽量化を図れるなどの利点を有し、注
目されてきた。特に最近は負極にリチウムイオンを吸蔵
放出可能な炭素材を用いたリチウムイオン二次電池が普
及しつつある。リチウムイオン二次電池は、図4に示
す、特開平6―310142号公報に開示されているよ
うな円筒形のものが主流である。この理由は、円筒形二
次電池の代表的な構成である、正極と負極をセパレータ
を介して巻き上げ、電池缶に挿入するいわゆる捲回式を
採用することにより、正極、負極から電池外部へ電流を
取り出すための集電構造を簡易化することができるため
である。もしも図5に示す特開平6―333544号公
報で提案されている積層式角形電池を構成した場合、そ
の集電構造は複雑にならざるを得ない。そこで最近で
は、特開平6―260172号公報のように、角形リチ
ウムイオン二次電池でも捲回式構造を採用することが提
案されている。またリチウム二次電池の電解質は水溶液
系ではなく、有機溶媒を含む非水溶液系が主に選択され
ている。非水溶液系は、水溶液系に比較してイオン伝導
度が大幅に劣る。非水溶液系以外では、固体電解質が検
討されているが、固体電解質は、非水溶液系の電解質よ
りもさらにイオン伝導度が劣る。従ってリチウム二次電
池では、大電流を取り出すのは困難であるとされてい
る。そこである程度大きな電流を取り出すために、電極
を薄型化して電極面積を増大させ、反応面積を増やし、
さらに上述したような捲回式構造を採用することがリチ
ウムイオン二次電池では一般的である。金属リチウムを
負極に用いたリチウム二次電池の場合でも、大電流を取
り出すためには上記同様に電極を薄型化し、電極面積を
増大させることが考えられる。
2. Description of the Related Art Lithium secondary batteries have attracted attention because they have advantages such as high energy density and weight reduction. In particular, recently, a lithium ion secondary battery using a carbon material capable of inserting and extracting lithium ions in the negative electrode is becoming widespread. A lithium-ion secondary battery, which is shown in FIG. 4 and has a cylindrical shape as disclosed in JP-A-6-310142, is the mainstream. The reason for this is that by adopting a so-called winding type in which a positive electrode and a negative electrode are rolled up through a separator and inserted into a battery can, which is a typical configuration of a cylindrical secondary battery, a current flows from the positive electrode and the negative electrode to the outside of the battery. This is because it is possible to simplify the current collecting structure for taking out. If the laminated prismatic battery proposed in Japanese Unexamined Patent Publication No. 6-333544 shown in FIG. 5 is constructed, its current collecting structure must be complicated. Therefore, recently, as in Japanese Patent Laid-Open No. 6-260172, it has been proposed to employ a winding type structure even in a prismatic lithium ion secondary battery. Further, as the electrolyte of the lithium secondary battery, a non-aqueous solution system containing an organic solvent is mainly selected instead of an aqueous solution system. The ionic conductivity of the non-aqueous system is significantly inferior to that of the aqueous system. Other than the non-aqueous system, solid electrolytes have been investigated, but the solid electrolytes are inferior in ionic conductivity to the non-aqueous system electrolytes. Therefore, it is said that it is difficult to extract a large current with a lithium secondary battery. Therefore, in order to extract a certain amount of current, the electrodes are made thinner to increase the electrode area and increase the reaction area,
Further, it is common for lithium ion secondary batteries to employ the above-described wound structure. Even in the case of a lithium secondary battery in which metallic lithium is used as the negative electrode, it is conceivable to thin the electrode and increase the electrode area in the same manner as above in order to extract a large current.

【0003】[0003]

【発明が解決しようとする課題】上述したように電極を
薄型化し、電極面積を増大させるには、集電体として長
尺の、面積の大きい金属箔を用いる必要がある。捲回式
構造の電池では、集電体のごく一部分から端子部を通じ
て電池外部に電流を送り出すため、前記金属箔全域の電
流密度は一定ではない。つまり、前記端子部から離れる
に従いその集電体部の電流密度が小さくなる。このよう
な集電体部におけるオーム損は無視できない。そこで生
じる電流損失が非水溶液系の電解質を用いるリチウム二
次電池の場合、大電流を取り出せないことの原因の一つ
になっている。当然、この問題は電極を大型化するに従
い、つまり電池を大型化するに従い顕著になる。本発明
の目的は、上記集電体部における電流損失を低減し、大
電流を取り出すことのできる構造のリチウム二次電池を
提供することである。
In order to reduce the thickness of the electrode and increase the electrode area as described above, it is necessary to use a long metal foil having a large area as a current collector. In a wound-type battery, a current is sent to the outside of the battery through a terminal portion from a very small part of the current collector, so the current density across the metal foil is not constant. That is, the current density of the current collector portion decreases as the distance from the terminal portion increases. The ohmic loss in the current collector part cannot be ignored. The resulting current loss is one of the causes that a large current cannot be taken out in the case of a lithium secondary battery using a non-aqueous electrolyte. Naturally, this problem becomes remarkable as the size of the electrode is increased, that is, as the size of the battery is increased. An object of the present invention is to provide a lithium secondary battery having a structure capable of reducing current loss in the current collector portion and taking out a large current.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明のリチウム二次電池は、片面のみに正極材層
を配した電子伝導性を有する基板と、少なくとも一枚
の、片面に正極材層、他の面に負極材層を配した電子伝
導性を有する基板と、片面のみに負極材層を配した電子
伝導性を有する基板とを、リチウムイオン伝導性電解質
層を介して全ての正極材層が負極材層と対向し、且つそ
れぞれの基板同士及び正極材層と負極材層が直接接触し
ないよう積層した積層体を備え、前記積層体の少なくと
も正極材層、負極材層、電解質層を外気から遮断する手
段を有することを特徴とする。前記外気から遮断する手
段は、電流を取り出す端子部を除いて積層体全体を枠体
等で覆うものであっても良い。このとき、リチウムイオ
ン伝導性電解質層の厚みが1mm以下であることが好ま
しい。この理由は、電解質層の厚みが1mmを越える
と、リチウム二次電池の利点である体積当たりのエネル
ギー密度が高い利点を生かしにくい点で不利なためであ
る。
In order to solve the above-mentioned problems, a lithium secondary battery of the present invention comprises an electronically conductive substrate having a positive electrode material layer on only one side and at least one sheet on one side. A positive electrode material layer, an electronically conductive substrate having a negative electrode material layer on the other surface, and an electronically conductive substrate having a negative electrode material layer on only one surface, all through a lithium ion conductive electrolyte layer Of the positive electrode material layer of the negative electrode material layer facing each other, and comprising a laminated body laminated so that the respective substrates and the positive electrode material layer and the negative electrode material layer do not come into direct contact, at least the positive electrode material layer of the laminated body, the negative electrode material layer, It is characterized in that it has means for shielding the electrolyte layer from the outside air. The means for shutting off from the outside air may be one that covers the entire laminated body with a frame or the like except for the terminal portion for taking out an electric current. At this time, the thickness of the lithium ion conductive electrolyte layer is preferably 1 mm or less. The reason for this is that if the thickness of the electrolyte layer exceeds 1 mm, it is difficult to take advantage of the advantage of high energy density per volume, which is the advantage of the lithium secondary battery, which is disadvantageous.

【0005】また、上記構成においてリチウムイオン伝
導性電解質層が液体であり、片面に正極材層、他の面に
負極材層を配した電子伝導性を有する基板の、正極材層
側の液体と負極材層側の液体とを液絡させない手段を有
し、積層体の少なくとも正極板層、負極板層、電解質層
を外気から遮断する手段が電気的に絶縁性で且つ耐電解
液性の材料で前記積層体の少なくとも正極材層、負極材
層、電解質層を外気から遮断することが好ましい。この
構成では、電解質層中にセパレータを介在させても良
い。セパレータの存在により基板同士及び正極材層と負
極材層の直接の接触、つまり短絡を防止することができ
る。但しセパレータを介在させた場合、介在させない場
合よりも電池の内部抵抗が僅かに増加するため、多少不
利な面がある。片面に正極材層、他の面に負極材層を配
した電子伝導性を有する基板の、正極材層側の液体と負
極材層側の液体とを液絡させると、電池が有効に機能し
ないため、この点は十分注意が必要である。
In the above structure, the lithium ion conductive electrolyte layer is a liquid, and the positive electrode material layer is disposed on one surface and the negative electrode material layer is disposed on the other surface. A material having means for preventing liquid junction with the liquid on the side of the negative electrode material layer, and means for insulating at least the positive electrode plate layer, the negative electrode plate layer, and the electrolyte layer of the laminate from the outside air is an electrically insulating and electrolytic solution resistant material. It is preferable that at least the positive electrode material layer, the negative electrode material layer, and the electrolyte layer of the laminate are shielded from the outside air. In this structure, a separator may be interposed in the electrolyte layer. The presence of the separator can prevent direct contact between the substrates and between the positive electrode material layer and the negative electrode material layer, that is, a short circuit can be prevented. However, when the separator is interposed, the internal resistance of the battery is slightly increased as compared with the case where the separator is not interposed, which is somewhat disadvantageous. The battery does not function effectively if the liquid on the positive electrode material layer side and the liquid on the negative electrode material layer side of the electronically conductive substrate having the positive electrode material layer on one surface and the negative electrode material layer on the other surface are liquid junctioned. Therefore, this point requires careful attention.

【0006】上記積層体の少なくとも正極材層、負極材
層、電解質層を外気から遮断する手段に用いる材料、及
び/又は、正極材層側の液体と負極材層側の液体とを液
絡させない手段に用いる材料の具体例として、フッ素樹
脂ゴム、ブチルゴム、シリコーンゴムから選ばれる一種
以上からなるものを挙げることができる。この理由は、
これらの材料はリチウム二次電池の電解液に多くに用い
られる有機溶媒に対して極めて安定なためである。しか
し特にこれらに限定されない。
A material used for a means for shielding at least the positive electrode material layer, the negative electrode material layer, and the electrolyte layer of the laminate from the outside air, and / or the liquid on the positive electrode material layer side and the liquid on the negative electrode material layer side are not liquid-junctioned. Specific examples of the material used for the means include one or more selected from fluororesin rubber, butyl rubber and silicone rubber. The reason for this is
This is because these materials are extremely stable with respect to the organic solvent that is often used in the electrolytic solution of the lithium secondary battery. However, it is not particularly limited to these.

【0007】また、上記構成において負極材層は、リチ
ウムイオンを吸蔵放出可能な炭素材を主成分とすること
が好ましい。あるいはGe、Sn、Pb、Sb、Bi、
Si、In、Mg、Al、Znから選ばれる元素を含む
酸化物を少なくとも1種以上含むことが好ましい。これ
らの材料はは金属リチウムあるいはリチウム合金を負極
材として使用した際の充電時のデンドライト生成を防
ぎ、長寿命な電池を構成することができる利点があるた
めである。前記炭素材あるいは前記酸化物を負極材層の
主成分とした場合の副成分は、前記炭素材あるいは前記
酸化物を集電体に密着させるための結着剤等である。
In the above structure, the negative electrode material layer preferably contains a carbon material capable of inserting and extracting lithium ions as a main component. Alternatively, Ge, Sn, Pb, Sb, Bi,
It is preferable to contain at least one oxide containing an element selected from Si, In, Mg, Al, and Zn. This is because these materials have the advantage that dendrite formation during charging when metal lithium or a lithium alloy is used as the negative electrode material is prevented and a battery with a long life can be constructed. When the carbon material or the oxide is used as the main component of the negative electrode material layer, a subcomponent is a binder or the like for adhering the carbon material or the oxide to the current collector.

【0008】また、上記構成において正極材層が、コバ
ルト、マンガン、ニッケル、バナジウムから選ばれる一
種以上とリチウムからなる複合酸化物を主成分とするこ
とが好ましい。これらの材料は高い電位を示すことから
高電圧の電池を構成することができる利点があるためで
ある。しかし特にこれらに限定されない。
In the above structure, it is preferable that the positive electrode material layer contains a composite oxide containing lithium and one or more selected from cobalt, manganese, nickel and vanadium as main components. This is because these materials exhibit a high potential and thus have an advantage that a high voltage battery can be constructed. However, it is not particularly limited to these.

【0009】また上記構成において、正極材層が配され
る側の基板表面がアルミニウム、アルミニウム合金、ニ
ッケル、ニッケル合金、ステンレス鋼から選ばれる少な
くとも一種であることが好ましい。これらの材料は、最
も電子伝導性に優れた金属である銀等よりも比較的安価
であるためである。また、アルミニウムは酸化環境下で
も比較的安定であり、且つ比重の小さい金属であること
から軽量化が図れる利点があり、この中では最も好まし
いといえるが、特にこれに限定されない。また、上記構
成において負極材層が配される側の基板表面が銅、銅合
金、ニッケル、ニッケル合金、ステンレス鋼から選ばれ
る少なくとも一種であることが好ましい。これらの材料
は、最も電子伝導性に優れた金属である銀等よりも比較
的安価であるためである。銅はこれらの中で最も高い電
子伝導性を示すことから最も好ましいといえるが、特に
これに限定されない。上述したことから、片面に正極材
層、他の面に負極材層を配する基板は、アルミニウム又
はアルミニウム合金と、銅又は銅合金が圧着等の手法で
接合されたものであることが基板の材料としては最も適
していると言える。特に電池の軽量化及び基板の機械的
強度の観点から、接合された基板のアルミニウム又はア
ルミニウム合金厚みが、銅又は銅合金厚みよりも厚いこ
とが好ましいと言える。また、正極材層が配される側の
基板表面、負極材層が配される側の基板表面の少なくと
も一方が粗面化されていることが好ましい。これは、正
極材層と基板表面との密着性を向上させ、且つ正極材層
と基板表面との接触面積を増大させることにより大電流
を取り出せる効果が得られるためである。アルミニウム
又はアルミニウム合金と、銅を接合する手法、且つ/又
は、銅表面を粗面化する手法の具体例としては、アルミ
ニウム又はアルミニウム合金表面への銅の電着、無電解
メッキ、蒸着、機械的な研磨、溶射等があるが、特にこ
れらに限定されない。
In the above structure, the surface of the substrate on which the positive electrode material layer is arranged is preferably at least one selected from aluminum, aluminum alloy, nickel, nickel alloy, and stainless steel. This is because these materials are relatively cheaper than silver, which is a metal having the highest electron conductivity. Aluminum is a metal that is relatively stable even in an oxidizing environment and has a small specific gravity, so it has the advantage of being lightweight, and although it can be said that it is the most preferable of these, it is not particularly limited thereto. Further, in the above structure, the substrate surface on the side where the negative electrode material layer is arranged is preferably at least one selected from copper, copper alloy, nickel, nickel alloy, and stainless steel. This is because these materials are relatively cheaper than silver, which is a metal having the highest electron conductivity. Copper is the most preferable because it has the highest electron conductivity among them, but is not particularly limited thereto. From the above, the substrate on which the positive electrode material layer is arranged on one surface and the negative electrode material layer on the other surface is that aluminum or aluminum alloy and copper or copper alloy are bonded by a method such as pressure bonding. It can be said that it is the most suitable material. Particularly, from the viewpoints of weight reduction of the battery and mechanical strength of the substrates, it can be said that the thickness of the aluminum or aluminum alloy of the joined substrates is preferably thicker than the thickness of copper or the copper alloy. Further, it is preferable that at least one of the substrate surface on the side where the positive electrode material layer is arranged and the substrate surface on the side where the negative electrode material layer is arranged is roughened. This is because the adhesion between the positive electrode material layer and the surface of the substrate is improved, and the contact area between the positive electrode material layer and the surface of the substrate is increased, whereby a large current can be taken out. Specific examples of a method of joining aluminum or an aluminum alloy and copper and / or a method of roughening the copper surface include electrodeposition of copper on the surface of aluminum or an aluminum alloy, electroless plating, vapor deposition, mechanical However, the polishing is not limited to these.

【0010】また、上記構成において、前記積層体が積
層方向に加圧されていることが好ましい。但し、電解質
層が液体の場合には電解質層中にセパレータを配する必
要がある。この加圧の程度は、用いる正極材層、負極材
層、電解質層の違いによってそれぞれ最適値が異なる。
しかし、正極材層、負極材層は、加圧により、基板との
密着性が向上し、活物質利用率が向上する点で有利であ
る。上記加圧をした場合、積層体の両端にある基板、こ
こでは片面のみに正極材層あるいは負極材層を配した基
板が、積層体の両端以外にある基板、ここでは片面に正
極材層、他の面に負極材層を配した基板よりも剛性が高
いことが好ましい。この理由は、上記加圧の仕方によっ
ても異なるが、加圧力をほぼ直接受けとめるのは積層体
の両端にある基板であり、この部分が変形するのを防ぐ
ためである。積層体の両端以外の基板は、それ程剛性の
高さを考慮する必要はないと考えられる。上記基板の剛
性を高くする手段の例として、積層体中のそれぞれの基
板の材質、構成が同じ場合、厚みを大きくする等がある
が、特にこれに限定されない。
In the above structure, it is preferable that the laminated body is pressed in the laminating direction. However, when the electrolyte layer is a liquid, it is necessary to dispose a separator in the electrolyte layer. The optimum value of the degree of pressurization varies depending on the difference between the positive electrode material layer, the negative electrode material layer, and the electrolyte layer used.
However, the positive electrode material layer and the negative electrode material layer are advantageous in that the adhesion with the substrate is improved and the utilization rate of the active material is improved by applying pressure. When the above pressure is applied, the substrates at both ends of the laminate, here the substrate having the positive electrode material layer or the negative electrode material layer arranged on only one surface, the substrate other than both ends of the laminate, here the positive electrode material layer on one surface, The rigidity is preferably higher than that of the substrate having the negative electrode material layer on the other surface. The reason for this is that although it depends on the method of pressing, it is the substrates at both ends of the laminate that directly receive the pressing force, and this part prevents deformation. It is considered that it is not necessary to consider the high rigidity of the substrates other than the both ends of the laminate. Examples of means for increasing the rigidity of the substrate include increasing the thickness when the materials and configurations of the substrates in the laminate are the same, but are not particularly limited thereto.

【0011】また、上記構成において積層体中で構成さ
れる複数の各セルの実容量の最小値/最大値の値が、
0.8以上であることが好ましい。これは大電流を得る
こととは直接結びつかないが、上記複数のセルを直列に
配した構成では、セルの実容量が小さいものが過充電あ
るいは過放電される恐れがある。例えば非水溶液系のリ
チウム二次電池では、過充電あるいは過放電すると電解
液が分解、変質し、寿命低下の要因となる。サイクル寿
命性能を要求されるような二次電池にとって各セルの実
容量の最小値/最大値の値は設計上重要である。上記実
容量とは、各セルを予め電解質が実質的に分解、変質し
ない程度まで充電し、その後電解質が実質的に分解、変
質しない程度まで放電した際の放電容量である。これは
電池構成前に各セル一単位を実際に充放電したり、単位
セルの正極活物質量、負極活物質量を測定することで検
証可能である。このとき、用いる正極材層、負極材層、
電解質層や、充放電条件によってその値(放電容量)は
異なる。
Further, in the above structure, the minimum value / maximum value of the actual capacity of each of the plurality of cells formed in the laminated body is
It is preferably 0.8 or more. This is not directly related to obtaining a large current, but in the configuration in which the plurality of cells are arranged in series, there is a possibility that a cell having a small actual capacity may be overcharged or overdischarged. For example, in a non-aqueous solution type lithium secondary battery, if the battery is overcharged or overdischarged, the electrolytic solution is decomposed and deteriorated, which causes a reduction in life. For secondary batteries that require cycle life performance, the minimum / maximum value of the actual capacity of each cell is important in design. The above-mentioned actual capacity is the discharge capacity when each cell is charged in advance to the extent that the electrolyte is not substantially decomposed and deteriorated, and then discharged until the electrolyte is not substantially decomposed and deteriorated. This can be verified by actually charging and discharging one unit of each cell before the battery is constructed or by measuring the positive electrode active material amount and the negative electrode active material amount of the unit cell. At this time, the positive electrode material layer, the negative electrode material layer used,
The value (discharge capacity) varies depending on the electrolyte layer and charging / discharging conditions.

【0012】[0012]

【発明の実施の形態】以下、図1に示す本発明のリチウ
ム二次電池の断面図を用いて説明する。正極材層1には
LiCoO2粉末と結着剤としてのポリフッ化ビニリデ
ンを所定量混合したものを用いた。負極材層2には黒鉛
粉末と結着剤としてのポリフッ化ビニリデンを所定量混
合したものを用いた。リチウムイオン伝導性の電解質層
3としてエチレンカーボネートとジメチルカーボネート
との混合溶媒にLiPF6を所定量溶解したものを用
い、厚さ0.2mmのポリプロピレン不織布セパレータ
に含浸させた。片面のみに正極材層1を配した電子伝導
性を有する基板としては、厚さ0.5mmのアルミニウ
ム板4を用いた。その片面に上記正極材層1を塗着し
た。片面のみに負極材層2を配した電子伝導性を有する
基板としては、厚さ0.5mmの銅板5を用いた。その
片面に上記負極材層2を塗着した。こられはそれぞれ1
枚ずつ用意した。図3に示すように、片面に正極材層
1、他の面に負極材層2を配した電子伝導性を有する基
板としては、厚さ20μmのアルミニウム板4に厚さ1
0μmの銅板5を公知の方法で圧着成形したクラッド材
6を用いた。これを3枚用意し、それぞれのアルミニウ
ム面側に上記正極材層1、銅面側に上記負極材層2をそ
れぞれ塗着した。上記各部材を、図1に示すように電解
質層3を介して全ての正極材層1と負極材層2が対向す
るように積層し、且つそれぞれの基板同士、及び正極材
層1と負極材層2が直接に接触しないようにして電池を
形成した。このときの積層体中で構成される各セルの実
容量の最小値/最大値の値は1.0となるよう予め各セ
ルの正極材層1、負極材層2中の活物質量を調整した。
前記電池は、各セルに用いている正極活物質、負極活物
質に同じ材料を選択したため、充電率、放電率を変えて
も各セルの実容量の最大値/最小値の値は変わらない。
また、ここでの電解質層の厚みは0.2mmである。さ
らに、正極材層1、負極材層2、電解質層3は外気、特
に大気中の水分に触れると劣化する恐れがあるので、図
1に示すようにフッ素樹脂ゴム7及び図示しないシリコ
ーン製のシーラントを用い、電池を密閉化した。これら
一連の操作は全て大気中の水分を除去したグローブボッ
クス内で行った。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, description will be given with reference to the sectional view of the lithium secondary battery of the present invention shown in FIG. For the positive electrode material layer 1, a mixture of LiCoO 2 powder and a predetermined amount of polyvinylidene fluoride as a binder was used. For the negative electrode material layer 2, a mixture of graphite powder and a predetermined amount of polyvinylidene fluoride as a binder was used. The lithium ion conductive electrolyte layer 3 was prepared by dissolving a predetermined amount of LiPF 6 in a mixed solvent of ethylene carbonate and dimethyl carbonate, and impregnated into a polypropylene non-woven fabric separator having a thickness of 0.2 mm. An aluminum plate 4 having a thickness of 0.5 mm was used as a substrate having the electron conductivity in which the positive electrode material layer 1 was arranged only on one surface. The positive electrode material layer 1 was applied on one surface thereof. A copper plate 5 having a thickness of 0.5 mm was used as a substrate having the electron conductivity in which the negative electrode material layer 2 was arranged only on one surface. The negative electrode material layer 2 was applied on one surface thereof. These are 1 each
I prepared them one by one. As shown in FIG. 3, a positive electrode material layer 1 is arranged on one surface and a negative electrode material layer 2 is arranged on the other surface. As a substrate having electron conductivity, an aluminum plate 4 having a thickness of 20 μm is used.
A clad material 6 obtained by pressure-bonding a copper plate 5 of 0 μm by a known method was used. Three pieces of this were prepared, and the positive electrode material layer 1 was applied on the aluminum surface side and the negative electrode material layer 2 was applied on the copper surface side. As shown in FIG. 1, the above-mentioned members are laminated so that all the positive electrode material layers 1 and the negative electrode material layers 2 face each other with the electrolyte layer 3 in between, and the respective substrates, and the positive electrode material layer 1 and the negative electrode material are laminated. The cell was formed such that layer 2 was not in direct contact. At this time, the amount of active material in each of the positive electrode material layer 1 and the negative electrode material layer 2 of each cell is adjusted in advance so that the minimum value / maximum value of the actual capacity of each cell formed in the laminated body is 1.0. did.
Since the same material was selected for the positive electrode active material and the negative electrode active material used for each cell in the battery, the maximum / minimum value of the actual capacity of each cell does not change even if the charge rate and the discharge rate are changed.
The thickness of the electrolyte layer here is 0.2 mm. Further, since the positive electrode material layer 1, the negative electrode material layer 2, and the electrolyte layer 3 may be deteriorated when exposed to moisture in the outside air, especially in the atmosphere, as shown in FIG. 1, the fluororesin rubber 7 and the silicone sealant (not shown) are used. Was used to seal the battery. All of these series of operations were performed in a glove box from which water in the atmosphere was removed.

【0013】図1の構成のリチウム二次電池は、正極材
層1、負極材層2が接触するクラッド材6全体が集電体
と、各セルを直列に接続するための接続端子を兼ね備え
ている。また、片面に正極材層1又は負極材層2が接触
するアルミニウム板4あるいは銅板5全体が、集電体と
電池外部への正極端子、負極端子を兼ね備えている。つ
まり、各単セルからその外部へ電気を取り出す際に生じ
る集電体部におけるオーム損を生じない構造である。従
って前記オーム損に起因する電流損失がなく、大電流を
取り出すことができる。また、この構成の電池は、単セ
ルを直列に接続したものであるため、セルの積層数を調
整することでほぼ任意の電圧を得ることができ、高電
圧、大電流の電池、つまり高エネルギー密度リチウム二
次電池の設計も可能である。
In the lithium secondary battery having the structure shown in FIG. 1, the entire clad material 6 in contact with the positive electrode material layer 1 and the negative electrode material layer 2 has a collector and a connection terminal for connecting each cell in series. There is. Further, the entire aluminum plate 4 or copper plate 5 with which the positive electrode material layer 1 or the negative electrode material layer 2 is in contact with one surface also serves as a current collector and a positive electrode terminal and a negative electrode terminal to the outside of the battery. That is, it is a structure in which ohmic loss does not occur in the current collector portion that occurs when electricity is taken out from each single cell to the outside. Therefore, there is no current loss due to the ohmic loss, and a large current can be taken out. In addition, since the battery of this configuration is composed of single cells connected in series, almost any voltage can be obtained by adjusting the number of stacked cells. It is also possible to design a high density lithium secondary battery.

【0014】[0014]

【実施例】【Example】

(実験1)本発明のリチウム二次電池と、従来の捲回式
構造のリチウム二次電池とを比較検討した結果を以下に
述べる。従来の捲回式構造のリチウム二次電池の、正極
材層材料及びその総量、負極材層材料及びその総量、電
解質層材料及びその総量、セパレータ、正極材層及び負
極材層の集電体との総接触面積、正極材層及び負極材層
が接する集電体の材質、電解質層の厚み、を上述した本
発明のリチウム二次電池と同様に調整して作製した。上
述した本発明のリチウム二次電池(以下、実施例1と略
記する)と、上記捲回式構造のリチウム二次電池(以
下、従来例と略記する)をそれぞれ0.5CmAの充電
率で完全充電した後、0.5CmA、1.0CmA、
3.0CmAの放電率で放電した際の放電電気量を表1
に相対値で示した。ここでは実施例1の電池を0.5C
mAの放電率で放電した際の放電電気量を1.00とし
た。
(Experiment 1) The results of a comparative study of the lithium secondary battery of the present invention and a conventional lithium secondary battery having a wound structure will be described below. A positive electrode material layer material and its total amount, a negative electrode material layer material and its total amount, an electrolyte layer material and its total amount, a separator, a current collector of the positive electrode material layer and the negative electrode material layer of a conventional wound-type lithium secondary battery, and The total contact area, the material of the current collector in contact with the positive electrode material layer and the negative electrode material layer, and the thickness of the electrolyte layer were adjusted in the same manner as in the lithium secondary battery of the present invention described above. The lithium secondary battery of the present invention described above (hereinafter abbreviated as Example 1) and the lithium secondary battery having the wound structure (hereinafter abbreviated as conventional example) were each completely charged at a charge rate of 0.5 CmA. After charging, 0.5CmA, 1.0CmA,
Table 1 shows the quantity of electricity discharged when discharged at a discharge rate of 3.0 CmA.
Is shown as a relative value. Here, the battery of Example 1 is 0.5C.
The quantity of electricity discharged when discharged at a discharge rate of mA was 1.00.

【0015】[0015]

【表1】 [Table 1]

【0016】表1から明らかなように実施例1の電池
は、従来例の電池に比較して飛躍的に放電電気量が増加
している。このことは、実施例1の電池が、従来例の電
池に比較して大電流を取り出すことができることと同義
である。
As is apparent from Table 1, the battery of Example 1 has a dramatically increased amount of discharged electricity as compared with the battery of the conventional example. This is synonymous with the fact that the battery of Example 1 can extract a large current as compared with the battery of the conventional example.

【0017】(実験2)実施例1の電池において、正極
材層及び負極材層が接触する基板表面をSiC研磨紙
(400番)で研磨し、粗面化した。これ以外は実施例
1の電池と同条件で作製した電池を実施例2の電池と
し、実験1と同様の試験をした。その結果を表2に示
す。ここでも実施例1の電池を0.5CmAの放電率で
放電した際の放電電気量を1.00とし、その相対値で
示した。
(Experiment 2) In the battery of Example 1, the surface of the substrate in contact with the positive electrode material layer and the negative electrode material layer was polished with SiC polishing paper (No. 400) to roughen the surface. A battery produced under the same conditions as the battery of Example 1 except for this was used as the battery of Example 2, and the same test as in Experiment 1 was performed. Table 2 shows the results. Also in this case, the amount of electricity discharged when the battery of Example 1 was discharged at a discharge rate of 0.5 CmA was 1.00, and the relative value was shown.

【0018】[0018]

【表2】 [Table 2]

【0019】表1、表2から明らかなように、基板表面
を粗面化することによってさらに放電電気量が増加し
た。つまりさらに大電流を取り出すことができた。基板
表面を粗面化する手段としては、研磨の他に蒸着、電
着、無電解メッキ、溶射等があり、これらの手法でも同
様の効果が得られる。
As is clear from Tables 1 and 2, the amount of discharged electricity was further increased by roughening the substrate surface. In other words, it was possible to extract a larger current. As means for roughening the surface of the substrate, there are vapor deposition, electrodeposition, electroless plating, thermal spraying, etc. in addition to polishing, and the same effect can be obtained by these methods.

【0020】(実験3)図2に示すように、実施例1の
電池をボルト8、ナット9、絶縁ワッシャ10により5
kg/cm2で積層体を積層方向に加圧させた電池を作
製した。これを実施例3の電池とし、実験1と同様の試
験をした。その結果を表2に示す。ここでも実施例1の
電池を0.5CmAの放電率で放電した際の放電電気量
を1.00とし、その相対値で示した。
(Experiment 3) As shown in FIG. 2, the battery of Example 1 was replaced with a bolt 8, a nut 9, and an insulating washer 10 to obtain 5 parts.
A battery was produced in which the laminate was pressed in the stacking direction at kg / cm 2 . Using this as the battery of Example 3, the same test as in Experiment 1 was performed. Table 2 shows the results. Also in this case, the amount of electricity discharged when the battery of Example 1 was discharged at a discharge rate of 0.5 CmA was 1.00, and the relative value was shown.

【0021】[0021]

【表3】 [Table 3]

【0022】表1、表3から明らかなように、積層体を
加圧することによってさらに放電電気量が増加した。つ
まりさらに大電流を取り出すことができた。積層体を積
層方向に加圧する際にはその加圧力、加圧方法あるいは
電池構造にも左右されるが、例えば図2に示されるよう
な積層体の両端にある基板に加圧の応力が加えられる構
造の電池では少なくとも片面のみに正極材層あるいは負
極材層を配した基板が、加圧に耐えうる程度に剛性が高
いことが望ましい。しかし片面に正極材層、他の面に負
極材層を配した基板は、それ程剛性の高さを考慮する必
要はないと考えられる。
As is clear from Tables 1 and 3, the amount of discharged electricity was further increased by pressurizing the laminate. In other words, it was possible to extract a larger current. When the laminated body is pressed in the stacking direction, it depends on the pressing force, the pressing method, or the battery structure. For example, as shown in FIG. 2, pressure stress is applied to the substrates at both ends of the laminated body. In a battery having such a structure, it is desirable that the substrate on which the positive electrode material layer or the negative electrode material layer is disposed on at least only one surface has high rigidity to withstand pressure. However, it is considered that it is not necessary to consider the high rigidity of the substrate having the positive electrode material layer on one surface and the negative electrode material layer on the other surface.

【0023】(実験4)実施例1の電池において、積層
体中で構成される各セルの実容量の最小値/最大値の値
を0.9(実施例4)、0.8(実施例5)、0.7
(実施例6)になるよう、且つ正極材層及び負極材層の
活物質量を、それらの総量が等しくなるよう調整して電
池を作製した。実施例1、実施例4、実施例5、実施例
6の各電池を実施例1の電池における0.5CmA相当
の電流で充電、0.5CmA相当の電流で放電を繰り返
すサイクル試験に供した。放電電気量が初期の70%に
なった時点を寿命時期と判断し、そこまでの充放電サイ
クル数を表4に相対値として示した。ここでは実施例1
のサイクル数を1.00とした。
(Experiment 4) In the battery of Example 1, the minimum / maximum values of the actual capacities of the cells formed in the laminate were 0.9 (Example 4) and 0.8 (Example). 5), 0.7
A battery was produced by adjusting the active material amounts of the positive electrode material layer and the negative electrode material layer so as to be the same as in (Example 6). Each of the batteries of Example 1, Example 4, Example 5, and Example 6 was subjected to a cycle test in which the battery of Example 1 was charged with a current equivalent to 0.5 CmA and repeatedly discharged with a current equivalent to 0.5 CmA. The time when the discharged electricity amount reached 70% of the initial value was determined to be the life period, and the number of charge / discharge cycles up to that point was shown as a relative value in Table 4. Example 1 here
Was set to 1.00.

【0024】[0024]

【表4】 [Table 4]

【0025】表4から明らかなように、積層体中で構成
される各セルの実容量の最小値/最大値の値が0.8を
下回ると急激にサイクル寿命が低下することがわかる。
この理由は明らかではないが、積層体中で構成される実
容量の最小値のセルは、その他のセルに比較し高率充
電、高率放電されているため、本実験で、ある値以上の
充電率で充電、あるいはある値以上の放電率で放電した
場合、電解質の劣化が激しくなった為と考えられる。し
かし実施例6の電池は、実験1の試験条件では充放電初
期において実施例1の電池と同様の結果が得られたの
で、大電流を取り出す性能は問題ない。
As is clear from Table 4, when the minimum / maximum value of the actual capacity of each cell formed in the laminated body falls below 0.8, the cycle life sharply decreases.
The reason for this is not clear, but the cell with the minimum actual capacity configured in the stacked body is charged at a high rate and discharged at a high rate as compared with the other cells. It is considered that when the battery was charged at the charge rate or discharged at a discharge rate higher than a certain value, the electrolyte was severely deteriorated. However, in the battery of Example 6, the same result as that of the battery of Example 1 was obtained in the initial charging / discharging stage under the test conditions of Experiment 1, so there is no problem in the performance of extracting a large current.

【0026】実施例1〜6は負極に黒鉛を用いたいわゆ
るリチウムイオン二次電池だが、負極に金属リチウムあ
るいはリチウム合金を用いた場合でも、本発明の電池構
造を採用することによって、負極に金属リチウムあるい
はリチウム合金を用いた捲回式構造の電池と比較して大
電流が得られる。また、負極に炭素材を用いる場合、結
晶性の高い黒鉛以外、いわゆる非晶質炭素でもリチウム
イオンを吸蔵放出可能な炭素材であれば本実施例と同様
な効果が得られる。また、リチウムイオンを吸蔵放出可
能な材料としてGe、Sn、Pb、Sb、Bi、Si、
In、Mg、Al、Znから選ばれる元素を含む酸化物
の少なくとも1種以上を用いてもよい。具体例としてG
eO、GeO2、SnO、SnO2、PbO、PbO2
Sb23、Sb24、Bi23、SiO、In2O、M
gO、Al23、ZnO、SnxSiy2(x+y=
1)等がある。またこれらの酸化物の非量論的化合物が
使用可能である。また、実施例1〜6では電解質層とし
て有機溶媒を含む液体を用いたが、特にそれに限定され
るものではなく、リチウムイオン伝導性のものであれ
ば、窒化リチウム等の固体電解質であっても良い。固体
電解質を用いたときの利点は、積層体を加圧させた場合
でもセパレータを必要としないため、製造が容易になる
ことである。また、実施例1〜6では正極材層にLiC
oO2を主成分としたものを用いたが、LiNixCoy
2(x+y=1)、LiMnO2、LiMn24、Li
NiO2、LiV25等の一種以上を用いても同様な結
果が得られた。また、正極材中に導電剤として黒鉛や、
アセチレンブラックなどのカーボンブラック、アルミニ
ウム等の金属粉を含ませてもよい。その場合、実施例1
〜6よりもさらに大電流を得られる可能性がある。ま
た、実施例1〜6では正極材層及び負極材層に用いる結
着剤として、ポリフッ化ビニリデンを用いたが、ポリテ
トラフッ化エチレン、エチレン―プロピレン―ジエン三
共重合体、スチレン―ブタジエンゴム、フッ素ゴム等を
用いても良い。また、実施例1〜6では基板にアルミニ
ウム板、銅板、アルミニウムと銅を圧着させたクラッド
材を用いたが、これらに限定されるものではなく、アル
ミニウム合金、銅合金、ニッケル、ニッケル合金、ステ
ンレス鋼等を用いても同様な結果が得られる。また、実
施例1〜6では電池密閉用材料と、正極材層側の液体と
負極材層側の液体とを液絡させない手段とに用いる耐電
解液性の材料として、フッ素樹脂ゴムを用いたが、ブチ
ルゴム、シリコーンゴムから選択される一種以上を用い
ても良い。また、実施例1〜6ではセパレータとして厚
さ0.2mmの不織布セパレータを用いたが、厚さ数十
μm程度のポリプロピレン微多孔膜等も用いることがで
きる。
Examples 1 to 6 are so-called lithium ion secondary batteries using graphite for the negative electrode. However, even if metallic lithium or a lithium alloy is used for the negative electrode, by adopting the battery structure of the present invention, a metal is used for the negative electrode. A large current can be obtained as compared with a battery having a wound structure using lithium or a lithium alloy. When a carbon material is used for the negative electrode, the same effect as that of this embodiment can be obtained as long as it is a carbon material capable of occluding and releasing lithium ions even with so-called amorphous carbon other than graphite having high crystallinity. Further, as a material capable of inserting and extracting lithium ions, Ge, Sn, Pb, Sb, Bi, Si,
You may use at least 1 type or more of the oxide containing the element selected from In, Mg, Al, and Zn. As a specific example, G
eO, GeO 2 , SnO, SnO 2 , PbO, PbO 2 ,
Sb 2 O 3 , Sb 2 O 4 , Bi 2 O 3 , SiO, In 2 O, M
gO, Al 2 O 3 , ZnO, Sn x Si y O 2 (x + y =
1) etc. Also, non-stoichiometric compounds of these oxides can be used. Further, in Examples 1 to 6, a liquid containing an organic solvent was used as the electrolyte layer, but it is not particularly limited thereto, and a solid electrolyte such as lithium nitride may be used as long as it has lithium ion conductivity. good. The advantage of using a solid electrolyte is that it does not require a separator even when the laminated body is pressed, and thus the production is facilitated. In addition, in Examples 1 to 6, LiC was added to the positive electrode material layer.
Although the one containing oO 2 as a main component was used, LiNi x Co y
O 2 (x + y = 1), LiMnO 2 , LiMn 2 O 4 , Li
Similar results were obtained by using one or more of NiO 2 , LiV 2 O 5 and the like. Also, graphite or a conductive agent in the positive electrode material,
Carbon black such as acetylene black or metal powder such as aluminum may be included. In that case, Example 1
There is a possibility that an even larger current than -6 can be obtained. Further, in Examples 1 to 6, polyvinylidene fluoride was used as the binder used in the positive electrode material layer and the negative electrode material layer, but polytetrafluoroethylene, ethylene-propylene-diene terpolymer, styrene-butadiene rubber, fluororubber were used. Etc. may be used. Further, in Examples 1 to 6, an aluminum plate, a copper plate, and a clad material in which aluminum and copper are pressure-bonded to the substrate are used, but the substrate is not limited to these, and aluminum alloy, copper alloy, nickel, nickel alloy, stainless Similar results can be obtained by using steel or the like. Further, in Examples 1 to 6, fluororesin rubber was used as the electrolytic solution resistant material used for the battery sealing material and the means for preventing the liquid on the positive electrode material layer side and the liquid on the negative electrode material layer side from causing liquid junction. However, one or more selected from butyl rubber and silicone rubber may be used. Further, in Examples 1 to 6, a non-woven fabric separator having a thickness of 0.2 mm was used as a separator, but a polypropylene microporous membrane having a thickness of several tens of μm or the like can also be used.

【0027】[0027]

【発明の効果】本発明の電池構造を採用することで集電
体部における電流損失を低減し、大電流を取り出すこと
のできる構造のリチウム二次電池を提供することができ
た。また本発明の電池構造では、高エネルギー密度リチ
ウム二次電池の設計も可能である。
By adopting the battery structure of the present invention, it is possible to provide a lithium secondary battery having a structure capable of reducing the current loss in the current collector portion and taking out a large current. Further, the battery structure of the present invention enables the design of a high energy density lithium secondary battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のリチウム二次電池の断面図である。FIG. 1 is a cross-sectional view of a lithium secondary battery of the present invention.

【図2】本発明のリチウム二次電池の断面図である。FIG. 2 is a cross-sectional view of a lithium secondary battery of the present invention.

【図3】片面に正極材層、他の面に負極材層を配した基
板の断面図である。
FIG. 3 is a cross-sectional view of a substrate having a positive electrode material layer on one surface and a negative electrode material layer on the other surface.

【図4】従来のリチウム二次電池の断面図である。FIG. 4 is a cross-sectional view of a conventional lithium secondary battery.

【図5】従来のリチウム二次電池の断面図である。FIG. 5 is a cross-sectional view of a conventional lithium secondary battery.

【符号の説明】[Explanation of symbols]

1.正極材層 2.負極材層 3.電解質層 4.アルミニウム板 5.銅板 6.クラッド材 7.フッ素樹脂ゴム 8.ボルト 9.ナット 10.絶縁ワッシャ 1. Positive electrode material layer 2. Anode material layer 3. Electrolyte layer 4. Aluminum plate 5. Copper plate 6. Clad material 7. Fluororesin rubber 8. Bolt 9. Nut 10. Insulation washer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01M 10/36 H01M 10/36 A (72)発明者 堀場 達雄 東京都新宿区西新宿2丁目1番1号 新神 戸電機株式会社内 (72)発明者 田村 弘毅 東京都新宿区西新宿2丁目1番1号 新神 戸電機株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location H01M 10/36 H01M 10/36 A (72) Inventor Tatsuo HORIBA 2-1, Nishishinjuku, Shinjuku-ku, Tokyo No. 1 Shinjin Todenki Co., Ltd. (72) Inventor Hiroki Tamura 2-1-1 Nishishinjuku, Shinjuku-ku, Tokyo Shinjin Todenki Co., Ltd.

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】片面のみに正極材層を配した電子伝導性を
有する基板と、少なくとも一枚の、片面に正極材層、他
の面に負極材層を配した電子伝導性を有する基板と、片
面のみに負極材層を配した電子伝導性を有する基板と
を、リチウムイオン伝導性電解質層を介して全ての正極
材層が負極材層と対向し、且つそれぞれの基板同士及び
正極材層と負極材層が直接接触しないよう積層した積層
体を備え、前記積層体の少なくとも正極材層、負極材
層、電解質層を外気から遮断する手段を有することを特
徴とするリチウム二次電池。
1. An electronically conductive substrate having a positive electrode material layer disposed on only one surface, and at least one substrate having electronic conductivity having a positive electrode material layer on one surface and a negative electrode material layer on the other surface. , A substrate having an electron conductivity in which a negative electrode material layer is arranged only on one side, all positive electrode material layers face the negative electrode material layer via a lithium ion conductive electrolyte layer, and each substrate and positive electrode material layer And a negative electrode material layer are laminated so as not to come into direct contact with each other, and a means for cutting off at least the positive electrode material layer, the negative electrode material layer and the electrolyte layer of the laminated body from the outside air is provided.
【請求項2】リチウムイオン伝導性電解質層の厚みが1
mm以下であることを特徴とする請求項1記載のリチウ
ム二次電池。
2. The lithium ion conductive electrolyte layer has a thickness of 1
The lithium secondary battery according to claim 1, wherein the lithium secondary battery is less than or equal to mm.
【請求項3】リチウムイオン伝導性電解質層が液体であ
り、片面に正極材層、他の面に負極材層を配した電子伝
導性を有する基板の、正極材層側の液体と負極材層側の
液体とを液絡させない手段を有し、積層体の少なくとも
正極板層、負極板層、電解質層を外気から遮断する手段
に用いる材料が電気的に絶縁性で且つ耐電解液性である
ことを特徴とする請求項1又は2記載のリチウム二次電
池。
3. A liquid and a negative electrode material layer on the positive electrode material layer side of a substrate having electron conductivity in which a lithium ion conductive electrolyte layer is a liquid, and a positive electrode material layer is arranged on one surface and a negative electrode material layer is arranged on the other surface. The material used for the means for shielding at least the positive electrode plate layer, the negative electrode plate layer, and the electrolyte layer of the laminated body from the outside air, which has means for preventing liquid junction with the liquid on the side, is electrically insulating and electrolytic solution resistant. The lithium secondary battery according to claim 1 or 2, wherein:
【請求項4】リチウムイオン伝導性電解質層中にセパレ
ータを配することを特徴とする請求項3記載のリチウム
二次電池。
4. The lithium secondary battery according to claim 3, wherein a separator is provided in the lithium ion conductive electrolyte layer.
【請求項5】正極板層、負極板層、電解質層を外気から
遮断する手段に用いる材料及び/又は片面に正極材層、
他の面に負極材層を配した電子伝導性を有する基板の、
正極材層側の液体と負極材層側の液体とを液絡させない
手段に用いる材料が、フッ素樹脂ゴム、ブチルゴム、シ
リコーンゴムから選ばれる一種以上からなることを特徴
とする請求項3又は4記載のリチウム二次電池。
5. A material used for a means for shielding the positive electrode plate layer, the negative electrode plate layer, and the electrolyte layer from the outside air and / or a positive electrode material layer on one side,
Of a substrate having an electron conductivity in which the negative electrode material layer is arranged on the other surface,
The material used for the means for preventing the liquid on the positive electrode material layer side and the liquid on the negative electrode material layer side from being liquid-junctioned is at least one selected from fluororesin rubber, butyl rubber, and silicone rubber. Rechargeable lithium battery.
【請求項6】負極材層が、リチウムイオンを吸蔵放出可
能な炭素材を主成分とする材料からなることを特徴とす
る請求項1〜5のいずれかに記載のリチウム二次電池。
6. The lithium secondary battery according to claim 1, wherein the negative electrode material layer is made of a material whose main component is a carbon material capable of inserting and extracting lithium ions.
【請求項7】負極材層が、リチウムイオンを吸蔵放出可
能な材料を含み、当該材料がGe、Sn、Pb、Sb、
Bi、Si、In、Mg、Al、Znから選ばれる元素
を含む酸化物を少なくとも1種以上含むことを特徴とす
る請求項1〜5のいずれかに記載のリチウム二次電池。
7. The negative electrode material layer contains a material capable of inserting and extracting lithium ions, and the material is Ge, Sn, Pb, Sb,
The lithium secondary battery according to claim 1, comprising at least one oxide containing an element selected from Bi, Si, In, Mg, Al, and Zn.
【請求項8】正極材層が、コバルト、マンガン、ニッケ
ル、バナジウムから選ばれる一種以上とリチウムからな
る複合酸化物を主成分とすることを特徴とする請求項1
〜7のいずれかに記載のリチウム二次電池。
8. The positive electrode material layer is mainly composed of a composite oxide composed of lithium and one or more selected from cobalt, manganese, nickel and vanadium.
7. The lithium secondary battery according to any one of to 7.
【請求項9】正極材層が配される側の基板表面がアルミ
ニウム、アルミニウム合金、ニッケル、ニッケル合金、
ステンレス鋼から選ばれる少なくとも一種であることを
特徴とする請求項1〜8のいずれかに記載のリチウム二
次電池。
9. The surface of the substrate on which the positive electrode material layer is disposed is aluminum, aluminum alloy, nickel, nickel alloy,
9. The lithium secondary battery according to claim 1, wherein the lithium secondary battery is at least one selected from stainless steel.
【請求項10】負極材層が配される側の基板表面が銅、
銅合金、ニッケル、ニッケル合金、ステンレス鋼から選
ばれる少なくとも一種であることを特徴とする請求項1
〜9のいずれかに記載のリチウム二次電池。
10. The substrate surface on the side on which the negative electrode material layer is arranged is copper,
2. At least one selected from copper alloy, nickel, nickel alloy, and stainless steel.
10. The lithium secondary battery according to any one of 9 to 10.
【請求項11】片面に正極材層、他の面に負極材層を配
する基板が、アルミニウム又はアルミニウム合金と、銅
又は銅合金が接合されたものであり、正極材層が配され
る側がアルミニウム又はアルミニウム合金、負極材層が
配される側が銅又は銅合金である請求項1〜8のいずれ
かに記載のリチウム二次電池。
11. A substrate having a positive electrode material layer on one surface and a negative electrode material layer on the other surface is made by joining aluminum or an aluminum alloy and copper or a copper alloy, and the side on which the positive electrode material layer is arranged is The lithium secondary battery according to claim 1, wherein aluminum or an aluminum alloy, and the side on which the negative electrode material layer is arranged is copper or a copper alloy.
【請求項12】接合された基板のアルミニウム又はアル
ミニウム合金厚みが、銅又は銅合金厚みよりも厚いこと
を特徴とする請求項11記載のリチウム二次電池。
12. The lithium secondary battery according to claim 11, wherein the thickness of the aluminum or aluminum alloy of the bonded substrates is larger than that of copper or the copper alloy.
【請求項13】基板がアルミニウム又はアルミニウム合
金に銅又は銅合金を圧着したものであることを特徴とす
る請求項11記載のリチウム二次電池。
13. The lithium secondary battery according to claim 11, wherein the substrate is aluminum or an aluminum alloy and copper or a copper alloy is pressure-bonded thereto.
【請求項14】基板がアルミニウム又はアルミニウム合
金に銅を電着あるいは無電解メッキしたものであること
を特徴とする請求項11記載のリチウム二次電池。
14. The lithium secondary battery according to claim 11, wherein the substrate is aluminum or an aluminum alloy on which copper is electrodeposited or electroless plated.
【請求項15】基板がアルミニウム又はアルミニウム合
金に銅を蒸着したものであることを特徴とする請求項1
1記載のリチウム二次電池。
15. The substrate is aluminum or an aluminum alloy on which copper is vapor-deposited.
1. The lithium secondary battery according to 1.
【請求項16】基板がアルミニウム又はアルミニウム合
金に銅を溶射したものであることを特徴とする請求項1
1記載のリチウム二次電池。
16. The substrate is formed by spraying copper on aluminum or an aluminum alloy.
1. The lithium secondary battery according to 1.
【請求項17】正極材層が配される側の基板表面、負極
材層が配される側の基板表面の少なくとも一方が粗面化
されていることを特徴とする請求項1〜16のいずれか
に記載のリチウム二次電池。
17. The surface of the substrate on which the positive electrode material layer is arranged and the surface of the substrate on which the negative electrode material layer is arranged are roughened. A lithium secondary battery according to claim 2.
【請求項18】積層体が積層方向に加圧されていること
を特徴とする請求項1〜17のいずれかに記載のリチウ
ム二次電池。
18. The lithium secondary battery according to claim 1, wherein the stack is pressed in the stacking direction.
【請求項19】片面のみに正極材層あるいは負極材層を
配した基板が、片面に正極材層、他の面に負極材層を配
した基板よりも剛性が高いことを特徴とする請求項18
記載のリチウム二次電池。
19. A substrate having a positive electrode material layer or a negative electrode material layer only on one surface has higher rigidity than a substrate having a positive electrode material layer on one surface and a negative electrode material layer on the other surface. 18
The lithium secondary battery described.
【請求項20】積層体中で構成される複数の各セルの実
容量の最小値/最大値の値が、0.8以上であることを
特徴とする請求項1〜19のいずれかに記載のリチウム
二次電池。
20. The minimum value / maximum value of the actual capacity of each of the plurality of cells formed in the laminated body is 0.8 or more, and any one of claims 1 to 19 is characterized. Rechargeable lithium battery.
JP8113695A 1995-12-18 1996-05-08 Lithium secondary battery Pending JPH09232003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8113695A JPH09232003A (en) 1995-12-18 1996-05-08 Lithium secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP32875795 1995-12-18
JP7-328757 1995-12-18
JP8113695A JPH09232003A (en) 1995-12-18 1996-05-08 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH09232003A true JPH09232003A (en) 1997-09-05

Family

ID=26452644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8113695A Pending JPH09232003A (en) 1995-12-18 1996-05-08 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH09232003A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195505A (en) * 1998-12-25 2000-07-14 Tokuyama Corp Manufacture of negative electrode material for nonaqueous electrolyte secondary battery
JP2001093577A (en) * 1999-09-20 2001-04-06 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2004158307A (en) * 2002-11-06 2004-06-03 Nissan Motor Co Ltd Bipolar battery
JP2004327374A (en) * 2003-04-28 2004-11-18 Nissan Motor Co Ltd Bipolar battery, method of manufacturing bipolar battery, battery pack, and vehicle
JP2005317380A (en) * 2004-04-28 2005-11-10 Nissan Motor Co Ltd Bipolar battery, manufacturing method of bipolar battery, battery pack, and automobile using this battery pack
KR100646534B1 (en) * 2005-03-07 2006-11-23 삼성에스디아이 주식회사 Electrode Plate of Li Secondary Battery and Li Secondary Battery with the same
JP2007122977A (en) * 2005-10-26 2007-05-17 Nissan Motor Co Ltd Battery module and battery pack
JP2007207438A (en) * 2006-01-30 2007-08-16 Nissan Motor Co Ltd Method for manufacturing secondary battery
JP2007299680A (en) * 2006-05-01 2007-11-15 Nissan Motor Co Ltd Dipole secondary battery
JP2008130450A (en) * 2006-11-22 2008-06-05 Nissan Motor Co Ltd Manufacturing method of bipolar battery
JP2009004363A (en) * 2007-05-24 2009-01-08 Nissan Motor Co Ltd Current collector for nonaqueous solvent secondary battery, and electrode and battery, using the current collector
WO2009054334A1 (en) 2007-10-25 2009-04-30 Nissan Motor Co., Ltd. Manufacturing method of bipolar cell and bipolar cell
WO2010100979A1 (en) 2009-03-05 2010-09-10 日産自動車株式会社 Bipolar secondary cell and method for producing the same
US7858231B2 (en) * 2002-12-27 2010-12-28 Panasonic Corporation Current collector sheet and electrochemical device
WO2010150077A1 (en) 2009-06-25 2010-12-29 Nissan Motor Co., Ltd. Bipolar secondary battery
WO2012014780A1 (en) 2010-07-28 2012-02-02 日産自動車株式会社 Bipolar electrode, bipolar secondary battery using same, and method for producing bipolar electrode
US9017877B2 (en) 2007-05-24 2015-04-28 Nissan Motor Co., Ltd. Current collector for nonaqueous solvent secondary battery, and electrode and battery, which use the current collector
US10381650B2 (en) 2014-05-30 2019-08-13 Hitachi Metals, Ltd. Cladding material for battery collector and electrode

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195505A (en) * 1998-12-25 2000-07-14 Tokuyama Corp Manufacture of negative electrode material for nonaqueous electrolyte secondary battery
JP2001093577A (en) * 1999-09-20 2001-04-06 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2004158307A (en) * 2002-11-06 2004-06-03 Nissan Motor Co Ltd Bipolar battery
US7858231B2 (en) * 2002-12-27 2010-12-28 Panasonic Corporation Current collector sheet and electrochemical device
JP2004327374A (en) * 2003-04-28 2004-11-18 Nissan Motor Co Ltd Bipolar battery, method of manufacturing bipolar battery, battery pack, and vehicle
JP2005317380A (en) * 2004-04-28 2005-11-10 Nissan Motor Co Ltd Bipolar battery, manufacturing method of bipolar battery, battery pack, and automobile using this battery pack
KR100646534B1 (en) * 2005-03-07 2006-11-23 삼성에스디아이 주식회사 Electrode Plate of Li Secondary Battery and Li Secondary Battery with the same
JP2007122977A (en) * 2005-10-26 2007-05-17 Nissan Motor Co Ltd Battery module and battery pack
JP2007207438A (en) * 2006-01-30 2007-08-16 Nissan Motor Co Ltd Method for manufacturing secondary battery
JP2007299680A (en) * 2006-05-01 2007-11-15 Nissan Motor Co Ltd Dipole secondary battery
JP2008130450A (en) * 2006-11-22 2008-06-05 Nissan Motor Co Ltd Manufacturing method of bipolar battery
JP2009004363A (en) * 2007-05-24 2009-01-08 Nissan Motor Co Ltd Current collector for nonaqueous solvent secondary battery, and electrode and battery, using the current collector
US9017877B2 (en) 2007-05-24 2015-04-28 Nissan Motor Co., Ltd. Current collector for nonaqueous solvent secondary battery, and electrode and battery, which use the current collector
WO2009054334A1 (en) 2007-10-25 2009-04-30 Nissan Motor Co., Ltd. Manufacturing method of bipolar cell and bipolar cell
US8734984B2 (en) 2007-10-25 2014-05-27 Nissan Motor Co., Ltd. Bipolar battery manufacturing method, and bipolar battery
WO2010100979A1 (en) 2009-03-05 2010-09-10 日産自動車株式会社 Bipolar secondary cell and method for producing the same
US8852785B2 (en) 2009-03-05 2014-10-07 Nissan Motor Co., Ltd. Bipolar secondary battery and method for producing the same
WO2010150077A1 (en) 2009-06-25 2010-12-29 Nissan Motor Co., Ltd. Bipolar secondary battery
US8741477B2 (en) 2009-06-25 2014-06-03 Nissan Motor Co., Ltd. Bipolar secondary battery with seal members
WO2012014780A1 (en) 2010-07-28 2012-02-02 日産自動車株式会社 Bipolar electrode, bipolar secondary battery using same, and method for producing bipolar electrode
US10283774B2 (en) 2010-07-28 2019-05-07 Nissan Motor Co., Ltd. Bipolar electrode, bipolar secondary battery using the same and method for manufacturing bipolar electrode
US10381650B2 (en) 2014-05-30 2019-08-13 Hitachi Metals, Ltd. Cladding material for battery collector and electrode
US10490824B2 (en) 2014-05-30 2019-11-26 Hitachi Metals, Ltd. Cladding material for battery collector and electrode

Similar Documents

Publication Publication Date Title
US11901500B2 (en) Sandwich electrodes
US6451472B1 (en) Lithium battery and manufacturing method thereof
JP4038699B2 (en) Lithium ion battery
JP3819785B2 (en) Battery
US7476463B2 (en) Rechargeable bipolar high power electrochemical device with reduced monitoring requirement
JP5762537B2 (en) A battery pack having a prismatic cell having a bipolar electrode
JPH09232003A (en) Lithium secondary battery
EP2472641A1 (en) Nickel-zinc battery and manufacturing method thereof
JP2019192610A (en) All-solid battery
JPH09213338A (en) Battery and lithium ion secondary battery
JP3405380B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
CN101312244A (en) Electrode assembly and secondary battery using the electrode assembly
JP2006318892A (en) Square lithium secondary battery
JP2000067907A (en) Electrode structure and battery using it
JP2012212506A (en) Laminate type battery
CN113437351B (en) Electrochemical device and electric equipment comprising same
US10593955B2 (en) Method for producing electrodes having an improved current collector structure
JP4590723B2 (en) Winding electrode battery and method for manufacturing the same
US20030134202A1 (en) Lithium polymer battery
JP2001068160A (en) Flat nonaqueous electrolyte secondary battery
US11670755B2 (en) Modified electrolyte-anode interface for solid-state lithium batteries
JP2666382B2 (en) Rechargeable battery
JP2007335158A (en) Secondary battery and battery pack
JP3349364B2 (en) Battery current collector, battery and non-aqueous electrolyte battery
US11764445B2 (en) Battery and battery production method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040302