JP3412473B2 - Non-aqueous electrolyte battery using thin electrodes - Google Patents

Non-aqueous electrolyte battery using thin electrodes

Info

Publication number
JP3412473B2
JP3412473B2 JP25978797A JP25978797A JP3412473B2 JP 3412473 B2 JP3412473 B2 JP 3412473B2 JP 25978797 A JP25978797 A JP 25978797A JP 25978797 A JP25978797 A JP 25978797A JP 3412473 B2 JP3412473 B2 JP 3412473B2
Authority
JP
Japan
Prior art keywords
active material
current collector
electrode
battery
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25978797A
Other languages
Japanese (ja)
Other versions
JPH11102710A (en
Inventor
竹規 石津
光徳 織田
康太郎 小林
達雄 堀場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP25978797A priority Critical patent/JP3412473B2/en
Publication of JPH11102710A publication Critical patent/JPH11102710A/en
Application granted granted Critical
Publication of JP3412473B2 publication Critical patent/JP3412473B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、薄型電極を用いた
非水電解液電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery using thin electrodes.

【0002】[0002]

【従来の技術】現在、非水電解液電池としてリチウム一
次電池、リチウム二次電池等が実用化されている。これ
らの電池のうちリチウム二次電池は、一般的に集電体と
して金属薄膜を使用している。非水電解液は、水溶液系
に比べイオン導電率が低い。そのため電極自体を薄型化
することで電解液との接触面積を大きくする必要があ
り、電極の集電体も一般に薄い金属薄膜が使用されてき
た。
2. Description of the Related Art Currently, lithium primary batteries, lithium secondary batteries and the like are put into practical use as non-aqueous electrolyte batteries. Among these batteries, a lithium secondary battery generally uses a metal thin film as a current collector. The non-aqueous electrolyte has a lower ionic conductivity than that of an aqueous solution. Therefore, it is necessary to increase the contact area with the electrolytic solution by thinning the electrode itself, and a thin metal thin film has been generally used as the collector of the electrode.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記集
電体としての金属薄膜は、薄くするに従いその断面積が
小さくなるため、電極の集電効率が低下し、高率充放電
時の電池容量が小さくなる傾向があった。一方集電体を
厚くするに従い、電極の集電効率は向上するものの、電
極中に占める集電体の体積が増大し、単位体積中の電池
容量が減少する。また活物質以外の電池材料の重量が増
加するため一定重量中の電池容量も減少するという問題
点があった。本発明が解決しようとする課題は、金属薄
膜からなる二次元集電体表面に配された活物質からなる
薄型電極を用いた非水電解液電池の高率放電特性を向上
させることである。
However, since the cross-sectional area of the metal thin film as the current collector becomes thinner as the current collector becomes thinner, the current collection efficiency of the electrode is lowered and the battery capacity at the time of high rate charge / discharge is reduced. It tended to become smaller. On the other hand, as the thickness of the current collector is increased, the current collection efficiency of the electrode is improved, but the volume of the current collector occupied in the electrode is increased and the battery capacity per unit volume is decreased. Further, since the weight of the battery material other than the active material is increased, the battery capacity in a constant weight is also reduced. The problem to be solved by the present invention is to improve high rate discharge characteristics of a non-aqueous electrolyte battery using a thin electrode made of an active material arranged on the surface of a two-dimensional current collector made of a metal thin film.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明の二次元集電体表面に配された活物質からな
る薄型電極と、アルカリ金属イオンを含む非水電解液を
有する非水電解液電池は、前記電極が正極および/また
は負極であり、前記集電体表面に、活物質が配される部
分と、活物質が配されない部分が存在し、その活物質が
配されない部分から導出又は接続されたタブ端子が、直
接あるいは間接的に電池外部端子に接続され、前記活物
質が配される部分の集電体厚みt1が、前記活物質が配
されない部分の集電体厚みt2よりも薄いことを特徴と
する。集電体の活物質が配されていない箇所は、一般的
に電池外部へのタブ端子接続部であり電力集中が起こる
箇所であるため、集電体の活物質が配されている箇所よ
りも電気抵抗を低くする(つまりt2>t1とする)こ
とにより電極の集電効率を向上できる。また電池の製造
における、タブ端子取り扱い時にはタブ端子への力学的
負荷がかかるため、集電体又はタブ端子が裂けるおそれ
がある。またそれが原因で電極の集電性が低下するおそ
れがある。このような不具合は特に集電体の活物質が配
されていない箇所にタブ端子部材を溶接等の手段で接続
されている形態の電極の場合に顕著である。その理由
は、集電体の活物質が配されていない箇所はタブ端子接
続部となり、そこでの接続操作が必須であるためであ
る。前記接続操作は他のタブ端子取り扱い操作に比して
タブ端子への力学的負荷が大きい。またタブ端子と集電
体との溶接部の接触が不十分となるおそれもある。よっ
て活物質が配されていない箇所の集電体を、活物質が配
されている箇所の集電体よりも厚くする(つまりt2>
t1とする)ことによりt2部分の剛性が増し、このよ
うな問題を克服することができる。
In order to solve the above-mentioned problems, a thin electrode made of an active material disposed on the surface of the two-dimensional current collector of the present invention and a non-aqueous electrolyte containing an alkali metal ion are used. In the water electrolyte battery, the electrode is a positive electrode and / or a negative electrode, and a portion where an active material is arranged and a portion where an active material is not present are present on the surface of the current collector, and a portion where the active material is not arranged is present. The tab terminal led out or connected from is directly or indirectly connected to the battery external terminal, and the current collector thickness t1 of the portion where the active material is arranged is the current collector thickness of the portion where the active material is not arranged. It is characterized by being thinner than t2. The part where the active material of the current collector is not arranged is generally the part where the tab terminals are connected to the outside of the battery and where power concentration occurs. By lowering the electric resistance (that is, t2> t1), the current collection efficiency of the electrodes can be improved. In addition, a mechanical load is applied to the tab terminal when the tab terminal is handled in the manufacture of a battery, and thus the current collector or the tab terminal may be torn. Further, there is a possibility that the current collecting property of the electrode may be deteriorated due to that. Such a problem is particularly remarkable in the case of an electrode in which a tab terminal member is connected to a portion of the current collector where the active material is not arranged by means such as welding. The reason is that the portion of the current collector where the active material is not arranged becomes the tab terminal connecting portion, and the connecting operation there is essential. The connecting operation has a larger mechanical load on the tab terminal than the other tab terminal handling operations. Further, the contact between the tab terminal and the current collector at the welded portion may be insufficient. Therefore, the thickness of the current collector where the active material is not arranged is made thicker than the current collector where the active material is arranged (that is, t2>
By setting t1), the rigidity of the t2 portion is increased, and such a problem can be overcome.

【0005】上記二次元集電体とは、金属等からなる導
電性の箔や膜や板等である。また上記二次元集電体は、
穿孔板等でも良い。また上記薄型電極とは前記二次元集
電体を用いた薄い電極である。
The above-mentioned two-dimensional current collector is a conductive foil, film, plate or the like made of metal or the like. In addition, the above two-dimensional current collector,
A perforated plate or the like may be used. The thin electrode is a thin electrode using the two-dimensional current collector.

【0006】上記本発明に係る薄型電極は、必ずしも両
極性の電極に適用する必要はない。片方の極性の電極に
適用するだけでも十分に高率放電特性向上効果は得られ
る。つまり、正極集電体あるいは負極集電体のどちらか
が本発明に係る二次元集電体を用いていれば、他方の極
性の集電体は三次元集電体等の二次元集電体以外でもよ
い。一般に非水電解液電池は負極活物質よりも正極活物
質の方が導電性に乏しい。従って仮に一方の極性の電極
のみに本発明の構成を適用するならば、正極に適用する
ことが好ましい。もちろん本例のように両極性の電極に
本発明の構成を適用することが最も好ましいことは言う
までもない。また集電体の活物質が配されない部分は、
電極幅方向又は長さ方向の端部全域に亘り存在すること
が電極作製工程が簡易化される点で好ましいが、特に限
定されない。
The thin electrode according to the present invention need not necessarily be applied to bipolar electrodes. Even if it is applied to an electrode of one polarity, the effect of improving the high rate discharge characteristics can be sufficiently obtained. That is, if either the positive electrode current collector or the negative electrode current collector uses the two-dimensional current collector according to the present invention, the other polarity current collector is a two-dimensional current collector such as a three-dimensional current collector. It may be other than. Generally, in a non-aqueous electrolyte battery, the positive electrode active material has poorer conductivity than the negative electrode active material. Therefore, if the configuration of the present invention is applied to only one polarity electrode, it is preferably applied to the positive electrode. Needless to say, it is most preferable to apply the configuration of the present invention to bipolar electrodes as in this example. In addition, the part of the current collector where the active material is not arranged is
It is preferable that the electrode exists over the entire end portion in the width direction or the length direction of the electrode from the viewpoint of simplifying the electrode manufacturing process, but is not particularly limited.

【0007】またタブ端子は集電体から導出、つまり集
電体部材の一部をタブ端子形状に切り出したものでも良
いし、集電体の活物質が配されていない箇所にタブ端子
部材を溶接等の手段で接続されているものでも良い。ま
たタブ端子と外部集電端子とは、直接に溶接等の手段で
接続されていても良いし、タブ端子と外部集電端子との
間が、PTC素子等の機能部材を介しながら間接的に接
続されていても良い。上記t2をt1よりも厚くする方
法としては、全面がt1である集電体の一部に金属箔を
超音波接合したり同種金属を電析し、その部分をt2と
する方法等がある。
Further, the tab terminal may be derived from the current collector, that is, a part of the current collector member may be cut out into a tab terminal shape, or the tab terminal member may be provided at a portion where the active material of the current collector is not arranged. It may be connected by means such as welding. The tab terminal and the external current collecting terminal may be directly connected by means such as welding, or the tab terminal and the external current collecting terminal may be indirectly connected via a functional member such as a PTC element. It may be connected. As a method of making t2 thicker than t1, there is a method of ultrasonically bonding a metal foil to a part of the current collector whose entire surface is t1, or depositing the same kind of metal, and making that part t2.

【0008】なお本発明では、集電体の活物質が配され
ていない箇所にタブ端子部材を溶接等の手段で接続され
ている形態の集電体の場合、前記タブ端子部材そのもの
を集電体の活物質が配されていない箇所とは定義しな
い。
In the present invention, in the case of a current collector in which the tab terminal member is connected to a portion of the current collector where the active material is not arranged by means such as welding, the tab terminal member itself is used for current collection. It is not defined as the part where the active material of the body is not arranged.

【0009】またt2が、t1と活物質厚みとの和を越
えないことにより、電池の体積エネルギー密度が低下せ
ず、好ましい。このように「t2が、t1と活物質厚み
との和を越えないこと」を論じるときのt2は、集電体
部材の一部をタブ端子形状に切り出した形態の集電体を
用いた電極の場合、そのままt2と表現する。また集電
体の活物質が配されていない箇所(面)にタブ端子部材
を溶接等の手段で接続されている形態の集電体を用いた
電極の場合、集電体の活物質が配されていない箇所の厚
みは、t2とタブ端子部材厚みとの和としてt2’と以
下表現する。
Further, it is preferable that t2 does not exceed the sum of t1 and the thickness of the active material, because the volumetric energy density of the battery does not decrease. Thus, when discussing that "t2 does not exceed the sum of t1 and the thickness of the active material", t2 is an electrode using a current collector in which a part of the current collector member is cut out into a tab terminal shape. In the case of, it is expressed as it is as t2. Further, in the case of an electrode using a current collector in which a tab terminal member is connected to a portion (surface) where the active material of the current collector is not disposed by means such as welding, the active material of the current collector is not distributed. The thickness of the portion that is not formed is expressed as t2 ′ below as the sum of t2 and the thickness of the tab terminal member.

【0010】[0010]

【発明の実施の形態】以下に本発明の非水電解液電池と
して、いわゆるリチウムイオン二次電池を例に本発明の
実施の形態を説明する。図1に本発明に係る非水電解液
電池用負極の一例の断面および平面図を示す。1はt1
=10μmの銅製の負極集電体であり、その活物質が配
されていない箇所の両面にそれぞれ30μmの銅箔2が
超音波接合され、t2の厚さ90μmの負極集電体とな
っている。3は炭素材料と結着剤のポリフッ化ビニリデ
ンとの混合物である活物質合剤であり、負極集電体1の
片面につき70μmずつ、両面に塗着されている。4は
銅製のタブ端子(厚み80μm)で銅箔2に超音波接合
されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below by taking a so-called lithium ion secondary battery as an example of the non-aqueous electrolyte battery of the present invention. FIG. 1 shows a cross section and a plan view of an example of a negative electrode for a non-aqueous electrolyte battery according to the present invention. 1 is t1
= 10 μm of a copper negative electrode current collector, and 30 μm of copper foil 2 is ultrasonically bonded to both surfaces of a portion where the active material is not arranged, thereby forming a negative electrode current collector with a thickness of 90 μm at t2. . Reference numeral 3 denotes an active material mixture, which is a mixture of a carbon material and polyvinylidene fluoride as a binder, and is applied to both surfaces of the negative electrode current collector 1 at 70 μm each. Reference numeral 4 is a copper tab terminal (thickness: 80 μm) ultrasonically bonded to the copper foil 2.

【0011】同様に図2に本発明に係る非水電解液電池
用正極の一例の断面および平面図を示す。5は厚さt1
=20μmの正極集電体であり、その活物質が配されて
いない箇所の両面にそれぞれ20μmのアルミニウム箔
6が超音波接合され、t2の厚さ60μmの正極集電体
となっている。7はLiMn24と導電剤の炭素材料と
結着剤のポリフッ化ビニリデンとの混合物である活物質
合剤であり、正極集電体5の片面につき85μmずつ、
両面に塗着されている。8はアルミニウム製のタブ端子
(厚み100μm)でアルミニウム箔6に超音波接合さ
れている。
Similarly, FIG. 2 shows a cross section and a plan view of an example of the positive electrode for a non-aqueous electrolyte battery according to the present invention. 5 is the thickness t1
= 20 μm of the positive electrode current collector, and the aluminum foil 6 of 20 μm is ultrasonically bonded to both surfaces of the portion where the active material is not arranged, thereby forming a positive electrode current collector of t2 having a thickness of 60 μm. 7 is an active material mixture which is a mixture of LiMn 2 O 4 , a carbon material as a conductive agent, and polyvinylidene fluoride as a binder, and 85 μm each on one side of the positive electrode current collector 5,
It is coated on both sides. 8 is a tab terminal (thickness 100 μm) made of aluminum, which is ultrasonically bonded to the aluminum foil 6.

【0012】これら正極と負極を厚さ25μmのセパレ
ータを介して捲回し、渦巻状の電極群を作製した。この
電極群を金属製の18650型電池容器に挿入したの
ち、負極タブ端子4を電池容器に溶接し、正極タブ端子
8を電池蓋を兼ねる正極外部端子に溶接した。電解液は
エチレンカーボネートとジメチルカーボネートの混合溶
媒にLiPF6(溶質)を溶解し、電池容器内に注入し
た。電解液注入後、電池蓋で電池容器を密閉した。
The positive electrode and the negative electrode were wound around a separator having a thickness of 25 μm to produce a spiral electrode group. After this electrode group was inserted into a metal 18650 type battery container, the negative electrode tab terminal 4 was welded to the battery container, and the positive electrode tab terminal 8 was welded to the positive electrode external terminal which also functions as a battery lid. As the electrolytic solution, LiPF 6 (solute) was dissolved in a mixed solvent of ethylene carbonate and dimethyl carbonate, and the solution was injected into the battery container. After injecting the electrolytic solution, the battery container was sealed with the battery lid.

【0013】本例ではリチウムイオン二次電池を対象と
しているが、電池系は特に限定されない。また本例のよ
うにリチウムイオン二次電池を対象にした場合、正極活
物質、負極活物質については適宜変更可能である。正極
活物質としてはコバルト酸リチウムやニッケル酸リチウ
ム等の層間化合物、あるいはこれら活物質元素の他元素
による部分置換材料等も使用可能である。負極活物質と
しては炭素材料(黒鉛を含む)以外にも、リチウムを電
気化学的に挿入・脱離可能な金属カルコゲン化物等が使
用可能である。但し非水電解液電池の正極活物質が、本
例のようにコバルト酸リチウムよりも低コストのマンガ
ン酸リチウム(他元素による部分置換材料も含む)であ
る場合、あるいは含む場合、特に本発明はその効力を発
揮すると考えられる。その理由は、一般にマンガン酸リ
チウムはコバルト酸リチウムやニッケル酸リチウム等に
比して電子伝導性が低く、それを含む電極の導電性を向
上させることが期待されているためである。また集電体
の材質、集電タブの材質、集電体の活物質が配されてい
ない箇所へ配置する材料の材質についても、本例で用い
たもの以外のものが適宜使用可能である。またt2>t
1とする手段としては、本例以外ではt1部分のエッチ
ングや、機械的研削、t2部分への同種金属の電析等が
考えられる。t1部分のエッチングや、機械的研削(サ
ンドブラスト等)を採用するとt1部分が粗面化され、
集電体/活物質の密着性が向上し、さらに電池の高率放
電性能が向上することが考えられる。また、集電体のt
1部分を直接的あるいは間接的に圧延する手段も考えら
れる。また本例では両極性の電極に対してt2>t1の
構成を適用したが、一方の極性の電極のみにt2>t1
の構成を適用しても高率放電特性は向上する。また本例
ではタブ端子を集電体とは別の部材としたが、タブ端子
は集電体から導出、つまり集電体部材の一部をタブ端子
形状に切り出したものでも良い。また本例ではタブ端子
と外部集電端子とは直接に接続されているが、タブ端子
と外部集電端子との間が、PTC素子等の機能部材等を
介しながら間接的に接続されていても良い。
Although a lithium ion secondary battery is targeted in this example, the battery system is not particularly limited. When a lithium ion secondary battery is targeted as in this example, the positive electrode active material and the negative electrode active material can be changed as appropriate. As the positive electrode active material, it is possible to use an intercalation compound such as lithium cobalt oxide or lithium nickel oxide, or a partial replacement material with other elements of these active material elements. As the negative electrode active material, besides the carbon material (including graphite), a metal chalcogenide capable of electrochemically inserting and removing lithium can be used. However, when the positive electrode active material of the non-aqueous electrolyte battery is lithium manganate (including partially substituted material by other element) which is lower in cost than lithium cobalt oxide as in this example, or when it is included, the present invention is particularly It is thought to exert its effect. The reason is that lithium manganate generally has lower electron conductivity than lithium cobalt oxide, lithium nickel oxide, and the like, and is expected to improve the conductivity of an electrode including the lithium manganate. Further, as the material of the current collector, the material of the current collector tab, and the material of the material to be placed in the portion where the active material of the current collector is not arranged, those other than those used in this example can be appropriately used. Also, t2> t
Other than this example, the means for setting 1 may be etching of the t1 portion, mechanical grinding, electrodeposition of the same metal on the t2 portion, and the like. If t1 etching or mechanical grinding (sandblasting) is used, the t1 surface will be roughened,
It is considered that the adhesion between the current collector / active material is improved and the high rate discharge performance of the battery is further improved. In addition, t of the current collector
A means for directly or indirectly rolling one portion is also conceivable. Further, in this example, the configuration of t2> t1 is applied to the bipolar electrodes, but t2> t1 is applied only to one polar electrode.
The high rate discharge characteristics are improved even if the configuration of (3) is applied. In this example, the tab terminal is a member different from the current collector, but the tab terminal may be derived from the current collector, that is, a part of the current collector member may be cut into a tab terminal shape. Further, in this example, the tab terminal and the external current collecting terminal are directly connected, but the tab terminal and the external current collecting terminal are indirectly connected via a functional member such as a PTC element. Is also good.

【0014】また本例のように、t2とタブ端子厚みの
和(t2’)は、活物質が配されている電極の厚み以下
であることが好ましい。その理由は、電極を積層あるい
は捲回した電極群により電池を構成する場合、t2’に
相当する箇所が電極群の形状を変化させるおそれがある
ためである。電極群の形状が変化すると電池の作製(特
に電池容器への電極群の挿入工程)を困難にしたり、電
池内での電極間距離を局部的に大きくして電池の内部抵
抗を増大させ、電池の体積当たりのエネルギー密度を低
下させ、不利な要因を生み出すおそれがある。当然タブ
端子が集電体から導出、つまり集電体部材の一部をタブ
端子形状に切り出した形態の電極を用いた場合は、t2
が活物質が配されている電極の厚み以下であることが好
ましいことになる。
As in this example, the sum of t2 and the tab terminal thickness (t2 ') is preferably less than or equal to the thickness of the electrode on which the active material is arranged. The reason is that, when a battery is formed by an electrode group in which electrodes are laminated or wound, a portion corresponding to t2 ′ may change the shape of the electrode group. When the shape of the electrode group changes, the battery fabrication (particularly the step of inserting the electrode group into the battery container) becomes difficult, and the distance between the electrodes in the battery is locally increased to increase the internal resistance of the battery. May reduce the energy density per unit volume and create a detrimental factor. Of course, when the tab terminal is led out from the current collector, that is, when an electrode in which a part of the current collector member is cut out into a tab terminal shape is used, t2
Is preferably not more than the thickness of the electrode on which the active material is arranged.

【0015】[0015]

【実施例】実施例1〜3、従来例のリチウムイオン二次
電池を以下の条件により作製し、比較検討した。 (実施例1の電池の作製)発明の実施の形態に記載した
条件により作製した。
[Examples] Lithium ion secondary batteries of Examples 1 to 3 and a conventional example were prepared under the following conditions and comparatively examined. (Production of Battery of Example 1) The battery was produced under the conditions described in the embodiment of the invention.

【0016】 正極:t1=20μm、t2=60μm、t2’=160μm 活物質厚みとt1の和=190μm 負極:t1=10μm、t2=70μm、t2’=150μm 活物質厚みとt1の和=150μm (実施例2の電池の作製)銅箔6を厚さ20μmとした
以外は実施例1の電池と同条件で作製した。
Positive electrode: t1 = 20 μm, t2 = 60 μm, t2 ′ = 160 μm Sum of active material thickness and t1 = 190 μm Negative electrode: t1 = 10 μm, t2 = 70 μm, t2 ′ = 150 μm Sum of active material thickness and t = 150 μm ( Preparation of Battery of Example 2) A battery of Example 1 was prepared except that the copper foil 6 had a thickness of 20 μm.

【0017】 正極:t1=20μm、t2=60μm、t2’=160μm 活物質厚みとt1の和=190μm 負極:t1=10μm、t2=50μm、t2’=130μm 活物質厚みとt1の和=150μm (実施例3の電池の作製)銅箔2を厚さ40μmとした
以外は実施例1の電池と同条件で作製した。
Positive electrode: t1 = 20 μm, t2 = 60 μm, t2 ′ = 160 μm Sum of active material thickness and t1 = 190 μm Negative electrode: t1 = 10 μm, t2 = 50 μm, t2 ′ = 130 μm Sum of active material thickness and t = 150 μm ( Preparation of Battery of Example 3) A battery of Example 1 was prepared except that the copper foil 2 had a thickness of 40 μm.

【0018】 正極:t1=20μm、t2=60μm、t2’=160μm 活物質厚みとt1の和=190μm 負極:t1=10μm、t2=90μm、t2’=170μm 活物質厚みとt1の和=150μm (従来例の電池の作製)銅箔2、アルミニウム箔6を設
けない以外は実施例1の電池と同条件で作製した。
Positive electrode: t1 = 20 μm, t2 = 60 μm, t2 ′ = 160 μm Sum of active material thickness and t1 = 190 μm Negative electrode: t1 = 10 μm, t2 = 90 μm, t2 ′ = 170 μm Active material thickness and t1 sum = 150 μm ( Preparation of Battery of Conventional Example) A battery was prepared under the same conditions as the battery of Example 1 except that the copper foil 2 and the aluminum foil 6 were not provided.

【0019】 正極:t1=20μm、t2=20μm 負極:t1=10μm、t2=10μm 上記実施例1〜3、従来例の電池を、放電率を変化させ
て放電容量を測定した。その結果を図3に示す。
Positive electrode: t1 = 20 μm, t2 = 20 μm Negative electrode: t1 = 10 μm, t2 = 10 μm The discharge capacities of the batteries of Examples 1 to 3 and the conventional example were measured by changing the discharge rate. The result is shown in FIG.

【0020】図3より実施例1〜3の電池、従来例の電
池は、放電率の小さい条件では放電容量に差はみられな
かったが、1CmA以上の放電率では実施例1〜3の電
池が従来例の電池よりも明らかに高容量だった。実施例
1〜3の電池は放電率が大きくなるほど従来例の電池と
の放電容量差が大きくなっている。このことから正極集
電体あるいは負極集電体の活物質合剤を塗着した箇所の
集電体厚みt1より活物質合剤が塗着されていない箇所
の集電体厚みt2を厚くすることにより、電気抵抗を小
さくして高率放電特性を向上することができたことがわ
かる。また図3の実施例3の電池と従来例の電池を比較
すると、0.5CmAより小さい放電率においては従来
例の電池の方が実施例3の電池よりも放電容量が大きい
ことがわかる。これは実施例3の電池の負極のt2が、
t1と活物質厚みとの和を越えたため、捲回電極群形状
が微妙に変形し、電池内の電極間距離が局部的に広が
り、僅かに電池内部抵抗が大きかったためと考えられ
る。しかし1CmA以上の放電率では実施例3の電池が
従来例の電池よりも高容量だった。これはこのような高
率での放電条件では、僅かな電池内部抵抗の差に起因す
る放電容量差よりも集電体の集電効率に起因する放電容
量差の方が大きいためと考えられる。
From FIG. 3, the batteries of Examples 1 to 3 and the battery of the conventional example showed no difference in discharge capacity under the condition of small discharge rate, but the batteries of Examples 1 to 3 at discharge rates of 1 CmA or more. However, the capacity was obviously higher than that of the conventional battery. The larger the discharge rate of the batteries of Examples 1 to 3, the larger the difference in discharge capacity from the batteries of the conventional example. Therefore, the thickness t2 of the positive electrode current collector or the negative electrode current collector where the active material mixture is not applied is made thicker than the current collector thickness t1 where the active material mixture is applied. From this, it is understood that the high-rate discharge characteristics could be improved by reducing the electric resistance. Further, comparing the battery of Example 3 with the battery of the conventional example in FIG. 3, it can be seen that the battery of the conventional example has a larger discharge capacity than the battery of Example 3 at a discharge rate of less than 0.5 CmA. This is because the negative electrode t2 of the battery of Example 3 was
It is considered that, since the sum of t1 and the thickness of the active material was exceeded, the shape of the wound electrode group was slightly deformed, the distance between the electrodes in the battery was locally widened, and the internal resistance of the battery was slightly large. However, at a discharge rate of 1 CmA or more, the battery of Example 3 had a higher capacity than the battery of the conventional example. This is considered to be because under such a high discharge rate condition, the difference in discharge capacity due to the current collection efficiency of the current collector is larger than the difference in discharge capacity due to the slight difference in battery internal resistance.

【0021】実施例1〜3の電池は、負極集電体のt2
のみを変化させたが、正極集電体のt2のみを同様に変
化させた場合でも、図3に示す実施例1〜3の電池の放
電容量差と同様の傾向がみられた。
The batteries of Examples 1 to 3 are t2 of the negative electrode current collector.
However, even when only t2 of the positive electrode current collector was similarly changed, the same tendency as the difference in discharge capacity of the batteries of Examples 1 to 3 shown in FIG. 3 was observed.

【0022】[0022]

【発明の効果】本発明により、二次元集電体表面に配さ
れた活物質からなる薄型電極と、アルカリ金属イオンを
含む非水電解液を有する非水電解液電池において、金属
薄膜からなる集電体を用いた非水電解液電池の高率放電
特性を向上させることができた。
According to the present invention, in a non-aqueous electrolyte battery having a thin electrode made of an active material disposed on the surface of a two-dimensional current collector and a non-aqueous electrolyte containing alkali metal ions, a collector made of a metal thin film is used. The high rate discharge characteristics of the non-aqueous electrolyte battery using the electric body could be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る薄型電極(負極)の断面概略図お
よび平面概略図である。
FIG. 1 is a schematic cross-sectional view and a schematic plan view of a thin electrode (negative electrode) according to the present invention.

【図2】本発明に係る薄型電極(正極)の断面概略図及
び平面概略図である。
FIG. 2 is a schematic cross-sectional view and a schematic plan view of a thin electrode (positive electrode) according to the present invention.

【図3】非水電解液電池の放電率を変化させたときの放
電容量変化を示した図である。
FIG. 3 is a diagram showing changes in discharge capacity when the discharge rate of a non-aqueous electrolyte battery is changed.

【符号の説明】[Explanation of symbols]

1.負極集電体 2.銅箔 3.負極活物質合剤 4.銅製タブ端子 5.正極集電体 6.アルミニウム箔 7.正極活物質合剤 8.アルミニウム製タブ端子 1. Negative electrode current collector 2. Copper foil 3. Negative electrode active material mixture 4. Copper tab terminal 5. Positive electrode collector 6. Aluminum foil 7. Positive electrode active material mixture 8. Aluminum tab terminal

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01M 10/40 H01M 10/40 Z (56)参考文献 特開 平1−265449(JP,A) 特開 平10−3900(JP,A) 特開2001−176489(JP,A) 特開 昭59−98571(JP,A) 特開 平9−161840(JP,A) 特開 平7−254416(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/64 H01M 2/22 H01M 4/02 H01M 6/16 H01M 10/40 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI H01M 10/40 H01M 10/40 Z (56) Reference JP-A-1-265449 (JP, A) JP-A-10-3900 ( JP, A) JP 2001-176489 (JP, A) JP 59-98571 (JP, A) JP 9-161840 (JP, A) JP 7-254416 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 4/64 H01M 2/22 H01M 4/02 H01M 6/16 H01M 10/40

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】二次元集電体表面に配された活物質からな
る薄型電極と、アルカリ金属イオンを含む非水電解液を
有する非水電解液電池において、 前記電極が正極および/または負極であり、前記集電体
表面に、活物質が配される部分と、活物質が配されない
部分が存在し、その活物質が配されない部分から導出又
は接続されたタブ端子が、直接あるいは間接的に電池外
部端子に接続され、 前記活物質が配される部分の集電体厚みt1が、前記活
物質が配されない部分の集電体厚みt2よりも薄いこと
を特徴とする薄型電極を用いた非水電解液電池。
1. A non-aqueous electrolyte battery comprising a thin electrode made of an active material arranged on the surface of a two-dimensional current collector and a non-aqueous electrolyte containing an alkali metal ion, wherein the electrode is a positive electrode and / or a negative electrode. There is a portion where the active material is arranged and a portion where the active material is not arranged on the surface of the current collector, and the tab terminal derived or connected from the portion where the active material is not arranged is directly or indirectly. A thin electrode that is connected to an external terminal of a battery and has a current collector thickness t1 in a portion where the active material is arranged is thinner than a current collector thickness t2 in a portion where the active material is not arranged. Water electrolyte battery.
【請求項2】t2が、t1と活物質厚みとの和を越えな
い請求項1記載の薄型電極を用いた非水電解液電池。
2. A non-aqueous electrolyte battery using a thin electrode according to claim 1, wherein t2 does not exceed the sum of t1 and the thickness of the active material.
【請求項3】電極が正極であり、正極活物質がマンガン
酸リチウムを含む請求項1又は2記載の薄型電極を用い
た非水電解液電池。
3. A non-aqueous electrolyte battery using a thin electrode according to claim 1, wherein the electrode is a positive electrode and the positive electrode active material contains lithium manganate.
JP25978797A 1997-09-25 1997-09-25 Non-aqueous electrolyte battery using thin electrodes Expired - Fee Related JP3412473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25978797A JP3412473B2 (en) 1997-09-25 1997-09-25 Non-aqueous electrolyte battery using thin electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25978797A JP3412473B2 (en) 1997-09-25 1997-09-25 Non-aqueous electrolyte battery using thin electrodes

Publications (2)

Publication Number Publication Date
JPH11102710A JPH11102710A (en) 1999-04-13
JP3412473B2 true JP3412473B2 (en) 2003-06-03

Family

ID=17338987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25978797A Expired - Fee Related JP3412473B2 (en) 1997-09-25 1997-09-25 Non-aqueous electrolyte battery using thin electrodes

Country Status (1)

Country Link
JP (1) JP3412473B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101165503B1 (en) * 2009-09-30 2012-07-13 삼성에스디아이 주식회사 Rechargeable battery
KR101050288B1 (en) * 2009-10-01 2011-07-19 삼성에스디아이 주식회사 Electrode assembly and secondary battery having same

Also Published As

Publication number Publication date
JPH11102710A (en) 1999-04-13

Similar Documents

Publication Publication Date Title
JP3743781B2 (en) Nonaqueous electrolyte secondary battery
JP5762537B2 (en) A battery pack having a prismatic cell having a bipolar electrode
JP3819785B2 (en) Battery
JP3702308B2 (en) Nonaqueous electrolyte secondary battery
JP2006318892A (en) Square lithium secondary battery
JP3768026B2 (en) Non-aqueous electrolyte secondary battery
JP4538694B2 (en) Electrode wound type battery
JP2000106167A (en) Battery
JP3283805B2 (en) Lithium secondary battery
JP2000030744A (en) Lithium secondary battery
JP4621325B2 (en) Thin battery
JPH11219694A (en) Winding type cylindrical battery
JPH11111259A (en) Winding type battery
JP4245205B2 (en) Non-aqueous electrolyte battery
JPH06196169A (en) Nonaqueous electrolyte secondary battery
JP4590723B2 (en) Winding electrode battery and method for manufacturing the same
JP2003007346A (en) Secondary lithium battery and manufacturing method of the same
WO2023280103A1 (en) Lithium ion battery
JP2000090932A (en) Lithium secondary battery
CN217062239U (en) Battery cell structure and battery
JP3412473B2 (en) Non-aqueous electrolyte battery using thin electrodes
JPH06196170A (en) Nonaqueous electrolyte secondary battery
JP3749024B2 (en) battery
JP3511476B2 (en) Lithium secondary battery
JP4436464B2 (en) Lithium ion battery

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090328

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090328

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100328

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees