JP4245205B2 - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery Download PDF

Info

Publication number
JP4245205B2
JP4245205B2 JP06799198A JP6799198A JP4245205B2 JP 4245205 B2 JP4245205 B2 JP 4245205B2 JP 06799198 A JP06799198 A JP 06799198A JP 6799198 A JP6799198 A JP 6799198A JP 4245205 B2 JP4245205 B2 JP 4245205B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
negative electrode
electrolyte battery
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06799198A
Other languages
Japanese (ja)
Other versions
JPH11265732A (en
Inventor
康伸 児玉
育朗 中根
訓 生川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP06799198A priority Critical patent/JP4245205B2/en
Publication of JPH11265732A publication Critical patent/JPH11265732A/en
Application granted granted Critical
Publication of JP4245205B2 publication Critical patent/JP4245205B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、僅かな電池内圧の上昇によって変形する外装体を有し、この外装体内に発電要素が収納された非水電解質電池に関する。
【0002】
【従来の技術】
従来、非水電解質電池の外装体としては、全てがステンレス等の金属から成るものが用いられていた。ところが、このような外装体を用いた電池では、金属製の外装体を厚くせざるをえず、しかもこれに伴い電池重量が増大する。この結果、電池の薄型化が困難になると共に、電池の重量エネルギー密度が小さくなるという課題を有していた。
【0003】
そこで、本発明者らは、先に、アルミニウム等から成る金属層の両面に接着剤層を介して樹脂層が形成されたラミネート材を袋状にしてラミネート外装体を構成し、このラミネート外装体の収納空間に発電要素を収納するような薄型電池を提案した。このような構造の電池であれば、飛躍的に電池の小型化を達成でき、しかも電池の重量エネルギー密度が大きくなるという利点を有する。
【0004】
しかしながら、上記ラミネート外装体を用いた電池では、金属製の外装体を用いた電池に比べて、外装体が柔軟である。このため、発電要素の厚みに応じて、外装体も変形するため、発電要素が厚くなると、その分だけ電池の厚みも大きくなる。この結果、体積エネルギー密度が低下するという課題を有していた。
【0005】
【発明が解決しようとする課題】
本発明は、以上の事情に鑑みなされたものであって、発電要素を薄くすることにより、電池の厚みを小さくし、これにより体積エネルギー密度を飛躍的に増大することができる非水電解質電池の提供を目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明のうちで請求項1記載の発明は、帯状の正極芯体の両面に正極活物質層が形成された正極と、帯状の負極芯体の両面に負極活物質層が形成された負極とが、セパレータを介して長手方向に巻回された偏平渦巻き状の発電要素を有すると共に、この発電要素が、電池内圧の上昇によって変形するラミネート外装体内に収納され、しかも上記正極からは正極タブが、上記負極からは負極タブが、それぞれ上記両芯体の長手方向と略垂直に延設され、且つ上記両タブが所定の間隔で配置される構造の非水電解質電池において、上記両タブは、上記両極の巻回始端に各々設けられ、且つ上記発電要素の巻回軸方向の一方側面から同一方向に突出され、上記両極のうち少なくとも一方の極における少なくとも一方の面には、上記同一方向に突出された両タブ間の距離以上の長さの活物質未塗布部が形成され、当該活物質未塗布部は両タブに対応する電極位置に位置していることを特徴とする。
正極タブが設けられた正極と、負極タブが設けられた負極とを、セパレータを介して巻回される偏平渦巻き状の発電要素を有する電池では、両タブが接触することによるショートを防止するために、両タブをある程度離して配置する必要がある。したがって、正負極の巻回終端において両者が略一致するためには、一方の極を他方の極より長くせざるを得ない。ところが、このような構造であると、長くした電極部分は、充放電に関与しないにも関わらず、活物質層が形成されているため、その活物質層の厚み分だけ発電要素が厚くなり、この結果電池の厚みも増加する。特に、両タブはある程度の厚みを有するため、両タブが形成されている部分における厚みが増大する。このことから、体積エネルギー密度等が減少する。
しかしながら、上記構成の如く、両極のうち少なくとも一方の極における少なくとも一方の面には、上記両タブ間の距離以上の活物質未塗布部が形成されていれば、当該活物質未塗布部において活物質層の厚み分だけ薄くなる。特に、活物質未塗布部は両タブ間の距離以上に形成され、両タブに対応する位置には常に活物質未塗布部が存在することになるため、特に問題となる両タブにおける発電要素(電池)の厚みが減少する。このことから、電池の体積エネルギー密度が増大し、しかも活物質未塗布部の存在により重量エネルギー密度が増大する。
加えて、従来の構造であると、電池を充電状態で保存(特に、高温で保存)すると、充放電に関与しない長くした電極部分がある程度充電された状態になる。ところが、当該部分では放電できないため、その分だけ放電容量の減少を招き、しかも充放電サイクルを繰り返した後の電池厚みが増大する。これに対して、上記の構造であれば、充放電に関与しない長くした電極部分には活物質層が形成されていないので、保存により当該部分が充電状態となるのを防止できる。したがって、放電容量が減少せず、しかも理由は定かではないが充放電サイクルを繰り返した後の電池厚みの増大を抑制できる。
た、上記両タブは、上記両極の巻回始端に各々設けられていることを特徴とする。このような構成であれば、正負両極において両タブの取り付けが容易化するので、電池の製造コストが低減される。
また、請求項記載の発明は請求項記載の発明において、上記活物質層未塗布部の長さは、上記同一方向に突出された両タブ間の距離の2倍以上となるように構成されることを特徴とする。
このような構成であれば、一層電池厚みを小さくすることができるので、上記の効果が一層発揮される。
また、請求項記載の発明は請求項1又は2記載の発明において、上記ラミネート外装体は、アルミニウム層の両面に、変性ポリプロピレンから成る接着剤層を介してポリプロピレンから成る樹脂層が接着されてなるものであることを特徴とする。
また、請求項記載の発明は請求項1、2、又は3記載の発明において、上記両極の両活物質層は、リチウムイオンを可逆的に吸蔵,放出可能な材料から成ることを特徴とする。
上記の如く本発明を二次電池に適用すれば、理由は定かではないが充放電サイクルを繰り返した後の電池厚みの増大を抑制できる。
また、請求項記載の発明は請求項1、2、3、又は4記載の発明において、上記負極活物質として、グラファイトが用いられることを特徴とする。
【0007】
【発明の実施の形態】
〔第1の形態〕
本発明の第1の形態を、図1〜図8に基づいて、以下に説明する。
図1は第1の形態に係る非水電解質電池の正面図、図2は図1のA−A線矢視断面図、図3は第1の形態に係る非水電解質電池に用いるラミネート外装体の断面図、図4は第1の形態に係る非水電解質電池に用いる正極の正面図、図5は第1の形態に係る非水電解質電池に用いる正極の背面図、図6は第1の形態に係る非水電解質電池に用いる負極の正面図、図7は第1の形態に係る非水電解質電池を作製する際の工程説明図、図8は第1の形態に係る非水電解質電池に用いる発電要素の斜視図である。
【0008】
図2に示すように、本発明の薄型電池は発電要素1を有しており、この発電要素1は収納空間2内に配置されている。この収納空間2は、図1に示すように、ラミネート外装体3の上下端と中央部とをそれぞれ封止部4a・4b・4cで封口することにより形成される。また、収納空間2には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とが体積比で4:6の割合で混合された混合溶媒に、LiPF6 が1M(モル/リットル)の割合で溶解された電解液が注入されている。また、図8に示すように、上記発電要素1は、LiCoO2 から成る正極5と、グラファイトから成る負極6と、これら両電極を離間するセパレータ(図8においては図示せず)とを偏平渦巻き状に巻回することにより作製される。
【0009】
また、図3に示すように、上記ラミネート外装体3の具体的な構造は、アルミニウム層11(厚み:30μm)の両面に、各々、変性ポリプロピレンから成る接着剤層12・12(厚み:5μm)を介してポリプロピレンから成る樹脂層13・13(厚み:30μm)が接着される構造である。
【0010】
更に、上記正極5はアルミニウムから成る正極集電タブ7に、また上記負極6は銅から成る負極集電端タブ8にそれぞれ接続され、電池内部で生じた化学エネルギーを電気エネルギーとして外部へ取り出し得るようになっている。
尚、この電池の大きさは、図1及び図2に示すように、幅L1 が35mm、長さL2 が80mm、厚みL3 が3mmとなるように構成されている。
【0011】
ここで、上記構造の電池を、以下のようにして作製した。
先ず、正極活物質としてのLiCoO2 と導電剤としてのアセチレンブラックとグラファイトと結着剤としてのポリフッ化ビニリデン(PVdF)とを重量比で、90:2:3:5の割合で混合して正極合剤を作製した後、図4及び図5(尚、図4及び図5においては、理解の容易のため、後工程で正極5に取り付ける正極タブ7も実線で図示している)に示すように、この正極合剤をアルミニウムから成る帯状の正極芯体10の両面に塗着し、更に圧延、乾燥して正極活物質層9a・9bを形成した。これにより、正極5が作製される。
この際、上記正極タブ7の近傍における上記正極芯体10の両面には、正極活物質層9a・9bを形成しない正極活物質未塗布部14a・14bを形成すると共に、上記正極タブ7とは反対側の端部近傍における上記正極芯体10の一方の面には、正極活物質層9bを形成しない正極活物質未塗布部14cを形成した。尚、この正極5の長さL4 は253mm、正極5の幅L5 は55.5mm、正極活物質未塗布部14a・14bの長さL6 ・L7 は36mm、正極活物質未塗布部14cの長さL8 は70mm、正極活物質層9aの長さL9 は217mm、正極活物質層9bの長さL10は147mm、正極タブ7の幅L11は4mmとした。
【0012】
これと並行して、負極活物質としての天然黒鉛と結着剤としてのポリフッ化ビニリデンとを重量比で、90:10の割合で混合して負極合剤を作製した後、図6(尚、図6においては、理解の容易のため、後工程で負極6に取り付ける負極タブ8も実線で図示している)に示すように、この負極合剤を銅から成る帯状の負極芯体17の両面における全面に塗着し、更に乾燥、圧延して負極活物質層21aを形成した。これにより、負極6が作製される。
尚、上記負極6の長さL12は225mm、負極6の幅L13は57.5mm、負極タブ8の幅L14は4mmとした。また、負極6は両面とも同一の構成であるので、他方の面の図面及びその説明は省略する。
次に、これら正負極5・6に、それぞれ正極集電タブ7と負極集電タブ8とを取り付けた後、図7(図7においては、セパレータは省略している)に示すように、両タブ7・8のタブ間距離L15が18mmとなるように、正負極5・6をセパレータを介して配置する。しかる後、巻回用の薄板15を用いて正負両極5・6及びセパレータを偏平渦巻状に巻回して、図8(図8においては、セパレータは省略している)に示すような発電要素1を作製した。
【0013】
次いで、樹脂層(ポリプロピレン)/接着剤層/アルミニウム合金層/接着剤層/樹脂層(ポリプロピレン)の5層構造から成るシート状のラミネート材を用意した後、このラミネート材における端部近傍同士を重ね合わせ、更に、重ね合わせ部を溶着して、封止部4cを形成した。次に、この筒状のラミネート材の収納空間2内に発電要素1を挿入した。この際、筒状のラミネート材の一方の開口部から両集電タブ7・8が突出するように発電要素1を配置した。次に、この状態で、両集電タブ7・8が突出している開口部のラミネート材を溶着して封止し、封止部4aを形成した。この際、溶着は高周波誘導溶着装置を用いて行った。
【0014】
次いで、この状態で、真空加熱乾燥(温度:105℃)を2時間行い、ラミネート材及び発電要素1の水分を除去した。この後、エチレンカーボネートとジエチルカーボネートとが体積比で4:6の割合で混合された混合溶媒に、LiPF6 が1M(モル/リットル)の割合で溶解された電解液を注入した後、この状態で1時間放置した。しかる後、発電要素1に対応するラミネート材を金属板にて加圧しつつ、上記封止部4aとは反対側のラミネート材の端部を超音波溶着装置を用いて溶着し、封止部4bを形成することにより非水電解質電池を作製した。尚、上記電解液注入工程以降の工程は、アルゴン雰囲気のドライボックス内で行った。
【0015】
ここで、ラミネート外装体の樹脂層としては上記ポリプロピレンに限定されるものではなく、例えば、ポリエチレン等のポリオレフィン系高分子、ポリエチレンテレフタレート等のポリエステル系高分子、ポリフッ化ビニリデン、ポリ塩化ビニリデン等のポリビニリデン系高分子、ナイロン6、ナイロン66、ナイロン7等のポリアミド系高分子等が挙げられる。また、ラミネート外装体の構造としては、上記の5層構造に限定されるものではない。
更に、外装体としては、ラミネート外装体に限定されるものではなく、僅かな電池内圧の上昇によって変形する外装体であれば、本発明を適用しうることは勿論である。
【0016】
更に、正極材料としては上記LiCoO2 の他、例えば、LiNiO2 、LiMn2 4 或いはこれらの複合体、又はポリアニリン、ポリピロール等の導電性高分子等が好適に用いられ、また負極材料としては上記グラファイトの他、カーボンブラック、コークス、ガラス状炭素、炭素繊維或いはこれらの焼成体等が好適に用いられる。更に、本発明は上記リチウムイオン電池に限定されるものではなく、正負極間に固体電解質が存在するポリマー電池等の他の電池にも適用しうる。
【0017】
加えて、用いられる電解質としては、上記LiPF6 に限定するものではなく、LiN(CF3 SO2 2 、LiClO4 、LiBF4 等を用いることも可能である。
〔第2の形態〕
本発明の第2の形態を、図9〜図11に基づいて、以下に説明する。
図9は第2の形態に係る非水電解質電池に用いる正極の正面図、図10は第2の形態に係る非水電解質電池に用いる正極の背面図、図11は第2の形態に係る非水電解質電池に用いる負極の正面図である。
尚、上記第1の形態と同様の機能を有する部材についてはその説明を省略し、また、上記第1の形態と同様の長さ及び幅(L4 等)であるものについてもその説明を省略する。このことは、下記の形態についても同様である。
図9及び図10に示すように、正極5の正極活物質未塗布部14a・14bの幅L6 を6mmと短くする(この場合には、正極活物質未塗布部14a・14bは正極リード7により略覆われるので、正極活物質未塗布部本来の役割は有しない)と共に、図11に示すように、負極6の巻回始端(負極タブ8の近傍)における両面に負極活物質未塗布部20aを形成する他は、上記第1の形態の非水電解質電池と同様の構成である。尚、負極6は両面とも同一の構成であるので、他方の面の図面及びその説明は省略する。
ここで、正極5の正極活物質未塗布部14a・14bの幅L6 を短くしたことに伴って、正極5の長さL4 を223mmとすると共に、負極6の長さL12を255mm、負極活物質層21aの長さL16を223mmとし、且つ負極活物質未塗布部20aの長さL17を32mmとした。
〔第3の形態〕
本発明の第3の形態を、図12〜図15に基づいて、以下に説明する。
図12は第3の形態に係る非水電解質電池に用いる正極の正面図、図13は第3の形態に係る非水電解質電池に用いる正極の背面図、図14は第3の形態に係る非水電解質電池に用いる負極の正面図、図15は第3の形態に係る非水電解質電池に用いる負極の背面図である。
図15に示すように、負極6の巻回始端(負極タブ8の近傍)における一方の面に負極活物質未塗布部20bを形成する他は、上記第1の形態の非水電解質電池と同様の構成である。
ここで、負極活物質層21bの長さL18を160mmとし、且つ負極活物質未塗布部20bの長さL19を65mmとした。
〔第4の形態〕
本発明の第4の形態を、図16〜図18に基づいて、以下に説明する。
図16は第4の形態に係る非水電解質電池に用いる正極の正面図、図17は第4の形態に係る非水電解質電池に用いる正極の背面図、図18は第4の形態に係る非水電解質電池に用いる負極の正面図である。
図16及び図17に示すように、正極5の正極活物質未塗布部14a・14bの幅L6 を6mmと短くする(この場合には、正極活物質未塗布部14a・14bは正極リード7により略覆われるので、正極活物質未塗布部本来の役割は有しない)他は、上記第1の形態の非水電解質電池と同様の構成である。尚、負極6は両面とも同一の構成であるので、他方の面の図面及びその説明は省略する。
ここで、正極5の正極活物質未塗布部14a・14bの幅L6 を短くしたことに伴って、正極5の長さL4 を223mmとすると共に、負極6の長さL12を255mmとした。
【0018】
【実施例】
〔実施例1〕
実施例1としては上記第1の形態に示す電池を用いた。
このようにして作製した電池を、以下、本発明電池A1と称する。
【0019】
〔実施例2〕
実施例2としては上記第2の形態に示す電池を用いた。
このようにして作製した電池を、以下、本発明電池A2と称する。
〔実施例3〕
実施例3としては上記第3の形態に示す電池を用いた。
このようにして作製した電池を、以下、本発明電池A3と称する。
〔実施例4〕
実施例4としては上記第4の形態に示す電池を用いた。
このようにして作製した電池を、以下、本発明電池A4と称する。
【0020】
〔比較例〕
本発明の比較例を、図19及び図20に基づいて、以下に説明する。
図19は比較例に係る非水電解質電池に用いる正極の正面図、図20は比較例に係る非水電解質電池に用いる負極の正面図である。
尚、上記第1実施例と同様の機能を有する部材についてはその説明を省略し、また、上記第1実施例と同様の長さ及び幅(L4 等)であるものについてもその説明を省略する。
図19に示すように、正極5の正極活物質未塗布部14aの幅L6 を6mmと短くする(この場合には、正極活物質未塗布部14aは正極リード7により略覆われるので、正極活物質未塗布部本来の役割は有しない)と共に、正極活物質未塗布部14cを形成しない他は、上記第1実施例の非水電解質電池と同様の構成である。尚、正極5及び負極6は両面とも同一の構成であるので、他方の面の図面及びその説明は省略する。
ここで、正極5の正極活物質未塗布部14aの幅L6 を短くしたことに伴って、正極5の長さL4 を223mmとすると共に、負極6の長さL12を325mmとした。
〔実験1〕
上記本発明電池A1〜A4及び比較電池Xにおいて、体積エネルギー密度、重量エネルギー密度を調べると共に、下記の条件で充電し、更に60℃で20日間電池を保存した後の容量回復率を調べたので、それらの結果を表1に示す。
尚、容量回復率は下記数1により算出される。また、容量維持率及び容量回復率を算出する際の充放電条件は、下記の条件である。
【0021】
充電条件:定電流、定電圧充電であり、具体的には、500mAの電流で電池電圧が4.1Vになった後、電流値が25mAに低下した時点で充電を終了する。
放電条件:定電流放電であり、具体的には、500mAの電流で電池電圧が2.75Vになった時点で放電を終了する。
【0022】
【数1】

Figure 0004245205
【0023】
【表1】
Figure 0004245205
【0024】
表1から明らかなように、比較電池Xでは体積エネルギー密度が188Wh/L、重量エネルギー密度が110Wh/kg、容量回復率が83%であるのに対して、本発明電池A1〜A4では体積エネルギー密度が207Wh/L以上、重量エネルギー密度が117Wh/kg以上、容量回復率が84%以上であり、全て比較電池Xに比べて優れることが認められる。特に、正負両極に活物質未塗布部を設けた本発明電池A3では、体積エネルギー密度が237Wh/L、重量エネルギー密度が133Wh/kg、容量回復率が89%で、極めて優れていることが認められる。
【0025】
また、上記表1には示していないが、上記本発明電池A1〜A4及び比較電池Xのサイクル特性を調べたところ、本発明電池A1〜A4は比較電池Xに比べて充放電サイクル終了後の電池の膨れが格段に小さくなっていることを実験により確認した。
【0026】
【発明の効果】
以上説明したように、本発明によれば、発電要素(電池)の厚みが減少するので、電池の体積エネルギー密度が増大し、しかも活物質未塗布部の存在により重量エネルギー密度が増大すると共に、充放電に関与しない電極部分には活物質層が形成されていないので、放電容量の減少を抑制でき、しかも充放電サイクルを繰り返した後の電池厚みの増大を抑制することができるといった優れた効果を奏する。
【図面の簡単な説明】
【図1】図1は第1の形態に係る非水電解質電池の正面図である。
【図2】図2は図1のA−A線矢視断面図である。
【図3】図3は第1の形態に係る非水電解質電池に用いるラミネート外装体の断面図である。
【図4】図4は第1の形態に係る非水電解質電池に用いる正極の正面図である。
【図5】図5は第1の形態に係る非水電解質電池に用いる正極の背面図である。
【図6】図6は第1の形態に係る非水電解質電池に用いる負極の正面図である。
【図7】図7は第1の形態に係る非水電解質電池を作製する際の工程説明図である。
【図8】図8は第1の形態に係る非水電解質電池に用いる発電要素の斜視図である。
【図9】図9は第2の形態に係る非水電解質電池に用いる正極の正面図である。
【図10】図10は第2の形態に係る非水電解質電池に用いる正極の背面図である。
【図11】図11は第2の形態に係る非水電解質電池に用いる負極の正面図である。
【図12】図12は第3の形態に係る非水電解質電池に用いる正極の正面図である。
【図13】図13は第3の形態に係る非水電解質電池に用いる正極の背面図である。
【図14】図14は第3の形態に係る非水電解質電池に用いる負極の正面図である。
【図15】図15は第3の形態に係る非水電解質電池に用いる負極の背面図である。
【図16】図16は第4の形態に係る非水電解質電池に用いる正極の正面図である。
【図17】図17は第4の形態に係る非水電解質電池に用いる正極の背面図である。
【図18】図18は第4の形態に係る非水電解質電池に用いる負極の正面図である。
【図19】図19は比較例の非水電解質電池に用いる正極の正面図である。
【図20】図20は比較例の非水電解質電池に用いる負極の正面図である。
【符号の説明】
1:発電要素
2:収納空間
3:ラミネート外装体
5:正極
6:負極
7:正極タブ
8:負極タブ
9a:正極活物質層
9b:正極活物質層
10:正極芯体
14a:活物質未塗布部
14b:活物質未塗布部
14c:活物質未塗布部
20a:活物質未塗布部
17:負極芯体
21a:負極活物質層
21b:負極活物質層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte battery having an exterior body that is deformed by a slight increase in battery internal pressure and in which a power generation element is housed in the exterior body.
[0002]
[Prior art]
Conventionally, as an exterior body of a non-aqueous electrolyte battery, one made of a metal such as stainless steel has been used. However, in a battery using such an exterior body, the metal exterior body must be thickened, and the battery weight increases accordingly. As a result, it has been difficult to reduce the thickness of the battery and to reduce the weight energy density of the battery.
[0003]
Therefore, the present inventors previously configured a laminate outer package by forming a bag of a laminate material in which a resin layer is formed on both surfaces of a metal layer made of aluminum or the like via an adhesive layer. We proposed a thin battery that houses the power generation element in the storage space. A battery having such a structure has the advantage that the battery can be dramatically reduced in size and the weight energy density of the battery is increased.
[0004]
However, in the battery using the laminate outer package, the outer package is more flexible than the battery using the metal outer package. For this reason, since an exterior body also deform | transforms according to the thickness of an electric power generation element, when the electric power generation element becomes thick, the thickness of a battery will also increase by that much. As a result, there has been a problem that the volume energy density is lowered.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and by reducing the thickness of the battery by thinning the power generation element, the non-aqueous electrolyte battery capable of dramatically increasing the volume energy density can be achieved. For the purpose of provision.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the invention described in claim 1 among the present invention is a positive electrode in which a positive electrode active material layer is formed on both sides of a belt-like positive electrode core, and a negative electrode active on both surfaces of the belt-like negative electrode core. The negative electrode on which the material layer is formed has a flat spiral power generation element wound in the longitudinal direction via a separator, and the power generation element is housed in a laminate outer body that is deformed by an increase in battery internal pressure, In addition, a non-aqueous electrolyte having a structure in which a positive electrode tab is extended from the positive electrode and a negative electrode tab is extended from the negative electrode substantially perpendicularly to the longitudinal direction of the cores, and the tabs are arranged at a predetermined interval. In the battery, each of the tabs is provided at each winding start end of each of the poles and protrudes in the same direction from one side surface in the winding axis direction of the power generating element , and at least one of at least one of the poles. surface Is formed with an active material uncoated portion having a length longer than the distance between both tabs protruding in the same direction, and the active material uncoated portion is located at an electrode position corresponding to both tabs. And
In a battery having a flat spiral power generation element in which a positive electrode provided with a positive electrode tab and a negative electrode provided with a negative electrode tab are wound via a separator, in order to prevent a short circuit due to contact between both tabs In addition, it is necessary to arrange both tabs apart to some extent. Therefore, in order for both to substantially coincide at the winding end of the positive and negative electrodes, one pole must be made longer than the other pole. However, with such a structure, the elongated electrode portion is not involved in charging / discharging, but the active material layer is formed, so the power generation element becomes thicker by the thickness of the active material layer, As a result, the thickness of the battery also increases. In particular, since both tabs have a certain thickness, the thickness at the portion where both tabs are formed increases. For this reason, volume energy density and the like are reduced.
However, as in the above configuration, if an active material uncoated portion that is longer than the distance between the two tabs is formed on at least one surface of at least one of the two electrodes, the active material uncoated portion is active. It becomes thinner by the thickness of the material layer. In particular, the active material uncoated portion is formed more than the distance between the two tabs, and the active material uncoated portion is always present at the position corresponding to both tabs. Battery) thickness is reduced. As a result, the volumetric energy density of the battery increases, and the weight energy density increases due to the presence of the active material uncoated portion.
In addition, with the conventional structure, when the battery is stored in a charged state (particularly, stored at a high temperature), the elongated electrode portion that is not involved in charge / discharge is charged to some extent. However, since this portion cannot be discharged, the discharge capacity is reduced correspondingly, and the battery thickness after repeating the charge / discharge cycle is increased. On the other hand, if it is said structure, since the active material layer is not formed in the lengthened electrode part which is not concerned with charging / discharging, it can prevent that said part will be in a charging state by storage. Therefore, the discharge capacity does not decrease, and although the reason is not clear, the increase in the battery thickness after repeating the charge / discharge cycle can be suppressed.
Also, the upper Symbol both tab features that are respectively provided on the winding start end of the poles. With such a configuration, it is easy to attach both tabs in both the positive and negative electrodes, and the manufacturing cost of the battery is reduced.
Further, in the invention described in claim 2, in the invention described in claim 1 , the length of the active material layer uncoated part is at least twice the distance between the two tabs protruding in the same direction. It is characterized by being configured.
With such a configuration, the battery thickness can be further reduced, and thus the above-described effects are further exhibited.
The invention of claim 3, wherein, in the invention of claim 1 or 2, wherein the laminated outer body, on both surfaces of the aluminum layer, a resin layer made of polypropylene via an adhesive layer made of modified polypropylene is bonded It is characterized by the above.
The invention described in claim 4 is characterized in that , in the invention described in claim 1, 2 , or 3 , the active material layers of both electrodes are made of a material capable of reversibly occluding and releasing lithium ions. To do.
If the present invention is applied to the secondary battery as described above, the increase in the battery thickness after repeating the charge / discharge cycle can be suppressed, although the reason is not clear.
The invention described in claim 5 is characterized in that , in the invention described in claim 1, 2, 3, or 4 , graphite is used as the negative electrode active material.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
[First embodiment]
A first embodiment of the present invention will be described below based on FIGS.
1 is a front view of the nonaqueous electrolyte battery according to the first embodiment, FIG. 2 is a cross-sectional view taken along line AA in FIG. 1, and FIG. 3 is a laminate outer package used for the nonaqueous electrolyte battery according to the first embodiment. 4 is a front view of the positive electrode used in the nonaqueous electrolyte battery according to the first embodiment, FIG. 5 is a rear view of the positive electrode used in the nonaqueous electrolyte battery according to the first embodiment, and FIG. 7 is a front view of a negative electrode used in the nonaqueous electrolyte battery according to the embodiment, FIG. 7 is a process explanatory diagram when producing the nonaqueous electrolyte battery according to the first embodiment, and FIG. 8 is a diagram illustrating the nonaqueous electrolyte battery according to the first embodiment. It is a perspective view of the electric power generation element to be used.
[0008]
As shown in FIG. 2, the thin battery of the present invention has a power generation element 1, and the power generation element 1 is disposed in a storage space 2. As shown in FIG. 1, the storage space 2 is formed by sealing the upper and lower ends and the center portion of the laminate outer package 3 with sealing portions 4a, 4b, and 4c, respectively. In addition, in the storage space 2, LiPF 6 is dissolved at a ratio of 1M (mol / liter) in a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 4: 6. The electrolyte solution is injected. Further, as shown in FIG. 8, the power generating element 1 includes a positive spiral 5 made of LiCoO 2 , a negative electrode 6 made of graphite, and a separator (not shown in FIG. 8) that separates both electrodes. It is produced by winding in a shape.
[0009]
Also, as shown in FIG. 3, the specific structure of the laminate outer package 3 is that adhesive layers 12 and 12 (thickness: 5 μm) made of modified polypropylene are formed on both sides of the aluminum layer 11 (thickness: 30 μm), respectively. In this structure, resin layers 13 and 13 (thickness: 30 μm) made of polypropylene are bonded to each other.
[0010]
Further, the positive electrode 5 is connected to a positive electrode current collecting tab 7 made of aluminum, and the negative electrode 6 is connected to a negative electrode current collecting end tab 8 made of copper, so that chemical energy generated inside the battery can be taken out as electric energy to the outside. It is like that.
As shown in FIGS. 1 and 2, the size of the battery is such that the width L 1 is 35 mm, the length L 2 is 80 mm, and the thickness L 3 is 3 mm.
[0011]
Here, the battery having the above structure was produced as follows.
First, LiCoO 2 as a positive electrode active material, acetylene black as a conductive agent, graphite, and polyvinylidene fluoride (PVdF) as a binder are mixed at a weight ratio of 90: 2: 3: 5. After preparing the mixture, as shown in FIG. 4 and FIG. 5 (in FIG. 4 and FIG. 5, the positive electrode tab 7 to be attached to the positive electrode 5 in the subsequent process is also shown by a solid line for easy understanding). The positive electrode mixture was applied to both surfaces of a strip-shaped positive electrode core 10 made of aluminum, and further rolled and dried to form positive electrode active material layers 9a and 9b. Thereby, the positive electrode 5 is produced.
At this time, the positive electrode active material uncoated portions 14a and 14b that do not form the positive electrode active material layers 9a and 9b are formed on both surfaces of the positive electrode core 10 in the vicinity of the positive electrode tab 7 and On one surface of the positive electrode core 10 in the vicinity of the opposite end, a positive electrode active material uncoated portion 14c that does not form the positive electrode active material layer 9b was formed. The length L 4 of the positive electrode 5 is 253 mm, the width L 5 of the positive electrode 5 is 55.5 mm, the lengths L 6 and L 7 of the positive electrode active material uncoated portions 14a and 14b are 36 mm, and the positive electrode active material uncoated portion. the length L 8 of 14c was 70 mm, the positive electrode active material layer 9a length L 9 is 217 mm, the length L 10 is 147mm of the positive electrode active material layer 9b, the width L 11 of the positive electrode tab 7 and 4 mm.
[0012]
In parallel with this, a negative electrode mixture was prepared by mixing natural graphite as a negative electrode active material and polyvinylidene fluoride as a binder in a weight ratio of 90:10. In FIG. 6, for easy understanding, the negative electrode tab 8 to be attached to the negative electrode 6 in the subsequent process is also shown by a solid line). The negative electrode active material layer 21a was formed by coating on the entire surface of the substrate and further drying and rolling. Thereby, the negative electrode 6 is produced.
The length L 12 of the negative electrode 6 was 225 mm, the width L 13 of the negative electrode 6 was 57.5 mm, and the width L 14 of the negative electrode tab 8 was 4 mm. Moreover, since the negative electrode 6 has the same configuration on both sides, the drawing and explanation of the other side are omitted.
Next, after attaching the positive electrode current collecting tab 7 and the negative electrode current collecting tab 8 to the positive and negative electrodes 5 and 6, respectively, as shown in FIG. 7 (separator is omitted in FIG. 7), as shown in FIG. The positive and negative electrodes 5 and 6 are arranged via a separator so that the distance L 15 between the tabs 7 and 8 is 18 mm. Thereafter, the positive and negative electrodes 5 and 6 and the separator are wound in a flat spiral shape using the winding thin plate 15, and the power generation element 1 as shown in FIG. 8 (the separator is omitted in FIG. 8). Was made.
[0013]
Next, after preparing a sheet-like laminate material having a five-layer structure of resin layer (polypropylene) / adhesive layer / aluminum alloy layer / adhesive layer / resin layer (polypropylene), the vicinity of the end portions of the laminate material The sealing portion 4c was formed by overlapping and further welding the overlapping portion. Next, the power generation element 1 was inserted into the storage space 2 of the cylindrical laminate material. At this time, the power generating element 1 was arranged so that the current collecting tabs 7 and 8 protrude from one opening of the cylindrical laminate material. Next, in this state, the laminated material of the opening part from which both the current collection tabs 7 and 8 protruded was welded and sealed, and the sealing part 4a was formed. At this time, welding was performed using a high frequency induction welding apparatus.
[0014]
Next, in this state, vacuum heating drying (temperature: 105 ° C.) was performed for 2 hours to remove moisture from the laminate material and the power generation element 1. Thereafter, an electrolyte solution in which LiPF 6 is dissolved at a ratio of 1 M (mol / liter) is injected into a mixed solvent in which ethylene carbonate and diethyl carbonate are mixed at a volume ratio of 4: 6, and this state is reached. And left for 1 hour. Thereafter, the laminate material corresponding to the power generation element 1 is pressed with a metal plate, and the end of the laminate material opposite to the sealing portion 4a is welded using an ultrasonic welding device, and the sealing portion 4b. To form a non-aqueous electrolyte battery. In addition, the process after the said electrolyte solution injection | pouring process was performed within the dry box of argon atmosphere.
[0015]
Here, the resin layer of the laminate outer package is not limited to the above-described polypropylene. For example, a polyolefin polymer such as polyethylene, a polyester polymer such as polyethylene terephthalate, a polyvinylidene fluoride, a polyvinylidene chloride, or the like. Examples thereof include vinylidene polymers, polyamide polymers such as nylon 6, nylon 66, nylon 7, and the like. Further, the structure of the laminate outer package is not limited to the above five-layer structure.
Further, the exterior body is not limited to the laminate exterior body, and it is needless to say that the present invention can be applied to any exterior body that is deformed by a slight increase in battery internal pressure.
[0016]
Further, as the positive electrode material, in addition to LiCoO 2 , for example, LiNiO 2 , LiMn 2 O 4 or a composite thereof, or a conductive polymer such as polyaniline, polypyrrole, or the like is preferably used. In addition to graphite, carbon black, coke, glassy carbon, carbon fiber, or a fired body thereof is preferably used. Furthermore, the present invention is not limited to the above lithium ion battery, and can be applied to other batteries such as a polymer battery in which a solid electrolyte exists between positive and negative electrodes.
[0017]
In addition, the electrolyte used is not limited to LiPF 6 , and LiN (CF 3 SO 2 ) 2 , LiClO 4 , LiBF 4, etc. can also be used.
[Second form]
A second embodiment of the present invention will be described below based on FIGS.
9 is a front view of a positive electrode used in the nonaqueous electrolyte battery according to the second embodiment, FIG. 10 is a rear view of the positive electrode used in the nonaqueous electrolyte battery according to the second embodiment, and FIG. It is a front view of the negative electrode used for a water electrolyte battery.
Note that description of members having the same functions as those of the first embodiment is omitted, and descriptions of members having the same length and width (L 4 etc.) as those of the first embodiment are also omitted. To do. The same applies to the following forms.
As shown in FIGS. 9 and 10, the width L 6 of the positive electrode active material uncoated portions 14a and 14b of the positive electrode 5 is shortened to 6 mm (in this case, the positive electrode active material uncoated portions 14a and 14b are the positive electrode leads 7). 11 is not covered by the positive electrode active material uncoated portion, and the negative electrode active material uncoated portion on both sides at the winding start end (near the negative electrode tab 8) of the negative electrode 6 as shown in FIG. Except for forming 20a, the configuration is the same as that of the nonaqueous electrolyte battery of the first embodiment. Since the negative electrode 6 has the same configuration on both sides, the drawing on the other side and the description thereof are omitted.
Here, the length L 4 of the positive electrode 5 is set to 223 mm and the length L 12 of the negative electrode 6 is set to 255 mm in accordance with the shortening of the width L 6 of the positive electrode active material uncoated portions 14 a and 14 b of the positive electrode 5. the length L 16 of the negative electrode active material layer 21a and 223 mm, and was the length L 17 of the negative electrode active material uncoated portion 20a and 32 mm.
[Third embodiment]
A third embodiment of the present invention will be described below with reference to FIGS.
12 is a front view of a positive electrode used in the nonaqueous electrolyte battery according to the third embodiment, FIG. 13 is a rear view of the positive electrode used in the nonaqueous electrolyte battery according to the third embodiment, and FIG. FIG. 15 is a rear view of the negative electrode used in the nonaqueous electrolyte battery according to the third embodiment.
As shown in FIG. 15, the negative electrode active material uncoated portion 20b is formed on one surface at the winding start end (near the negative electrode tab 8) of the negative electrode 6 as in the nonaqueous electrolyte battery of the first embodiment. It is the composition.
Here, the length L 18 of the negative electrode active material layer 21b was set to 160 mm, and the length L 19 of the negative electrode active material uncoated portion 20b was set to 65 mm.
[Fourth form]
The 4th form of this invention is demonstrated below based on FIGS.
16 is a front view of a positive electrode used in the nonaqueous electrolyte battery according to the fourth embodiment, FIG. 17 is a rear view of the positive electrode used in the nonaqueous electrolyte battery according to the fourth embodiment, and FIG. It is a front view of the negative electrode used for a water electrolyte battery.
As shown in FIGS. 16 and 17, the width L 6 of the positive electrode active material uncoated portions 14a and 14b of the positive electrode 5 is shortened to 6 mm (in this case, the positive electrode active material uncoated portions 14a and 14b are the positive electrode leads 7). The positive electrode active material non-applied part does not have the original role), and the other configuration is the same as that of the nonaqueous electrolyte battery of the first embodiment. Since the negative electrode 6 has the same configuration on both sides, the drawing on the other side and the description thereof are omitted.
Here, the length L 4 of the positive electrode 5 is set to 223 mm and the length L 12 of the negative electrode 6 is set to 255 mm as the width L 6 of the positive electrode active material uncoated portions 14 a and 14 b of the positive electrode 5 is shortened. did.
[0018]
【Example】
[Example 1]
As Example 1, the battery shown in the first embodiment was used.
The battery thus produced is hereinafter referred to as the present invention battery A1.
[0019]
[Example 2]
As Example 2, the battery shown in the second embodiment was used.
The battery thus produced is hereinafter referred to as the present invention battery A2.
Example 3
As Example 3, the battery shown in the third embodiment was used.
The battery thus produced is hereinafter referred to as the present invention battery A3.
Example 4
As Example 4, the battery shown in the fourth embodiment was used.
The battery thus produced is hereinafter referred to as the present invention battery A4.
[0020]
[Comparative example]
A comparative example of the present invention will be described below based on FIG. 19 and FIG.
FIG. 19 is a front view of a positive electrode used in a non-aqueous electrolyte battery according to a comparative example, and FIG. 20 is a front view of a negative electrode used in a non-aqueous electrolyte battery according to a comparative example.
Note that description of members having the same functions as those in the first embodiment is omitted, and descriptions of members having the same length and width (L 4 etc.) as those in the first embodiment are also omitted. To do.
As shown in FIG. 19, the width L 6 of the positive electrode active material uncoated portion 14a of the positive electrode 5 is shortened to 6 mm (in this case, the positive electrode active material uncoated portion 14a is substantially covered with the positive electrode lead 7, It has the same structure as the nonaqueous electrolyte battery of the first embodiment except that the positive active material uncoated portion 14c is not formed. Since the positive electrode 5 and the negative electrode 6 have the same configuration on both surfaces, the drawings on the other surface and the description thereof are omitted.
Here, the length L 4 of the positive electrode 5 was set to 223 mm and the length L 12 of the negative electrode 6 was set to 325 mm in accordance with the shortening of the width L 6 of the positive electrode active material uncoated portion 14 a of the positive electrode 5.
[Experiment 1]
In the present invention batteries A1 to A4 and the comparative battery X, the volume energy density and the weight energy density were examined, the battery was charged under the following conditions, and the capacity recovery rate after storing the battery at 60 ° C. for 20 days was examined. The results are shown in Table 1.
The capacity recovery rate is calculated by the following formula 1. Moreover, the charging / discharging conditions at the time of calculating a capacity | capacitance maintenance factor and a capacity | capacitance recovery factor are the following conditions.
[0021]
Charging conditions: constant current and constant voltage charging. Specifically, after the battery voltage becomes 4.1 V at a current of 500 mA, the charging is terminated when the current value decreases to 25 mA.
Discharge condition: constant current discharge. Specifically, the discharge is terminated when the battery voltage becomes 2.75 V with a current of 500 mA.
[0022]
[Expression 1]
Figure 0004245205
[0023]
[Table 1]
Figure 0004245205
[0024]
As is clear from Table 1, the comparative battery X has a volume energy density of 188 Wh / L, a weight energy density of 110 Wh / kg, and a capacity recovery rate of 83%, whereas the inventive batteries A1 to A4 have a volume energy. The density is 207 Wh / L or more, the weight energy density is 117 Wh / kg or more, and the capacity recovery rate is 84% or more, all of which are superior to the comparative battery X. In particular, the battery A3 of the present invention in which the active material uncoated part is provided on both the positive and negative electrodes is extremely excellent with a volume energy density of 237 Wh / L, a weight energy density of 133 Wh / kg, and a capacity recovery rate of 89%. It is done.
[0025]
Although not shown in Table 1 above, when the cycle characteristics of the batteries A1 to A4 and the comparative battery X were examined, the batteries A1 to A4 of the present invention were compared with the comparative battery X after the end of the charge / discharge cycle. It was confirmed by experiment that the swelling of the battery was remarkably reduced.
[0026]
【The invention's effect】
As described above, according to the present invention, since the thickness of the power generation element (battery) is reduced, the volumetric energy density of the battery is increased, and the weight energy density is increased due to the presence of the active material uncoated portion. Since the active material layer is not formed on the electrode portion that does not participate in charge / discharge, it is possible to suppress a decrease in discharge capacity, and it is possible to suppress an increase in battery thickness after repeated charge / discharge cycles. Play.
[Brief description of the drawings]
FIG. 1 is a front view of a nonaqueous electrolyte battery according to a first embodiment.
FIG. 2 is a cross-sectional view taken along the line AA in FIG.
FIG. 3 is a cross-sectional view of a laminate outer package used for the nonaqueous electrolyte battery according to the first embodiment.
FIG. 4 is a front view of a positive electrode used in the nonaqueous electrolyte battery according to the first embodiment.
FIG. 5 is a rear view of a positive electrode used in the nonaqueous electrolyte battery according to the first embodiment.
FIG. 6 is a front view of a negative electrode used in the nonaqueous electrolyte battery according to the first embodiment.
FIG. 7 is a process explanatory diagram when manufacturing the nonaqueous electrolyte battery according to the first embodiment;
FIG. 8 is a perspective view of a power generation element used for the nonaqueous electrolyte battery according to the first embodiment.
FIG. 9 is a front view of a positive electrode used in the nonaqueous electrolyte battery according to the second embodiment.
FIG. 10 is a rear view of a positive electrode used in the nonaqueous electrolyte battery according to the second embodiment.
FIG. 11 is a front view of a negative electrode used for a nonaqueous electrolyte battery according to a second embodiment.
FIG. 12 is a front view of a positive electrode used for a nonaqueous electrolyte battery according to a third embodiment.
FIG. 13 is a rear view of a positive electrode used for a nonaqueous electrolyte battery according to a third embodiment.
FIG. 14 is a front view of a negative electrode used for a nonaqueous electrolyte battery according to a third embodiment.
FIG. 15 is a rear view of a negative electrode used for a nonaqueous electrolyte battery according to a third embodiment.
FIG. 16 is a front view of a positive electrode used for a nonaqueous electrolyte battery according to a fourth embodiment.
FIG. 17 is a rear view of a positive electrode used in a nonaqueous electrolyte battery according to a fourth embodiment.
FIG. 18 is a front view of a negative electrode used for a nonaqueous electrolyte battery according to a fourth embodiment.
FIG. 19 is a front view of a positive electrode used for a nonaqueous electrolyte battery of a comparative example.
FIG. 20 is a front view of a negative electrode used for a nonaqueous electrolyte battery of a comparative example.
[Explanation of symbols]
1: Power generation element 2: Storage space 3: Laminate outer package 5: Positive electrode 6: Negative electrode 7: Positive electrode tab 8: Negative electrode tab 9a: Positive electrode active material layer 9b: Positive electrode active material layer 10: Positive electrode core body 14a: No active material applied Part 14b: Active material uncoated part 14c: Active material uncoated part 20a: Active material uncoated part 17: Negative electrode core 21a: Negative electrode active material layer 21b: Negative electrode active material layer

Claims (5)

帯状の正極芯体の両面に正極活物質層が形成された正極と、帯状の負極芯体の両面に負極活物質層が形成された負極とが、セパレータを介して長手方向に巻回された偏平渦巻き状の発電要素を有すると共に、この発電要素が、電池内圧の上昇によって変形するラミネート外装体内に収納され、しかも上記正極からは正極タブが、上記負極からは負極タブが、それぞれ上記両芯体の長手方向と略垂直に延設され、且つ上記両タブが所定の間隔で配置される構造の非水電解質電池において、
上記両タブは、上記両極の巻回始端に各々設けられ、且つ上記発電要素の巻回軸方向の一方側面から同一方向に突出され、
上記両極のうち少なくとも一方の極における少なくとも一方の面には、上記同一方向に突出された両タブ間の距離以上の長さの活物質未塗布部が形成され、当該活物質未塗布部は両タブに対応する電極位置に位置している、
ことを特徴とする非水電解質電池。
A positive electrode having a positive electrode active material layer formed on both surfaces of a belt-like positive electrode core and a negative electrode having a negative electrode active material layer formed on both surfaces of the belt-like negative electrode core were wound in the longitudinal direction via a separator. The power generation element includes a flat spiral power generation element, and the power generation element is housed in a laminate outer casing that is deformed by an increase in battery internal pressure, and the positive electrode tab from the positive electrode, the negative electrode tab from the negative electrode, and the both cores. In a non-aqueous electrolyte battery having a structure extending substantially perpendicular to the longitudinal direction of the body and having the tabs arranged at a predetermined interval,
The two tabs are provided at the winding start ends of the two poles, respectively, and protrude in the same direction from one side surface in the winding axis direction of the power generating element,
On at least one surface of at least one of the two poles, an active material uncoated portion having a length equal to or longer than the distance between both tabs protruding in the same direction is formed. Located at the electrode position corresponding to the tab,
The nonaqueous electrolyte battery characterized by the above-mentioned.
上記活物質層未塗布部の長さは、上記同一方向に突出された両タブ間の距離の2倍以上となるように構成される、
ことを特徴とする請求項記載の非水電解質電池。
The length of the active material layer uncoated portion is configured to be at least twice the distance between both tabs protruding in the same direction,
The nonaqueous electrolyte battery according to claim 1 .
上記ラミネート外装体は、アルミニウム層の両面に、変性ポリプロピレンから成る接着剤層を介してポリプロピレンから成る樹脂層が接着されてなるものである、
ことを特徴とする請求項1、又は2記載の非水電解質電池。
The laminate outer package is formed by bonding a resin layer made of polypropylene to both surfaces of an aluminum layer via an adhesive layer made of modified polypropylene.
The nonaqueous electrolyte battery according to claim 1 or 2, wherein the.
上記両極の両活物質層は、リチウムイオンを可逆的に吸蔵,放出可能な材料から成る、
ことを特徴とする請求項1、2、又は3記載の非水電解質電池。
Both active material layers of the above two electrodes are made of a material capable of reversibly occluding and releasing lithium ions.
The nonaqueous electrolyte battery according to claim 1, 2, or 3 .
上記負極活物質として、グラファイトが用いられる、
ことを特徴とする請求項1、2、3、又は4記載の非水電解質電池。
As the negative electrode active material, graphite is used.
The nonaqueous electrolyte battery according to claim 1, 2, 3, or 4 .
JP06799198A 1998-03-18 1998-03-18 Non-aqueous electrolyte battery Expired - Lifetime JP4245205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06799198A JP4245205B2 (en) 1998-03-18 1998-03-18 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06799198A JP4245205B2 (en) 1998-03-18 1998-03-18 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH11265732A JPH11265732A (en) 1999-09-28
JP4245205B2 true JP4245205B2 (en) 2009-03-25

Family

ID=13360954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06799198A Expired - Lifetime JP4245205B2 (en) 1998-03-18 1998-03-18 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4245205B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3646519B2 (en) * 1998-05-13 2005-05-11 宇部興産株式会社 Non-aqueous secondary battery electrode sheet and non-aqueous secondary battery using them
JP4193247B2 (en) * 1998-10-30 2008-12-10 ソニー株式会社 Non-aqueous electrolyte battery and manufacturing method thereof
US6797429B1 (en) 1998-11-06 2004-09-28 Japan Storage Battery Co, Ltd. Non-aqueous electrolytic secondary cell
JP4867063B2 (en) * 1999-12-17 2012-02-01 大日本印刷株式会社 Polymer battery packaging materials
JP2001313009A (en) * 2000-02-24 2001-11-09 Sanyo Electric Co Ltd Sealed battery with convection promoting film
JP2005071865A (en) * 2003-08-26 2005-03-17 Sony Corp Non-aqueous electrolyte secondary battery
JP4798950B2 (en) * 2004-01-23 2011-10-19 株式会社東芝 Nonaqueous electrolyte secondary battery
JP4707324B2 (en) * 2004-01-23 2011-06-22 株式会社東芝 Nonaqueous electrolyte secondary battery
JP4707323B2 (en) * 2004-01-23 2011-06-22 株式会社東芝 Nonaqueous electrolyte secondary battery
WO2020129998A1 (en) * 2018-12-19 2020-06-25 三洋電機株式会社 Secondary battery electrode plate and secondary battery using same
JP7353302B2 (en) * 2018-12-27 2023-09-29 三洋電機株式会社 secondary battery
CN109802187A (en) * 2019-03-07 2019-05-24 安普瑞斯(无锡)有限公司 A kind of coiled battery

Also Published As

Publication number Publication date
JPH11265732A (en) 1999-09-28

Similar Documents

Publication Publication Date Title
JP2015084320A (en) Active material for batteries, electrode, nonaqueous electrolyte battery and battery pack
JP6399380B2 (en) Power storage element, power storage system, and manufacturing method thereof
JP5618698B2 (en) Non-aqueous electrolyte battery
JP4283598B2 (en) Non-aqueous electrolyte solution and lithium ion secondary battery
JP6479984B2 (en) Non-aqueous electrolyte battery and battery pack
WO2020059131A1 (en) Battery and battery pack
JP2013201077A (en) Nonaqueous electrolytic secondary battery
JP4245205B2 (en) Non-aqueous electrolyte battery
JP4201459B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JPH08171917A (en) Cell
JP3338071B2 (en) Battery
US6258487B1 (en) Lithium secondary battery including a divided electrode base layer
JP2013201097A (en) Electrode, nonaqueous electrolyte battery and battery pack
JP2012156405A (en) Electricity storage device
JP3033563B2 (en) Non-aqueous electrolyte secondary battery
JP2001155779A (en) Nonaqueous electrolyte battery
JP7405243B2 (en) Current collector, power storage element and power storage module
JP6070691B2 (en) Nonaqueous electrolyte secondary battery
JP5674357B2 (en) Lithium ion secondary battery
JP2001229970A (en) Cylindrical lithium battery
JP2001102051A (en) Electrode and lithium secondary cell
JP3343097B2 (en) Prismatic non-aqueous electrolyte secondary battery
JP4360022B2 (en) Li-ion battery electrode material and Li-ion battery
JP2001185220A (en) Cylindrical lithium ion battery
JP4266533B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080918

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

EXPY Cancellation because of completion of term