JP3428448B2 - Electrode structure and battery using the same - Google Patents

Electrode structure and battery using the same

Info

Publication number
JP3428448B2
JP3428448B2 JP23567398A JP23567398A JP3428448B2 JP 3428448 B2 JP3428448 B2 JP 3428448B2 JP 23567398 A JP23567398 A JP 23567398A JP 23567398 A JP23567398 A JP 23567398A JP 3428448 B2 JP3428448 B2 JP 3428448B2
Authority
JP
Japan
Prior art keywords
active material
electrode
electrode active
negative electrode
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23567398A
Other languages
Japanese (ja)
Other versions
JP2000067907A (en
Inventor
大吾 竹村
広明 漆畑
久 塩田
淳 荒金
省二 吉岡
茂 相原
万希子 吉瀬
隆 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23567398A priority Critical patent/JP3428448B2/en
Publication of JP2000067907A publication Critical patent/JP2000067907A/en
Application granted granted Critical
Publication of JP3428448B2 publication Critical patent/JP3428448B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、電池に用いる電
極活物質層の配置形状および電池の構造に関するもの
で、特に渦巻型電池の性能を向上させるものである。
TECHNICAL FIELD The present invention relates to an arrangement shape of an electrode active material layer used in a battery and a structure of the battery, and particularly to improving the performance of a spiral wound battery.

【0002】[0002]

【従来の技術】近年における電子機器性能の向上に伴っ
て、この電子機器の電源として用いる電池、特に繰り返
し充電可能な二次電池に対して性能向上が求められてき
た。電子機器をより長時間駆動することができ、軽量で
持ち運びが容易でかつ高容量な電池としてリチウムイオ
ン二次電池が注目されている。そこで本発明ではリチウ
ムイオン二次電池を例として説明する。
2. Description of the Related Art As the performance of electronic devices has improved in recent years, there has been a demand for improved performance of batteries used as a power source for these electronic devices, especially secondary batteries that can be repeatedly charged. BACKGROUND ART A lithium ion secondary battery has attracted attention as a battery that can drive an electronic device for a longer time, is lightweight, easy to carry, and has a high capacity. Therefore, in the present invention, a lithium ion secondary battery will be described as an example.

【0003】図9は、従来のリチウムイオン二次電池の
電極構造体部分の構成を示す断面図である。図におい
て、1は正極集電端子、2は負極集電端子、3は正極活
物質、4は負極活物質、5は正極集電体、6は負極集電
体であり、正極活物質3と負極活物質4との間には図示
していないセパレータなどの電解質層が設けられ、この
電解質層にはセパレータに電解質を溶解した非水系の電
解液を含浸したものが用いられる。7は絶縁テープであ
る。
FIG. 9 is a sectional view showing the structure of an electrode structure portion of a conventional lithium ion secondary battery. In the figure, 1 is a positive electrode current collector terminal, 2 is a negative electrode current collector terminal, 3 is a positive electrode active material, 4 is a negative electrode active material, 5 is a positive electrode current collector, 6 is a negative electrode current collector, and An electrolyte layer such as a separator (not shown) is provided between the anode active material 4 and the separator, and the separator is impregnated with a non-aqueous electrolyte solution in which an electrolyte is dissolved. 7 is an insulating tape.

【0004】図9に示したリチウムイオン二次電池にお
いて、特に電池の小型、薄膜化のために、正極活物質3
および負極活物質4といった電極活物質層の改良や新た
な活物質の探求がなされているが、それと同様に、より
高いエネルギー密度が得られる電極構造の開発、すなわ
ち正極集電端子1、負極集電端子2、正極活物質3、負
極活物質4、正極集電体5および負極集電体6が構成す
る電極構造が重要となっている。
In the lithium ion secondary battery shown in FIG. 9, the positive electrode active material 3 is used in order to make the battery small and thin.
Further, the electrode active material layer such as the negative electrode active material 4 has been improved and a new active material has been sought. Similarly, the development of an electrode structure capable of obtaining a higher energy density, that is, the positive electrode current collector terminal 1, the negative electrode current collector The electrode structure formed by the electric terminal 2, the positive electrode active material 3, the negative electrode active material 4, the positive electrode current collector 5, and the negative electrode current collector 6 is important.

【0005】[0005]

【発明が解決しようとする課題】電極構造体としては、
電極集電体5、6の片面に電極活物質層3、4を塗布・
成形(以下、片面塗工という)した電極より、図9に示
したような電極集電体5、6の両面に電極活物質層3、
4を塗布・成形(以下、両面塗工という)した電極の方
が、電池全体のうち電極集電体5、6の占める割合は小
さく、体積エネルギー密度は向上する。また、電極を巻
回させた構造をもつ場合、電極構造体の最内層や最外層
には対向する電極が存在しないために不要な電極活物質
層3、4が存在し、厚みや重量の増加につながる。さら
に、最内層に電極活物質層3、4を有する電極をプレス
して平板状にした場合には、最内層の折り曲げ部分の伸
び率が大きいため、電極集電体5、6が破裂する可能性
がある。ここで渦巻型構造の最内層とは電極を巻回し始
めた位置から1周もしくは半周するまでの一番内側の電
極活物質層を示し、最外層とは一番外側の対向する電極
のない電極活物質層を示す。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
Apply the electrode active material layers 3 and 4 on one side of the electrode current collectors 5 and 6
From the formed (hereinafter referred to as one-sided coated) electrode, the electrode active material layer 3 is formed on both surfaces of the electrode current collectors 5 and 6 as shown in FIG.
The electrode coated and molded with 4 (hereinafter referred to as double-sided coating) has a smaller proportion of the electrode current collectors 5 and 6 in the whole battery, and the volume energy density is improved. Further, in the case of having a structure in which the electrodes are wound, unnecessary electrode active material layers 3 and 4 are present because there is no facing electrode in the innermost layer or outermost layer of the electrode structure, and the thickness and weight increase. Leads to. Furthermore, when the electrode having the electrode active material layers 3 and 4 in the innermost layer is pressed into a flat plate shape, the electrode current collectors 5 and 6 may rupture because the bending rate of the innermost layer is large. There is a nature. Here, the innermost layer of the spiral structure refers to the innermost electrode active material layer from the position where the electrode starts to be wound to one or a half round, and the outermost layer is the outermost electrode having no opposing electrode. An active material layer is shown.

【0006】電池には前述のように外部との導通をとる
集電端子1、2が必要であり、集電端子1、2は、電極
中の電極活物質層3、4で覆われていない電極集電体
5、6の一部に配置されるが、特に平板化して薄型の電
池を作製する場合には電池の厚みが厚くならないよう考
慮して集電端子1、2を配置する必要がある。
As described above, the battery needs the current collecting terminals 1 and 2 which are electrically connected to the outside, and the current collecting terminals 1 and 2 are not covered with the electrode active material layers 3 and 4 in the electrodes. The current collector terminals 1 and 2 are arranged on a part of the electrode current collectors 5 and 6, but especially when flattening to manufacture a thin battery, it is necessary to arrange the current collector terminals 1 and 2 in consideration of the thickness of the battery. is there.

【0007】また、正極および負極の集電端子1、2を
配置する部分の電極活物質層3、4は電極集電体5、6
と集電端子1、2との溶接を行うために除去されるが、
このために集電端子1、2の配置された部分と対向する
電極部分に存在する電極活物質層3、4は電池として働
かず、無駄な活物質となり厚みや重量の増加の原因とな
る。
Further, the electrode active material layers 3 and 4 at the portions where the positive and negative electrode current collecting terminals 1 and 2 are arranged are electrode current collectors 5 and 6, respectively.
It is removed to weld the collector terminals 1 and 2 to
For this reason, the electrode active material layers 3 and 4 existing in the electrode portion facing the portion where the current collecting terminals 1 and 2 are arranged do not work as a battery and become a wasteful active material, which causes an increase in thickness and weight.

【0008】また、正極活物質3が過剰に存在したり、
正極活物質3に対向する負極活物質4の一部が存在しな
かったり、正極に対向している負極活物質4が電池とし
て働かないと、負極の一部分に電流が集中してリチウム
金属の析出による短絡およびこの短絡に起因する発火等
の問題が生じてくる。そこで、負極活物質4に対向する
正極活物質3が存在しない場合には上記リチウム金属の
析出等の問題はないが、例えば図9の負極集電端子2の
周囲に配置された正極活物質3のように対向する負極活
物質4のない場合は、正極活物質3の表面をマスク用テ
ープ7等で覆ったり、正極活物質3を削り取るなどし
て、実質的に負極活物質4が対向しない正極活物質3が
ないようにする必要が生じる。これにより生産工程の増
加やコスト上昇などの課題が存在した。
Further, the positive electrode active material 3 is excessively present,
If a part of the negative electrode active material 4 facing the positive electrode active material 3 does not exist, or if the negative electrode active material 4 facing the positive electrode does not work as a battery, current concentrates on a part of the negative electrode and lithium metal is deposited. And a short circuit due to the short circuit and a problem such as ignition due to the short circuit occur. Therefore, when the positive electrode active material 3 facing the negative electrode active material 4 does not exist, there is no problem such as the deposition of the lithium metal, but for example, the positive electrode active material 3 arranged around the negative electrode current collector terminal 2 in FIG. When there is no opposing negative electrode active material 4, the surface of the positive electrode active material 3 is covered with a masking tape 7 or the like, or the positive electrode active material 3 is scraped off so that the negative electrode active material 4 does not substantially face. It is necessary to eliminate the positive electrode active material 3. As a result, there were problems such as an increase in production processes and an increase in cost.

【0009】また、図10に示すような電極集電体5、
6の両面に電極活物質層3、4をそれぞれ両面塗工した
正負両電極の端部を合わせて巻回した場合、最内層の電
極活物質層4は対向する電極がないため電池として機能
しない。図9のように正極と負極の端子を半周ずらして
巻回した場合では最内層は正負の電極活物質層3、4が
対向するようになるが、正極と電解質層および負極と電
解質層の間に空間が生じやすく、十分な電極反応は期待
できない。更に、両面塗工した電極を巻回した場合の最
外層には対向する電極を持たない正極活物質もしくは負
極活物質が存在し重量増加および体積増加につながって
いた。
Further, an electrode current collector 5 as shown in FIG.
When the electrode active material layers 3 and 4 are coated on both surfaces and the ends of both positive and negative electrodes are wound together, the innermost electrode active material layer 4 does not function as a battery because there is no opposing electrode. . When the terminals of the positive electrode and the negative electrode are wound so as to be shifted by a half circumference as shown in FIG. 9, the positive and negative electrode active material layers 3 and 4 are opposed to each other in the innermost layer, but between the positive electrode and the electrolyte layer and between the negative electrode and the electrolyte layer. It is difficult to expect a sufficient electrode reaction because a space is easily generated in the space. Furthermore, when the electrode coated on both sides was wound, a positive electrode active material or a negative electrode active material having no facing electrode was present in the outermost layer, which led to an increase in weight and volume.

【0010】このように正極活物質3と負極活物質4が
対向していない部分に余分な活物質や、マスク用テープ
が存在することで、エネルギー密度の減少や電池全体の
厚み増加、また生産工程の増加によるコスト増加に至る
という問題があった。
As described above, the presence of the extra active material and the masking tape in the portion where the positive electrode active material 3 and the negative electrode active material 4 do not face each other reduces the energy density, increases the thickness of the entire battery, and produces the battery. There is a problem in that costs increase due to an increase in the number of processes.

【0011】本発明の第1の目的は、軽量・小型でエネ
ルギー密度の向上した電極構造体およびそれを用いた電
池を提供するものである。また、第2の目的は、リチウ
ム金属の析出を防止して信頼性の高い電極構造体および
それを用いた電池を提供するものである。さらに、第3
の目的は、電池寿命の向上した電極構造体およびそれを
用いた電池を提供するものである。
A first object of the present invention is to provide an electrode structure which is lightweight and small in size and has an improved energy density, and a battery using the same. A second object is to provide a highly reliable electrode structure which prevents the deposition of lithium metal and a battery using the same. Furthermore, the third
The object is to provide an electrode structure having an improved battery life and a battery using the same.

【0012】[0012]

【課題を解決するための手段】第1の発明に係る電極構
造体は、電極集電体の表裏両面に電極活物質を、上記電
極集電体の片面の1部に集電端子をそれぞれ形成した正
極および負極を、電子絶縁性のセパレータを介して対向
配置して渦巻状に巻回されてなる電極構造体であって、
上記渦巻状の最内層には、上記電極活物質層をそれぞれ
形成しない上記正極及び負極の電極集電体が配置される
とともに、反対面にのみそれぞれ正極活物質層、負極活
物質層、負極集電端子、正極集電端子が配置され、上記
負極集電端子、及び上記正極集電端子に対向する部位の
他極の集電体にはそれぞれ電極活物質が形成されてい
ないものである。
In the electrode structure according to the first invention, an electrode active material is formed on both front and back surfaces of an electrode current collector, and a current collector terminal is formed on a part of one surface of the electrode current collector. A positive electrode and a negative electrode, which are opposed to each other with an electronically insulating separator interposed therebetween, and are spirally wound to form an electrode structure,
The electrode active material layers are respectively provided in the spiral innermost layers.
The positive and negative electrode current collectors that are not formed are arranged.
Together with the positive electrode active material layer and the negative electrode active layer only on the opposite surface.
The material layer, the negative electrode current collector terminal, and the positive electrode current collector terminal are arranged,
Negative electrode current collector terminal, and of the portion facing the positive electrode current collector terminal
An electrode active material layer is not formed on each of the collectors of the other electrodes .

【0013】[0013]

【0014】第の発明に係る電極構造体は、上記第1
の発明の電極構造体において、渦巻状の最外層の電極集
電体の外側には電極活物質が形成されていないものであ
る。
An electrode structure according to a second invention is the above first electrode structure.
In the electrode structure of the present invention, the electrode active material is not formed outside the spiral outermost electrode current collector.

【0015】[0015]

【0016】[0016]

【0017】第の発明に係る電池は、上記第1あるい
は2の発明の電極構造体がラミネートシートで作成され
た袋に封入されたものである。
The battery according to a first aspect of the invention is the battery according to the first aspect .
2 the electrode structure of the invention of 2 is made of laminated sheet
It is enclosed in a bag .

【0018】[0018]

【発明の実施の形態】実施の形態1.図1は本発明の実
施の形態1による電極構造体を示す断面図であり、負極
と正極の巻き始めを半周ずらして巻かれている例であ
る。なお、図1は図の複雑化を避けるために、正極活物
質層と負極活物質層との間および最外層に配置されてい
るセパレータを省略している。図において、1は正極集
電端子、2は負極集電端子、3は正極活物質層、4は負
極活物質層、5は正極集電体、6は負極集電体、A〜G
は活物質未塗工部である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1. 1 is a cross-sectional view showing an electrode structure according to a first embodiment of the present invention, which is an example in which a negative electrode and a positive electrode are wound so that the winding start thereof is offset by half a turn. Note that in FIG. 1, separators arranged between the positive electrode active material layer and the negative electrode active material layer and in the outermost layer are omitted in order to avoid complication of the drawing. In the figure, 1 is a positive electrode current collector terminal, 2 is a negative electrode current collector terminal, 3 is a positive electrode active material layer, 4 is a negative electrode active material layer, 5 is a positive electrode current collector, 6 is a negative electrode current collector, and A to G.
Is an active material uncoated part.

【0019】図1に示した電極構造体の特徴は、正極と
負極がセパレータを介して密着しにくい第一層すなわち
最内層の電極活物質層3および4の一部B,Eと、対向
する対極の存在しない最外層の電極活物質層(図では負
極活物質層4)Gを塗工していない点と、最内端部に取
り付けた電極集電端子1、2に対向する電極活物質層部
位C,Fは電池として反応しないので、活物質の未塗工
部となっている点と、電極活物質層3、4とほぼ同厚み
の電極集電端子1、2を第一層の巻き出し部分の電極活
物質層の未塗工の部分A,Dに電極厚みの増大を抑える
ように効率よく配置している点が特徴である。このよう
な構成により、軽量、かつコンパクトでエネルギー密度
の向上した電極構造体が得られる。さらに、負極集電体
6に形成された集電端子2に対向する正極部分は活物質
の未塗工部となっているので、リチウム金属の析出を防
止することができる。またさらに、負極活物質層4を対
向する正極活物質層3より大きく形成することにより、
リチウム金属の析出をより確実に防止している。これは
以下の各実施の形態においても同様である。図1では電
極集電体5、6は太線で示し、この電極集電体のうちの
電極活物質層の未塗工の部分を極太線で示している。こ
の渦巻型の電極構造体の第一層とは巻回し始めた位置を
出発点として、この出発点まで巻かれた部位までをさ
す。
The feature of the electrode structure shown in FIG. 1 is that the positive electrode and the negative electrode face the first layer, that is, the innermost layer of the electrode active material layers 3 and 4 where the positive electrode and the negative electrode are less likely to adhere to each other. The outermost electrode active material layer (negative electrode active material layer 4) G having no counter electrode is not applied, and the electrode active material facing the electrode current collector terminals 1 and 2 attached to the innermost end. Since the layer portions C and F do not react as a battery, they are uncoated portions of the active material, and the electrode current collector terminals 1 and 2 having substantially the same thickness as the electrode active material layers 3 and 4 are formed on the first layer. The feature is that the unwinding portions A and D of the electrode active material layer are efficiently arranged so as to suppress an increase in the electrode thickness. With such a configuration, it is possible to obtain an electrode structure that is lightweight, compact, and has improved energy density. Furthermore, since the positive electrode portion formed on the negative electrode current collector 6 and facing the current collecting terminal 2 is an uncoated portion of the active material, it is possible to prevent the deposition of lithium metal. Furthermore, by forming the negative electrode active material layer 4 larger than the opposing positive electrode active material layer 3,
Lithium metal precipitation is prevented more reliably. This also applies to each of the following embodiments. In FIG. 1, the electrode current collectors 5 and 6 are indicated by thick lines, and the uncoated portion of the electrode active material layer of the electrode current collectors is indicated by thick lines. The first layer of the spiral-shaped electrode structure is defined as a starting point at a position where the winding is started and a part wound up to the starting point.

【0020】図2(a)および(b)は、図1に示した
ような電極集電体5、6の片面または両面に未塗工の部
分を設けるために電極活物質層3、4をパターン塗工し
た電極の例で、図中A〜Gは電極活物質層が未塗工とな
っている部分であり、図1のA〜Gに対応している。図
1(a)および(b)で、AおよびDはそれぞれ正極集
電端子1および負極集電端子2を取り付けるための活物
質層が未塗工の部分であり、BおよびEは最内層に対応
する部分であり、CおよびFはそれぞれ負極集伝端子2
および正極集電端子1が対向する正極活物質層3および
負極活物質層4が未塗工となる部分に対応する。また、
Gは最外層の電極集電体6の外側の負極活物質層4が未
塗工となる部分に対応する。なお、未塗工の部分の形成
は、電極活物質層3、4の形成時にパターン塗工して作
製してもよいし、全面塗工後その一部を削り取るなどし
て作製してもよい。
2A and 2B, electrode active material layers 3 and 4 are provided to form uncoated portions on one or both sides of the electrode current collectors 5 and 6 as shown in FIG. In the example of the patterned electrode, A to G in the figure are portions where the electrode active material layer is not coated, and correspond to A to G in FIG. In FIGS. 1 (a) and 1 (b), A and D are portions where an active material layer for attaching the positive electrode current collector terminal 1 and the negative electrode current collector terminal 2 is not coated, and B and E are innermost layers. Corresponding parts, C and F are the negative electrode current collecting terminal 2 respectively.
The positive electrode active material layer 3 and the negative electrode active material layer 4 facing the positive electrode current collector terminal 1 correspond to the uncoated portions. Also,
G corresponds to the portion where the negative electrode active material layer 4 on the outer side of the outermost electrode current collector 6 is uncoated. The uncoated portion may be formed by pattern coating when forming the electrode active material layers 3 and 4, or may be formed by scraping off a part of the entire surface after coating. .

【0021】実施の形態2.図3は本発明の実施の形態
2による電極構造体を示す断面図であり、図の複雑化を
避けるために、正極活物質層3と負極活物質層4との間
および最外層に配置されているセパレータを省略してい
る。負極と正極の巻き始めを半周ずらして巻かれている
例であり、巻回した電極の外側の端部に集電端子1、2
を配置した場合を示す。この構造は電極体内部に集電端
子1、2を持たないため余剰空間が存在しにくく、最内
層にも余分な空間が生じにくいので、図1と異なり最内
層の電極集電体5、6の内側にも活物質層3、4を形成
している。また、最外層の電極集電体5、6の外側には
対向する対極の活物質がないので活物質層3、4は形成
していない。よって、集電端子1、2に対向する活物質
層は無く、余剰な正極活物質によるリチウム金属の析出
も防止できる。なお、負極の巻始め端部に対向する正極
活物質層3は絶縁テープ7で覆ってリチウム金属の析出
を防止しているが、絶縁テープ7で覆う代わりにこの部
分の活物質を除去してもよい。また、最内層が密着しに
くい場合は最内層の活物質を除去した構造も有効であ
る。
Embodiment 2. FIG. 3 is a cross-sectional view showing an electrode structure according to a second embodiment of the present invention, which is disposed between the positive electrode active material layer 3 and the negative electrode active material layer 4 and in the outermost layer in order to avoid complication of the drawing. The separator is omitted. This is an example in which the winding start of the negative electrode and the positive electrode are offset by half a turn, and the current collecting terminals 1, 2 are provided at the outer ends of the wound electrodes.
Shows the case where is arranged. Since this structure does not have current collector terminals 1 and 2 inside the electrode body, it is difficult for an excess space to exist and an extra space is unlikely to occur in the innermost layer. Therefore, unlike FIG. 1, the innermost electrode current collectors 5 and 6 are not provided. The active material layers 3 and 4 are also formed inside. Further, since there is no counter active material facing the outside of the outermost electrode current collectors 5 and 6, the active material layers 3 and 4 are not formed. Therefore, there is no active material layer facing the current collecting terminals 1 and 2, and the precipitation of lithium metal due to the surplus positive electrode active material can be prevented. Although the positive electrode active material layer 3 facing the winding start end of the negative electrode is covered with the insulating tape 7 to prevent the deposition of lithium metal, the active material in this portion is removed instead of being covered with the insulating tape 7. Good. Further, when the innermost layer is difficult to adhere, a structure in which the active material of the innermost layer is removed is also effective.

【0022】実施の形態3.図4は本発明の実施の形態
3による電極構造体を示す断面図であり、図の複雑化を
避けるために、正極活物質層3と負極活物質層4との間
および最外層に配置されているセパレータを省略してい
る。負極と正極の巻き始めを半周ずらして巻かれている
例であり、電極の中央部に集電端子1、2を配置した場
合を示す。この構造の場合も図3の場合と同様に電極体
内部に集電端子1、2を持たないため余剰空間が存在し
にくく、最内層にも余分な空間が生じにくいので、最内
層の電極集電体5、6の内側にも活物質層3、4を形成
している。また、最外層の電極集電体5、6の外側には
対向する対極の活物質がないので活物質層3、4は形成
していない。また、集電端子1、2に対向する活物質層
は形成せず、集電端子1、2の厚みによる余分な空間を
排除し、さらに余剰な正極活物質によるリチウム金属の
析出も防止している。なお、負極の巻始め端部に対向す
る正極活物質層3は絶縁テープ7で覆ってリチウム金属
の析出を防止しているが、絶縁テープ7で覆う代わりに
この部分の活物質を除去してもよい。また、最内層が密
着しにくい場合は最内層の活物質を除去した構造も有効
である。
Embodiment 3. FIG. 4 is a cross-sectional view showing an electrode structure according to a third embodiment of the present invention, which is disposed between the positive electrode active material layer 3 and the negative electrode active material layer 4 and in the outermost layer in order to avoid complication of the drawing. The separator is omitted. This is an example in which the negative electrode and the positive electrode are wound with the winding start shifted by a half turn, and the case where the current collecting terminals 1 and 2 are arranged in the center of the electrode is shown. In the case of this structure as well, as in the case of FIG. 3, since the collector terminals 1 and 2 are not provided inside the electrode body, an excess space is unlikely to exist, and an extra space is unlikely to occur in the innermost layer. The active material layers 3 and 4 are also formed inside the electric bodies 5 and 6. Further, since there is no counter active material facing the outside of the outermost electrode current collectors 5 and 6, the active material layers 3 and 4 are not formed. In addition, an active material layer facing the current collecting terminals 1 and 2 is not formed, an extra space due to the thickness of the current collecting terminals 1 and 2 is eliminated, and precipitation of lithium metal due to excess positive electrode active material is prevented. There is. The positive electrode active material layer 3 facing the winding start end of the negative electrode is covered with an insulating tape 7 to prevent the deposition of lithium metal. However, instead of covering with the insulating tape 7, the active material in this portion is removed. Good. Further, when the innermost layer is difficult to adhere, a structure in which the active material of the innermost layer is removed is also effective.

【0023】実施の形態4.図5は本発明の実施の形態
4による電極構造体を示す断面図であり、図の複雑化を
避けるために、正極活物質層3と負極活物質層4との間
および最外層に配置されているセパレータを省略してい
る。負極と正極の巻き始め位置を同じにして巻かれてい
る例であり、巻回した電極の外側端部に集電端子1、2
を配置した場合を示す。この場合、実施の形態1〜3の
場合と異なり、正極と負極の巻き始め位置が同じである
ため、初回の折り返しにより最内部において、負極と負
極のように同じ極が対向するようになり、最内層に活物
質が存在しても電池反応は期待できない。よって、最内
層の電極集電体(この図では負極集電体6)の内側には
電極活物質は形成していない。
Fourth Embodiment FIG. 5 is a cross-sectional view showing an electrode structure according to a fourth embodiment of the present invention, which is disposed between the positive electrode active material layer 3 and the negative electrode active material layer 4 and in the outermost layer in order to avoid complication of the drawing. The separator is omitted. This is an example in which the negative electrode and the positive electrode are wound at the same winding start position, and the current collecting terminals 1, 2 are attached to the outer ends of the wound electrodes.
Shows the case where is arranged. In this case, unlike the cases of Embodiments 1 to 3, since the winding start positions of the positive electrode and the negative electrode are the same, the same poles face each other like the negative electrode and the negative electrode in the innermost portion by the initial folding. Even if an active material is present in the innermost layer, battery reaction cannot be expected. Therefore, no electrode active material is formed inside the innermost electrode collector (negative electrode collector 6 in this figure).

【0024】実施の形態5.図6は本発明の実施の形態
5による電極構造体を示す断面図であり、図の複雑化を
避けるために、正極活物質層3と負極活物質層4との間
および最外層に配置されているセパレータを省略してい
る。負極と正極の巻き始め位置を同じにして巻かれてい
る例であり、巻回した電極の内側端部に一方の集電端子
1を、中央部に他方の集電端子2を配置した場合を示
す。この場合も最内周の電極集電体6の内側には電極活
物質は形成していない。また、内側端部の負極集電体6
に形成された負極集電端子2に対向する正極集電体5に
は活物質を形成しないでリチウム金属の析出を防止して
いるが、正極集電体5に形成された正極集電端子1に対
向する負極部分にはリチウム金属析出の心配がないので
活物質を形成している。勿論、この部分の活物質を除去
してもよい。
Embodiment 5. FIG. 6 is a cross-sectional view showing an electrode structure according to a fifth embodiment of the present invention, which is disposed between the positive electrode active material layer 3 and the negative electrode active material layer 4 and in the outermost layer in order to avoid complication of the drawing. The separator is omitted. This is an example in which the negative electrode and the positive electrode are wound at the same winding start position, and one current collecting terminal 1 is arranged at the inner end of the wound electrode and the other current collecting terminal 2 is arranged at the center. Show. Also in this case, no electrode active material is formed inside the innermost electrode current collector 6. In addition, the negative electrode current collector 6 at the inner end portion
The active material is not formed on the positive electrode current collector 5 facing the negative electrode current collector terminal 2 formed in the above to prevent the deposition of lithium metal, but the positive electrode current collector terminal 1 formed on the positive electrode current collector 5 is An active material is formed on the negative electrode portion facing to, because there is no concern about deposition of lithium metal. Of course, the active material in this portion may be removed.

【0025】[0025]

【実施例】実施例1. (正極の作製)LiCoO2からなる正極活物質91重
量部と、導電材としての人造黒鉛6重量部と、結着材と
してのポリフッ化ビニリデン(以下、PVDFと略す)
3重量部をN−メチルピロリドン(以下、NMPと略
す)に分散することにより調整した正極活物質ペースト
を、正極集電体となる厚み20μmのアルミ箔上にドク
ターブレード法により、図2(a)のようにパターン塗
工して正極活物質層の塗工の部分と未塗工の部分を持つ
正極活物質層を形成した後、乾燥した。更に、裏面にも
ドクターブレード法により、同じ正極活物質ペーストを
パターン塗工してアルミ箔の両面に正極活物質層を形成
し乾燥した後、プレスして厚さ200μmの正極を作製
した。電極寸法は長さ49mm×幅150mm、未塗工
部Aは幅10mm、B+Cは幅30mm、片面の正極活
物質膜は90μmとした。正極のアルミ箔の未塗工部分
の端部にはリードとしての厚み0.1mm、幅3mmの
アルミ集電端子を超音波溶接により取り付けた。なお、
集電体は箔に限らずメッシュでもよい。
EXAMPLES Example 1. (Production of Positive Electrode) 91 parts by weight of a positive electrode active material made of LiCoO 2, 6 parts by weight of artificial graphite as a conductive material, and polyvinylidene fluoride as a binder (hereinafter abbreviated as PVDF)
The positive electrode active material paste prepared by dispersing 3 parts by weight in N-methylpyrrolidone (hereinafter, abbreviated as NMP) was applied onto a 20 μm-thick aluminum foil serving as a positive electrode current collector by a doctor blade method, as shown in FIG. ), A positive electrode active material layer having a coated portion and a non-coated portion of the positive electrode active material layer was formed, and then dried. Further, the same positive electrode active material paste was pattern-coated on the back surface by a doctor blade method to form a positive electrode active material layer on both sides of the aluminum foil, which was dried and then pressed to produce a positive electrode having a thickness of 200 μm. The electrode size was 49 mm in length × 150 mm in width, the uncoated portion A had a width of 10 mm, B + C had a width of 30 mm, and the positive electrode active material film on one surface had a thickness of 90 μm. An aluminum current collector terminal having a thickness of 0.1 mm and a width of 3 mm as a lead was attached by ultrasonic welding to the end of the uncoated portion of the positive electrode aluminum foil. In addition,
The current collector is not limited to foil and may be mesh.

【0026】(負極の作成)メソフェーズカーボンマイ
クロビーズからなる負極活物質90重量部とPVDF1
0重量部をNMPに分散することにより調整した負極活
物質ペーストを、負極集電体となる厚み12μmのCu
箔上にドクターブレード法により図2(b)のようにパ
ターン塗工して負極活物質塗工部と未塗工部を持つ負極
活物質膜を形成した後乾燥した。更に、裏面にも負極活
物質ペーストをパターン塗工して乾燥してCu箔の両面
に負極活物質膜を形成した後、プレスして負極を作成し
た。電極寸法は長さ50mm×幅180mm、未塗工部
Dは幅5mm、未塗工部E+Fは幅30mm、G55m
m、片面の負極活物質膜は90μmとした。負極のCu
箔の未塗工部分の端部にはリードとして厚み0.1m
m、幅3mmのCu集電端子を超音波溶接により取り付
けた。なお、集電体は箔に限らずメッシュでもよく、集
電端子はCuに限らずNiでよい。
(Preparation of Negative Electrode) 90 parts by weight of a negative electrode active material composed of mesophase carbon microbeads and PVDF1
The negative electrode active material paste prepared by dispersing 0 parts by weight in NMP was used as a negative electrode current collector with Cu having a thickness of 12 μm.
The foil was patterned by a doctor blade method as shown in FIG. 2 (b) to form a negative electrode active material film having a negative electrode active material coated portion and an uncoated portion, and then dried. Further, a negative electrode active material paste was pattern-coated on the back surface and dried to form a negative electrode active material film on both surfaces of the Cu foil, and then pressed to form a negative electrode. The electrode dimensions are 50 mm length x 180 mm width, uncoated part D has a width of 5 mm, uncoated part E + F has a width of 30 mm, and G55 m.
m, and the negative electrode active material film on one surface was 90 μm. Cu of negative electrode
0.1m thickness as a lead on the edge of the uncoated part of the foil
A Cu current collector terminal having a width of m and a width of 3 mm was attached by ultrasonic welding. The current collector is not limited to foil and may be a mesh, and the current collector terminal is not limited to Cu and may be Ni.

【0027】(渦巻電極構造体作成)セパレータとして
25μmの多孔性ポリプロピレンシート(ヘキスト社
製、商品名セルガード)を使用した。上記作成した正極
および負極を、巻き始めを半周ずらし、集電端子が内部
に位置し、正極および負極の活物質未塗工部がセパレー
タを介して対向するように配置して、長円状に巻き込ん
でいって巻き終わり端部をポリイミドテープで固定し渦
巻電極構造体を作成した。
(Creation of spiral electrode structure) A 25 μm porous polypropylene sheet (trade name Celgard manufactured by Hoechst) was used as a separator. The positive electrode and the negative electrode created above are arranged such that the winding start is shifted by half a turn, the current collecting terminals are located inside, and the active material uncoated parts of the positive electrode and the negative electrode are opposed to each other via the separator to form an oval shape. After winding, the end of winding was fixed with a polyimide tape to form a spiral electrode structure.

【0028】実施例2. (電極構造体の平板化)実施例1で、長円状に巻いた電
極構造体を金属板等の平板で挟み込み、荷重をかけて平
板状にして図1のような平板状渦巻電極体を作成した。
この時、60〜120℃で長円状の電極体を加圧しなが
ら乾燥し、平板状渦巻構造の電極体を得た。このように
平板化することにより、余分な空間が排除されてコンパ
クト化が図れるとともに電極とセパレータとの密着性が
よくなる。
Example 2. (Flatization of Electrode Structure) In Example 1, the elliptical rolled electrode structure is sandwiched by flat plates such as metal plates, and a load is applied to form a flat plate spiral electrode body as shown in FIG. Created.
At this time, the elliptical electrode body was dried at 60 to 120 ° C. under pressure to obtain a flat spiral electrode body. By flattening in this manner, an extra space is eliminated and the device can be made compact and the adhesion between the electrode and the separator is improved.

【0029】実施例3. (接着平板状渦巻電極構造体)正極および負極は実施例
1と同様に作成した。2枚のセパレータの片面にPVD
Fを7重量部溶解させ、酸化アルミニウム粉末9重量部
を分散させたNMP溶液を接着剤として塗布した。この
接着剤による接着層は、電解液を注液した場合に電解液
を保持し、イオン伝導性を有する接着層を形成する。そ
の後、接着剤が乾燥する前に上記作成した負極の両面に
密着させ、貼り合わせることでセパレータ付き負極を形
成した。なお、接着剤は一例であり、PVDFに限ら
ず、例えばポリビニルアルコール、ポリビニルブチラー
ト、ポリメタクリルサンメチル等の高分子であってもよ
い。また濃度も7重量部に限らない。また、酸化アルミ
ニウム粉末は接着層が多孔体になり易いように添加して
おり、黒鉛やシリカゲル等の微粉体を添加してもよい。
また、溶剤もNMPに限らず、例えばジメチルホルムア
ミド(以下、DMFと略す)であってもよい。
Example 3. (Adhesive flat plate spiral electrode structure) The positive electrode and the negative electrode were prepared in the same manner as in Example 1. PVD on one side of two separators
An NMP solution in which 7 parts by weight of F was dissolved and 9 parts by weight of aluminum oxide powder was dispersed was applied as an adhesive. The adhesive layer formed of this adhesive holds the electrolytic solution when the electrolytic solution is injected and forms an adhesive layer having ion conductivity. Then, before the adhesive was dried, it was brought into close contact with both sides of the above-prepared negative electrode and bonded to form a negative electrode with a separator. The adhesive is an example, and not limited to PVDF, but may be a polymer such as polyvinyl alcohol, polyvinyl butyrate, or polymethacrylsanmethyl. The concentration is not limited to 7 parts by weight. Further, the aluminum oxide powder is added so that the adhesive layer easily becomes a porous body, and fine powder such as graphite or silica gel may be added.
Further, the solvent is not limited to NMP, and may be, for example, dimethylformamide (hereinafter abbreviated as DMF).

【0030】上記セパレータ付き負極に、PVDFを7
重量部溶解させ、酸化アルミニウム粉末9重量部を分散
させたDMF溶液を接着剤として塗布して、負極の活物
質未塗工部と正極の活物質未塗工部が重なり合うように
して貼りあわせ長円状に巻き、接着剤が乾燥する前に、
荷重をかけながら真空乾燥を行って図1のような接着平
板状渦巻電極体を形成した。なお、接着工程は正極にセ
パレータを接着したものに負極を接着したり、正極とセ
パレータと負極を同時に接着してもよい。また、正極と
負極の一方のみをセパレータと接着してもよく、電極と
セパレータを接着することにより、ずれ難く信頼性の高
い電極構造体が得られる。また、電極の一方とセパレー
タを接着しておいてから他の電極を巻き込みながら張り
合わせることにより製造が容易となる。
PVDF is added to the negative electrode with the separator 7 times.
DMF solution in which 9 parts by weight of aluminum oxide powder is dispersed is applied as an adhesive, and the bonding is performed so that the negative electrode active material uncoated part and the positive electrode active material uncoated part overlap each other. Wrap in a circle and before the adhesive dries,
Vacuum drying was performed while applying a load to form a bonded flat plate spiral electrode body as shown in FIG. In the bonding step, the negative electrode may be bonded to the positive electrode to which the separator is bonded, or the positive electrode, the separator, and the negative electrode may be bonded simultaneously. Further, only one of the positive electrode and the negative electrode may be adhered to the separator, and by adhering the electrode and the separator, it is possible to obtain a highly reliable electrode structure which is hardly displaced. In addition, one of the electrodes is adhered to the separator, and then the other electrode is rolled up and bonded to each other to facilitate the production.

【0031】比較例1.比較例1として、実施例1と同
じ材料からなり、電極活物質が電極集電体の両面に一面
に形成された、パターン塗工を施していない電極を用い
て実施例3と同様の作成方法で図9に示した電極構造体
を作成した。なお、電極構造体の寸法は実施例3、比較
例1ともに厚さ(図面に向かって上下方向の寸法)3.
0mm、幅(左右方向の寸法)25mm、高さ(図面に
垂直な方向の寸法)50mmとした。
Comparative Example 1. As Comparative Example 1, the same production method as in Example 3 was used using an electrode which is made of the same material as in Example 1 and in which the electrode active material is formed on both surfaces of the electrode current collector and which is not subjected to pattern coating. Then, the electrode structure shown in FIG. 9 was prepared. Note that the dimensions of the electrode structure are the thickness (dimension in the vertical direction toward the drawing) of Example 3 and Comparative Example 1.
The width was 0 mm, the width (horizontal direction) was 25 mm, and the height (direction perpendicular to the drawing) was 50 mm.

【0032】(電極体の封口)上記作成した実施例3と
比較例1による電極構造体をエチレンカーボネートとジ
エチルカーボネートの混合溶媒(モル比で1:1)に6
フッ化リン酸リチウムを1mol/dm3の濃度で溶解
させた電解液中に浸漬して十分にしみ込ませた後、厚さ
110μmのアルミラミネートシートで作成した袋に熱
融着で封入した。集電タブ部は金属と熱融着性のあるポ
リエチレンのついてある部分をアルミラミネートシート
で挟んで熱融着して密閉した。アルミラミネートシート
の閉じしろは5mmで、上と左右の3方向を熱融着によ
りシールして電池化した。
(Sealing of Electrode Body) The above-prepared electrode structure according to Example 3 and Comparative Example 1 was mixed with a mixed solvent of ethylene carbonate and diethyl carbonate (molar ratio of 1: 1).
Lithium fluorophosphate was immersed in an electrolyte solution having a concentration of 1 mol / dm 3 to sufficiently impregnate it, and then heat sealed in a bag made of an aluminum laminate sheet having a thickness of 110 μm. The current collecting tab portion was sealed by heat-sealing by sandwiching a portion of polyethylene having heat-sealing property with metal with an aluminum laminate sheet. The closing margin of the aluminum laminate sheet was 5 mm, and the upper and left and right directions were sealed by heat fusion to form a battery.

【0033】上記作成した各電池を100mAの電流で
4.1Vになるまで充電させて、10分後に同様の電流
値で2.5Vに達するまで放電を行った時の結果を表1
に示す。実施例3で作成した電池は340mAhの放電
容量が得られたが、比較例1で作成した電池は280m
Ahの放電容量しか得られなかった。電池の外形寸法は
同じであるが、実施例3では電池反応に関与しない活物
質を取り除いて、正極と負極の活物質が対向する部分に
のみ電極活物質層を配置しているため、電池として機能
する電極活物質層の量が実施例3の方が比較例1よりも
多いからである。
The above-prepared batteries were charged at a current of 100 mA to 4.1 V and discharged after 10 minutes at the same current value to reach 2.5 V.
Shown in. The battery prepared in Example 3 had a discharge capacity of 340 mAh, but the battery prepared in Comparative Example 1 was 280 m.
Only the discharge capacity of Ah was obtained. Although the external dimensions of the battery are the same, in Example 3, the active material that does not participate in the battery reaction is removed, and the electrode active material layer is arranged only in the portion where the positive and negative electrode active materials face each other. This is because the amount of the functioning electrode active material layer in Example 3 is larger than that in Comparative Example 1.

【0034】[0034]

【表1】 [Table 1]

【0035】また、比較例1では図8に電極構造体の中
心部を拡大して示すように、集電端子1、2および絶縁
テープ7の厚みにより最内部に余分な空間が生じ易い
が、実施例3では図7に電極構造体の中心部を拡大して
示すように、余分な空間が存在しにくい。更に実施例3
では空間が生じ易く、電池反応の起こりにくい最内層内
側の電極活物質層をなくして余分な厚みを減らしてい
る。その結果、比較例1との放電容量の差異が生じ、よ
り高い放電容量が得られ、体積エネルギー密度の向上が
図られたことがわかる。
Further, in Comparative Example 1, as shown in an enlarged view of the central portion of the electrode structure in FIG. 8, an extra space is apt to occur in the innermost portion due to the thickness of the current collecting terminals 1 and 2 and the insulating tape 7, but In Example 3, as shown in an enlarged view of the central portion of the electrode structure in FIG. 7, it is difficult for an extra space to exist. Further Example 3
In the above, the electrode active material layer inside the innermost layer in which a space is easily generated and a battery reaction is hard to occur is eliminated to reduce an extra thickness. As a result, it can be seen that a difference in discharge capacity from Comparative Example 1 occurred, a higher discharge capacity was obtained, and the volume energy density was improved.

【0036】さらに、上記実施例3及び比較例1による
電池を100mAの電流値で4.1Vになるまで充電さ
せて10分後に同じ電流値で放電を行うという充放電を
繰り返すサイクル試験を行い、100サイクル後の放電
容量の劣化を比較した結果を表2に示す。実施例3によ
る電池では100サイクル後の放電容量は初期放電容量
の90%以上を維持していたが、比較例1による電池で
は約86%であった。これは、比較例1では最内層と最
外層に余分な負極活物質が存在しているため、充放電サ
イクルを繰り返した時にその余分な負極活物質部分にお
いて充電時にリチウムイオンが取り込まれたが、放電時
にはそのリチウムイオンが放出されなかったことが原因
であると考えられる。このように、最外層と最内層の余
剰活物質を取り除くことでサイクル特性が向上し、繰り
返しの使用に対する電池の劣化が抑制され、電池の寿命
延長の効果もある。
Further, a cycle test was repeated in which the batteries according to Example 3 and Comparative Example 1 were charged at a current value of 100 mA to 4.1 V and discharged after 10 minutes at the same current value, which was repeated charge and discharge. Table 2 shows the results of comparing the deterioration of the discharge capacity after 100 cycles. In the battery according to Example 3, the discharge capacity after 100 cycles maintained 90% or more of the initial discharge capacity, while in the battery according to Comparative Example 1, it was about 86%. This is because, in Comparative Example 1, since extra negative electrode active material was present in the innermost layer and the outermost layer, lithium ions were taken in during charging in the extra negative electrode active material portion when the charge / discharge cycle was repeated. It is considered that this is because the lithium ions were not released during discharge. Thus, by removing the surplus active material in the outermost layer and the innermost layer, the cycle characteristics are improved, the deterioration of the battery due to repeated use is suppressed, and the life of the battery is extended.

【0037】[0037]

【表2】 [Table 2]

【0038】実施例4.実施例1で作成した電極と活物
質の塗工パターンのみが異なる電極を用い、実施例3と
同様の作成方法で、図5で示した実施の形態4の正極と
負極の巻き始め位置が同じである電極構造体を作成して
実施例4とした。
Example 4. Using the electrode prepared in Example 1 and an electrode having a different active material coating pattern, and the same preparation method as in Example 3, the positive electrode and negative electrode of Embodiment 4 shown in FIG. 5 have the same winding start position. Example 4 was prepared and an electrode structure was prepared.

【0039】比較例2.比較例2として、実施例1と同
じ材料からなり、電極活物質が電極集電体の両面に一面
に形成された、パターン塗工を施していない電極を用
い、実施例3と同様の作成方法で図10に示した電極構
造体を作成した。なお、電極構造体の寸法は実施例4、
比較例2ともに実施例3、比較例1と同じとした。
Comparative Example 2. As Comparative Example 2, an electrode made of the same material as that of Example 1 and having an electrode active material formed on both surfaces of the electrode current collector without being subjected to pattern coating was used, and the same production method as in Example 3 was used. Then, the electrode structure shown in FIG. 10 was prepared. The dimensions of the electrode structure are shown in Example 4,
Comparative Example 2 was the same as Example 3 and Comparative Example 1.

【0040】上記のように作成された電極構造体に実施
例3、比較例1と同様に電解液をしみ込ませてアルミラ
ミネートシートでシールして電池化した。このようにし
て作成した各電池を100mAの電流で4.1Vになる
まで充電させ、10分後に同様の電流値で2.5Vに達
するまで放電を行った時の結果を表2に示す。実施例4
で作成した電池は340mAhの放電容量が得られた
が、比較例2で作成した電池は300mAhの放電容量
しか得られなかった。電池の外形寸法は同じであるが、
実施例4では電池反応に関与しない活物質を取り除い
て、正極と負極の活物質が対向する部分にのみ電極活物
質層を配置しているため、電池として機能する電極活物
質層の量が実施例4の方が比較例2よりも多いからであ
る。
The electrode structure prepared as described above was impregnated with an electrolytic solution in the same manner as in Example 3 and Comparative Example 1 and sealed with an aluminum laminate sheet to prepare a battery. Table 2 shows the results when each of the batteries thus prepared was charged at a current of 100 mA until it reached 4.1 V, and was discharged after 10 minutes at the same current value until it reached 2.5 V. Example 4
The battery prepared in Example 3 obtained a discharge capacity of 340 mAh, but the battery prepared in Comparative Example 2 obtained a discharge capacity of 300 mAh. The external dimensions of the battery are the same,
In Example 4, the active material that does not participate in the battery reaction was removed, and the electrode active material layer was arranged only in the portions where the positive electrode and negative electrode active materials face each other. This is because Example 4 has more number than Comparative Example 2.

【0041】[0041]

【表3】 [Table 3]

【0042】また、比較例2の電極体をプレスして平板
化すると、電極体の最内部の折り曲げ部分の集電体に亀
裂が入る場合があったが、実施例4の電極体においては
そのようなことはみられなかった。これは比較例2の電
極体では図10のように最内層に電極活物質層を有して
いるため最内部の折り曲げ部分の集電体の伸び率が大き
く、金属の電極集電体、特に正極集電体が折り曲げに対
する金属の伸びに耐えきれなかったことが原因である。
一方、実施例4の電極体では最内層に電極活物質層を有
していないため金属の電極集電体の伸び率が比較例2に
比べて小さくなり、電極集電体の断裂が抑制された。こ
のように、最内層に電極活物質を設けないことで、プレ
スして平板化した場合に電極集電体の断裂制御の効果も
見られた。
When the electrode body of Comparative Example 2 was pressed into a flat plate, the current collector at the innermost bent portion of the electrode body sometimes cracked. However, in the electrode body of Example 4, the crack occurred. No such thing was seen. This is because the electrode body of Comparative Example 2 has an electrode active material layer in the innermost layer as shown in FIG. This is because the positive electrode current collector could not withstand the elongation of the metal due to bending.
On the other hand, in the electrode body of Example 4, since the innermost layer does not have an electrode active material layer, the elongation rate of the metal electrode current collector is smaller than that of Comparative Example 2, and the rupture of the electrode current collector is suppressed. It was Thus, by not providing the electrode active material in the innermost layer, the effect of controlling the rupture of the electrode current collector was also observed when pressed and flattened.

【0043】なお、上記実施例では実施の形態1および
4で示した電極構造体を取り上げたが、他の実施の形態
で示した電極構造体についても活物質塗布パターンのみ
が異なる実施例1と同様の電極を用いて実施例1〜4と
同様の方法で作成できる。
Although the electrode structures shown in the first and fourth embodiments are taken up in the above-mentioned examples, the electrode structures shown in the other embodiments are different from those in the first embodiment only in the active material coating pattern. It can be prepared by the same method as in Examples 1 to 4 using the same electrode.

【0044】[0044]

【発明の効果】以上のように、第1の発明の電極集電体
によれば、電極集電体の表裏両面に電極活物質を、上記
電極集電体の片面の1部に集電端子をそれぞれ形成した
正極および負極を、電子絶縁性のセパレータを介して対
向配置して渦巻状に巻回されてなる電極構造体であっ
て、上記渦巻状の最内層には、上記電極活物質層をそれ
ぞれ形成しない上記正極及び負極の電極集電体が配置さ
れるとともに、反対面にのみそれぞれ正極活物質層、負
極活物質層、負極集電端子、正極集電端子が配置され、
上記負極集電端子、及び上記正極集電端子に対向する部
位の他極の集電体にはそれぞれ電極活物質が形成されて
いないので、軽量・小型でエネルギー密度の向上した、
しかもリチウム金属の析出を防止して信頼性の高い電極
構造体が得られる。
As described above, according to the electrode current collector of the first invention, an electrode active material is provided on both front and back surfaces of the electrode current collector, and a part of one side of the electrode current collector is used. A positive electrode and a negative electrode each having a current collector terminal formed thereon are arranged facing each other with an electronically insulating separator interposed therebetween, and are wound in a spiral shape, wherein the spiral innermost layer is It the electrode active material layer
The positive and negative electrode current collectors, which are not formed respectively, are arranged.
And the negative electrode active material layer and negative
A polar active material layer, a negative electrode current collector terminal, and a positive electrode current collector terminal are arranged,
The negative electrode current collector terminal, and a portion facing the positive electrode current collector terminal
Since the electrode active material is not formed on the collector of the other electrode of the second position, it is lightweight and small, and the energy density is improved.
Moreover, a highly reliable electrode structure can be obtained by preventing deposition of lithium metal.

【0045】[0045]

【0046】また、第の発明の電極集電体によれば、
上記第1の発明の電極構造体において、渦巻状の最外層
の電極集電体の外側には電極活物質が形成されていない
ので、対極がなく電池反応に関与しない最外層外側の活
物質を省いて軽量・小型でエネルギー密度の向上した電
極構造体が得られる。また、繰り返し使用におけるサイ
クル特性の向上がみられ、電池寿命の向上が期待でき
る。
According to the electrode current collector of the second invention,
In the electrode structure of the first aspect of the invention , since the electrode active material is not formed outside the spiral outermost electrode current collector, the active material outside the outermost layer that does not participate in the battery reaction without a counter electrode is formed. It is possible to obtain an electrode structure that is light in weight, small in size, and has improved energy density by omitting. Further, the cycle characteristics are improved in repeated use, and the battery life can be expected to be improved.

【0047】[0047]

【0048】[0048]

【0049】また、第の発明の電池によれば、上記第
あるいは2の電極構造体がラミネートシートで作成さ
れた袋に封入されているので、軽量・小型でエネルギー
密度の向上した、しかもリチウム金属の析出を防止して
信頼性の高い電池が得られる。
Further, according to the battery of the first invention, the first or second electrode structure is made of a laminated sheet.
Since it is enclosed in a sealed bag, a battery that is lightweight and compact, has improved energy density, and prevents the deposition of lithium metal, and has high reliability can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施の形態1による渦巻電極構造体
の構成を示す断面図である。
FIG. 1 is a sectional view showing a structure of a spiral electrode structure according to a first embodiment of the present invention.

【図2】 本発明の実施の形態1に係る電極パターン塗
工例を示す断面図である。
FIG. 2 is a cross-sectional view showing an electrode pattern coating example according to the first embodiment of the present invention.

【図3】 本発明の実施の形態2による渦巻電極構造体
の構成を示す断面図である。
FIG. 3 is a sectional view showing a structure of a spiral electrode structure according to a second embodiment of the present invention.

【図4】 本発明の実施の形態3による渦巻電極構造体
の構成を示す断面図である。
FIG. 4 is a sectional view showing a structure of a spiral electrode structure according to a third embodiment of the present invention.

【図5】 本発明の実施の形態4による渦巻電極構造体
の構成を示す断面図である。
FIG. 5 is a sectional view showing a structure of a spiral electrode structure according to a fourth embodiment of the present invention.

【図6】 本発明の実施の形態5による渦巻電極構造体
の構成を示す断面図である。
FIG. 6 is a sectional view showing the structure of a spiral electrode structure according to a fifth embodiment of the present invention.

【図7】 本発明の実施例3による平板状渦巻電極構造
体の中心部を拡大して示す断面図である。
FIG. 7 is an enlarged sectional view showing a central portion of a flat plate spiral electrode structure according to a third embodiment of the present invention.

【図8】 本発明の比較例1による平板状渦巻電極構造
体の中心部を拡大して示す断面図である。
FIG. 8 is an enlarged cross-sectional view showing a central portion of a flat plate spiral electrode structure according to Comparative Example 1 of the present invention.

【図9】 従来の渦巻電極構造体の構成を示す断面図で
ある。
FIG. 9 is a cross-sectional view showing a configuration of a conventional spiral electrode structure.

【図10】 従来の渦巻電極構造体の別の構成を示す断
面図である。
FIG. 10 is a cross-sectional view showing another structure of a conventional spirally wound electrode structure.

【符号の説明】[Explanation of symbols]

1 正極集電端子、2 負極集電端子、3 正極活物質
層、4 負極活物質層、5 正極集電体、6 負極集電
体、7 絶縁テープ、8 セパレータ、A〜G活物質未
塗工部。
DESCRIPTION OF SYMBOLS 1 Positive electrode collector terminal, 2 Negative electrode collector terminal, 3 Positive electrode active material layer, 4 Negative electrode active material layer, 5 Positive electrode collector, 6 Negative electrode collector, 7 Insulating tape, 8 Separator, A to G active material uncoated Engineering department.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒金 淳 東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内 (72)発明者 吉岡 省二 東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内 (72)発明者 相原 茂 東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内 (72)発明者 吉瀬 万希子 東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内 (72)発明者 西村 隆 東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内 (56)参考文献 特開 平5−74498(JP,A) 特開 平5−325989(JP,A) 特開 平6−223841(JP,A) 特開 平10−172537(JP,A) 特開 平10−172606(JP,A) 特開 平11−111327(JP,A) 特開 平11−265706(JP,A) 特開 平7−320770(JP,A) 特開 平8−339818(JP,A) 特開 平8−339817(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/04 H01M 4/02 H01M 10/40 H01M 2/02 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Jun Aragane 2-3-3 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation (72) Inventor Shoji Yoshioka 2-3-2, Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Machinery Co., Ltd. (72) Inventor Shigeru Aihara 2-3-3 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation (72) Inventor Makiko Yoshise 2-3-3 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation (72) Inventor Takashi Nishimura 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation (56) References JP-A-5-74498 (JP, A) JP-A-5-325989 (JP, A) JP-A-6-223841 (JP, A) JP-A-10-172537 (JP, A) JP-A-10-172606 (JP, A) JP-A-11-111327 (JP, A) JP-A-11-265706 (JP A) Patent flat 7-320770 (JP, A) JP flat 8-339818 (JP, A) JP flat 8-339817 (JP, A) (58 ) investigated the field (Int.Cl. 7, DB name ) H01M 10/04 H01M 4/02 H01M 10/40 H01M 2/02

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電極集電体の表裏両面に電極活物質
を、上記電極集電体の片面の1部に集電端子をそれぞれ
形成した正極および負極を、電子絶縁性のセパレータを
介して対向配置して渦巻状に巻回されてなる電極構造体
であって、上記渦巻状の最内層には、上記電極活物質層
をそれぞれ形成しない上記正極及び負極の電極集電体が
配置されるとともに、反対面にのみそれぞれ正極活物質
層、負極活物質層、負極集電端子、正極集電端子が配置
され、上記負極集電端子、及び上記正極集電端子に対向
する部位の他極の集電体にはそれぞれ電極活物質が形
成されていないことを特徴とする電極構造体。
1. An electrode active material on both front and back surfaces of an electrode current collector.layer
A collector terminal on one side of each of the electrode collectors.
The formed positive electrode and negative electrode are separated by an electronically insulating separator.
Electrode structure formed by spirally arranging in opposition to each other
AndThe innermost layer of the spiral shape has the electrode active material layer.
The positive and negative electrode current collectors that do not respectively form
The positive electrode active material is arranged on the opposite side only
Layer, negative electrode active material layer, negative electrode collector terminal, positive electrode collector terminal arranged
Facing the negative electrode current collector terminal and the positive electrode current collector terminal
Each of the collectors of the other poleElectrode active materiallayerShape
An electrode structure characterized by being not formed.
【請求項2】 渦巻状の最外層の電極集電体の外側には
電極活物質が形成されていないことを特徴とする請求項
1に記載の電極構造体。
2. The electrode active material is not formed on the outer side of the spiral outermost electrode current collector.
1. The electrode structure according to 1 .
【請求項3】 請求項1あるいは2に記載の電極構造体
がラミネートシートで作成された袋に封入されたことを
特徴とする電池。
3. The electrode structure according to claim 1 or 2.
Was enclosed in a bag made of laminated sheet
Characteristic battery.
JP23567398A 1998-08-21 1998-08-21 Electrode structure and battery using the same Expired - Fee Related JP3428448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23567398A JP3428448B2 (en) 1998-08-21 1998-08-21 Electrode structure and battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23567398A JP3428448B2 (en) 1998-08-21 1998-08-21 Electrode structure and battery using the same

Publications (2)

Publication Number Publication Date
JP2000067907A JP2000067907A (en) 2000-03-03
JP3428448B2 true JP3428448B2 (en) 2003-07-22

Family

ID=16989516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23567398A Expired - Fee Related JP3428448B2 (en) 1998-08-21 1998-08-21 Electrode structure and battery using the same

Country Status (1)

Country Link
JP (1) JP3428448B2 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4714952B2 (en) * 1998-10-30 2011-07-06 ソニー株式会社 Lithium ion polymer secondary battery, manufacturing apparatus and manufacturing method thereof
JP2002175839A (en) * 2000-12-08 2002-06-21 Nec Tokin Tochigi Ltd Sealed battery
JP2003068271A (en) * 2001-06-13 2003-03-07 Matsushita Electric Ind Co Ltd Lithium secondary battery and manufacturing method of positive plate used for lithium secondary battery
JP2004139800A (en) * 2002-10-16 2004-05-13 Dainippon Printing Co Ltd Nonaqueous electrolyte battery and its electrode plate
KR100958649B1 (en) * 2002-12-27 2010-05-20 삼성에스디아이 주식회사 Battery unit and the winding method thereof and lithum secondary battery using the same
KR100515833B1 (en) 2003-05-26 2005-09-21 삼성에스디아이 주식회사 Jelly-roll type electrode assembly and secondary battery applying the same
KR100601504B1 (en) * 2004-06-28 2006-07-19 삼성에스디아이 주식회사 Electrode Assembly and Lithium Ion Secondary battery using the Same
JP4293205B2 (en) 2005-09-09 2009-07-08 ソニー株式会社 battery
JP5034418B2 (en) * 2006-09-29 2012-09-26 ソニー株式会社 Nonaqueous electrolyte secondary battery
JP4362539B2 (en) 2007-07-20 2009-11-11 パナソニック株式会社 Battery electrode plate, battery electrode plate group, lithium secondary battery, battery electrode plate manufacturing method, and battery electrode plate manufacturing apparatus
WO2009013889A1 (en) * 2007-07-20 2009-01-29 Panasonic Corporation Electrode plate for battery, polar plate group for battery, lithium secondary battery, method for manufacturing electrode plate for battery, and apparatus for manufacturing electrode plate for battery
JP4438863B2 (en) 2007-12-27 2010-03-24 Tdk株式会社 Winding type electrochemical device and manufacturing method thereof
JP4683044B2 (en) * 2007-12-28 2011-05-11 Tdk株式会社 Wound-type electrochemical device and method for manufacturing wound-type electrochemical device
KR20100137290A (en) * 2009-06-22 2010-12-30 에너원코리아 주식회사 Manufacturing method of stacked electrodes by winding type electrode stacking and stacked electrode thereby
JP5692154B2 (en) * 2012-04-27 2015-04-01 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP6302797B2 (en) * 2014-08-29 2018-03-28 日立オートモティブシステムズ株式会社 Prismatic secondary battery
JP6567821B2 (en) * 2014-12-25 2019-08-28 三星エスディアイ株式会社Samsung SDI Co., Ltd. Non-aqueous electrolyte secondary battery winding element and non-aqueous electrolyte secondary battery
JP2018018646A (en) * 2016-07-27 2018-02-01 マクセルホールディングス株式会社 Lithium ion secondary battery
KR102277352B1 (en) 2016-08-24 2021-07-14 삼성에스디아이 주식회사 Electrode assembly and rechargeable battery including the same
KR102473689B1 (en) * 2017-06-09 2022-12-05 주식회사 엘지에너지솔루션 Electrode And Secondary Battery Comprising the Same
KR102410911B1 (en) * 2017-10-11 2022-06-20 삼성에스디아이 주식회사 Electrode assembly and secondary battery comprising the same
KR102097107B1 (en) * 2018-07-20 2020-04-03 주식회사 엘지화학 Electrode assembly and rechargeable battery comprising the same
WO2020017923A1 (en) * 2018-07-20 2020-01-23 주식회사 엘지화학 Electrode assembly and rechargeable battery comprising same
EP4075563A4 (en) 2020-08-21 2023-08-09 Contemporary Amperex Technology Co., Limited Electrode assembly, battery cell, battery, and method and apparatus for manufacturing electrode assembly
CN113851651A (en) * 2021-08-10 2021-12-28 宁波维科电池有限公司 High-hardness lithium ion battery and preparation method thereof
CN114024043B (en) * 2021-11-04 2023-10-03 东莞新能安科技有限公司 Electrochemical device, method for manufacturing the same, and electronic device
CN117652050A (en) * 2022-06-28 2024-03-05 宁德时代新能源科技股份有限公司 Electrode assembly, manufacturing method thereof, battery cell, battery and electricity utilization device

Also Published As

Publication number Publication date
JP2000067907A (en) 2000-03-03

Similar Documents

Publication Publication Date Title
JP3428448B2 (en) Electrode structure and battery using the same
US6225010B1 (en) Lithium ion secondary battery and manufacture thereof
JP4075034B2 (en) Nonaqueous electrolyte battery and manufacturing method thereof
JP4038699B2 (en) Lithium ion battery
JP4037452B2 (en) Electrolyte cell and electrolysis method
JP2004134116A (en) Bipolar battery
WO1999026307A1 (en) Lithium ion secondary battery and manufacture thereof
JP3474853B2 (en) Manufacturing method of lithium ion secondary battery
CN113437351B (en) Electrochemical device and electric equipment comprising same
JP3428452B2 (en) Battery with spiral electrode body and method of manufacturing the same
JPH10106536A (en) Non-aqueous electrolyte secondary battery
JP4538694B2 (en) Electrode wound type battery
WO2018168628A1 (en) Non-aqueous electrolyte secondary battery
JP3729112B2 (en) Solid electrolyte battery
JP2001283927A (en) Nonaqueous secondary battery and its manufacturing method
JP2000106167A (en) Battery
JP4590723B2 (en) Winding electrode battery and method for manufacturing the same
JP3752913B2 (en) Secondary battery
JP4636920B2 (en) Battery with spiral electrode
US20030134202A1 (en) Lithium polymer battery
JP4363558B2 (en) Flat non-aqueous electrolyte secondary battery
JP2002289257A (en) Flat nonaqueous electrolyte secondary battery
JP3750490B2 (en) battery
JP2004127559A (en) Bipolar battery, its manufacturing method and vehicle
JPH10106627A (en) Lithium battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees