JP4714952B2 - Lithium ion polymer secondary battery, manufacturing apparatus and manufacturing method thereof - Google Patents

Lithium ion polymer secondary battery, manufacturing apparatus and manufacturing method thereof Download PDF

Info

Publication number
JP4714952B2
JP4714952B2 JP31147498A JP31147498A JP4714952B2 JP 4714952 B2 JP4714952 B2 JP 4714952B2 JP 31147498 A JP31147498 A JP 31147498A JP 31147498 A JP31147498 A JP 31147498A JP 4714952 B2 JP4714952 B2 JP 4714952B2
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
electrode material
core
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31147498A
Other languages
Japanese (ja)
Other versions
JP2000138076A (en
Inventor
浩一 武藤
央 大庭
昌男 西口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP31147498A priority Critical patent/JP4714952B2/en
Publication of JP2000138076A publication Critical patent/JP2000138076A/en
Application granted granted Critical
Publication of JP4714952B2 publication Critical patent/JP4714952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、帯状集電体に極活物質とゲル状電解質とを塗布してなる負極材と正極材とを重ね合せ状態で巻回してなるリチウムポリマ二次電池及びその製造装置並びに製造方法に関する。
【0002】
【従来の技術】
例えば携帯型電子機器等においては、一般にその電源として繰り返し充電が可能であるとともに小型で大容量が得られるリチウムイオン二次電池が用いられている。携帯型電子機器等においては、多機能化或いは長時間の使用等に伴う電源容量の確保とともに小型軽量化による携帯性の向上等を目的から、リチウムイオン二次電池よりもさらに小型化が図られるとともに安全性の高い二次電池の要求が高い。
【0003】
かかる二次電池としては、リチウムイオンポリマ二次電池(以下、単にポリマ二次電池と称する。)が注目されている。ポリマ二次電池は、電解液に、これに相溶する高分子材料、例えばポリフッ化ビニリデン(PVdF)やポリアクリロニトリル(PAN)が混合されることによってゲル状化された電解質が用いられる。ポリマ二次電池は、素材にこのゲル状電解質を塗布することによって負極材や正極材を構成し、これら負極材と正極材とを適宜重ね合わせることによって構成されている。
【0004】
ポリマ二次電池としては、負極材と正極材との重ね合せ構造によって区別された種々のタイプが提案されている。ポリマ二次電池は、例えば図16に示したスタック型ポリマ二次電池100や、図17に示したセパレータ巻回型ポリマ二次電池110或いは図18に示したコアレス巻回型ポリマ二次電池130、図示しないが負極材と正極材とを積層した後にこれをつづら折りしてなるつづら折り型ポリマ二次電池等が提案されている。
【0005】
スタック型ポリマ二次電池100は、平板上で、所定の外形形状に形成された正極材101と負極材102とを、ゲル状電解質103を介して重ね合わされることによって、図16(A)に示した単セル104が構成されてなる。正極材101は、アルミニウム箔等のフィルム材によって所定の外形形状に形成された正極集電体105と、この正極集電体105の主面に塗布された正極活物質106とからなる。負極材102は、銅箔等のフィルム材によって正極集電体105よりもやや大きな外形形状に形成された負極集電体107と、この負極集電体107の主面に塗布された負極活物質108とからなる。
【0006】
スタック型ポリマ二次電池100は、図16(B)に示すように上述した複数個の単セル104A乃至104Nが厚み方向に重ね合わせて構成されてなり、大容量化が図られている。なお、スタック型ポリマ二次電池100は、例えば大形の負極材102がその外周部を電池缶と接続され、正極材101が図示しない接続構造を介して正極端子部材と接続されて構成されている。
【0007】
セパレータ巻回型ポリマ二次電池110は、液状電解質が用いられるリチウムイオン二次電池と同様に、帯状の正極材111と負極材112とをセパレータ113を介して渦巻き状に巻回して構成されてなる。正極材111は、アルミニウム箔等の帯状フィルム材からなる正極集電体114と、この正極集電体114の主面上に塗布された正極活物質115とからなる。正極材111には、最内周部の正極集電体114に正極外部端子116が接合されている。
【0008】
負極材112は、銅箔等の帯状フィルム材からなる負極集電体117と、この負極集電体117の主面に塗布された負極活物質118とからなる。負極材112には、最内周部の負極集電体117に負極外部端子119が接合されている。セパレータ113は、リチウムイオンを通過させる多孔質の帯状合成樹脂フィルム、例えばポリプロピレンフィルムやポリエチレンによって形成され、正極材111と負極材112とに挟み込まれている。
【0009】
セパレータ巻回型ポリマ二次電池110は、正極材111の正極活物質115上にゲル状の正極電解質120が塗布されるとともに、負極材112の負極活物質118上にゲル状の負極電解質121とが塗布されている。勿論、正極電解質120と負極電解質121とは、同一材料によって形成されてなる。セパレータ巻回型ポリマ二次電池110は、セパレータ113が図17に示すようにその始端部によって巻芯部を構成して正極材111と負極材112とを多層に巻回することにより、大容量化が図られている。なお、正極電解質120と負極電解質121とは、多孔質性のセパレータ113を介して正極材111と負極材112との電界作用を奏する。
【0010】
コアレス巻回型ポリマ二次電池130は、上述したセパレータ巻回型ポリマ二次電池110と比較して、セパレータ113を用いずに巻芯131の外周部に正極材132と負極材133とを渦巻き状に巻回して構成したものである。巻芯131は、図18に示すように略楔状の断面を有する一対の巻芯131a、131bからなり、図示しない駆動機構によって回転されてその外周部に正極材132と負極材133とが所定のテンションを以って巻回される。
【0011】
正極材132は、上述した各正極材と同様にアルミニウム箔等の帯状フィルム材からなる正極集電体134と、この正極集電体134の主面上に塗布された正極活物質135と、この正極活物質135及び正極集電体134上に塗布されたゲル状の正極電解質136とからなる。正極材132には、最内周部の正極集電体134に正極外部端子137が接合されている。負極材133は、銅箔等の帯状フィルム材からなる負極集電体138と、この負極集電体138の主面に塗布された負極活物質139と、この負極活物質139上に塗布されたゲル状の負極電解質140とからなる。負極材133には、最内周部の負極集電体138に負極外部端子141が接合されている。コアレス巻回型ポリマ二次電池130は、正極材132と負極材133とを高密度で巻回することから、体積エネルギー密度の向上が図られる。
【0012】
【発明が解決しようとする課題】
ところで、上述したスタック型ポリマ二次電池100においては、正極材101や負極材102がプレス加工によって形成されるが、高精度の加工を行うことが難しく、またこれら正極材101と負極材102とを平板上に高精度に位置決めすることが難しいといった問題があった。また、スタック型ポリマ二次電池100は、正極材101及び負極材102とに対して正極端子部材及び負極端子部材とがそれぞれ集電溶接によって接続されるが、高精度に接続することが難しいといった問題があった。したがって、スタック型ポリマ二次電池100は、歩留りや量産性が悪いといった問題があった。
【0013】
また、セパレータ巻回型ポリマ二次電池110は、上述したように液状電解質を用いたリチウムイオン二次電池の製造工程の転用を図ることができるが、リチウムイオンを通過させる多孔質性のセパレータ113の生産性が悪いとともに比較的高価であるといった問題があった。セパレータ巻回型ポリマ二次電池110は、セパレータ113を用いることで、その膜厚分正極材111と負極材112との極間間隔が大きくなる。
【0014】
セパレータ巻回型ポリマ二次電池110は、この極間間隔を小さくするためには正極材111と負極材112とに対して、ゲル状の正極電解質120と負極電解質121とをそれぞれ薄厚で塗布する必要がある。しかしながら、正極電解質120及び負極電解質121は、粘度が高いために、これを20ミクロン以下の厚みで均一に塗布することは極めて困難であり、歩留りや生産性が悪いといった問題があった。
【0015】
さらに、コアレス巻回型ポリマ二次電池130においても、上述したように体積エネルギー密度特性に優れているが、巻芯131に正極電解質136や負極電解質140が付着してしまう。このため、コアレス巻回型ポリマ二次電池130は、正極電解質136或いは負極電解質140が剥がれて損傷し、内部ショートが発生するといった問題があった。また、コアレス巻回型ポリマ二次電池130は、正極電解質136或いは負極電解質140に電解質塩が混合されていることから、その付着によって巻芯131等が腐蝕し製造装置の耐久性を劣化させるといった問題があった。
【0016】
ところで、ポリマ二次電池は、正極材或いは負極材の電極材にそれぞれ端子部材を接続するために、集電体に対して端子接続部を残して極活物質が間欠的に塗布される。ポリマ二次電池においては、極活物質の塗始め部位と塗終り部位とがスムーズに形成されずに飛びが発生していわゆるミックス飛びと称される汚れが生じる。ポリマ二次電池は、このミックス飛びに起因してゲル状電解質が突き破られて内部ショートが発生するといった問題があった。
【0017】
したがって、本発明は、生産性、信頼性が向上されるとともに高性能のリチウムイオンポリマ二次電池を提供することを目的に提案されたものである。また、本発明は、高精度かつ高性能のリチウムイオンポリマ二次電池を効率よくかつ低コストで製造するリチウムイオンポリマ二次の電池製造装置並びにその製造方法を提供することを目的に提案されたものである。
【0018】
【課題を解決するための手段】
上述した目的を達成する本発明にかかるリチウムイオンポリマ二次電池は、それぞれ帯状集電体に極活物質とゲル状電解質とを塗布してなる負極材と正極材が、コア材を巻芯としてその外周部に重ね合せ状態で巻回されてなる。リチウムイオンポリマ二次電池は、負極材が、巻回始端部を構成する一端側から所定長さ部位が負極活物質層を形成しない負極活物質未塗布部位として構成されるとともに、負極活物質未塗布部位に負極端子部材が接合されてなる。リチウムイオンポリマ二次電池は、正極材が、巻回始端部を構成する一端側から所定長さ部位が正極活物質層を形成しない正極活物質未塗布部位として構成されるとともに、正極活物質未塗布部位に正極端子部材が接合されてなる。リチウムイオンポリマ二次電池は、コア材が、高分子合成樹脂フィルムを素材として負極材及び正極材とほぼ同幅でありかつそれぞれの負極活物質未塗布部位及び正極活物質未塗布部位よりも長尺に形成された一対の帯状体からなる。
【0019】
以上のように構成された本発明にかかるリチウムイオンポリマ二次電池によれば、負極材と正極材とが、先端部を突き合わせられたコア材に対して、これらコア材がその外周部位をそれぞれの内周側の極活物質未塗布部位とその外周側の極活物質塗布部位との間に介在するとともに負極端子部材と正極端子部材を被覆された状態で、それぞれの巻回始端部からコア材を巻芯としてその外周部に重ね合せ状態で巻回されて構成される。リチウムイオンポリマ二次電池によれば、巻芯となるコア材が負極材と正極材のゲル状電解質の電極巻取り部への付着を防止し、巻取り装置から取り出す際にゲル状電解質の付着力による内周部位のダメージの発生が抑制されるようにするとともに装置の耐久性を向上させる。リチウムイオンポリマ二次電池によれば、負極材と正極材とが、極活物質未塗布部位と極活物質塗布部位との間に介在するコア部材によって、それぞれの始端部位に発生する極活物質のミックス飛びや電極端子のスリットバリに起因する内部ショートの発生が抑制され、信頼性の向上が図られる。
【0020】
上述した目的を達成する本発明にかかるリチウムイオンポリマ二次電池の製造装置は、負極材を供給する負極材供給機構と、正極材を供給する正極材供給機構と、コア材を供給するコア材供給機構と、コア材供給機構から供給されたコア材を巻芯部材に巻回して巻芯としてその外周部に負極材供給機構から供給された負極材と正極材供給機構から供給された正極材を重ね合せ状態で巻回する電極材巻取機構とを備える。リチウムイオンポリマ二次電池の製造装置は、負極材供給機構が、帯状の負極集電体に負極活物質とゲル状負極電解質とを塗布してなり、巻回始端部を構成する一端側から所定長さ部位が負極活物質層を形成しない負極活物質未塗布部位として構成されるとともに負極活物質未塗布部位に負極端子部材が接合されてなる負極材を電極材巻取機構に供給する。リチウムイオンポリマ二次電池の製造装置は、正極材供給機構が、帯状の正極集電体に正極活物質とゲル状正極電解質とを塗布してなり、巻回始端部を構成する一端側から所定長さ部位が正極活物質層を形成しない正極活物質未塗布部位として構成されるとともに正極活物質未塗布部位に正極端子部材が接合されてなる正極材を電極材巻取機構に供給する。リチウムイオンポリマ二次電池の製造装置は、コア材供給機構が、高分子合成樹脂フィルムを素材として負極材及び正極材とほぼ同幅でありかつそれぞれの負極活物質未塗布部位及び正極活物質未塗布部位よりも長尺に形成された一対の帯状体からなるコア材を電極材巻取機構に供給する。リチウムイオンポリマ二次電池の製造装置は、電極材巻取機構が、巻芯部材を設けた巻取り軸を有し、巻芯部材の外周部にコア供給機構から供給された一対のコア材を先端部を突き合わせて巻回するとともに所定の長さで切断して巻芯となすとともに、これらコア材の外周部に巻回始端部を繰り出し側として負極材供給機構から供給された負極材と巻回始端部を繰り出し側として正極材供給機構から供給された正極材とを重ね合せ状態で巻回する。
【0021】
以上のように構成された本発明にかかるリチウムイオンポリマ二次電池の製造装置は、電極材巻取機構において、巻芯部材の外周部にコア材供給機構から供給された一対のコア材を先端部を突き合わせて巻回するとともに所定の長さで切断する。リチウムイオンポリマ二次電池の製造装置は、電極材巻取機構において、負極材供給機構から供給されて巻芯となるコア材の外周部に巻回される負極材が、一方のコア材の外周部位が内周側の負極活物質未塗布部位とその外周側の負極活物質塗布部位との間に介在するとともに負極端子部材を被覆された状態とされて、それぞれの巻回始端部からコア材の外周部に巻回される。リチウムイオンポリマ二次電池の製造装置は、正極材供給機構から供給されて巻芯となるコア材の外周部位に巻回される正極材が、他方のコア材の外周部位が内周側の正極活物質未塗布部位とその外周側の正極活物質塗布部位との間に介在するとともに正極端子部材を被覆された状態とされて、それぞれの巻回始端部からコア材の外周部に負極材と重ね合せ状態で巻回される。
【0022】
以上のように構成された本発明にかかるリチウムイオンポリマ二次電池の製造装置によれば、巻芯部材に対してコア材を巻回して負極材と正極材の巻芯とすることにより、電極巻取り部を構成する巻芯部材や巻取り軸に負極材或いは正極材のゲル状電解質が直接付着することを防止し、リチウムイオンポリマ二次電池の取り出し時にゲル状電解質の付着力による内周部位のダメージの発生を抑制して信頼性の高いリチウムイオンポリマ二次電池を製造する。さらに、リチウムイオンポリマ二次電池の製造装置によれば、付着したゲル状電解質により巻芯部材や巻取り軸等が腐蝕して耐久性が劣化することも無い。また、リチウムイオンポリマ二次電池の製造装置によれば、負極材及び正極材がそれぞれの内周側の極活物質未塗布部位と外周側の極活物質塗布部位との間にコア材が介在するようにしてコア材の外周部に巻回するとともに、端子部材を被覆したリチウムイオンポリマ二次電池を製造することから、負極材や正極材の始端部位に発生する極活物質のミックス飛びやスリットバリに起因する内部ショートの発生を防止した高精度で信頼性の高いリチウムイオンポリマ二次電池を効率よく製造する。
【0023】
さらに、上述した目的を達成する本発明にかかるリチウムイオンポリマ二次電池の製造方法は、上述した負極材供給機構と正極材供給機構とコア材供給機構と電極材巻取機構とを備えるリチウムイオンポリマ二次電池の製造装置が用いられる。リチウムイオンポリマ二次電池の製造方法は、製造装置の電極材巻取機構において、巻芯部材の外周部にコア材供給機構から供給された一対のコア材をそれぞれの先端部を突き合わせて巻回するとともに所定の長さで切断して巻芯となすコア材巻回工程と、巻芯をなすコア材に対してその外周部が内周側の負極活物質未塗布部位とその外周側の負極活物質塗布部位との間に介在するとともに負極端子部材を被覆されて巻回する負極材巻回工程と、巻芯をなすコア材に対してその外周部が内周側の正極活物質未塗布部位とその外周側の正極活物質塗布部位との間にコア材が介在するとともに正極端子部材を被覆されて負極材と重ね合せ状態で巻回する正極材巻回工程とを施してリチウムイオンポリマ二次電池を製造する。
【0024】
したがって、本発明にかかるリチウムイオンポリマ二次電池の製造方法によれば、電極巻取り部を構成する巻芯部材や巻取り軸に負極材或いは正極材が直接巻回されないためにゲル状電解質が付着することは無く、電極材の巻回操作終了後に巻取り軸からリチウムイオンポリマ二次電池を取り外す際にゲル状電解質の粘着力によって内周部にダメージが発生するといった不都合を生じさせることは無く信頼性の高いリチウムイオンポリマ二次電池を製造する。
【0025】
また、リチウムイオンポリマ二次電池の製造方法は、負極材及び正極材が、それぞれの内周側の極活物質未塗布部位と外周側の極活物質塗布部位との間にコア材が介在するようにしてコア材の外周部に重ね合わせ状態で巻回するとともに、端子部材を被覆したリチウムイオンポリマ二次電池を製造することから、負極材や正極材の始端部位に発生する極活物質のミックス飛びやスリットバリに起因する内部ショートの発生を防止した高精度で信頼性の高いリチウムイオンポリマ二次電池効率よく製造される。
【0026】
【発明の実施の形態】
以下、図面に示した本発明の実施の形態について詳細に説明する。実施の形態として示したリチウムイオンポリマ二次電池(以下、ポリマ二次電池と略称する。)1は、詳細を後述するポリマ二次電池製造装置20によって製造される。ポリマ二次電池1は、図1に示すように、コア材2を巻芯としてその外周部に正極材3と負極材4とが重ね合わせ状態で巻回されて構成される。コア材2は、ポリプロピレン(PP)フィルムやポリエチレン(PE)フィルム或いは他のポリオレフィン系高分子樹脂フィルムを材料とし、正極材3や負極材4とほぼ同幅の帯状素材が用いられる。
【0027】
コア材2は、詳細を後述するように、ポリマ二次電池製造装置20内で所定の長さに切断される。コア材2は、セパレータ巻回型ポリマ二次電池のセパレータと同等の素材であるが、リチウムイオンを通過させる機能を有する必要が無いので多孔質でなくてもよく廉価である。コア材2は、図1に示すように正極材3と負極材4のそれぞれの巻回始端部3a、4aの最内周部に位置するようにして一対が用いられている。一対のコア材2a、2bは、その先端部が互いに突き合わされている。
【0028】
正極材3は、アルミニウム箔等の帯状フィルム材からなる正極集電体5と、この正極集電体5の両面上に成膜された正極活物質6と、この正極活物質6及び正極集電体5の表面上に塗布されたゲル状の正極電解質7とからなる。正極材3は、詳細を後述するようにポリマ二次電池製造装置20内で所定の位置において切断され、ここを巻回始端部3aとしてコア材2の外周部に所定の長さ分巻回される。
【0029】
正極活物質6は、例えばリチウムニッケル酸化物(LiNiO2)や、リチウムコバルト酸化物(LiCoO2)或いはリチウムマンガン酸化物(LiMn24)等が用いられる。正極活物質6は、これら材料にカーボン等の導電材とバインダ及び溶剤とが混合され、これが正極集電体5上に均一に塗布されてなる。遷移金属元素は、1種類に限定されず、例えばLiNiO0.5Co0.52等のように2種類以上のものも使用可能である。
【0030】
また、正極活物質6は、例えばバインダとしてポリフッ化ビニリデン(PVdF)、溶媒としてnーメチルピロリドン(NMP)が用いられる。正極活物質6は、これら素材を混合してスラリー状とし、例えばドクターブレード法等によって正極集電体5上に均一の厚みで塗布される。正極活物質6は、高温乾燥処理によってNMPが飛ばされ、さらにロールプレスによる加圧処理が施されて高密度化が図られて正極集電体5上に成膜形成される。
【0031】
正極電解質7は、高分子材料と電解液と電解質塩とが混合されてゲル状化されてなる。正極電解質7は、高分子マトリックス内に電解液が分散された状態であればよく、電解液量の制限は特に無い。高分子材料は、電解液に相溶する性質を有し、例えばポリアクリロニトリル(PAN)、ポリエーテル系高分子、PVdF、スチレンブタジエンゴム等が用いられる。電解液は、高分子材料を分散可能とし、非プロトン性溶媒として例えばエチレンカーボネート(EC)やプロピレンカーボネート(PC)或いはブチレンカーボネート(BC)等が用いられる。溶媒は、1種類ばかりでなく2種類以上を適宜混合して使用してもよい。
【0032】
電解質塩には、溶媒に対して相溶するものが用いられ、カチオンとアニオンとが組み合わされてなる。カチオンには、アルカリ金属やアルカリ土類金属が用いられる。アニオンには、Cl、Br、I、SCN、ClO4 、BF4 、PF6 、CF3SO3 、等が用いられる。電解質塩としては、六フッ化リン酸リチウムや四フッ化ホウ酸リチウムが挙げられ、電解液に溶解可能な濃度であればよい。
【0033】
正極材3は、図1に示すように後述するポリマ二次電池製造装置20によってコア材2の外周部に巻回される際に始端側となる巻回始端部3aから所定の長さ領域が、正極集電体5の表面上に正極活物質6が塗布されていない正極活物質未塗布部8として構成されている。正極材3には、巻回始端部3aに位置して正極端子部材9が接合されている。正極端子部材9は、例えばアルミニウムやニッケル等の金属導線を網目状に織ったものが用いられる。正極端子部材9は、最内周部から外方へと引き出される。
【0034】
負極材4は、銅箔等の帯状フィルム材からなる負極集電体10と、この負極集電体10の両面上に成膜された負極活物質11と、この負極活物質11及び負極集電体10の表面上に塗布されたゲル状の負極電解質12とからなる。負極材4は、詳細を後述するようにポリマ二次電池製造装置20内で所定の位置において切断され、ここを巻回始端部4aとしてコア材2の外周部に所定の長さ分巻回される。
【0035】
負極活物質11は、例えばグラファイトや難黒鉛化炭素或いは易黒鉛化炭素等の炭素材料が用いられる。負極活物質11は、この炭素材料に対して、バインダとしてPVdF、溶剤としてNMPを加えてスラリー状とし、例えばドクターブレード法等によって負極集電体10上に均一の厚みで塗布される。負極活物質11は、高温乾燥処理によってNMPが飛ばされ、さらにロールプレスによる加圧処理が施されて高密度化が図られて負極集電体10上に成膜形成される。なお、負極電解質12は、上述した正極電解質7と同一であるからその説明を省略する。
【0036】
負極材4は、図1に示すように後述するポリマ二次電池製造装置20によってコア材2の外周部に巻回される際に始端側となる巻回始端部4aから所定の長さ領域が、負極集電体10の表面上に負極活物質11が塗布されていない負極活物質未塗布部13として構成されている。負極材4には、巻回始端部4aに位置して負極端子部材14が接合されている。負極端子部材14は、例えば銅やニッケル等の金属導線を網目状に織ったものが用いられる。負極端子部材14は、最内周部から外方へと引き出される。
【0037】
ポリマ二次電池1は、図1に示すように一方のコア材2aを巻芯として上述した正極材3が時計方向に渦巻き状に巻回され、また他方のコア材2bを巻芯として上述した負極材4が時計方向に渦巻き状に巻回されてなる。ポリマ二次電池1は、コア材2aが正極材3に対して正極活物質未塗布部8の内周部に位置されて正極端子部材9を被覆した状態となっている。コア材2aは、正極材3の先端部を被覆した状態となっている。同様に、ポリマ二次電池1は、コア材2bが負極材4に対して負極活物質未塗布部13の内周部に位置されて負極端子部材14を被覆した状態となっている。コア材2bは、負極材4の先端部を被覆した状態となっている。
【0038】
以上のように構成されたポリマ二次電池1は、正極端子部材9や負極端子部材14がコア材2によって被覆されることから、これら端子部材のスリットバリ等による正極材3と負極材4との内部ショートの発生が抑制される。ポリマ二次電池1は、正極材3と負極材4の先端部をコア材2によって被覆することから、これらを切断した際に生じたバリ等による正極材3と負極材4との内部ショートの発生が抑制される。
【0039】
正極材3及び負極材4は、それぞれの巻回始端部3a、4aに正極端子部材9及び負極端子部材14を接合するためにそれぞれ正極活物質未塗布部8及び負極活物質未塗布部13が構成されている。正極材3及び負極材4には、これら正極活物質未塗布部8及び負極活物質未塗布部13にミックス飛び等が生じている。ポリマ二次電池1は、正極活物質未塗布部8及び負極活物質未塗布部13をコア材2によって被覆することから、ミックス飛びによる内部ショートの発生が抑制される。
【0040】
ポリマ二次電池1は、コア材2を正極材3と負極材4との巻芯を構成するに足る長さとしている。したがって、ポリマ二次電池1は、正極材3と負極材4正極集電体5と負極集電体10にそれぞれ極活物質6と負極活物質11及び正極電解質7と負極電解質12が塗布された領域を重ね合わせる電池領域が充分に確保される。ポリマ二次電池1は、この電池領域にはコア材2が存在しないので、セパレータを介在させる場合と比較して正極材3と負極材4との間隔が狭く構成される。ポリマ二次電池1は、正極材3と負極材4とが正極集電体5と負極集電体10に対してそれぞれ正極電解質7と負極電解質12を30ミクロン〜40ミクロン程度の膜厚で形成すればよい。したがって、ポリマ二次電池1は、正極材3及び負極材4の正極集電体5と負極集電体10に対する正極電解質7と負極電解質12の塗布工程が容易かつ高精度化されることから、生産性と信頼性の向上が図られるようになる。
【0041】
ポリマ二次電池1は、図2及び図3に概略の構成を図示したポリマ二次電池製造装置20によって製造される。ポリマ二次電池製造装置20は、機器ベース21にそれぞれ配設された、コア材供給部22と、正極材供給部23と、負極材供給部24と、巻取り部25等の各部によって構成されている。ポリマ二次電池製造装置20は、コア材供給部22から供給されるコア材2と、正極材供給部23から供給される正極材3と、負極材供給部24から供給される負極材4とを巻取り部25において後述する巻き取り操作を施してポリマ二次電池1を製造する。
【0042】
コア材供給部22は、図2において機器ベース21のほぼ中央下方部に設けたコア材供給軸26に、所定幅に裁断されたコア材2を巻回したコア材供給ロール27が装着されてなる。コア材供給部22には、コア材供給ロール27から繰り出されたコア材2に対して所定の走行テンションを付与するコア材ダンサローラ機構28と、後述する巻取り部25に対するコア材2の供給動作とこれを所定の長さに調整切断するコア材供給制御機構29等が備えられて構成される。
【0043】
正極材供給部23は、図2において機器ベース21の右側領域に配置されており、層間に離型紙30を介挿して正極材3を巻回した正極材供給ロール31が装着される正極材供給軸32と、正極材供給ロール31から離型紙30と正極材3とを分離しながら繰り出させる正極材供給機構33と、分離された離型紙30を所定の巻取りテンションを付与する離型紙ダンサローラ機構34を介して巻き取る離型紙巻取りロール35とを備えている。また、正極材供給部23は、繰り出された正極材3を巻取り部25へと導く多数個のガイドローラ等によって構成される走行ガイド機構36と、正極材3に所定の走行テンションを付与する正極材ダンサローラ機構37とが備えられて構成される。
【0044】
負極材供給部24は、図2において機器ベース21の左側領域に配置されており、層間に離型紙38を介挿して負極材4を巻回した負極材供給ロール39が装着される負極材供給軸40と、負極材供給ロール39から離型紙38と負極材4とを分離しながら繰り出させる負極材供給機構41と、分離された離型紙38を所定の巻取りテンションを付与する離型紙ダンサローラ機構42を介して巻き取る離型紙巻取りロール43とを備えている。負極材供給部24は、繰り出された負極材4を巻取り部25へと導く多数個のガイドローラ等によって構成される走行ガイド機構44と、負極材4に所定の走行テンションを付与する負極材ダンサローラ機構45とが備えられて構成される。
【0045】
巻取り部25は、図2において機器ベース21の中央上部に配置されており、図3に示すように図示しない回転駆動機構によって回転駆動されるとともに円周軌道L上を周回動作される巻取り軸46と、この巻取り軸46の先端部に取り付けられた巻芯部材47と、巻込みローラ機構48と、ニップローラ機構49等を備えている。巻取り部25は、上述した各部を回転基盤50に搭載する。巻取り部25には、この回転基盤50の外周部にコア材2のコア材供給ガイド機構51及びコア材カッタ機構52が配設されるとともに、正極材3の正極材供給ガイド機構53及び正極材カッタ機構54と、負極材4の負極材供給ガイド機構55及び負極材カッタ機構56とが駆動ユニットUTに搭載されて配設されている。
【0046】
駆動ユニットUTは、後述する巻取り操作に際して正極材供給ガイド機構53と負極材供給ガイド機構55とを図2において左右方向へと切換移動させる。正極材供給ガイド機構53及び負極材供給ガイド機構55は、これによって巻芯部材47に対して選択的に対応位置される。なお、巻取り部25は、図2において上方位置を後述する巻取り操作に際してのスタンバイ位置とし、このスタンバイ位置にニップローラ機構49が配置されている。また、これら正極材供給ガイド機構53及び負極材供給ガイド機構55は、スタンバイ位置において巻芯部材47に対して等間隔に対向位置される。
【0047】
巻芯部材47は、図3に示すように全体略楔状を呈する一対の部材47a、47bを組み合わせてなり、全体略紡錘形を呈している。巻芯部材47には、詳細を後述するように、その外周部に所定量のコア材2が巻回された状態において正極材3と負極材4とが重ね合わされた状態で巻回される。
【0048】
巻込みローラ機構48は、巻取り軸46に対応して円周軌道L上を周回動作され、L字状のブラケット部材57に対して巻込みローラ58が回転自在に支持されている。巻込みローラ機構48は、詳細を後述するように巻込みローラ58が巻芯部材47に対して接離動作するようにブラケット部材57が図示しない駆動機構によって揺動動作される。巻込みローラ機構48は、後述するように巻込みローラ58の外周部にコア材2を掛け合わせて巻芯部材47の外周部へと導く作用を奏する。巻込みローラ機構48は、正極材供給ガイド機構53から供給された正極材3を巻芯部材47の外周部に巻き込ませる作用を奏する。巻込みローラ機構48は、負極材供給ガイド機構55から供給された負極材4を巻芯部材47の外周部に巻き込ませる作用を奏する。
【0049】
ニップローラ機構49は、シリンダ59と、ニップローラ60等によって構成され、図3に示すように巻芯部材47に対して巻込みローラ機構48と対向した位置に配置されている。ニップローラ機構49は、シリンダ59が動作することによってニップローラ60を巻芯部材47に対して接離動作させる。ニップローラ機構49は、正極材供給ガイド機構53から供給された正極材3を巻芯部材47の外周部に巻き込ませる作用を奏する。ニップローラ機構49は、負極材供給ガイド機構55から供給された負極材4を巻芯部材47の外周部に巻き込ませる作用を奏する。
【0050】
コア材供給ガイド機構51は、複数個のガイドローラや図示しない可動型のテンションローラ等によって構成され、コア材2に対して所定のテンションを付与した状態で巻芯部材47へと走行ガイドさせる。コア材供給ガイド機構51は、後述するコア材カッタ機構52に対応して配設されたガイドプレート61が備えられている。
【0051】
コア材カッタ機構52は、図3に示すように巻取り部25のスタンバイ位置に対応位置されている。コア材カッタ機構52は、同図に示すようにコア材供給ガイド機構51のガイドプレート61に対向位置されたニップローラ62と、このニップローラ62をガイドプレート61に対して接離動作させるシリンダ63と、ニップローラ62とともにシリンダ63によって駆動されるカッタ64等の部材によって構成されている。
【0052】
コア材カッタ機構52は、後述するようにコア材2が巻芯部材47に対して所定の長さ分巻き込まれた状態において、シリンダ63が動作してニップローラ62とカッタ64とをガイドプレート61側へと移動させる。コア材カッタ機構52は、ニップローラ62とガイドプレート61との間でコア材2を挟持した状態で、カッタ64によってコア材2を切断する。
【0053】
正極材供給ガイド機構53は、ガイドローラ65と、正極材グリッパ部材66等の部材によって構成され、スタンバイ位置において巻芯部材47の上方右側に位置して配置されている。正極材供給ガイド機構53は、上述したように駆動ユニットUTによってスタンバイ位置と巻芯部材47の上方位置とに切換位置される。正極材グリッパ部材66は、図示しない駆動機構によってガイドローラ65に対して接離動作されるとともに供給方向に対してスライド動作される。正極材供給ガイド機構53は、後述するように正極材グリッパ部材66が動作されてガイドローラ65との間で正極材3を挟持した状態でスライド動作されることによって、正極材3を巻芯部材47の外周部に送り込む作用を奏する。
【0054】
正極材カッタ機構54は、正極材供給ガイド機構53と巻芯部材47との間に配置されており、詳細を省略するがカッタと押えプレート等の部材によって構成されている。正極材カッタ機構54は、巻芯部材47に対して所定量の正極材3の巻取り操作が行われた場合に駆動されて、正極材3を切断する。正極材カッタ機構54は、この場合、正極材供給部23の供給動作に基づいて制御され、正極材3の正極活物質未塗布部8で正極材3の切断動作を行う。
【0055】
負極材供給ガイド機構55は、ガイドローラ67と、負極材グリッパ部材68等の部材によって構成され、スタンバイ位置において巻芯部材47の上方左側に位置して配置されている。負極材供給ガイド機構55は、上述したように駆動ユニットUTによってスタンバイ位置と巻芯部材47の上方位置とに切換位置される。負極材グリッパ部材68は、図示しない駆動機構によってガイドローラ67に対して接離動作されるとともに供給方向に対してスライド動作される。負極材供給ガイド機構55は、後述するように負極材グリッパ部材68が動作されてガイドローラ67との間で負極材4を挟持した状態でスライド動作されることによって、負極材4を巻芯部材47の外周部に送り込む作用を奏する。
【0056】
負極材カッタ機構56は、負極材供給ガイド機構55と巻芯部材47との間に配置されており、詳細を省略するがカッタと押えプレート等の部材によって構成されている。負極材カッタ機構56は、巻芯部材47に対して所定量の負極材4の巻取り操作が行われた場合に駆動されて、負極材4を切断する。負極材カッタ機構56は、この場合、負極材供給部24の供給動作に基づいて制御され、負極材4の負極活物質未塗布部13で負極材4の切断動作を行う。
【0057】
以上のように構成されたポリマ二次電池製造装置20においては、コア材供給部22のコア材供給軸26にコア材供給ロール27がセットされ、このコア材供給ロール27から引き出されたコア材2がコア材ダンサローラ機構28、コア材供給制御機構29を介してコア材供給ガイド機構51へと供給される。ポリマ二次電池製造装置20においては、正極材供給部23の正極材供給軸32に正極材供給ロール31がセットされ、この正極材供給ロール31から引き出された正極材3が正極材供給機構33へと供給される。
【0058】
正極材3は、正極材供給機構33において離型紙30が剥離され、走行ガイド機構36、正極材ダンサローラ機構37を介して正極材供給ガイド機構53へと供給される。離型紙30は、正極材供給機構33において正極材3から剥離されて離型紙ダンサローラ機構37を介して離型紙巻取ロール35に供給される。
【0059】
ポリマ二次電池製造装置20においては、負極材供給部24の負極材供給軸40に負極材供給ロール39がセットされ、この負極材供給ロール39から引き出された負極材4が負極材供給機構41へと供給される。負極材4は、負極材供給機構41において離型紙38が剥離され、走行ガイド機構44、負極材ダンサローラ機構45を介して負極材供給ガイド機構55へと供給される。離型紙38は、負極材供給機構41において負極材4から剥離されて離型紙ダンサローラ機構42を介して離型紙巻取ロール43に供給される。
【0060】
ポリマ二次電池製造装置20においては、コア材供給ガイド機構51からコア材2が繰り出されて巻芯部材47の外周部に所定量巻回される。ポリマ二次電池製造装置20においては、巻取り軸46が回転駆動されるとともに正極材供給ガイド機構53から正極材3が繰り出されかつ負極材供給ガイド機構55から負極材4が繰り出される。ポリマ二次電池製造装置20においては、正極材3或いは負極材4の巻回始端部3a、3bの巻回動作に連動してコア材2のカッティング動作が行われる。ポリマ二次電池製造装置20においては、正極材3或いは負極材4の巻回始端部3a、3bの範囲においてコア材2がその巻芯を構成し、正極材3及び負極材4が互いに重ね合わせ状態で順次その外周部に巻回されていく。
【0061】
ポリマ二次電池製造装置20においては、正極材3及び負極材4の所定量の巻回動作が終了すると巻取り軸46の回転動作が終了する。ポリマ二次電池製造装置20においては、正極材カッタ機構54及び負極材カッタ機構56が動作して正極材3と負極材4のカッティングが行われる。ポリマ二次電池製造装置20からは、巻取り部25の巻芯部材47から製作されたポリマ二次電池の取り出しが行われる。
【0062】
ポリマ二次電池製造装置20は、上述した工程を経てコア材2を巻芯としてその外周部に正極材3と負極材4とを重ね合わせ状態で巻回してなるポリマ二次電池を製造する。ポリマ二次電池製造装置20は、コア材2が正極材3及び負極材4に対してそれぞれの正極活物質未塗布部8及び負極活物質未塗布部13の内周部に位置されて正極端子部材9及び負極端子部材14を被覆したポリマ二次電池を製造する。
【0063】
したがって、ポリマ二次電池製造装置20は、コア材2によって正極端子部材9や負極端子部材14の巻回始端部3a、4aを被覆してそれらのスリットバリやカッティングの際に生じたバリ等による正極材3と負極材4との内部ショートの発生が抑制された信頼性の高いポリマ二次電池1を製造する。ポリマ二次電池製造装置20は、コア材2によって正極材3及び負極材4の正極活物質未塗布部8及び負極活物質未塗布部13を被覆してこれらの部位に発生したミックス飛びによる内部ショートの発生を抑制した信頼性の高いポリマ二次電池1を製造する。
【0064】
ポリマ二次電池製造装置20は、比較的高価なセパレータを不要とすることから、そのコストダウンが図られたポリマ二次電池1を製造する。ポリマ二次電池製造装置20は、コア材2が正極材3と負極材4の巻芯部分にのみ存在することから、正極集電体5及び負極集電体10に対して正極電解質7及び負極電解質12を30ミクロン〜40ミクロン程度の膜厚とした製作が比較的容易でかつ高精度の正極材3や負極材4を用いることを可能とし、生産性と信頼性の向上が図られるとともにコストダウンが図られたポリマ二次電池1を製造する。
【0065】
ポリマ二次電池製造装置20は、巻芯部材47にコア材2を巻回した状態でその外周部に正極材3と負極材4とを重ね合わせた状態で巻回することから、巻芯部材47やその他の部位への粘度の高いゲル状正極電解質7やゲル状負極電解質12の付着が抑制される。したがって、ポリマ二次電池製造装置20は、巻芯部材47からポリマ二次電池1を取り外す際に付着したゲル状正極電解質7やゲル状負極電解質12の粘着力によって正極材3と負極材4の内周部が損傷されることが無い信頼性の高いポリマ二次電池1を歩留りよく製造することが可能である。ポリマ二次電池製造装置20は、各部に付着したゲル状正極電解質7やゲル状負極電解質12に含まれる電解質塩による腐蝕等の発生が抑制され、耐久性が向上される。
【0066】
上述したポリマ二次電池製造装置20を用いたポリマ二次電池1の具体的な製造工程について、以下図4乃至図15に示した巻取り部25における各部の動作形態図を参照して詳細に説明する。
【0067】
ポリマ二次電池製造装置20は、図4に示すスタンバイ位置において、コア材2が巻込みローラ機構48の巻込みローラ58にガイドされて巻芯部材47の外周部に巻回された状態にある。巻芯部材47は、不特定な姿勢にあるとともに、巻込みローラ58及びニップローラ機構49のニップローラ60とが離間した位置にある。正極材3は、正極材供給ガイド機構53のガイドローラ65と正極材グリッパ部材66とによって、その先端部分が挟持されている。同様に、負極材4も、負極材供給ガイド機構55のガイドローラ67と負極材グリッパ部材68とによってその先端部分が挟持されている。巻芯部材47は、正極材供給ガイド機構53と負極材供給ガイド機構55との中間に位置している。
【0068】
ポリマ二次電池製造装置20においては、巻取り動作の開始に伴って、駆動ユニットUTが動作して負極材供給ガイド機構55を巻芯部材47に対応位置させる。負極材供給ガイド機構55は、負極材グリッパ部材68がガイドローラ67との間で負極材4を挟持した状態のまま図5矢印で示すように巻芯部材47側へと下降動作する。負極材4は、この負極材グリッパ部材68の動作によって巻回始端部4aが巻芯部材47の外周部まで送り出される。
【0069】
ポリマ二次電池製造装置20においては、次工程で、図6に示すように負極材4の送出し動作と巻芯部材47に対する巻込み動作とが行われる。巻芯部材47は、上述したように不特定な姿勢にあり、巻取り軸46の調整動作によって同図(A)矢印で示すように調整回動されて負極材4に対して平行な状態とする巻芯角度合わせが行われる。
【0070】
ポリマ二次電池製造装置20においては、次に巻込みローラ機構48とニップローラ機構49とが動作される。巻込みローラ機構48は、図6(B)矢印で示すように巻込みローラ58を巻芯部材47の外周部に当接させる。巻込みローラ58は、この状態において負極材4の巻回始端部4aを巻芯部材47の外周部に押し付けて保持する。ニップローラ機構49は、同様にニップローラ60を巻芯部材47の外周部に当接させる。
【0071】
ポリマ二次電池製造装置20においては、負極材供給ガイド機構55の負極材グリッパ部材68の動作が行われる。負極材グリッパ部材68は、負極材4が巻芯部材47と巻込みローラ58とによって保持された状態で、図6(C)矢印で示すようにガイドローラ67から離間する方向に移動する。ポリマ二次電池製造装置20においては、さらに負極材グリッパ部材68を同図(D)矢印で示すようにスタンバイ位置へと復帰させる動作が行われる。負極材供給ガイド機構55は、駆動ユニットUTが動作されることによってスタンバイ位置へと復帰する。
【0072】
ポリマ二次電池製造装置20においては、コア材カッタ機構52が駆動されて図7に示すようにカッタ64によりコア材2のカッティング動作が行われる。コア材2は、コア材カッタ機構52によってその長さが負極材4の負極活物質未塗布部13の長さの範囲においてカッティングされる。
【0073】
ポリマ二次電池製造装置20においては、巻取り軸46が駆動されることによって巻芯部材47が図8矢印で示すように反時計方向へと回転する。巻芯部材47には、その外周部にコア材2と負極材4とが重なり合った状態で巻回される。巻芯部材47には、上述したようにその外周部にコア材2が先に巻回された状態にあることから負極材4が直接接触することはなく、この負極材4がコア材2の外周部に巻回されることになる。したがって、ポリマ二次電池製造装置20においては、巻芯部材47に対する負極材4の負極電解質12の付着が抑制される。
【0074】
ポリマ二次電池製造装置20においては、次工程で、図9に示すように正極材3の送出し動作と巻芯部材47に対する巻込み動作とが行われる。ポリマ二次電池製造装置20においては、同図(A)に示すように駆動ユニットUTの動作によって正極材供給ガイド機構53を巻芯部材47の上方に位置させるとともに巻込みローラ機構48の動作によって巻込みローラ58を巻芯部材47から離間させる動作が行われる。また、ポリマ二次電池製造装置20においては、正極材供給ガイド機構53が動作することにより正極材グリッパ部材66がガイドローラ65との間で正極材3を挟持した状態のまま同図矢印で示すように巻芯部材47側へと下降する動作が行われる。正極材3は、この正極材グリッパ部材66の動作によって巻回始端部3aが巻芯部材47の外周部まで送り出される。
【0075】
ポリマ二次電池製造装置20においては、同図(B)に示すように巻芯部材47の巻芯角度合わせが行われる。巻芯部材47は、巻取り軸46の調整動作によって矢印で示すように調整回動されて正極材3に対して平行な状態とされる。
【0076】
ポリマ二次電池製造装置20においては、次に巻込みローラ機構48とニップローラ機構49とがそれぞれ動作されることによって、同図(C)矢印で示すように巻込みローラ58とニップローラ60とがそれぞれ巻芯部材47の外周部に当接する動作が行われる。巻込みローラ58は、この状態において正極材3の巻回始端部3aを巻芯部材47の外周部に押し付けて保持する。ポリマ二次電池製造装置20においては、正極材3が巻芯部材47と巻込みローラ58とによって保持された状態で、図9(D)矢印で示すように正極材グリッパ部材66をガイドローラ65から離間する方向に移動させる動作が行われる。
【0077】
ポリマ二次電池製造装置20においては、上述した正極材3の送出し動作とともに、図10に示すように駆動ユニットUTが動作して巻芯部材47を正極材供給ガイド機構53と負極材供給ガイド機構55との中立位置に位置させる動作が行われる。巻芯部材47は、この状態で同図矢印で示すように反時計方向へと回転され、その外周部に正極材3及び負極材4を互いに重ね合わせた状態で順次巻取り動作を行う。勿論、正極材3及び負極材4は、巻芯部材47の外周部に最初に巻回されたコア材2の外周部に巻回される。
【0078】
ポリマ二次電池製造装置20においては、正極材3及び負極材4の所定量の巻き取りを行うと、図11に示す正極材3のカッテング動作の準備工程が行われる。ポリマ二次電池製造装置20においては、駆動ユニットUTが動作して正極材供給ガイド機構53を巻芯部材47に対応位置させるとともに、この正極材供給ガイド機構53によって正極材グリッパ部材66とガイドローラ65とを上下方向に調整移動して位置決めする動作を行う。正極材グリッパ部材66は、同図(A)に示すようにガイドローラ65に対して接合することによって正極材3を挟み込んで固定する。また、ポリマ二次電池製造装置20においては、この状態で正極材カッタ機構54が正極材3の走行路中に進入させる動作が行われる。
【0079】
ポリマ二次電池製造装置20においては、上述した一連の動作によって正極材3のカッティング位置が規定され、図11(B)に示すように正極材カッタ機構54が動作して正極材3のカッティングが行われる。正極材3は、正極活物質未塗布部8の範囲においてカッティングされ、この部位が次ぎの巻回始端部3aとして構成される。ポリマ二次電池製造装置20においては、正極材3のカッティングにおいて巻回始端部3aに生じるカッティングバリによる内部ショートの発生を、上述したようにコア材2によって巻回始端部3aを被覆することで抑制する。正極材3は、巻芯部材47の外周部に当接した巻込みローラ58とニップローラ60とによって巻芯部材47に対する巻回状態が保持される。
【0080】
ポリマ二次電池製造装置20においては、上述した正極材3のカッティング動作が終了すると、図12矢印で示すようにガイドローラ65と正極材グリッパ部材66とが正極材3を保持した状態のままスタンバイ位置へと復帰する動作が行われる。ポリマ二次電池製造装置20においては、同図矢印で示すように正極材3の走行路から正極材カッタ機構54を退避させる動作が行われる。
【0081】
ポリマ二次電池製造装置20においては、次に負極材4のカッティング工程が行われる。ポリマ二次電池製造装置20においては、駆動ユニットUTが動作して負極供給ガイド機構55が巻芯部材47に対応位置されるとともに、負極供給ガイド機構55と負極材カッタ機構56の動作が行われる。負極供給ガイド機構55は、図13(A)矢印で示すように負極材グリッパ部材68をガイドローラ67に接合させて負極材を保持する。負極供給ガイド機構55は、この場合上下方向へと調整移動して位置決めされる。負極材カッタ機構56は、負極材4の走行路中に進入する。
【0082】
ポリマ二次電池製造装置20においては、上述した一連の動作によって負極材4のカッティング位置が規定され、図13(B)に示すように負極材カッタ機構56が動作して負極材4のカッティングが行われる。負極材4は、負極活物質未塗布部13の範囲においてカッティングされ、この部位が次ぎの巻回始端部4aとして構成される。ポリマ二次電池製造装置20においては、負極材4のカッティングにおいて次の巻回始端部4aに生じるカッティングバリによる内部ショートの発生を、上述したようにコア材2によって巻回始端部4aを被覆することで抑制する。負極材は、巻芯部材47の外周部に当接した巻込みローラ58とニップローラ60とによってその巻回状態が保持される。
【0083】
ポリマ二次電池製造装置20においては、巻芯部材47が回転して上述した工程によってカッティングされた正極材3と負極材4の先端部が巻き取られることによって所定量の正極材3と負極材4とを重ね合わせ状態で巻回してなるポリマ二次電池1が製造される。ポリマ二次電池製造装置20においては、負極材4の走行路からの負極材カッタ機構56の退避動作が行われる。ポリマ二次電池製造装置20においては、図14矢印で示すように負極供給ガイド機構55がスタンバイ位置へと復帰する。
【0084】
ポリマ二次電池製造装置20においては、以上の工程を経た後、巻込みローラ機構48とニップローラ機構49とが動作して、図15に示すように巻芯部材47から巻込みローラ58とニップローラ60とが離間する動作が行われる。ポリマ二次電池製造装置20においては、巻芯部材47から製造されたポリマ二次電池1の取り出しが行われる。ポリマ二次電池製造装置20においては、上述したように正極材3と負極材4とを巻芯部材47の外周部にコア材2を介して巻回することで粘度の高い正極電解質7、負極電解質12が巻芯部材47に付着されないようにしている。したがって、ポリマ二次電池1は、巻芯部材47から取り出される際に内周部にダメージが発生することが抑制される。
【0085】
なお、本発明は、上述したポリマ二次電池製造装置20及びポリマ二次電池1の製造工程に限定されるものではないことは勿論である。
【0086】
【発明の効果】
以上詳細に説明したように、本発明にかかるリチウムイオンポリマ二次電池によれば、負極材と正極材とが先端部を突き合わせられたコア材に対して、このコア材がその外周部位をそれぞれの内周側の極活物質未塗布部位とその外周側の極活物質塗布部位との間に介在するとともに端子部材を被覆された状態で、それぞれの巻回始端部からコア材を巻芯としてその外周部に重ね合せ状態で巻回されて構成されることから、巻芯となるコア材が負極材と正極材のゲル状電解質の電極巻取り部への付着を防止し、製造装置から取り出す際にこの付着ゲル状電解質の付着力による内周部位のダメージの発生が抑制されるとともに製造装置の耐久性を向上させるようになる。また、リチウムイオンポリマ二次電池によれば、負極材と正極材とが、極活物質未塗布部位と極活物質塗布部位との間に介在するコア部材によって、それぞれの始端部位に発生する極活物質のミックス飛びや電極端子のスリットバリに起因する内部ショートの発生が抑制されることで、信頼性の向上が図られる。
【0087】
また、本発明にかかるリチウムイオンポリマ二次電池の製造装置及び製造方法によれば、負極材と正極材とが巻芯部材に巻回したコア材を巻芯としてその外周部に重ね合せ状態で巻回されて構成されたリチウムイオンポリマ二次電池を製造することから、電極巻取り部に電極材のゲル状電解質が直接付着することを防止し、リチウムイオンポリマ二次電池の取り出し時にゲル状電解質の粘着力によって内周部にダメージを発生させず、またゲル状電解質による巻取り軸等の腐蝕も抑制して耐久性の向上が図られる。リチウムイオンポリマ二次電池の製造装置及び製造方法によれば、負極材及び正極材がコア材に対してそれぞれの内周側の極活物質未塗布部位と外周側の極活物質塗布部位との間にコア材が介在するとともに端子部材を被覆してその外周部に重ね合わせ状態で巻回することから、負極材や正極材の始端部位に発生する極活物質のミックス飛びやスリットバリ或いは負極材や正極材の切断の際のバリ等に起因する内部ショートの発生を防止した高精度で信頼性の高いリチウムイオンポリマ二次電池を効率よく製造する。
【図面の簡単な説明】
【図1】本発明の実施の形態として示すリチウムイオンポリマ二次電池の概略構成を説明する模式図である。
【図2】同リチウムイオンポリマ二次電池の製造装置を説明する概要図である。
【図3】同製造装置の巻取り部の構成説明図である。
【図4】同製造装置によるリチウムイオンポリマ二次電池の製造工程を説明する巻取り部の概要図であり、スタンバイ状態を示す。
【図5】同巻取り部の概要図であり、負極材の送出し動作工程を示す。
【図6】同巻取り部の概要図であり、負極材の巻込み動作工程を示す。
【図7】同巻取り部の概要図であり、コア材のカッティング工程を示す。
【図8】同巻取り部の概要図であり、負極材の巻込み動作工程を示す。
【図9】同巻取り部の概要図であり、正極材の送出し動作から巻込み動作工程を示す。
【図10】同巻取り部の概要図であり、負極材と正極材との巻取り動作工程を示す。
【図11】同巻取り部の概要図であり、正極材のカッティング工程を示す。
【図12】同巻取り部の概要図であり、正極材カッティング機構の復帰工程を示す。
【図13】同巻取り部の概要図であり、負極材のカッティング工程を示す。
【図14】同巻取り部の概要図であり、スタンバイ位置復帰工程を示す。
【図15】同巻取り部の概要図であり、リチウムイオンポリマ二次電池の取出し工程を示す。
【図16】スタック型ポリマ二次電池の構成説明図であり、同図(A)は単セルを示し、同図(B)は全体図を示す。
【図17】セパレータ型ポリマ二次電池の構成説明図である。
【図18】コアレス型ポリマ二次電池の構成説明図である。
【符号の説明】
1 ポリマ二次電池(リチウムイオンポリマ二次電池)、2 コア材、3 正極材、3a 巻回始端部、4 負極材、4a 巻回始端部、5 正極集電体、6 正極活物質、7 正極電解質、8 正極活物質未塗布部、9 正極端子部材、10 負極集電体、11 負極活物質、12 負極電解質、13 負極活物質未塗布部、14 負極端子部材、20 ポリマ二次電池製造装置、22 コア材供給部、23 正極材供給部、24 負極材供給部、25 巻取り部、27 コア材供給ロール、31 正極材供給ロール、39 負極材供給ロール、46 巻取り軸、47 巻芯部材、48 巻込みローラ機構、49 ニップローラ機構、51 コア材供給ガイド機構、52 コア材カッタ機構、53 正極材供給ガイド機構、54 正極材カッタ機構、55 負極材供給ガイド機構、56 負極材カッタ機構、58 巻込みローラ、60 ニップローラ、66 正極材グリッパ部材、68 負極材グリッパ部材
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a lithium polymer secondary battery in which a negative electrode material obtained by applying a polar active material and a gel electrolyte to a belt-shaped current collector and a positive electrode material are wound in a superposed state, a manufacturing apparatus and a manufacturing method thereof. .
[0002]
[Prior art]
  For example, in a portable electronic device or the like, a lithium ion secondary battery that can be repeatedly charged and that is small in size and has a large capacity is generally used as its power source. In portable electronic devices and the like, further miniaturization can be achieved compared to lithium ion secondary batteries for the purpose of ensuring power capacity due to multi-function or long-time use and improving portability by reducing size and weight. At the same time, there is a high demand for highly safe secondary batteries.
[0003]
  As such secondary batteries, lithium ion polymer secondary batteries (hereinafter simply referred to as polymer secondary batteries) are attracting attention. Polymer secondary batteries use an electrolyte that is gelled by mixing an electrolyte with a polymer material compatible with the electrolyte, such as polyvinylidene fluoride (PVdF) or polyacrylonitrile (PAN). Polymer secondary batteryMaterialA negative electrode material or a positive electrode material is formed by applying this gel electrolyte, and the negative electrode material and the positive electrode material are appropriately overlapped.
[0004]
  Various types of polymer secondary batteries have been proposed, which are distinguished by an overlapping structure of a negative electrode material and a positive electrode material. The polymer secondary battery may be, for example, the stack type polymer secondary battery 100 shown in FIG. 16, the separator-wrapped polymer secondary battery 110 shown in FIG. 17, or the coreless wound polymer secondary battery 130 shown in FIG. Although not shown, a zigzag folded polymer secondary battery or the like has been proposed in which a negative electrode material and a positive electrode material are laminated and then zigzag folded.
[0005]
  A stacked polymer secondary battery 100 is formed by stacking a positive electrode material 101 and a negative electrode material 102 formed in a predetermined outer shape on a flat plate with a gel electrolyte 103 therebetween, as shown in FIG. The single cell 104 shown is configured. The positive electrode material 101 includes a positive electrode current collector 105 formed in a predetermined outer shape by a film material such as an aluminum foil, and a positive electrode active material 106 applied to the main surface of the positive electrode current collector 105. The negative electrode material 102 includes a negative electrode current collector 107 formed in a slightly larger outer shape than the positive electrode current collector 105 by a film material such as copper foil, and a negative electrode active material applied to the main surface of the negative electrode current collector 107 108.
[0006]
  As shown in FIG. 16B, the stack type polymer secondary battery 100 is formed by stacking the above-described single cells 104A to 104N in the thickness direction, thereby increasing the capacity. The stacked polymer secondary battery 100 includes, for example, a large-sized negative electrode material 102 that is connected to a battery can at the outer periphery thereof, and a positive electrode material 101 that is connected to a positive electrode terminal member via a connection structure (not shown). Yes.
[0007]
  The separator-wound polymer secondary battery 110 is configured by winding a strip-like positive electrode material 111 and a negative electrode material 112 in a spiral shape through a separator 113, similarly to a lithium ion secondary battery using a liquid electrolyte. Become. The positive electrode material 111 includes a positive electrode current collector 114 made of a strip-shaped film material such as aluminum foil, and a positive electrode active material 115 applied on the main surface of the positive electrode current collector 114. In the positive electrode material 111, a positive electrode external terminal 116 is joined to a positive electrode current collector 114 at the innermost peripheral portion.
[0008]
  The negative electrode material 112 includes a negative electrode current collector 117 made of a strip-like film material such as copper foil, and a negative electrode active material 118 applied to the main surface of the negative electrode current collector 117. In the negative electrode material 112, a negative electrode external terminal 119 is joined to a negative electrode current collector 117 at the innermost peripheral portion. Separator 113 is,It is formed of a porous belt-shaped synthetic resin film that allows the passage of thium ions, such as a polypropylene film or polyethylene, and is sandwiched between the positive electrode material 111 and the negative electrode material 112.
[0009]
  In the separator wound polymer secondary battery 110, the gel-like positive electrode electrolyte 120 is applied on the positive electrode active material 115 of the positive electrode material 111, and the gel-like negative electrode electrolyte 121 is formed on the negative electrode active material 118 of the negative electrode material 112. Is applied. Of course, the positive electrode electrolyte 120 and the negative electrode electrolyte 121 are formed of the same material. As shown in FIG. 17, the separator wound polymer secondary battery 110 has a large capacity by winding the positive electrode material 111 and the negative electrode material 112 in multiple layers by forming a core portion with the start end portion thereof as shown in FIG. It is planned. The positive electrode electrolyte 120 and the negative electrode electrolyte 121 exert an electric field effect between the positive electrode material 111 and the negative electrode material 112 via the porous separator 113.
[0010]
  Compared to the separator-wrapped polymer secondary battery 110 described above, the coreless wound polymer secondary battery 130 spirals the positive electrode material 132 and the negative electrode material 133 around the outer periphery of the winding core 131 without using the separator 113. It is configured by winding in a shape. As shown in FIG. 18, the winding core 131 includes a pair of winding cores 131a and 131b having a substantially wedge-shaped cross section. The winding core 131 is rotated by a driving mechanism (not shown) so that a positive electrode material 132 and a negative electrode material 133 are formed on the outer periphery thereof. It is wound with tension.
[0011]
  The positive electrode material 132 includes a positive electrode current collector 134 made of a strip-shaped film material such as an aluminum foil as in the case of each of the positive electrode materials described above, a positive electrode active material 135 applied on the main surface of the positive electrode current collector 134, It comprises a positive electrode active material 135 and a gelled positive electrode electrolyte 136 applied on the positive electrode current collector 134. In the positive electrode material 132, a positive electrode external terminal 137 is joined to the positive electrode current collector 134 in the innermost peripheral portion. The negative electrode material 133 was applied to the negative electrode current collector 138 made of a strip-shaped film material such as copper foil, the negative electrode active material 139 applied to the main surface of the negative electrode current collector 138, and the negative electrode active material 139. It consists of a gel-like negative electrode electrolyte 140. In the negative electrode material 133, a negative electrode external terminal 141 is joined to a negative electrode current collector 138 in the innermost periphery. Since the coreless wound polymer secondary battery 130 winds the positive electrode material 132 and the negative electrode material 133 at a high density, the volume energy density can be improved.
[0012]
[Problems to be solved by the invention]
  By the way, in the stack type polymer secondary battery 100 described above, the positive electrode material 101 and the negative electrode material 102 are formed by pressing, but it is difficult to perform high-precision processing, and the positive electrode material 101 and the negative electrode material 102 are There is a problem that it is difficult to position the plate on the flat plate with high accuracy. In the stack type polymer secondary battery 100, the positive electrode terminal member and the negative electrode terminal member are connected to the positive electrode material 101 and the negative electrode material 102 by current collecting welding, respectively, but it is difficult to connect with high accuracy. There was a problem. Therefore, the stack type polymer secondary battery 100 has a problem that yield and mass productivity are poor.
[0013]
  The separator-wound polymer secondary battery 110 can be used as a lithium ion secondary battery manufacturing process using a liquid electrolyte as described above, but is porous to allow lithium ions to pass therethrough.SexThere existed a problem that productivity of separator 113 was bad and it was comparatively expensive. Separator winding polymer secondary battery 110 uses separator 113 to increase the distance between positive electrode material 111 and negative electrode material 112 by the thickness of the separator 113.
[0014]
  In the separator wound polymer secondary battery 110, in order to reduce the distance between the electrodes, the gel-like positive electrode electrolyte 120 and the negative electrode electrolyte 121 are respectively applied to the positive electrode material 111 and the negative electrode material 112 in a thin thickness. There is a need. However, since the positive electrode electrolyte 120 and the negative electrode electrolyte 121 have high viscosities, it is very difficult to uniformly apply the positive electrode electrolyte 120 and the negative electrode electrolyte 121 with a thickness of 20 microns or less, and there is a problem that yield and productivity are poor.
[0015]
  Furthermore, the coreless wound polymer secondary battery 130 is also excellent in volume energy density characteristics as described above, but the positive electrode electrolyte 136 and the negative electrode electrolyte 140 adhere to the winding core 131. For this reason, the coreless wound polymer secondary battery 130 has a problem that the positive electrode electrolyte 136 or the negative electrode electrolyte 140 is peeled off and damaged, and an internal short circuit occurs. Further, in the coreless wound polymer secondary battery 130, since the electrolyte salt is mixed in the positive electrode electrolyte 136 or the negative electrode electrolyte 140, the core 131 and the like are corroded by the adhesion, and the durability of the manufacturing apparatus is deteriorated. There was a problem.
[0016]
  By the way, in the polymer secondary battery, in order to connect the terminal member to the electrode material of the positive electrode material or the negative electrode material, the polar active material is intermittently applied to the current collector leaving the terminal connection portion. In the polymer secondary battery, the application start portion and the application end portion of the polar active material are not smoothly formed, and the jump occurs and a so-called mix jump occurs. The polymer secondary battery has a problem that an internal short circuit occurs due to the gel electrolyte breaking through due to the mixing skip.
[0017]
  Therefore, the present invention has been proposed for the purpose of providing a high-performance lithium ion polymer secondary battery with improved productivity and reliability. Another object of the present invention is to provide a lithium ion polymer secondary battery manufacturing apparatus and method for manufacturing a high accuracy and high performance lithium ion polymer secondary battery efficiently and at low cost. Is.
[0018]
[Means for Solving the Problems]
  The lithium ion polymer secondary battery according to the present invention that achieves the above-described object is composed of a negative electrode material and a positive electrode material obtained by applying a polar active material and a gel electrolyte to a band-shaped current collector, respectively, and a core material as a core. It is wound around the outer periphery in a superposed state. In the lithium ion polymer secondary battery, the negative electrode material is configured as a negative electrode active material uncoated portion where a predetermined length portion does not form a negative electrode active material layer from one end side constituting the winding start end portion, and the negative electrode active material uncoated A negative electrode terminal member is joined to the application site. In the lithium ion polymer secondary battery, the positive electrode material is configured as a positive electrode active material uncoated portion where a predetermined length portion does not form a positive electrode active material layer from one end side constituting the winding start end portion. A positive electrode terminal member is joined to the application site. Lithium ion polymer secondary battery has a core material made of polymerCompositionThe resin film is made of a pair of strips that are substantially the same width as the negative electrode material and the positive electrode material and are formed longer than the respective negative electrode active material uncoated portions and positive electrode active material uncoated portions.
[0019]
  According to the lithium ion polymer secondary battery according to the present invention configured as described above, the negative electrode material and the positive electrode material are:For the core material with which the tip portion is abutted, the core material has its outer peripheral part interposed between the inner peripheral side non-active material application part and the outer peripheral side active material application part and the negative electrode In a state where the terminal member and the positive electrode terminal member are covered, the core member is wound around the outer peripheral portion from the respective winding start end portions in a superposed state. According to the lithium ion polymer secondary battery, the core material serving as the winding core prevents the negative electrode material and the positive electrode material from adhering to the electrode winding portion of the gel electrolyte, and the gel electrolyte is attached when taking out from the winding device. PowerThe occurrence of damage to the inner peripheral part due to is suppressed, and the durability of the apparatus is improved. Lithium ion polymer secondary batteryAccording to the present invention, the negative electrode material and the positive electrode material are divided into a region where the active material is not applied and a region where the active material is appliedBy the core member interposed betweeneachThe occurrence of internal short-circuits caused by mix jumps of the active material generated at the start end and slit burrs at the electrode terminals is suppressed., Improved reliabilityThe
[0020]
  An apparatus for manufacturing a lithium ion polymer secondary battery according to the present invention that achieves the above-described object includes a negative electrode material supply mechanism that supplies a negative electrode material, a positive electrode material supply mechanism that supplies a positive electrode material, and a core material that supplies a core material. A supply mechanism, and a core material supplied from the core material supply mechanism are wound around a core member, and the negative electrode material supplied from the negative electrode material supply mechanism to the outer periphery of the core material and the positive electrode material supplied from the positive electrode material supply mechanism And an electrode material winding mechanism that winds the two in a superposed state. In the lithium ion polymer secondary battery manufacturing apparatus, the negative electrode material supply mechanism is formed by applying a negative electrode active material and a gelled negative electrode electrolyte to a strip-shaped negative electrode current collector, and is predetermined from one end side constituting a winding start end portion. A negative electrode material in which the length portion is configured as a negative electrode active material uncoated portion that does not form a negative electrode active material layer and a negative electrode terminal member is joined to the negative electrode active material uncoated portion is supplied to the electrode material winding mechanism. In a lithium ion polymer secondary battery manufacturing apparatus, a positive electrode material supply mechanism is formed by applying a positive electrode active material and a gelled positive electrode electrolyte to a belt-shaped positive electrode current collector, and is predetermined from one end side constituting a winding start end portion. A positive electrode material having a length portion configured as a positive electrode active material uncoated portion that does not form a positive electrode active material layer and having a positive electrode terminal member bonded to the positive electrode active material uncoated portion is supplied to the electrode material winding mechanism. Lithium ion polymer secondary battery manufacturing equipment has a core material supply mechanismCompositionUsing a resin film as a raw material, a core material consisting of a pair of strips that are substantially the same width as the negative electrode material and the positive electrode material and is longer than the respective negative electrode active material uncoated region and positive electrode active material uncoated region Supply to the material winding mechanism. In the lithium ion polymer secondary battery manufacturing apparatus, the electrode material winding mechanism has a winding shaft provided with a core member, and a pair of core materials supplied from the core supply mechanism to the outer periphery of the core member. While winding with the leading end abutting and cutting to a predetermined length to form a core, the negative electrode material and the winding supplied from the negative electrode material supply mechanism with the winding start end as the feeding side on the outer periphery of these core materials The positive electrode material supplied from the positive electrode material supply mechanism is wound in an overlapped state with the rotation start end portion as the feeding side.
[0021]
  Apparatus for manufacturing a lithium ion polymer secondary battery according to the present invention configured as described aboveIn the electrode material take-up mechanism, a pair of core materials supplied from the core material supply mechanism are wound around the outer peripheral portion of the core member with the tip portions abutted against each other and cut at a predetermined length. In the lithium ion polymer secondary battery manufacturing apparatus, the negative electrode material wound around the outer periphery of the core material that is supplied from the negative electrode material supply mechanism and serves as the winding core in the electrode material winding mechanism is the outer periphery of one core material. The portion is interposed between the negative electrode active material uncoated portion on the inner peripheral side and the negative electrode active material coated portion on the outer peripheral side, and the negative electrode terminal member is covered, and the core material from each winding start end portion It is wound around the outer peripheral part. The lithium ion polymer secondary battery manufacturing apparatus includes a positive electrode material supplied from a positive electrode material supply mechanism and wound around an outer peripheral portion of a core material serving as a winding core, and an outer peripheral portion of the other core material is a positive electrode on the inner peripheral side. Between the active material uncoated portion and the positive electrode active material coated portion on the outer peripheral side, the positive electrode terminal member is covered, and the negative electrode material and the outer peripheral portion of the core material are coated from the respective winding start ends. It is wound in a superposed state.
[0022]
  According to the lithium ion polymer secondary battery manufacturing apparatus according to the present invention configured as described above, the core material is wound around the core member to form the core of the negative electrode material and the positive electrode material. It prevents the negative electrode material or the positive electrode material gel electrolyte from directly adhering to the winding core member and the winding shaft constituting the winding portion, and the inner periphery due to the adhesive force of the gel electrolyte when taking out the lithium ion polymer secondary battery. A highly reliable lithium ion polymer secondary battery is manufactured by suppressing the occurrence of damage to the part. Furthermore, according to the lithium ion polymer secondary battery manufacturing apparatus, the core member, the winding shaft, and the like are not corroded by the attached gel electrolyte and the durability is not deteriorated.In addition, lithium ion polymer secondary battery manufacturing equipmentAccording toNegative electrode material and positive electrode materialNon-applied part on the inner peripheral side and active-part applied part on the outer peripheral sideWith the core material in betweenOn the outer periphery of the core materialRollAlong with producing a lithium ion polymer secondary battery coated with a terminal member,Mix jump of polar active material generated at the start of negative electrode material or positive electrode materialYasuInternal short circuit caused by lit burrPreventionThe highly accurate and reliable lithium ion polymer secondary battery is efficiently manufactured.
[0023]
  Furthermore, the manufacturing method of the lithium ion polymer secondary battery according to the present invention that achieves the above-described object is described above.An apparatus for manufacturing a lithium ion polymer secondary battery including a negative electrode material supply mechanism, a positive electrode material supply mechanism, a core material supply mechanism, and an electrode material winding mechanism is used. A method of manufacturing a lithium ion polymer secondary battery is a method of winding a pair of core materials supplied from a core material supply mechanism to an outer peripheral portion of a core member with their respective leading ends abutted in an electrode material winding mechanism of a manufacturing apparatus. In addition, the core material winding step in which the core material is cut by a predetermined length to form the core, the negative electrode active material uncoated portion whose outer peripheral portion is the inner peripheral side with respect to the core material forming the core, and the negative electrode on the outer peripheral side thereof A negative electrode material winding step in which the negative electrode terminal member is covered and wound between the active material application site and the outer peripheral portion of the core material forming the core is not coated with the positive electrode active material A positive electrode material winding step in which a core material is interposed between the portion and the positive electrode active material application portion on the outer periphery side, and the positive electrode terminal member is coated and wound in a state of being overlapped with the negative electrode material. A secondary battery is manufactured.
[0024]
  Therefore, according to the method of manufacturing a lithium ion polymer secondary battery according to the present invention,A core member constituting the electrode winding part,Since the negative electrode material or the positive electrode material is not directly wound on the winding shaft, the gel electrolyte does not adhere to the winding shaft, and the gel-like electrolyte is removed when the lithium ion polymer secondary battery is removed from the winding shaft after the winding operation of the electrode material. A lithium ion polymer secondary battery with high reliability is produced without causing the inconvenience that the inner peripheral portion is damaged by the adhesive force of the electrolyte.
[0025]
  Moreover, the manufacturing method of a lithium ion polymer secondary battery includes a negative electrode material and a positive electrode material.But,eachNon-applied part on the inner peripheral side and active-part applied part on the outer peripheral sideWith the core material in betweenIn an overlaid state on the outer periphery of the core materialRollAlong with producing a lithium ion polymer secondary battery coated with a terminal member,Mix jump of polar active material generated at the start of negative electrode material or positive electrode materialYasuInternal short circuit caused by lit burrPreventionHigh accuracy and high reliability lithium ion polymer secondary batteryTheIt is manufactured efficiently.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, embodiments of the present invention shown in the drawings will be described in detail. Shown as an embodimentLithium ion polymer secondary batteryPolymer secondary batteryAbbreviated. )1 is manufactured by a polymer secondary battery manufacturing apparatus 20 which will be described in detail later. As shown in FIG. 1, the polymer secondary battery 1 is configured by winding a core material 2 as a winding core and winding a positive electrode material 3 and a negative electrode material 4 in an overlapping state on an outer peripheral portion thereof. The core material 2 is made of a polypropylene (PP) film, a polyethylene (PE) film, or another polyolefin polymer resin film, and a belt-like material having substantially the same width as the positive electrode material 3 and the negative electrode material 4 is used.
[0027]
  The core material 2 is cut into a predetermined length in the polymer secondary battery manufacturing apparatus 20 as will be described in detail later. The core material 2 is the same material as the separator of the separator-wound polymer secondary battery. However, the core material 2 does not need to have a function of allowing lithium ions to pass therethrough, and does not need to be porous and is inexpensive. As shown in FIG. 1, a pair of the core material 2 is used so as to be positioned at the innermost peripheral portions of the winding start end portions 3a and 4a of the positive electrode material 3 and the negative electrode material 4, respectively. The pair of core materials 2a and 2b have their front ends abutted against each other.
[0028]
  The positive electrode material 3 includes a positive electrode current collector 5 made of a strip-shaped film material such as aluminum foil, a positive electrode active material 6 formed on both surfaces of the positive electrode current collector 5, and the positive electrode active material 6 and the positive electrode current collector. It consists of a gel-like positive electrode electrolyte 7 applied on the surface of the body 5. The positive electrode material 3 is cut at a predetermined position in the polymer secondary battery manufacturing apparatus 20 as will be described in detail later, and is wound around the outer peripheral portion of the core material 2 by a predetermined length with this winding start end portion 3a. The
[0029]
  Cathode active material 6InFor example, lithium nickel oxide (LiNiO2) And lithium cobalt oxide (LiCoO)2) Or lithium manganese oxide (LiMn)2OFour) Etc. are used. The positive electrode active material 6 is obtained by mixing a conductive material such as carbon, a binder, and a solvent with these materials, and uniformly coating the positive electrode current collector 5 on the positive electrode current collector 5. The transition metal element is not limited to one type. For example, LiNiO0.5Co0.5O2Two or more types can be used as well.
[0030]
  Moreover, the positive electrode active material 6InFor example, polyvinylidene fluoride (PVdF) is used as a binder, and n-methylpyrrolidone (NMP) is used as a solvent. The positive electrode active material 6 is a slurry obtained by mixing these materials.bladeUniformly on the positive electrode current collector 5 by the methodIn thicknessApplied. The positive electrode active material 6 is formed into a film on the positive electrode current collector 5 by removing NMP by high-temperature drying treatment and further applying pressure treatment by a roll press to increase the density.
[0031]
  The positive electrode electrolyte 7 is formed into a gel by mixing a polymer material, an electrolytic solution, and an electrolyte salt. The positive electrode electrolyte 7 is not particularly limited as long as the electrolyte solution is dispersed in the polymer matrix. The polymer material has a property of being compatible with the electrolytic solution, and for example, polyacrylonitrile (PAN), polyether polymer, PVdF, styrene butadiene rubber or the like is used. The electrolytic solution can disperse the polymer material, and for example, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), or the like is used as an aprotic solvent. Not only one type of solvent but also two or more types of solvents may be appropriately mixed and used.
[0032]
  As the electrolyte salt, one that is compatible with a solvent is used, and a combination of a cation and an anion is used. As the cation, an alkali metal or an alkaline earth metal is used. Anions include Cl, Br, I, SCN, ClOFour , BFFour , PF6 , CFThreeSOThree , Etc. are used. Examples of the electrolyte salt include lithium hexafluorophosphate and lithium tetrafluoroborate, as long as the concentration is soluble in the electrolytic solution.
[0033]
  As shown in FIG. 1, the positive electrode material 3 has a predetermined length region from the winding start end portion 3 a that becomes the start end side when wound around the outer peripheral portion of the core material 2 by the polymer secondary battery manufacturing apparatus 20 described later. The positive electrode active material uncoated portion 8 is configured such that the positive electrode active material 6 is not coated on the surface of the positive electrode current collector 5. A positive electrode terminal member 9 is joined to the positive electrode material 3 at the winding start end portion 3a. As the positive electrode terminal member 9, for example, a metal conductor such as aluminum or nickel woven in a mesh shape is used. The positive electrode terminal member 9 is drawn outward from the innermost peripheral portion.
[0034]
  The negative electrode material 4 includes a negative electrode current collector 10 made of a strip-shaped film material such as copper foil, a negative electrode active material 11 formed on both surfaces of the negative electrode current collector 10, and the negative electrode active material 11 and the negative electrode current collector. It consists of a gelled negative electrode electrolyte 12 applied on the surface of the body 10. The negative electrode material 4 is cut at a predetermined position in the polymer secondary battery manufacturing apparatus 20 as will be described in detail later, and is wound around the outer peripheral portion of the core material 2 by a predetermined length with this winding start end portion 4a. The
[0035]
  Negative electrode active material 11InFor example, a carbon material such as graphite, non-graphitizable carbon, or graphitizable carbon is used. The negative electrode active material 11 serves as a binder with respect to this carbon material.PVdFNMP is added as a solvent to form a slurry, for example a doctorbladeUniformly on the negative electrode current collector 10 by a method or the likeIn thicknessApplied. The negative electrode active material 11 is formed into a film on the negative electrode current collector 10 by removing NMP by high-temperature drying treatment and further applying pressure treatment by a roll press to increase the density. Since the negative electrode electrolyte 12 is the same as the positive electrode electrolyte 7 described above, the description thereof is omitted.
[0036]
  When the negative electrode material 4 is wound around the outer peripheral portion of the core material 2 by the polymer secondary battery manufacturing apparatus 20 described later as shown in FIG. The negative electrode active material uncoated portion 13 is formed on the surface of the negative electrode current collector 10 where the negative electrode active material 11 is not applied. A negative electrode terminal member 14 is joined to the negative electrode material 4 at the winding start end portion 4a. As the negative electrode terminal member 14, for example, a metal conductor such as copper or nickel woven in a mesh shape is used. The negative electrode terminal member 14 is pulled out from the innermost periphery.
[0037]
  As shown in FIG. 1, the polymer secondary battery 1 has the above-described positive electrode material 3 wound around in a clockwise direction using one core material 2a as a winding core, and the above-described one using the other core material 2b as a winding core. Negative electrode material 4Is whenIt is wound in a spiral shape in the meter direction. In the polymer secondary battery 1, the core material 2 a is positioned on the inner peripheral portion of the positive electrode active material uncoated portion 8 with respect to the positive electrode material 3 and covers the positive electrode terminal member 9. The core material 2 a is in a state where the tip portion of the positive electrode material 3 is covered. Similarly, in the polymer secondary battery 1, the core material 2 b is positioned on the inner peripheral portion of the negative electrode active material uncoated portion 13 with respect to the negative electrode material 4 and covers the negative electrode terminal member 14. The core material 2b is in a state where the tip of the negative electrode material 4 is covered.
[0038]
  In the polymer secondary battery 1 configured as described above, since the positive electrode terminal member 9 and the negative electrode terminal member 14 are covered with the core material 2, the positive electrode material 3 and the negative electrode material 4 formed by slit burrs or the like of these terminal members, The occurrence of internal short circuit is suppressed. Since the polymer secondary battery 1 covers the tip portions of the positive electrode material 3 and the negative electrode material 4 with the core material 2, internal short-circuit between the positive electrode material 3 and the negative electrode material 4 due to burrs or the like generated when these are cut. Occurrence is suppressed.
[0039]
  The positive electrode material 3 and the negative electrode material 4 have a positive electrode active material uncoated portion 8 and a negative electrode active material uncoated portion 13 to join the positive electrode terminal member 9 and the negative electrode terminal member 14 to the respective winding start end portions 3a and 4a. It is configured. In the positive electrode material 3 and the negative electrode material 4, a mix jump or the like occurs in the positive electrode active material uncoated portion 8 and the negative electrode active material uncoated portion 13. Since the polymer secondary battery 1 covers the positive electrode active material uncoated portion 8 and the negative electrode active material uncoated portion 13 with the core material 2, the occurrence of an internal short circuit due to mix jumping is suppressed.
[0040]
  In the polymer secondary battery 1, the core material 2 has a length sufficient to form a core of the positive electrode material 3 and the negative electrode material 4. Therefore, the polymer secondary battery 1 includes a positive electrode material 3 and a negative electrode material 4.But,Positive electrodeCurrent collector 5And negative electrode current collector10 to eachPositiveExtremely active material 6And negative electrode active material11And positive electrodeElectrolyte 7And negative electrode electrolyte12PaintedA battery area where the clothed areas are overlapped is sufficiently secured. In the polymer secondary battery 1, since the core material 2 does not exist in this battery region, the interval between the positive electrode material 3 and the negative electrode material 4 is narrower than that in the case where a separator is interposed. The polymer secondary battery 1 includes a positive electrode material 3 and a negative electrode material 4.Positive electrodeCurrent collector 5And negative electrode current collectorAgainst 10Each positive electrodeElectrolyte 7And negative electrode electrolyte12 may be formed with a film thickness of about 30 to 40 microns. Therefore, the polymer secondary battery 1 includes the positive electrode material 3 and the negative electrode material 4.Positive electrodeCurrent collector 5 andNegative electrode current collectorAgainst 10Positive electrodeWith electrolyte 7Negative electrode electrolyteSince the 12 coating steps are easy and highly accurate, productivity and reliability can be improved.
[0041]
  The polymer secondary battery 1 is manufactured by a polymer secondary battery manufacturing apparatus 20 whose schematic configuration is shown in FIGS. The polymer secondary battery manufacturing apparatus 20 is configured by respective parts such as a core material supply unit 22, a positive electrode material supply unit 23, a negative electrode material supply unit 24, a winding unit 25, and the like, which are disposed on the device base 21, respectively. ing. The polymer secondary battery manufacturing apparatus 20 includes a core material 2 supplied from a core material supply unit 22, a positive electrode material 3 supplied from a positive electrode material supply unit 23, and a negative electrode material 4 supplied from a negative electrode material supply unit 24. The polymer secondary battery 1 is manufactured by performing a winding operation described later in the winding unit 25.
[0042]
  The core material supply unit 22 includes a core material supply shaft 27 provided in a substantially central lower part of the equipment base 21 in FIG. Become. The core material supply unit 22 includes a core material dancer roller mechanism 28 that applies a predetermined running tension to the core material 2 fed from the core material supply roll 27, and a supply operation of the core material 2 to the winding unit 25 described later. And a core material supply control mechanism 29 that adjusts and cuts this to a predetermined length.
[0043]
  The positive electrode material supply unit 23 is disposed in the right region of the device base 21 in FIG.ThroughA positive electrode material supply shaft 32 to which a positive electrode material supply roll 31 around which the positive electrode material 3 is wound is mounted; a positive electrode material supply mechanism 33 for feeding the release paper 30 and the positive electrode material 3 while separating them from the positive electrode material supply roll 31; A release paper winding roll 35 is provided for winding the separated release paper 30 via a release paper dancer roller mechanism 34 that applies a predetermined winding tension. In addition, the positive electrode material supply unit 23 applies a predetermined traveling tension to the positive electrode material 3 and a traveling guide mechanism 36 constituted by a large number of guide rollers and the like that guide the fed positive electrode material 3 to the winding unit 25. And a positive electrode material dancer roller mechanism 37.
[0044]
  The negative electrode material supply unit 24 is disposed in the left region of the device base 21 in FIG.ThroughA negative electrode material supply shaft 40 on which a negative electrode material supply roll 39 around which the negative electrode material 4 is wound is mounted; a negative electrode material supply mechanism 41 for feeding the release paper 38 and the negative electrode material 4 while separating them from the negative electrode material supply roll 39; A release paper take-up roll 43 is provided for winding the separated release paper 38 via a release paper dancer roller mechanism 42 that applies a predetermined take-up tension. The negative electrode material supply unit 24 includes a traveling guide mechanism 44 configured by a large number of guide rollers or the like that guides the fed negative electrode material 4 to the winding unit 25, and a negative electrode material that applies a predetermined traveling tension to the negative electrode material 4. A dancer roller mechanism 45 is provided.
[0045]
  The winding unit 25 is arranged at the upper center of the device base 21 in FIG.As shown in FIG.A winding shaft 46 that is rotationally driven by a rotation driving mechanism (not shown) and is circulated on the circumferential track L, a winding core member 47 that is attached to the tip of the winding shaft 46, and a winding roller mechanism 48. And a nip roller mechanism 49 and the like. The winding unit 25 mounts the above-described units on the rotary base 50. In the winding unit 25, the core material supply guide mechanism 51 and the core material cutter mechanism 52 of the core material 2 are disposed on the outer periphery of the rotating base 50, and the positive electrode material supply guide mechanism 53 and the positive electrode material 3 of the positive electrode material 3 are disposed. The material cutter mechanism 54, the negative electrode material supply guide mechanism 55 of the negative electrode material 4, and the negative electrode material cutter mechanism 56 are mounted on the drive unit UT.
[0046]
  The drive unit UT switches and moves the positive electrode material supply guide mechanism 53 and the negative electrode material supply guide mechanism 55 in the left-right direction in FIG.Positive electrode materialSupply guide mechanism 53And negative electrode material supply guide mechanism55 is thereby selectively positioned with respect to the core member 47. In addition, the winding part 25 makes the upper position in FIG. 2 the standby position in the case of winding operation mentioned later, and the nip roller mechanism 49 is arrange | positioned in this standby position. Also thesePositive electrode materialSupply guide mechanism 53And negative electrode material supply guide mechanism55 is equidistant from the core member 47 in the standby position.OppositeBe positioned.
[0047]
  As shown in FIG. 3, the core member 47 is formed by combining a pair of members 47a and 47b having an overall substantially wedge shape, and has an overall substantially spindle shape. As will be described in detail later, the core member 47 is wound in a state where the positive electrode material 3 and the negative electrode material 4 are overlapped in a state where a predetermined amount of the core material 2 is wound around the outer peripheral portion thereof.
[0048]
  The winding roller mechanism 48 is rotated on the circumferential track L corresponding to the winding shaft 46, and the winding roller 58 is rotatably supported by the L-shaped bracket member 57. In the winding roller mechanism 48, the bracket member 57 is oscillated by a drive mechanism (not shown) so that the winding roller 58 moves toward and away from the core member 47 as will be described in detail later. As will be described later, the winding roller mechanism 48 has an effect of guiding the core material 2 to the outer peripheral portion of the winding roller 58 and guiding it to the outer peripheral portion of the winding core member 47. The winding roller mechanism 48 has an effect of winding the positive electrode material 3 supplied from the positive electrode material supply guide mechanism 53 around the outer periphery of the winding core member 47. The winding roller mechanism 48 has an effect of winding the negative electrode material 4 supplied from the negative electrode material supply guide mechanism 55 around the outer periphery of the winding core member 47.
[0049]
  The nip roller mechanism 49 includes a cylinder 59, a nip roller 60, and the like, and is disposed at a position facing the winding roller mechanism 48 with respect to the winding core member 47 as shown in FIG. The nip roller mechanism 49 moves the nip roller 60 against and away from the core member 47 when the cylinder 59 operates. The nip roller mechanism 49 has an effect of winding the positive electrode material 3 supplied from the positive electrode material supply guide mechanism 53 around the outer periphery of the core member 47. The nip roller mechanism 49 has an effect of winding the negative electrode material 4 supplied from the negative electrode material supply guide mechanism 55 around the outer periphery of the core member 47.
[0050]
  The core material supply guide mechanism 51 includes a plurality of guide rollers, a movable tension roller (not shown), and the like, and guides the core material 2 to travel to the core member 47 in a state where a predetermined tension is applied. The core material supply guide mechanism 51 is provided with a guide plate 61 disposed corresponding to a core material cutter mechanism 52 described later.
[0051]
  The core material cutter mechanism 52 is positioned corresponding to the standby position of the winding unit 25 as shown in FIG. The core material cutter mechanism 52 includes a nip roller 62 positioned to face the guide plate 61 of the core material supply guide mechanism 51, a cylinder 63 that moves the nip roller 62 toward and away from the guide plate 61, as shown in FIG. A nip roller 62 and a member such as a cutter 64 driven by a cylinder 63 are used.
[0052]
  As will be described later, the core material cutter mechanism 52 operates the cylinder 63 to move the nip roller 62 and the cutter 64 to the guide plate 61 side in a state where the core material 2 is wound on the core member 47 by a predetermined length. Move to. The core material cutter mechanism 52 cuts the core material 2 with the cutter 64 in a state where the core material 2 is sandwiched between the nip roller 62 and the guide plate 61.
[0053]
  The positive electrode material supply guide mechanism 53 includes members such as a guide roller 65 and a positive electrode material gripper member 66, and is disposed on the upper right side of the core member 47 in the standby position. The positive electrode material supply guide mechanism 53 is switched to the standby position and the upper position of the core member 47 by the drive unit UT as described above. Positive electrode material gripperElement66 is moved toward and away from the guide roller 65 by a drive mechanism (not shown) and is slid in the supply direction. The positive electrode material supply guide mechanism 53 includes a positive electrode material gripper as described later.ElementWhen the positive electrode material 3 is slid between the guide roller 65 and the guide roller 65, the positive electrode material 3 is fed into the outer peripheral portion of the core member 47.
[0054]
  The positive electrode material cutter mechanism 54 is disposed between the positive electrode material supply guide mechanism 53 and the core member 47, and is configured by members such as a cutter and a presser plate, although details are omitted. The positive electrode material cutter mechanism 54 is driven when a predetermined amount of the positive electrode material 3 is wound on the core member 47 and cuts the positive electrode material 3. In this case, the positive electrode material cutter mechanism 54 is controlled based on the supply operation of the positive electrode material supply unit 23, and performs the cutting operation of the positive electrode material 3 at the positive electrode active material uncoated portion 8 of the positive electrode material 3.
[0055]
  The negative electrode material supply guide mechanism 55 includes members such as a guide roller 67 and a negative electrode material gripper member 68, and is disposed on the upper left side of the core member 47 in the standby position. The negative electrode material supply guide mechanism 55 is switched between the standby position and the upper position of the core member 47 by the drive unit UT as described above. Negative electrode material gripperElement68 is moved toward and away from the guide roller 67 by a drive mechanism (not shown) and is slid in the supply direction. The negative electrode material supply guide mechanism 55 includes a negative electrode material gripper as will be described later.ElementWhen the negative electrode material 4 is slid in a state where the negative electrode material 4 is sandwiched between the guide roller 67 and 68 is operated, the negative electrode material 4 is fed into the outer peripheral portion of the core member 47.
[0056]
  The negative electrode material cutter mechanism 56 is disposed between the negative electrode material supply guide mechanism 55 and the core member 47, and is configured by members such as a cutter and a presser plate, although details are omitted. The negative electrode material cutter mechanism 56 is driven when a predetermined amount of the negative electrode material 4 is wound on the core member 47, and cuts the negative electrode material 4. In this case, the negative electrode material cutter mechanism 56 is controlled based on the supply operation of the negative electrode material supply unit 24, andNegative electrodeCutting operation of the negative electrode material 4 is performed in the active material uncoated portion 13.
[0057]
  In the polymer secondary battery manufacturing apparatus 20 configured as described above, the core material supply roll 27 is set on the core material supply shaft 26 of the core material supply unit 22, and the core material pulled out from the core material supply roll 27. 2 is the core material dancerrollerTo the core material supply guide mechanism 51 via the mechanism 28 and the core material supply control mechanism 29.SupplyIs done. In the polymer secondary battery manufacturing apparatus 20, the positive electrode material supply roll 31 is set on the positive electrode material supply shaft 32 of the positive electrode material supply unit 23, and the positive electrode material 3 drawn out from the positive electrode material supply roll 31 is the positive electrode material supply mechanism 33. ToSupplyIs done.
[0058]
  In the positive electrode material 3, the release paper 30 is peeled off in the positive electrode material supply mechanism 33, and the travel guide mechanism 36, the positive electrode material dancer, and the like.rollerVia the mechanism 37 to the positive electrode material supply guide mechanism 53SupplyIs done. The release paper 30 is peeled off from the positive electrode material 3 by the positive electrode material supply mechanism 33 to release the release paper dancer.rollerRelease paper winding through mechanism 37ROn roll 35SupplyIs done.
[0059]
  In the polymer secondary battery manufacturing apparatus 20, the negative electrode material supply roll 39 is set on the negative electrode material supply shaft 40 of the negative electrode material supply unit 24, and the negative electrode material 4 drawn out from the negative electrode material supply roll 39 is the negative electrode material supply mechanism 41. ToSupplyIs done. In the negative electrode material 4, the release paper 38 is peeled off in the negative electrode material supply mechanism 41, and the travel guide mechanism 44, the negative electrode material dancer, and the like.rollerVia the mechanism 45 to the negative electrode material supply guide mechanism 55SupplyIs done. The release paper 38 is peeled off from the negative electrode material 4 by the negative electrode material supply mechanism 41 to release the release paper dancer.rollerRelease paper take-up via mechanism 42ROn roll 43SupplyIs done.
[0060]
  In the polymer secondary battery manufacturing apparatus 20, the core material 2 is fed out from the core material supply guide mechanism 51 and wound around the outer periphery of the core member 47 by a predetermined amount. In the polymer secondary battery manufacturing apparatus 20, the winding shaft 46 is driven to rotate, the positive electrode material 3 is fed out from the positive electrode material supply guide mechanism 53, and the negative electrode material 4 is fed out from the negative electrode material supply guide mechanism 55. In the polymer secondary battery manufacturing apparatus 20, the cutting operation of the core material 2 is performed in conjunction with the winding operation of the winding start end portions 3 a and 3 b of the positive electrode material 3 or the negative electrode material 4. In the polymer secondary battery manufacturing apparatus 20, the core material 2 constitutes the core in the range of the winding start end portions 3a and 3b of the positive electrode material 3 or the negative electrode material 4, and the positive electrode material 3 and the negative electrode material 4 overlap each other. In the state, it is wound around the outer peripheral part sequentially.
[0061]
  In the polymer secondary battery manufacturing apparatus 20, when a predetermined amount of winding operation of the positive electrode material 3 and the negative electrode material 4 ends, the rotation operation of the winding shaft 46 ends. In the polymer secondary battery manufacturing apparatus 20, the positive electrode material cutter mechanism 54 and the negative electrode material cutter mechanism 56 operate to cut the positive electrode material 3 and the negative electrode material 4. From the polymer secondary battery manufacturing apparatus 20, the polymer secondary battery manufactured from the core member 47 of the winding unit 25.1Is taken out.
[0062]
  The polymer secondary battery manufacturing apparatus 20 is a polymer secondary battery obtained by winding the core material 2 as a winding core and winding the positive electrode material 3 and the negative electrode material 4 in an overlapped state around the core material 2 through the steps described above.1Manufacturing. In the polymer secondary battery manufacturing apparatus 20, the core material 2 is positioned at the inner periphery of the positive electrode active material uncoated portion 8 and the negative electrode active material uncoated portion 13 with respect to the positive electrode material 3 and the negative electrode material 4. Polymer secondary battery covering member 9 and negative electrode terminal member 141Manufacturing.
[0063]
  Therefore, the polymer secondary battery manufacturing apparatus 20 uses the core material 2 to make the positive terminal member 9 and the negative terminal member 14.Winding start end 3a, 4aCoating them with slit burrs andBurrs generated during cuttingA highly reliable polymer secondary battery 1 in which occurrence of internal short circuit between the positive electrode material 3 and the negative electrode material 4 due to the above is suppressed is manufactured.. PoThe lima secondary battery manufacturing apparatus 20 covers the positive electrode active material uncoated portion 8 and the negative electrode active material uncoated portion 13 of the positive electrode material 3 and the negative electrode material 4 with the core material 2, and mixes the mixed material generated in these portions. A highly reliable polymer secondary battery 1 in which occurrence of a short circuit is suppressed is manufactured.
[0064]
  Since the polymer secondary battery manufacturing apparatus 20 eliminates the need for a relatively expensive separator, the polymer secondary battery 1 is manufactured with the cost reduced. Since the polymer secondary battery manufacturing apparatus 20 has the core material 2 only in the core portions of the positive electrode material 3 and the negative electrode material 4,Positive electrodeCurrent collector 5And negative electrode current collectorAgainst 10Positive electrodeElectrolyte 7And negative electrode electrolyte12 is set to a film thickness of about 30 to 40 microns.ProductionThus, it is possible to use the positive electrode material 3 and the negative electrode material 4 which are relatively easy and highly accurate, and the polymer secondary battery 1 is manufactured in which productivity and reliability are improved and costs are reduced.
[0065]
  Since the polymer secondary battery manufacturing apparatus 20 winds the core member 2 around the core member 47 in a state where the positive electrode material 3 and the negative electrode material 4 are superposed on the outer peripheral portion thereof, the core member is wound. Adhesion of the gel-like positive electrode electrolyte 7 and the gel-like negative electrode electrolyte 12 having high viscosity to 47 and other parts is suppressed. Therefore, the polymer secondary battery manufacturing apparatus 20 uses the adhesive force of the gel-like positive electrode electrolyte 7 and the gel-like negative electrode electrolyte 12 attached when the polymer secondary battery 1 is removed from the core member 47, so that the positive electrode material 3 and the negative electrode material 4 A highly reliable polymer secondary battery 1 in which the inner peripheral portion is not damaged is manufactured with high yield.Is possible. In the polymer secondary battery manufacturing apparatus 20, the occurrence of corrosion or the like due to the electrolyte salt contained in the gel-like positive electrode electrolyte 7 and the gel-like negative electrode electrolyte 12 attached to each part is suppressed, and the durability is improved.
[0066]
  The specific manufacturing process of the polymer secondary battery 1 using the polymer secondary battery manufacturing apparatus 20 described above will be described in detail with reference to the operation mode diagrams of the respective parts in the winding unit 25 shown in FIGS. explain.
[0067]
  In the standby position shown in FIG. 4, the polymer secondary battery manufacturing apparatus 20 is in a state where the core material 2 is guided by the winding roller 58 of the winding roller mechanism 48 and wound around the outer periphery of the core member 47. . The winding core member 47 is in an unspecified posture, and includes the winding roller 58 and the nib.ProfessionalThe mechanism of the roller mechanism 49ProfessionalThe roller 60 is located at a distance. The tip of the positive electrode material 3 is sandwiched between the guide roller 65 of the positive electrode material supply guide mechanism 53 and the positive electrode material gripper member 66. Similarly, the leading end portion of the negative electrode material 4 is sandwiched between the guide roller 67 of the negative electrode material supply guide mechanism 55 and the negative electrode material gripper member 68. The winding core member 47 is positioned between the positive electrode material supply guide mechanism 53 and the negative electrode material supply guide mechanism 55.
[0068]
  In the polymer secondary battery manufacturing apparatus 20, the drive unit UT operates to place the negative electrode material supply guide mechanism 55 corresponding to the core member 47 with the start of the winding operation. The negative electrode material supply guide mechanism 55 moves downward toward the core member 47 as shown by the arrow in FIG. 5 while the negative electrode material gripper member 68 holds the negative electrode material 4 between the negative electrode material gripper member 68 and the guide roller 67. The negative electrode material 4 is moved by the operation of the negative electrode material gripper member 68.Winding start end 4aIs sent to the outer periphery of the core member 47.
[0069]
  In the polymer secondary battery manufacturing apparatus 20, in the next step, as shown in FIG. 6, the feeding operation of the negative electrode material 4 and the winding operation with respect to the core member 47 are performed. The winding core member 47 is in an unspecified posture as described above, and is adjusted and rotated as indicated by the arrow (A) in FIG. The core angle adjustment is performed.
[0070]
  In the polymer secondary battery manufacturing apparatus 20, the winding roller mechanism 48 and the nibProfessionalThe roller mechanism 49 is operated. The winding roller mechanism 48 brings the winding roller 58 into contact with the outer peripheral portion of the core member 47 as shown by an arrow in FIG. In this state, the winding roller 58 presses and holds the winding start end portion 4 a of the negative electrode material 4 against the outer peripheral portion of the core member 47. NickProfessionalThe roller mechanism 49 is similarlyProfessionalThe roller 60 is brought into contact with the outer periphery of the core member 47.
[0071]
  In polymer secondary battery manufacturing apparatus 20, supply of negative electrode materialguideThe operation of the negative electrode material gripper member 68 of the mechanism 55 is performed. The negative electrode material gripper member 68 moves in a direction away from the guide roller 67 as indicated by an arrow in FIG. 6C while the negative electrode material 4 is held by the winding core member 47 and the winding roller 58. In the polymer secondary battery manufacturing apparatus 20, an operation of returning the negative electrode material gripper member 68 to the standby position as shown by an arrow (D) in FIG. The negative electrode material supply guide mechanism 55 returns to the standby position when the drive unit UT is operated.
[0072]
  In the polymer secondary battery manufacturing apparatus 20, the core material cutter mechanism 52 is driven, and the cutting operation of the core material 2 is performed by the cutter 64 as shown in FIG. The core material 2 is cut by the core material cutter mechanism 52 within the range of the length of the negative electrode active material uncoated portion 13 of the negative electrode material 4.
[0073]
  In the polymer secondary battery manufacturing apparatus 20, when the winding shaft 46 is driven, the winding core member 47 rotates counterclockwise as indicated by an arrow in FIG. The core member 47 is wound with the core material 2 and the negative electrode material 4 overlapped on the outer peripheral portion thereof. Since the core member 2 is wound around the outer periphery of the core member 47 as described above, the negative electrode member 4 is not in direct contact with the core member 2. It will be wound around the outer periphery. Therefore, in the polymer secondary battery manufacturing apparatus 20, adhesion of the negative electrode electrolyte 12 of the negative electrode material 4 to the core member 47 is suppressed.
[0074]
  In the polymer secondary battery manufacturing apparatus 20, in the next step, as shown in FIG. 9, the feeding operation of the positive electrode material 3 and the winding operation with respect to the core member 47 are performed. In the polymer secondary battery manufacturing apparatus 20, the positive electrode material supply guide mechanism 53 is positioned above the winding core member 47 by the operation of the drive unit UT and the operation of the winding roller mechanism 48 as shown in FIG. An operation of separating the winding roller 58 from the core member 47 is performed. Further, in the polymer secondary battery manufacturing apparatus 20, the positive electrode material supply guide mechanism 53 is operated, and the positive electrode material gripper member 66 is indicated by an arrow in the figure while the positive electrode material 3 is held between the guide roller 65 and the positive electrode material 3. Thus, the operation of lowering to the core member 47 side is performed. In the positive electrode material 3, the winding start end portion 3 a is sent to the outer peripheral portion of the core member 47 by the operation of the positive electrode material gripper member 66.
[0075]
  In the polymer secondary battery manufacturing apparatus 20, the core angle adjustment of the core member 47 is performed as shown in FIG. The winding core member 47 is adjusted and rotated as indicated by an arrow by the adjustment operation of the winding shaft 46 to be in a state parallel to the positive electrode material 3.
[0076]
  In the polymer secondary battery manufacturing apparatus 20, the winding roller mechanism 48 and the nibProfessionalBy operating each of the roller mechanisms 49, the winding roller 58 and the nibbler 58 are connected as shown by the arrows in FIG.ProfessionalThe operation in which the roller 60 abuts on the outer periphery of the core member 47 is performed. In this state, the winding roller 58 presses and holds the winding start end portion 3 a of the positive electrode material 3 against the outer peripheral portion of the core member 47. In the polymer secondary battery manufacturing apparatus 20, the positive electrode material 3 is held by the winding core member 47 and the winding roller 58 in the state where the positive electrode material 3 is held by the guide roller 65 as shown by the arrow in FIG. The movement is performed in a direction away from the head.
[0077]
  In the polymer secondary battery manufacturing apparatus 20, the drive unit UT operates as shown in FIG. 10 together with the above-described feeding operation of the positive electrode material 3, and the core member 47 is moved to the positive electrode material supply guide mechanism 53 and the negative electrode material supply guide. An operation of positioning the mechanism 55 at a neutral position is performed. In this state, the core member 47 is rotated counterclockwise as indicated by an arrow in the figure, and sequentially performs a winding operation in a state where the positive electrode material 3 and the negative electrode material 4 are superposed on each other on the outer peripheral portion. Of course, the positive electrode material 3 and the negative electrode material 4 are wound around the outer peripheral portion of the core material 2 that is first wound around the outer peripheral portion of the core member 47.
[0078]
  In the polymer secondary battery manufacturing apparatus 20, when a predetermined amount of the positive electrode material 3 and the negative electrode material 4 is wound, the cutting of the positive electrode material 3 shown in FIG. 11 is performed.IA preparation process for the scanning operation is performed. In the polymer secondary battery manufacturing apparatus 20, the drive unit UT operates to place the positive electrode material supply guide mechanism 53 in a position corresponding to the core member 47, and the positive electrode material supply guide mechanism 53 causes the positive electrode material gripper member 66 and the guide roller to move. 65 is adjusted and moved in the vertical direction for positioning. The positive electrode material gripper member 66 sandwiches and fixes the positive electrode material 3 by joining to the guide roller 65 as shown in FIG. Further, in the polymer secondary battery manufacturing apparatus 20, an operation in which the positive electrode material cutter mechanism 54 enters the traveling path of the positive electrode material 3 in this state is performed.
[0079]
  In the polymer secondary battery manufacturing apparatus 20, the cutting position of the positive electrode material 3 is defined by the series of operations described above, and the positive electrode material cutter mechanism 54 operates to cut the positive electrode material 3 as shown in FIG. Done. The positive electrode material 3 is cut in the range of the positive electrode active material uncoated portion 8, and this portion is configured as the next winding start end portion 3a. In the polymer secondary battery manufacturing apparatus 20, the occurrence of an internal short circuit due to the cutting burr generated at the winding start end 3a in the cutting of the positive electrode material 3 is covered by the core material 2 as described above. Suppress. The positive electrode material 3 is connected to the winding roller 58 in contact with the outer peripheral portion of the core member 47 and the nickel member.ProfessionalThe winding state of the core member 47 is maintained by the roller 60.
[0080]
  In the polymer secondary battery manufacturing apparatus 20, when the above-described cutting operation of the positive electrode material 3 is completed, the guide roller 65 and the positive electrode material gripper member 66 are in a standby state with the positive electrode material 3 being held as shown by arrows in FIG. The operation of returning to the position is performed. In the polymer secondary battery manufacturing apparatus 20, an operation of retracting the positive electrode material cutter mechanism 54 from the traveling path of the positive electrode material 3 is performed as indicated by an arrow in FIG.
[0081]
  Next, in the polymer secondary battery manufacturing apparatus 20, a cutting process of the negative electrode material 4 is performed. In the polymer secondary battery manufacturing apparatus 20, the drive unit UT operates and the negative electrodeMaterialThe supply guide mechanism 55 is positioned corresponding to the core member 47, and the negative electrodeMaterialThe supply guide mechanism 55 and the negative electrode material cutter mechanism 56 are operated. Negative electrodeMaterialThe supply guide mechanism 55 joins the negative electrode material gripper member 68 to the guide roller 67 as shown by the arrow in FIG.4Hold. Negative electrodeMaterialIn this case, the supply guide mechanism 55 is adjusted and moved in the vertical direction. The negative electrode material cutter mechanism 56 enters the traveling path of the negative electrode material 4.
[0082]
  In the polymer secondary battery manufacturing apparatus 20, the cutting position of the negative electrode material 4 is defined by the series of operations described above, and the negative electrode material cutter mechanism 56 operates to cut the negative electrode material 4 as shown in FIG. Done. The negative electrode material 4 is cut in the range of the negative electrode active material uncoated portion 13, and this portion is configured as the next winding start end portion 4a. In the polymer secondary battery manufacturing apparatus 20, the winding start end 4 a is covered with the core material 2 as described above in order to prevent the occurrence of an internal short circuit due to the cutting burr generated at the next winding start end 4 a in the cutting of the negative electrode material 4. Suppress it. Negative electrode material4The winding roller 58 that is in contact with the outer periphery of the winding core member 47ProfessionalThe winding state is maintained by the roller 60.
[0083]
  In the polymer secondary battery manufacturing apparatus 20, a predetermined amount of the positive electrode material 3 and the negative electrode material are wound by winding the leading end portions of the positive electrode material 3 and the negative electrode material 4 that are cut by the above-described process by rotating the core member 47. A polymer secondary battery 1 is manufactured by winding 4 in a superposed state. In the polymer secondary battery manufacturing apparatus 20, the retraction operation of the negative electrode material cutter mechanism 56 from the traveling path of the negative electrode material 4 is performed. In the polymer secondary battery manufacturing apparatus 20, as shown by the arrow in FIG.MaterialThe supply guide mechanism 55 returns to the standby position.
[0084]
  In the polymer secondary battery manufacturing apparatus 20, after the above steps, the winding roller mechanism 48 and the nickel roller mechanism 48 are connected.ProfessionalThe roller mechanism 49 operates, and as shown in FIG.ProfessionalThe operation of separating from the roller 60 is performed. In the polymer secondary battery manufacturing apparatus 20, the polymer secondary battery 1 manufactured from the core member 47 is taken out. In the polymer secondary battery manufacturing apparatus 20, as described above, the positive electrode material 3 and the negative electrode material 4 are wound around the outer periphery of the core member 47 via the core material 2, thereby increasing the viscosity.Positive electrodeElectrolyte 7,Negative electrode electrolyte12 is prevented from adhering to the core member 47. Therefore, when the polymer secondary battery 1 is taken out from the core member 47, the occurrence of damage to the inner peripheral portion is suppressed.
[0085]
  Needless to say, the present invention is not limited to the manufacturing process of the polymer secondary battery manufacturing apparatus 20 and the polymer secondary battery 1 described above.
[0086]
【The invention's effect】
  As described above in detail, according to the lithium ion polymer secondary battery of the present invention, the negative electrode material and the positive electrode material areWith respect to the core material with which the tip portion is abutted, the core material has its outer peripheral part interposed between the inner peripheral side non-active material application part and the outer peripheral side active material application part and a terminal. In the state where the member is covered, the core material is used as a winding core from each winding start end to the outer periphery.Because it is configured to be wound in a superposed state,The core material that becomes the core prevents the negative electrode material and the positive electrode material from adhering to the electrode winding part of the gel electrolyte,This adhered gel electrolyte when taken out from the manufacturing equipmentAdhesive strengthIt is possible to suppress the occurrence of damage to the inner peripheral portion due to the above and improve the durability of the manufacturing apparatus. Moreover, according to the lithium ion polymer secondary battery,The negative electrode material and the positive electrode material are the areas where the active material is not applied and the area where the active material is applied.By the core member interposed betweeneachReliability is improved by suppressing the occurrence of internal shorts caused by mixing jumps of the active material generated at the start end portion and slit burrs of the electrode terminals.
[0087]
  Moreover, according to the manufacturing apparatus and manufacturing method of the lithium ion polymer secondary battery concerning this invention, a negative electrode material and a positive electrode material areWound around the core memberUsing the core material as the coreOn its outer peripheryFrom manufacturing a lithium ion polymer secondary battery configured by being wound in a superposed state,The electrode materialGel electrolytePrevents direct adhesion, when removing lithium ion polymer secondary batteryThe inner peripheral portion is not damaged by the adhesive force of the gel electrolyte, and corrosion of the take-up shaft and the like by the gel electrolyte is suppressed, thereby improving durability. According to the manufacturing apparatus and the manufacturing method of the lithium ion polymer secondary battery, the negative electrode material and the positive electrode materialIs against the core materialeachNon-applied part on the inner peripheral side and active-part applied part on the outer peripheral sideCore material is interposed betweenAnd cover the terminal member on the outer periphery.Because it is wound in an overlapped state, it is possible to mix the active materials that are generated at the start of the negative electrode material or positive electrode material.YasuInternal short-circuit caused by burrs or burrs when cutting negative and positive electrode materialsPreventionThe highly accurate and reliable lithium ion polymer secondary battery is efficiently manufactured.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating a schematic configuration of a lithium ion polymer secondary battery shown as an embodiment of the present invention.
FIG. 2 is a schematic diagram for explaining a production apparatus for the lithium ion polymer secondary battery.
FIG. 3 is a configuration explanatory view of a winding unit of the manufacturing apparatus.
FIG. 4 is a schematic diagram of a winding unit for explaining a manufacturing process of a lithium ion polymer secondary battery by the manufacturing apparatus, and shows a standby state.
FIG. 5 is a schematic view of the winding unit, showing a negative electrode material feeding operation step;
FIG. 6 is a schematic view of the winding unit, showing a negative electrode material winding operation step.
FIG. 7 is a schematic diagram of the winding unit, showing a cutting process of the core material.
FIG. 8 is a schematic view of the winding unit, showing a negative electrode material winding operation step;
FIG. 9 is a schematic diagram of the winding unit, showing a winding operation process from a feeding operation of the positive electrode material.
FIG. 10 is a schematic view of the winding unit, showing a winding operation process of the negative electrode material and the positive electrode material.
FIG. 11 is a schematic view of the winding unit, showing a cutting process of the positive electrode material.
FIG. 12 is a schematic view of the winding unit, showing a return process of the positive electrode material cutting mechanism.
FIG. 13 is a schematic view of the winding unit, showing a cutting process of the negative electrode material.
FIG. 14 is a schematic diagram of the winding unit, showing a standby position return step.
FIG. 15 is a schematic view of the winding unit, showing a step of taking out a lithium ion polymer secondary battery.
FIGS. 16A and 16B are configuration explanatory views of a stack type polymer secondary battery, in which FIG. 16A shows a single cell and FIG. 16B shows an overall view.
FIG. 17 is a diagram illustrating the configuration of a separator polymer secondary battery.
FIG. 18 is a diagram illustrating the configuration of a coreless polymer secondary battery.
[Explanation of symbols]
  1 Polymer secondary battery (lithium ionPolymerSecondary battery), 2 core material, 3 positive electrode material, 3a winding start end, 4 negative electrode material,4a winding start end,DESCRIPTION OF SYMBOLS 5 Positive electrode collector, 6 Positive electrode active material, 7 Positive electrode electrolyte, 8 Positive electrode active material uncoated part, 9 Positive electrode terminal member, 10 Negative electrode current collector, 11 Negative electrode active material, 12 Negative electrode electrolyte, 13 Negative electrode active material uncoated part , 14 Negative electrode terminal member, 20 Polymer secondary battery manufacturing apparatus, 22 Core material supply unit, 23 Positive electrode material supply unit, 24 Negative electrode material supply unit, 25 Winding unit, 27 Core material supply roll, 31 Positive electrode material supply roll, 39 Negative electrode material supply roll, 46 winding shaft, 47 core member, 48 winding roller mechanism, 49ProfessionalRoller mechanism, 51 core material supply guide mechanism, 52 core material cutter mechanism, 53 positive electrode material supply guide mechanism, 54 positive electrode material cutter mechanism, 55 negative electrode material supply guide mechanism, 56 negative electrode material cutter mechanism, 58 winding roller, 60ProfessionalRoller, 66 Positive electrode material gripper member, 68 Negative electrode material gripper member

Claims (3)

それぞれ帯状集電体に極活物質とゲル状電解質とを塗布してなる負極材と正極材とを重ね合せ状態で巻回してなるリチウムイオンポリマ二次電池において、
巻回始端部を構成する一端側から所定長さ部位が負極活物質層を形成しない負極活物質未塗布部位として構成されるとともに、上記負極活物質未塗布部位に負極端子部材が接合されてなる上記負極材と、
巻回始端部を構成する一端側から所定長さ部位が正極活物質層を形成しない正極活物質未塗布部位として構成されるとともに、上記正極活物質未塗布部位に正極端子部材が接合されてなる上記正極材と、
高分子合成樹脂フィルムを素材として上記負極材及び上記正極材とほぼ同幅でありかつそれぞれの上記負極活物質未塗布部位及び上記正極活物質未塗布部位よりも長尺に形成された一対の帯状体からなるコア材とを備え、
上記負極材と上記正極材が、先端部を突き合わせられた上記コア材に対して、これらコア材の外周部位がそれぞれの内周側の極活物質未塗布部位とその外周側の極活物質塗布部位との間に介在するとともに上記負極端子部材と上記正極端子部材を被覆された状態で、それぞれの巻回始端部から上記コア材を巻芯としてその外周部に重ね合せ状態で巻回されることを特徴とするリチウムイオンポリマ二次電池。
In a lithium ion polymer secondary battery in which a negative electrode material formed by applying a polar active material and a gel electrolyte to a strip-shaped current collector and a positive electrode material are wound in a superimposed state,
A part having a predetermined length from one end side constituting the winding start end part is configured as a negative electrode active material uncoated part where a negative electrode active material layer is not formed, and a negative electrode terminal member is joined to the negative electrode active material uncoated part. The negative electrode material,
A portion having a predetermined length from one end side constituting the winding start end portion is configured as a positive electrode active material uncoated portion that does not form a positive electrode active material layer, and a positive electrode terminal member is joined to the positive electrode active material uncoated portion. The positive electrode material;
A pair of strips formed of a polymer synthetic resin film as a raw material, which are substantially the same width as the negative electrode material and the positive electrode material, and are longer than the negative electrode active material uncoated portion and the positive electrode active material uncoated portion. With core material consisting of body,
With respect to the core material in which the negative electrode material and the positive electrode material are abutted against each other, the outer peripheral portions of the core material are applied to the inner peripheral side of the active material uncoated portion and the outer peripheral side of the active material applied. The core material is wound from the respective winding start end portions and wound around the outer peripheral portion in a state of being covered with the negative electrode member and the positive electrode terminal member. A lithium ion polymer secondary battery characterized by the above.
帯状の負極集電体に負極活物質とゲル状負極電解質とを塗布してなり、巻回始端部を構成する一端側から所定長さ部位が負極活物質層を形成しない負極活物質未塗布部位として構成されるとともに上記負極活物質未塗布部位に負極端子部材が接合されてなる負極材を供給する負極材供給機構と、
帯状の正極集電体に正極活物質とゲル状正極電解質とを塗布してなり、巻回始端部を構成する一端側から所定長さ部位が正極活物質層を形成しない正極活物質未塗布部位として構成されるとともに上記正極活物質未塗布部位に正極端子部材が接合されてなる正極材を供給する正極材供給機構と、
高分子合成樹脂フィルムを素材として上記負極材及び上記正極材とほぼ同幅でありかつそれぞれの上記負極活物質未塗布部位及び上記正極活物質未塗布部位よりも長尺に形成された一対の帯状体からなるコア材を供給するコア材供給機構と、
巻芯部材を設けた巻取り軸を有し、上記巻芯部材の外周部に上記コア材供給機構から供給された一対の上記コア材を先端部を突き合わせて巻回するとともに所定の長さで切断して巻芯となすとともに、これらコア材の外周部に上記巻回始端部を繰り出し側として上記負極材供給機構から供給された上記負極材と上記巻回始端部を繰り出し側として上記正極材供給機構から供給された上記正極材とを重ね合せ状態で巻回する電極材巻取機構とを備え、
上記電極材巻取機構は、上記負極材と上記正極材を、先端部を突き合わせられた上記コア材に対して、これらコア材の外周部位がそれぞれの内周側の極活物質未塗布部位とその外周側の極活物質塗布部位との間に介在するとともに上記負極端子部材と上記正極端子部材を被覆された状態とされて、それぞれの巻回始端部から上記コア材を巻芯としてその外周部に重ね合せ状態で巻回することを特徴とするリチウムイオンポリマ二次電池の製造装置。
A negative electrode active material uncoated portion where a negative electrode active material and a gelled negative electrode electrolyte are applied to a strip-shaped negative electrode current collector, and a predetermined length portion does not form a negative electrode active material layer from one end side constituting the winding start end portion A negative electrode material supply mechanism configured to supply a negative electrode material formed by bonding a negative electrode terminal member to the negative electrode active material uncoated portion,
A positive electrode active material uncoated portion where a positive electrode active material and a gelled positive electrode electrolyte are applied to a belt-shaped positive electrode current collector, and a predetermined length portion does not form a positive electrode active material layer from one end side constituting the winding start end portion And a positive electrode material supply mechanism configured to supply a positive electrode material in which a positive electrode terminal member is bonded to the positive electrode active material uncoated portion,
A pair of strips formed of a polymer synthetic resin film as a raw material, which are substantially the same width as the negative electrode material and the positive electrode material, and are longer than the negative electrode active material uncoated portion and the positive electrode active material uncoated portion. A core material supply mechanism for supplying a core material comprising a body;
A winding shaft having a winding core member is provided, and a pair of the core materials supplied from the core material supply mechanism are wound around the outer peripheral portion of the winding core member with their tip portions abutted and wound at a predetermined length. The core material is cut to form a core, and the positive electrode material is supplied from the negative electrode material supply mechanism to the outer periphery of the core material with the winding start end portion as the feeding side, and the winding start end portion as the feeding side. An electrode material winding mechanism for winding the positive electrode material supplied from the supply mechanism in a superposed state;
The electrode material take-up mechanism is configured so that the negative electrode material and the positive electrode material are arranged so that the outer peripheral portion of the core material is not coated with the active material on the inner peripheral side with respect to the core material with which the tip portion is abutted. It is interposed between the outer peripheral electrode active material application site and is covered with the negative electrode terminal member and the positive electrode terminal member, and the outer periphery of the core material is used as a core from each winding start end. An apparatus for manufacturing a lithium ion polymer secondary battery, wherein the apparatus is wound in a superposed state on a part.
帯状の負極集電体に負極活物質とゲル状負極電解質とを塗布してなり、巻回始端部を構成する一端側から所定長さ部位が負極活物質層を形成しない負極活物質未塗布部位として構成されるとともに上記負極活物質未塗布部位に負極端子部材が接合されてなる負極材を供給する負極材供給機構と、
帯状の正極集電体に正極活物質とゲル状正極電解質とを塗布してなり、巻回始端部を構成する一端側から所定長さ部位が正極活物質層を形成しない正極活物質未塗布部位として構成されるとともに上記正極活物質未塗布部位に正極端子部材が接合されてなる正極材を供給する正極材供給機構と、
高分子合成樹脂フィルムを素材として上記負極材及び上記正極材とほぼ同幅でありかつそれぞれの上記負極活物質未塗布部位及び上記正極活物質未塗布部位よりも長尺に形成された一対の帯状体からなるコア材を供給するコア材供給機構と、
巻芯部材を設けた巻取り軸を有し、上記巻芯部材の外周部に上記コア材供給機構から供給された上記コア材を巻回するとともにこれらコア材の外周部に上記巻回始端部を繰り出し側として上記負極材供給機構から供給された上記負極材と上記巻回始端部を繰り出し側として上記正極材供給機構から供給された上記正極材とを重ね合せ状態で巻回する電極材巻取機構と
を備えるリチウムイオンポリマ二次電池の製造装置が用いられ、
上記リチウムイオンポリマ二次電池の製造装置の上記電極材巻取機構において、
上記巻芯部材の外周部に上記コア材供給機構から供給された一対の上記コア材をそれぞれの先端部を突き合わせて巻回するとともに所定の長さで切断して巻芯となすコア材巻回工程と、
上記巻芯をなす上記コア材に対して、その外周部が内周側の負極活物質未塗布部位とその外周側の負極活物質塗布部位との間に介在するとともに上記負極端子部材を被覆されて巻回する負極材巻回工程と、
上記巻芯をなす上記コア材に対して、その外周部が内周側の正極活物質未塗布部位とその外周側の正極活物質塗布部位との間に上記コア材が介在するとともに上記正極端子部材を被覆されて上記負極材と重ね合せ状態で巻回する正極材巻回工程と
が施されるリチウムイオンポリマ二次電池の製造方法。
A negative electrode active material uncoated portion where a negative electrode active material and a gelled negative electrode electrolyte are applied to a strip-shaped negative electrode current collector, and a predetermined length portion does not form a negative electrode active material layer from one end side constituting the winding start end portion A negative electrode material supply mechanism configured to supply a negative electrode material formed by bonding a negative electrode terminal member to the negative electrode active material uncoated portion,
A positive electrode active material uncoated portion where a positive electrode active material and a gelled positive electrode electrolyte are applied to a belt-shaped positive electrode current collector, and a predetermined length portion does not form a positive electrode active material layer from one end side constituting the winding start end portion And a positive electrode material supply mechanism configured to supply a positive electrode material in which a positive electrode terminal member is bonded to the positive electrode active material uncoated portion,
A pair of strips formed of a polymer synthetic resin film as a raw material, which are substantially the same width as the negative electrode material and the positive electrode material, and are longer than the negative electrode active material uncoated portion and the positive electrode active material uncoated portion. A core material supply mechanism for supplying a core material comprising a body;
A winding shaft having a winding core member is provided, and the core material supplied from the core material supply mechanism is wound around the outer periphery of the winding core member, and the winding start end portion is wound around the outer periphery of the core material. The negative electrode material supplied from the negative electrode material supply mechanism on the feeding side and the positive electrode material supplied from the positive electrode material supply mechanism on the winding start end as the feeding side are wound in an overlapping state. And a lithium ion polymer secondary battery manufacturing apparatus equipped with a take-off mechanism,
In the electrode material winding mechanism of the lithium ion polymer secondary battery manufacturing apparatus,
A core material winding in which a pair of the core materials supplied from the core material supply mechanism are wound around the outer periphery of the core member with their respective leading ends abutted against each other and cut into a predetermined length to form a core. Process,
The outer periphery of the core material forming the winding core is interposed between the negative electrode active material uncoated portion on the inner peripheral side and the negative electrode active material coated portion on the outer peripheral side, and the negative electrode terminal member is covered with the core material. A negative electrode material winding step of winding
With respect to the core material forming the core, the core material is interposed between the positive electrode active material uncoated portion on the inner peripheral side and the positive electrode active material coated portion on the outer peripheral side, and the positive electrode terminal A method for producing a lithium ion polymer secondary battery, comprising: covering a member and winding the positive electrode material in a state of being overlapped with the negative electrode material.
JP31147498A 1998-10-30 1998-10-30 Lithium ion polymer secondary battery, manufacturing apparatus and manufacturing method thereof Expired - Fee Related JP4714952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31147498A JP4714952B2 (en) 1998-10-30 1998-10-30 Lithium ion polymer secondary battery, manufacturing apparatus and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31147498A JP4714952B2 (en) 1998-10-30 1998-10-30 Lithium ion polymer secondary battery, manufacturing apparatus and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000138076A JP2000138076A (en) 2000-05-16
JP4714952B2 true JP4714952B2 (en) 2011-07-06

Family

ID=18017665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31147498A Expired - Fee Related JP4714952B2 (en) 1998-10-30 1998-10-30 Lithium ion polymer secondary battery, manufacturing apparatus and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4714952B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5553191B2 (en) * 2009-06-15 2014-07-16 株式会社Gsユアサ Battery and method for producing power generation element thereof
KR101165507B1 (en) 2009-11-27 2012-07-13 삼성에스디아이 주식회사 Secondary Battery
CN104620422B (en) * 2012-09-12 2018-06-29 Nec能源元器件株式会社 The manufacturing method of electrode roller and electrode roller
US20160118682A1 (en) * 2013-06-28 2016-04-28 Hitachi Automotive Systems, Ltd. Flat-winding type secondary battery
JP6062880B2 (en) * 2014-03-24 2017-01-18 Ckd株式会社 Winding device
JP7109950B2 (en) * 2018-03-23 2022-08-01 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP7217495B2 (en) * 2018-08-31 2023-02-03 株式会社皆藤製作所 Electrode material winding device without separator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240207A (en) * 1994-02-25 1995-09-12 Kaitou Seisakusho:Kk Winding device for battery element
JPH09510825A (en) * 1994-08-29 1997-10-28 ベル コミュニケーションズ リサーチ,インコーポレイテッド Rechargeable battery structure and manufacturing method thereof
JPH09293537A (en) * 1996-04-25 1997-11-11 Seiko Instr Kk Nonaqueous electrolyte secondary battery and manufacture thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5542613Y2 (en) * 1975-03-26 1980-10-06
JPH0582122A (en) * 1991-09-20 1993-04-02 Asahi Chem Ind Co Ltd Battery coil winding device
JPH05283069A (en) * 1992-03-30 1993-10-29 Shin Kobe Electric Mach Co Ltd Spiral electrode
FR2712733B1 (en) * 1993-11-16 1996-02-09 Bollore Technologies Method of manufacturing a multilayer electrochemical assembly comprising an electrolyte between two electrodes and assembly thus produced.
JP3373934B2 (en) * 1994-05-25 2003-02-04 三洋電機株式会社 Non-aqueous electrolyte battery with spiral electrode body
JP3687251B2 (en) * 1997-02-26 2005-08-24 宇部興産株式会社 Non-aqueous secondary battery with wound electrode group and method for manufacturing the same
JP3711686B2 (en) * 1997-03-27 2005-11-02 宇部興産株式会社 Wound electrode group and battery using the same
JP3428448B2 (en) * 1998-08-21 2003-07-22 三菱電機株式会社 Electrode structure and battery using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240207A (en) * 1994-02-25 1995-09-12 Kaitou Seisakusho:Kk Winding device for battery element
JPH09510825A (en) * 1994-08-29 1997-10-28 ベル コミュニケーションズ リサーチ,インコーポレイテッド Rechargeable battery structure and manufacturing method thereof
JPH09293537A (en) * 1996-04-25 1997-11-11 Seiko Instr Kk Nonaqueous electrolyte secondary battery and manufacture thereof

Also Published As

Publication number Publication date
JP2000138076A (en) 2000-05-16

Similar Documents

Publication Publication Date Title
WO2010010717A1 (en) Bipolar cell
JP5776446B2 (en) Battery electrode manufacturing method and battery electrode
JP5772397B2 (en) Battery electrode manufacturing method and battery electrode
JP6038813B2 (en) Electrode manufacturing method and non-aqueous electrolyte battery manufacturing method
JP4087343B2 (en) Lithium ion secondary battery and method for charging lithium ion secondary battery
JP3428452B2 (en) Battery with spiral electrode body and method of manufacturing the same
JP3403678B2 (en) Method for producing lithium secondary battery and wound electrode body
JP2000030744A (en) Lithium secondary battery
JP4714952B2 (en) Lithium ion polymer secondary battery, manufacturing apparatus and manufacturing method thereof
JP4427976B2 (en) Bipolar battery
JP2009110812A (en) Battery and method of manufacturing the same
JP2011216209A (en) Laminated battery and its manufacturing method
KR20100070008A (en) Electrodes assembly for lithium secondary cell and manufacturing method thereof
JP4609353B2 (en) Charging system
WO2013098968A1 (en) Method for producing electrode and method for producing non-aqueous electrolyte battery
JP4609352B2 (en) Power supply
EP4345962A1 (en) Method for manufacturing battery
US11114701B2 (en) Method of producing an electrode-separator winding, electrode-separator winding and button cell with such a winding
EP4336614A2 (en) Method of manufacturing battery
JP2009110816A (en) Battery and method of manufacturing the same
JP2005259601A (en) Power source, charging apparatus and charging system
US20230103490A1 (en) Electrode body, power storage element, and power storage module
WO2003100901A1 (en) Lithium secondary battery and its fabrication
JP5858091B2 (en) Method for manufacturing prismatic secondary battery
JP2012129024A (en) Laminate-type battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110314

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees