JP2000138076A - Lithium polymer secondary battery, its manufacturing device and its manufacture - Google Patents

Lithium polymer secondary battery, its manufacturing device and its manufacture

Info

Publication number
JP2000138076A
JP2000138076A JP10311474A JP31147498A JP2000138076A JP 2000138076 A JP2000138076 A JP 2000138076A JP 10311474 A JP10311474 A JP 10311474A JP 31147498 A JP31147498 A JP 31147498A JP 2000138076 A JP2000138076 A JP 2000138076A
Authority
JP
Japan
Prior art keywords
electrode material
negative electrode
positive electrode
secondary battery
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10311474A
Other languages
Japanese (ja)
Other versions
JP4714952B2 (en
Inventor
Koichi Muto
浩一 武藤
Hiroshi Oba
央 大庭
Masao Nishiguchi
昌男 西口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP31147498A priority Critical patent/JP4714952B2/en
Publication of JP2000138076A publication Critical patent/JP2000138076A/en
Application granted granted Critical
Publication of JP4714952B2 publication Critical patent/JP4714952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently manufacture a lithium ion polymer secondary battery having high reliability and a high function. SOLUTION: A negative electrode material 4 and a positive electrode material 3 having electrode activating materials 6 and 11, and gel type electrolytes 7 and 12 applied to strip type current collectors 5 and 10 are wound around a film type core material 2 as a core in such a state as overlaid on the external surface of the core material 2. The core material 2 constitutes a core within the range of electrode activating material coating parts 8 and 13 where the electrode activating materials 6 and 11 are not applied to the current collectors 5 and 10. The core material 2 is directly wound around the external surface of the core member of a manufacturing device, and a negative electrode material 4 and a positive electrode material 3 are wound around the external surface of the core member, thereby preventing the gel type electrolytes 7 and 12 from adhering to the core member.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、帯状集電体に極活
物質とゲル状電解質とを塗布してなる負極材と正極材と
を重ね合せ状態で巻回してなるリチウムポリマ二次電池
及びその製造装置並びに製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium polymer secondary battery in which a negative electrode material obtained by applying a polar active material and a gel electrolyte to a belt-shaped current collector and a positive electrode material are wound in a superposed state. The present invention relates to a manufacturing apparatus and a manufacturing method.

【0002】[0002]

【従来の技術】例えば携帯型電子機器等においては、一
般にその電源として繰り返し充電が可能であるとともに
小型で大容量が得られるリチウムイオン二次電池が用い
られている。携帯型電子機器等においては、多機能化或
いは長時間の使用等に伴う電源容量の確保とともに小型
軽量化による携帯性の向上等を目的から、リチウムイオ
ン二次電池よりもさらに小型化が図られるとともに安全
性の高い二次電池の要求が高い。
2. Description of the Related Art In portable electronic devices, for example, a lithium ion secondary battery which can be repeatedly charged and is small in size and large in capacity is generally used as its power source. In portable electronic devices and the like, in order to secure power supply capacity due to multifunctionality or long-time use and to improve portability by downsizing and weight reduction, further miniaturization than lithium ion secondary batteries is achieved. In addition, there is a high demand for a highly safe secondary battery.

【0003】かかる二次電池としては、リチウムイオン
ポリマ二次電池(以下、単にポリマ二次電池と称す
る。)が注目されている。ポリマ二次電池は、電解液
に、これに相溶する高分子材料、例えばポリフッ化ビニ
リデン(PVdF)やポリアクリロニトリル(PAN)
が混合されることによってゲル状化された電解質が用い
られる。ポリマ二次電池は、このゲル状電解質を塗布す
ることによって負極材や正極材を構成し、これら負極材
と正極材とを適宜重ね合わせることによって構成されて
いる。
As such a secondary battery, a lithium ion polymer secondary battery (hereinafter simply referred to as a polymer secondary battery) has been receiving attention. The polymer secondary battery is made of a polymer material compatible with the electrolytic solution, such as polyvinylidene fluoride (PVdF) or polyacrylonitrile (PAN).
Are mixed to use an electrolyte which is gelled. The polymer secondary battery forms a negative electrode material and a positive electrode material by applying the gel electrolyte, and is configured by appropriately overlapping the negative electrode material and the positive electrode material.

【0004】ポリマ二次電池としては、負極材と正極材
との重ね合せ構造によって区別された種々のタイプが提
案されている。ポリマ二次電池は、例えば図16に示し
たスタック型ポリマ二次電池100や、図17に示した
セパレータ巻回型ポリマ二次電池110或いは図18に
示したコアレス巻回型ポリマ二次電池130、図示しな
いが負極材と正極材とを積層した後にこれをつづら折り
してなるつづら折り型ポリマ二次電池等が提案されてい
る。
[0004] Various types of polymer secondary batteries have been proposed, which are distinguished by a superposed structure of a negative electrode material and a positive electrode material. The polymer secondary battery is, for example, the stack type polymer secondary battery 100 shown in FIG. 16, the separator wound type polymer secondary battery 110 shown in FIG. 17, or the coreless wound type polymer secondary battery 130 shown in FIG. Although not shown, a zigzag-type polymer secondary battery formed by laminating a negative electrode material and a positive electrode material and then knitting them is proposed.

【0005】スタック型ポリマ二次電池100は、平板
上で、所定の外形形状に形成された正極材101と負極
材102とを、ゲル状電解質103を介して重ね合わさ
れることによって、図16(A)に示した単セル104
が構成されてなる。正極材101は、アルミニウム箔等
のフィルム材によって所定の外形形状に形成された正極
集電体105と、この正極集電体105の主面に塗布さ
れた正極活物質106とからなる。負極材102は、銅
箔等のフィルム材によって正極集電体105よりもやや
大きな外形形状に形成された負極集電体107と、この
負極集電体107の主面に塗布された負極活物質108
とからなる。
[0005] In a stack type polymer secondary battery 100, a positive electrode material 101 and a negative electrode material 102 formed in a predetermined outer shape on a flat plate are overlapped with a gel electrolyte 103 interposed therebetween, as shown in FIG. Single cell 104 shown in A)
Is constituted. The positive electrode material 101 includes a positive electrode current collector 105 formed into a predetermined outer shape by a film material such as an aluminum foil, and a positive electrode active material 106 applied to a main surface of the positive electrode current collector 105. The negative electrode material 102 includes a negative electrode current collector 107 formed of a film material such as a copper foil to have a slightly larger outer shape than the positive electrode current collector 105, and a negative electrode active material applied to a main surface of the negative electrode current collector 107. 108
Consists of

【0006】スタック型ポリマ二次電池100は、図1
6(B)に示すように上述した複数個の単セル104A
乃至104Nが厚み方向に重ね合わせて構成されてな
り、大容量化が図られている。なお、スタック型ポリマ
二次電池100は、例えば大形の負極材102がその外
周部を電池缶と接続され、正極材101が図示しない接
続構造を介して正極端子部材と接続されて構成されてい
る。
The stack type polymer secondary battery 100 is shown in FIG.
As shown in FIG. 6B, the plurality of single cells 104A described above
To 104N are stacked in the thickness direction to achieve a large capacity. The stack type polymer secondary battery 100 has a configuration in which, for example, a large-sized negative electrode material 102 is connected to a battery can at the outer periphery thereof, and a positive electrode material 101 is connected to a positive electrode terminal member via a connection structure (not shown). I have.

【0007】セパレータ巻回型ポリマ二次電池110
は、液状電解質が用いられるリチウムイオン二次電池と
同様に、帯状の正極材111と負極材112とをセパレ
ータ113を介して渦巻き状に巻回して構成されてな
る。正極材111は、アルミニウム箔等の帯状フィルム
材からなる正極集電体114と、この正極集電体114
の主面上に塗布された正極活物質115とからなる。正
極材111には、最内周部の正極集電体114に正極外
部端子116が接合されている。
[0007] A separator wound type polymer secondary battery 110
In a similar manner to a lithium ion secondary battery using a liquid electrolyte, a strip-shaped positive electrode material 111 and a negative electrode material 112 are spirally wound with a separator 113 interposed therebetween. The positive electrode material 111 includes a positive electrode current collector 114 made of a band-shaped film material such as an aluminum foil, and the positive electrode current collector 114.
And a positive electrode active material 115 applied on the main surface of In the positive electrode material 111, a positive electrode external terminal 116 is joined to a positive electrode current collector 114 at an innermost peripheral portion.

【0008】負極材112は、銅箔等の帯状フィルム材
からなる負極集電体117と、この負極集電体117の
主面に塗布された負極活物質118とからなる。負極材
112には、最内周部の負極集電体117に負極外部端
子119が接合されている。セパレータ113は、例え
ばリチウムイオンを通過させる多孔質の帯状合成樹脂フ
ィルム、例えばポリプロピレンフィルムやポリエチレン
によって形成され、正極材111と負極材112とに挟
み込まれている。
The negative electrode material 112 includes a negative electrode current collector 117 made of a band-shaped film material such as a copper foil, and a negative electrode active material 118 applied to the main surface of the negative electrode current collector 117. A negative electrode external terminal 119 is joined to the negative electrode current collector 117 at the innermost periphery of the negative electrode material 112. The separator 113 is made of, for example, a porous band-shaped synthetic resin film that allows lithium ions to pass therethrough, for example, a polypropylene film or polyethylene, and is sandwiched between the positive electrode material 111 and the negative electrode material 112.

【0009】セパレータ巻回型ポリマ二次電池110
は、正極材111の正極活物質115上にゲル状の正極
電解質120が塗布されるとともに、負極材112の負
極活物質118上にゲル状の負極電解質121とが塗布
されている。勿論、正極電解質120と負極電解質12
1とは、同一材料によって形成されてなる。セパレータ
巻回型ポリマ二次電池110は、セパレータ113が図
17に示すようにその始端部によって巻芯部を構成して
正極材111と負極材112とを多層に巻回することに
より、大容量化が図られている。なお、正極電解質12
0と負極電解質121とは、多孔質性のセパレータ11
3を介して正極材111と負極材112との電界作用を
奏する。
Separator wound type polymer secondary battery 110
In this method, a gelled positive electrode electrolyte 120 is applied on a positive electrode active material 115 of a positive electrode material 111, and a gelled negative electrode electrolyte 121 is applied on a negative electrode active material 118 of a negative electrode material 112. Of course, the cathode electrolyte 120 and the anode electrolyte 12
1 is made of the same material. As shown in FIG. 17, the separator-wound polymer secondary battery 110 has a large capacity by winding the positive electrode material 111 and the negative electrode material 112 in a multilayer by forming a winding core portion by the starting end thereof as shown in FIG. Is being planned. The positive electrode electrolyte 12
0 and the negative electrode electrolyte 121, the porous separator 11
3, an electric field action between the positive electrode material 111 and the negative electrode material 112 is achieved.

【0010】コアレス巻回型ポリマ二次電池130は、
上述したセパレータ巻回型ポリマ二次電池110と比較
して、セパレータ113を用いずに巻芯131の外周部
に正極材132と負極材133とを渦巻き状に巻回して
構成したものである。巻芯131は、図18に示すよう
に略楔状の断面を有する一対の巻芯131a、131b
からなり、図示しない駆動機構によって回転されてその
外周部に正極材132と負極材133とが所定のテンシ
ョンを以って巻回される。
The coreless wound polymer secondary battery 130 is
As compared with the above-described separator wound type polymer secondary battery 110, a positive electrode material 132 and a negative electrode material 133 are spirally wound around the outer periphery of a core 131 without using a separator 113. The core 131 has a pair of cores 131a and 131b having a substantially wedge-shaped cross section as shown in FIG.
The positive electrode material 132 and the negative electrode material 133 are wound with a predetermined tension around the outer periphery thereof by being rotated by a drive mechanism (not shown).

【0011】正極材132は、上述した各正極材と同様
にアルミニウム箔等の帯状フィルム材からなる正極集電
体134と、この正極集電体134の主面上に塗布され
た正極活物質135と、この正極活物質135及び正極
集電体134上に塗布されたゲル状の正極電解質136
とからなる。正極材132には、最内周部の正極集電体
134に正極外部端子137が接合されている。負極材
133は、銅箔等の帯状フィルム材からなる負極集電体
138と、この負極集電体138の主面に塗布された負
極活物質139と、この負極活物質139上に塗布され
たゲル状の負極電解質140とからなる。負極材133
には、最内周部の負極集電体138に負極外部端子14
1が接合されている。コアレス巻回型ポリマ二次電池1
30は、正極材132と負極材133とを高密度で巻回
することから、体積エネルギー密度の向上が図られる。
The positive electrode material 132 includes a positive electrode current collector 134 made of a band-shaped film material such as an aluminum foil and the like, and a positive electrode active material 135 applied on the main surface of the positive electrode current collector 134. And a gelled positive electrode electrolyte 136 applied on the positive electrode active material 135 and the positive electrode current collector 134.
Consists of In the positive electrode material 132, a positive electrode external terminal 137 is joined to a positive electrode current collector 134 at the innermost periphery. The negative electrode material 133 is formed of a negative electrode current collector 138 made of a band-shaped film material such as a copper foil, a negative electrode active material 139 applied on the main surface of the negative electrode current collector 138, and applied on the negative electrode active material 139. And a gelled negative electrode electrolyte 140. Negative electrode material 133
In addition, the negative electrode external terminal 14 is
1 are joined. Coreless wound type polymer secondary battery 1
In 30, the volume energy density is improved because the positive electrode material 132 and the negative electrode material 133 are wound at a high density.

【0012】[0012]

【発明が解決しようとする課題】ところで、上述したス
タック型ポリマ二次電池100においては、正極材10
1や負極材102がプレス加工によって形成されるが、
高精度の加工を行うことが難しく、またこれら正極材1
01と負極材102とを平板上に高精度に位置決めする
ことが難しいといった問題があった。また、スタック型
ポリマ二次電池100は、正極材101及び負極材10
2とに対して正極端子部材及び負極端子部材とがそれぞ
れ集電溶接によって接続されるが、高精度に接続するこ
とが難しいといった問題があった。したがって、スタッ
ク型ポリマ二次電池100は、歩留りや量産性が悪いと
いった問題があった。
By the way, in the stack type polymer secondary battery 100 described above, the positive electrode material 10
1 and the negative electrode material 102 are formed by press working,
It is difficult to perform high-precision processing.
There is a problem that it is difficult to accurately position the first and the negative electrode material 102 on a flat plate. Further, the stack type polymer secondary battery 100 includes a positive electrode material 101 and a negative electrode material 10.
2, the positive electrode terminal member and the negative electrode terminal member are connected by current collecting welding, however, there is a problem that it is difficult to connect with high accuracy. Therefore, the stack-type polymer secondary battery 100 has a problem that yield and mass productivity are poor.

【0013】また、セパレータ巻回型ポリマ二次電池1
10は、上述したように液状電解質を用いたリチウムイ
オン二次電池の製造工程の転用を図ることができるが、
リチウムイオンを通過させる多孔質セパレータ113の
生産性が悪いとともに比較的高価であるといった問題が
あった。セパレータ巻回型ポリマ二次電池110は、セ
パレータ113を用いることで、その膜厚分正極材11
1と負極材112との極間間隔が大きくなる。
Further, a separator wound type polymer secondary battery 1
10 can be diverted to the manufacturing process of the lithium ion secondary battery using the liquid electrolyte as described above,
There is a problem that the productivity of the porous separator 113 that allows lithium ions to pass through is poor and relatively expensive. The separator-wound polymer secondary battery 110 uses the separator 113 to form the positive electrode material 11 by the thickness of the separator 113.
The distance between the electrodes 1 and the negative electrode material 112 increases.

【0014】セパレータ巻回型ポリマ二次電池110
は、この極間間隔を小さくするためには正極材111と
負極材112とに対して、ゲル状の正極電解質120と
負極電解質121とをそれぞれ薄厚で塗布する必要があ
る。しかしながら、正極電解質120及び負極電解質1
21は、粘度が高いために、これを20ミクロン以下の
厚みで均一に塗布することは極めて困難であり、歩留り
や生産性が悪いといった問題があった。
A separator wound type polymer secondary battery 110
In order to reduce the gap between the electrodes, it is necessary to apply a thin gel-like positive electrode electrolyte 120 and a negative electrode electrolyte 121 to the positive electrode material 111 and the negative electrode material 112, respectively. However, the cathode electrolyte 120 and the anode electrolyte 1
Since No. 21 has a high viscosity, it is extremely difficult to apply it uniformly with a thickness of 20 μm or less, and there is a problem that yield and productivity are poor.

【0015】さらに、コアレス巻回型ポリマ二次電池1
30においても、上述したように体積エネルギー密度特
性に優れているが、巻芯131に正極電解質136や負
極電解質140が付着してしまう。このため、コアレス
巻回型ポリマ二次電池130は、正極電解質136或い
は負極電解質140が剥がれて損傷し、内部ショートが
発生するといった問題があった。また、コアレス巻回型
ポリマ二次電池130は、正極電解質136或いは負極
電解質140に電解質塩が混合されていることから、そ
の付着によって巻芯131等が腐蝕し製造装置の耐久性
を劣化させるといった問題があった。
Further, a coreless wound type polymer secondary battery 1
30 also has excellent volume energy density characteristics as described above, but the positive electrode electrolyte 136 and the negative electrode electrolyte 140 adhere to the core 131. For this reason, the coreless wound polymer secondary battery 130 has a problem that the positive electrode electrolyte 136 or the negative electrode electrolyte 140 is peeled and damaged, and an internal short circuit occurs. Further, in the coreless wound polymer secondary battery 130, since the electrolyte salt is mixed in the positive electrode electrolyte 136 or the negative electrode electrolyte 140, the core 131 and the like are corroded by the adhesion, and the durability of the manufacturing apparatus is deteriorated. There was a problem.

【0016】ところで、ポリマ二次電池は、正極材或い
は負極材の電極材にそれぞれ端子部材を接続するため
に、集電体に対して端子接続部を残して極活物質が間欠
的に塗布される。ポリマ二次電池においては、極活物質
の塗始め部位と塗終り部位とがスムーズに形成されずに
飛びが発生していわゆるミックス飛びと称される汚れが
生じる。ポリマ二次電池は、このミックス飛びに起因し
てゲル状電解質が突き破られて内部ショートが発生する
といった問題があった。
In a polymer secondary battery, a polar active material is intermittently applied to a current collector except for a terminal connection portion in order to connect a terminal member to a positive electrode material or a negative electrode material. You. In a polymer secondary battery, a coating start portion and a coating end portion of a polar active material are not smoothly formed, and a jump occurs, thereby causing a so-called mix jump. The polymer secondary battery has a problem that the gel electrolyte is pierced due to the mixing jump and an internal short circuit occurs.

【0017】したがって、本発明は、生産性、信頼性が
向上されるとともに高性能のリチウムイオンポリマ二次
電池を提供することを目的に提案されたものである。ま
た、本発明は、高精度かつ高性能のリチウムイオンポリ
マ二次電池を効率よくかつ低コストで製造するリチウム
イオンポリマ二次の電池製造装置並びにその製造方法を
提供することを目的に提案されたものである。
Accordingly, the present invention has been proposed for the purpose of providing a high performance lithium ion polymer secondary battery with improved productivity and reliability. In addition, the present invention has been proposed for the purpose of providing a lithium ion polymer secondary battery manufacturing apparatus and a manufacturing method thereof for efficiently and at low cost manufacturing a high precision and high performance lithium ion polymer secondary battery. Things.

【0018】[0018]

【課題を解決するための手段】上述した目的を達成する
本発明にかかるリチウムイオンポリマ二次電池は、それ
ぞれ帯状集電体に極活物質とゲル状電解質とを塗布して
なる負極材と正極材とが、フイルム状のコア材を巻芯と
してその外周部に重ね合せ状態で巻回されてなる。ま
た、リチウムイオンポリマ二次電池は、負極材と正極材
とが、帯状集電体に極活物質を塗布した部位と未塗布部
位との間にコア材が介在するようにしてその外周部に重
ね合せ状態で巻回されてなる。
According to the present invention, there is provided a lithium ion secondary battery according to the present invention, which comprises a negative electrode material and a positive electrode material each formed by applying a polar active material and a gel electrolyte to a belt-shaped current collector. The material is wound in a state of being superimposed on the outer periphery of a film-shaped core material as a core. In addition, in the lithium ion polymer secondary battery, the negative electrode material and the positive electrode material are arranged on the outer peripheral portion of the belt-like current collector such that the core material is interposed between a portion where the polar active material is applied to the current collector and an uncoated portion. It is wound in a superposed state.

【0019】以上のように構成された本発明にかかるリ
チウムイオンポリマ二次電池によれば、負極材と正極材
とがコア材を巻芯として重ね合せ状態で巻回されること
から巻取り軸にゲル状電解質が付着することは無く、こ
の付着ゲル状電解質による内周部位のダメージの発生が
抑制されるとともに装置の耐久性を向上させる。リチウ
ムイオンポリマ二次電池は、極活物質を塗布した部位と
未塗布部位との間に介在するコア材によって、負極材や
正極材の始端部位に発生する極活物質のミックス飛びや
電極端子のスリットバリに起因する内部ショートの発生
が抑制される。
According to the lithium ion polymer secondary battery of the present invention having the above-described structure, the negative electrode material and the positive electrode material are wound in a superposed state with the core material as the core, so that the winding shaft is formed. The gel electrolyte does not adhere to the surface of the substrate, and the damage of the inner peripheral portion due to the adhered gel electrolyte is suppressed, and the durability of the device is improved. Lithium-ion polymer secondary batteries use a core material interposed between the part where the polar active material is applied and the part where the polar active material is not applied. The occurrence of an internal short circuit due to the slit burr is suppressed.

【0020】上述した目的を達成する本発明にかかるリ
チウムイオンポリマ二次電池の製造装置は、帯状の負極
集電体に負極活物質とゲル状電解質とを塗布してなる負
極材を供給する負極材供給機構と、帯状の正極集電体に
正極活物質とゲル状電解質とを塗布してなる正極材を供
給する正極材供給機構と、フイルム材からなるコア材を
供給するコア供給機構と、外周部にコア供給機構から供
給されたコア材と負極材供給機構から供給された負極材
と正極材供給機構から供給された正極材とを重ね合せ状
態で巻回する巻取り軸を有する電極材巻取機構とを備え
る。
The apparatus for manufacturing a lithium ion polymer secondary battery according to the present invention, which achieves the above object, comprises a negative electrode for supplying a negative electrode material obtained by applying a negative electrode active material and a gel electrolyte to a belt-like negative electrode current collector. A material supply mechanism, a positive electrode material supply mechanism that supplies a positive electrode material obtained by applying a positive electrode active material and a gel electrolyte to a belt-shaped positive electrode current collector, and a core supply mechanism that supplies a core material made of a film material, An electrode material having a winding shaft for winding a core material supplied from a core supply mechanism, a negative electrode material supplied from a negative electrode material supply mechanism, and a positive electrode material supplied from a positive electrode material supply mechanism in an outer peripheral portion in a superposed state. A winding mechanism.

【0021】以上のように構成された本発明にかかるリ
チウムイオンポリマ二次電池の製造装置によれば、電極
材巻取機構の巻取り軸には、その外周部に所定の長さに
カットしたコア材が巻回されるとともに、このコア材を
巻芯としてその外周部に負極材と正極材とが重ね合せ状
態で巻回される。リチウムイオンポリマ二次電池の製造
装置は、巻取り軸に負極材或いは正極材が直接巻回され
ないためにゲル状電解質が付着することは無い。したが
って、リチウムイオンポリマ二次電池の製造装置は、電
極材の巻回操作終了後に巻取り軸からリチウムイオンポ
リマ二次電池を取り外す際にゲル状電解質の粘着力によ
って内周部にダメージを発生させることは無く、信頼性
の高いリチウムイオンポリマ二次電池を製造する。さら
に、リチウムイオンポリマ二次電池の製造装置は、付着
したゲル状電解質によって巻取り軸等が腐蝕して耐久性
が劣化することも無い。
According to the manufacturing apparatus for a lithium ion polymer secondary battery according to the present invention, the winding shaft of the electrode material winding mechanism is cut into a predetermined length on the outer peripheral portion. While the core material is wound, the negative electrode material and the positive electrode material are wound around the outer periphery of the core material in a stacked state. In the manufacturing apparatus of the lithium ion polymer secondary battery, the negative electrode material or the positive electrode material is not directly wound around the winding shaft, so that the gel electrolyte does not adhere. Therefore, the manufacturing apparatus of the lithium ion polymer secondary battery causes damage to the inner peripheral portion due to the adhesive force of the gel electrolyte when removing the lithium ion polymer secondary battery from the winding shaft after the winding operation of the electrode material is completed. Nevertheless, a highly reliable lithium-ion polymer secondary battery is manufactured. Further, in the manufacturing apparatus of the lithium ion polymer secondary battery, the wound shaft and the like are not corroded by the attached gel electrolyte and the durability is not deteriorated.

【0022】また、リチウムイオンポリマ二次電池の製
造装置は、負極材及び正極材それぞれの極活物質を塗布
した部位と未塗布部位との間にコア材が介在するように
してこのコア材の外周部に正極材と負極材とを重ね合わ
せ状態で巻回することから、負極材や正極材の始端部位
に発生する極活物質のミックス飛びや電極端子のスリッ
トバリに起因する内部ショートの発生を抑制した高精度
で信頼性の高いリチウムイオンポリマ二次電池を効率よ
く製造する。
The apparatus for manufacturing a lithium-ion polymer secondary battery is characterized in that the core material is interposed between a portion where the positive electrode active material of each of the negative electrode material and the positive electrode material is applied and an uncoated portion thereof. Since the positive electrode material and the negative electrode material are wound around the outer periphery in a superposed state, the occurrence of mix shortage of the pole active material generated at the starting end of the negative electrode material and the positive electrode material and the occurrence of internal short circuit due to the slit burr of the electrode terminal To efficiently manufacture a highly accurate and highly reliable lithium ion polymer secondary battery with reduced power consumption.

【0023】さらに、上述した目的を達成する本発明に
かかるリチウムイオンポリマ二次電池の製造方法は、巻
取り軸を有する電極材巻取装置が用いられ、この電極材
巻取装置に、帯状の負極集電体に負極活物質とゲル状電
解質とを塗布してなる負極材と、帯状の正極集電体に正
極活物質とゲル状電解質とを塗布してなる正極材と、フ
イルム状のコア材とを供給し、巻取り軸の外周部に、所
定の長さにカットしたコア材を巻回するとともにこのコ
ア材の外周部に負極材と正極材とを重ね合せ状態で巻回
してリチウムイオンポリマ二次電池を製造する。また、
リチウムイオンポリマ二次電池の製造方法においては、
先端部を電極材巻取装置の巻取り軸に巻回された状態
で、コア材が負極材及び正極材の帯状負極集電体及び正
極集電体に負極活物質及び正極活物質が塗布されていな
い極活物質未塗布部位よりも短い長さにカットされる。
Further, in the method for producing a lithium ion polymer secondary battery according to the present invention for achieving the above-mentioned object, an electrode material winding device having a winding shaft is used. A negative electrode material obtained by applying a negative electrode active material and a gel electrolyte to a negative electrode current collector; a positive electrode material obtained by applying a positive electrode active material and a gel electrolyte to a belt-shaped positive electrode current collector; and a film-shaped core Material, and a core material cut to a predetermined length is wound around an outer peripheral portion of the winding shaft, and a negative electrode material and a positive electrode material are wound around the outer peripheral portion of the core material in a superposed state, thereby forming lithium. Manufactures ion polymer secondary batteries. Also,
In a method for manufacturing a lithium ion polymer secondary battery,
The core material is coated with the negative electrode active material and the positive electrode active material on the strip-shaped negative electrode current collector and the positive electrode current collector of the negative electrode material and the positive electrode material in a state where the tip is wound around the winding shaft of the electrode material winding device. It is cut to a length shorter than the non-coated active material.

【0024】したがって、本発明にかかるリチウムイオ
ンポリマ二次電池の製造方法によれば、巻取り軸に負極
材或いは正極材が直接巻回されないためにゲル状電解質
が付着することは無く、電極材の巻回操作終了後に巻取
り軸からリチウムイオンポリマ二次電池を取り外す際に
ゲル状電解質の粘着力によって内周部にダメージが発生
するといった不都合を生じさせることは無く信頼性の高
いリチウムイオンポリマ二次電池を製造する。
Therefore, according to the method for producing a lithium ion polymer secondary battery according to the present invention, the negative electrode material or the positive electrode material is not directly wound around the winding shaft, so that the gel electrolyte does not adhere to the winding shaft, and the electrode material does not adhere. When the lithium ion polymer secondary battery is removed from the winding shaft after the winding operation of the lithium ion polymer is removed, there is no inconvenience such as damage to the inner periphery caused by the adhesive force of the gel electrolyte, and the lithium ion polymer has high reliability. Manufacture secondary batteries.

【0025】また、リチウムイオンポリマ二次電池の製
造方法は、負極材及び正極材それぞれの極活物質を塗布
した部位と未塗布部位との間にコア材が介在するように
してこのコア材の外周部に正極材と負極材とを重ね合わ
せ状態で巻回することから、負極材や正極材の始端部位
に発生する極活物質のミックス飛びや電極端子のスリッ
トバリに起因する内部ショートの発生を抑制した高精度
で信頼性の高いリチウムイオンポリマ二次電池が効率よ
く製造される。
Further, the method for producing a lithium ion polymer secondary battery is characterized in that the core material is interposed between a portion where the positive active material of each of the negative electrode material and the positive electrode material is applied and a portion where the active material is not applied. Since the positive electrode material and the negative electrode material are wound around the outer periphery in a superposed state, the occurrence of mix shortage of the pole active material generated at the starting end of the negative electrode material and the positive electrode material and the occurrence of internal short circuit due to the slit burr of the electrode terminal Thus, a highly accurate and highly reliable lithium ion polymer secondary battery in which the occurrence is suppressed is efficiently manufactured.

【0026】[0026]

【発明の実施の形態】以下、図面に示した本発明の実施
の形態について詳細に説明する。実施の形態として示し
たポリマ二次電池1は、詳細を後述するポリマ二次電池
製造装置20によって製造される。ポリマ二次電池1
は、図1に示すように、コア材2を巻芯としてその外周
部に正極材3と負極材4とが重ね合わせ状態で巻回され
て構成される。コア材2は、ポリプロピレン(PP)フ
ィルムやポリエチレン(PE)フィルム或いは他のポリ
オレフィン系高分子樹脂フィルムを材料とし、正極材3
や負極材4とほぼ同幅の帯状素材が用いられる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention shown in the drawings will be described in detail. The polymer secondary battery 1 shown in the embodiment is manufactured by a polymer secondary battery manufacturing apparatus 20 described in detail later. Polymer secondary battery 1
As shown in FIG. 1, a positive electrode material 3 and a negative electrode material 4 are wound around an outer peripheral portion of a core material 2 as a core. The core material 2 is made of a polypropylene (PP) film, a polyethylene (PE) film, or another polyolefin-based polymer resin film.
A band-shaped material having substantially the same width as that of the negative electrode material 4 is used.

【0027】コア材2は、詳細を後述するように、ポリ
マ二次電池製造装置20内で所定の長さに切断される。
コア材2は、セパレータ巻回型ポリマ二次電池のセパレ
ータと同等の素材であるが、リチウムイオンを通過させ
る機能を有する必要が無いので多孔質でなくてもよく廉
価である。コア材2は、図1に示すように正極材3と負
極材4のそれぞれの巻回始端部3a、4aの最内周部に
位置するようにして一対が用いられている。一対のコア
材2a、2bは、その先端部が互いに突き合わされてい
る。
The core material 2 is cut into a predetermined length in a polymer secondary battery manufacturing apparatus 20, as will be described in detail later.
The core material 2 is a material equivalent to that of the separator of the separator wound type polymer secondary battery, but does not need to have a function of allowing lithium ions to pass therethrough, and thus may not be porous and inexpensive. As shown in FIG. 1, a pair of the core members 2 is used so as to be located at the innermost peripheral portions of the winding start ends 3a and 4a of the positive electrode member 3 and the negative electrode member 4, respectively. The tip ends of the pair of core members 2a and 2b abut each other.

【0028】正極材3は、アルミニウム箔等の帯状フィ
ルム材からなる正極集電体5と、この正極集電体5の両
面上に成膜された正極活物質6と、この正極活物質6及
び正極集電体5の表面上に塗布されたゲル状の正極電解
質7とからなる。正極材3は、詳細を後述するようにポ
リマ二次電池製造装置20内で所定の位置において切断
され、ここを巻回始端部3aとしてコア材2の外周部に
所定の長さ分巻回される。
The positive electrode material 3 includes a positive electrode current collector 5 made of a strip-shaped film material such as an aluminum foil, a positive electrode active material 6 formed on both surfaces of the positive electrode current collector 5, It comprises a gelled positive electrode electrolyte 7 applied on the surface of the positive electrode current collector 5. The positive electrode material 3 is cut at a predetermined position in the polymer secondary battery manufacturing apparatus 20 as described in detail later, and is wound around the outer periphery of the core material 2 by a predetermined length as a winding start end 3a. You.

【0029】正極活物質6は、例えばリチウムニッケル
酸化物(LiNiO2)や、リチウムコバルト酸化物
(LiCoO2)或いはリチウムマンガン酸化物(Li
Mn24)等が用いられる。正極活物質6は、これら材
料にカーボン等の導電材とバインダ及び溶剤とが混合さ
れ、これが正極集電体5上に均一に塗布されてなる。遷
移金属元素は、1種類に限定されず、例えばLiNiO
0.5Co0.52等のように2種類以上のものも使用可能
である。
The positive electrode active material 6 is made of, for example, lithium nickel oxide (LiNiO 2 ), lithium cobalt oxide (LiCoO 2 ) or lithium manganese oxide (Li
Mn 2 O 4 ) or the like is used. The positive electrode active material 6 is formed by mixing a conductive material such as carbon, a binder, and a solvent with these materials, and uniformly applying the mixture on the positive electrode current collector 5. The transition metal element is not limited to one kind. For example, LiNiO
Two or more types such as 0.5 Co 0.5 O 2 can be used.

【0030】また、正極活物質6は、例えばバインダと
してポリフッ化ビニリデン(PVdF)、溶媒としてn
ーメチルピロリドン(NMP)が用いられる。正極活物
質6は、これら素材を混合してスラリー状とし、例えば
ドクタープレード法等によって正極集電体5上に均一塗
布される。正極活物質6は、高温乾燥処理によってNM
Pが飛ばされ、さらにロールプレスによる加圧処理が施
されて高密度化が図られて正極集電体5上に成膜形成さ
れる。
The positive electrode active material 6 is made of, for example, polyvinylidene fluoride (PVdF) as a binder and n as a solvent.
-Methylpyrrolidone (NMP) is used. The positive electrode active material 6 is formed into a slurry by mixing these materials, and is uniformly applied onto the positive electrode current collector 5 by, for example, a doctor blade method. The positive electrode active material 6 is NM
The P is skipped, and a pressure treatment by a roll press is performed to increase the density, and a film is formed on the positive electrode current collector 5.

【0031】正極電解質7は、高分子材料と電解液と電
解質塩とが混合されてゲル状化されてなる。正極電解質
7は、高分子マトリックス内に電解液が分散された状態
であればよく、電解液量の制限は特に無い。高分子材料
は、電解液に相溶する性質を有し、例えばポリアクリロ
ニトリル(PAN)、ポリエーテル系高分子、PVd
F、スチレンブタジエンゴム等が用いられる。電解液
は、高分子材料を分散可能とし、非プロトン性溶媒とし
て例えばエチレンカーボネート(EC)やプロピレンカ
ーボネート(PC)或いはブチレンカーボネート(B
C)等が用いられる。溶媒は、1種類ばかりでなく2種
類以上を適宜混合して使用してもよい。
The positive electrode electrolyte 7 is formed by mixing a polymer material, an electrolytic solution and an electrolyte salt to form a gel. The cathode electrolyte 7 only needs to be in a state in which the electrolyte is dispersed in the polymer matrix, and there is no particular limitation on the amount of the electrolyte. The polymer material has a property of being compatible with the electrolytic solution. For example, polyacrylonitrile (PAN), polyether polymer, PVd
F, styrene butadiene rubber or the like is used. The electrolytic solution is capable of dispersing a polymer material, and as an aprotic solvent, for example, ethylene carbonate (EC), propylene carbonate (PC), or butylene carbonate (B)
C) and the like are used. The solvent may be used alone or in combination of two or more.

【0032】電解質塩には、溶媒に対して相溶するもの
が用いられ、カチオンとアニオンとが組み合わされてな
る。カチオンには、アルカリ金属やアルカリ土類金属が
用いられる。アニオンには、Cl、Br、I、SC
、ClO4 、BF4 、PF6 、CF3SO3 、等が用い
られる。電解質塩としては、六フッ化リン酸リチウムや
四フッ化ホウ酸リチウムが挙げられ、電解液に溶解可能
な濃度であればよい。
As the electrolyte salt, one that is compatible with the solvent is used, and a combination of a cation and an anion is used. As the cation, an alkali metal or an alkaline earth metal is used. The anion, Cl over, Br over, I chromatography, SC
N-, ClO 4 over, BF 4 over, PF 6 chromatography, CF 3 SO 3 over, etc. are used. Examples of the electrolyte salt include lithium hexafluorophosphate and lithium tetrafluoroborate, as long as the electrolyte salt can be dissolved in the electrolyte.

【0033】正極材3は、図1に示すように後述するポ
リマ二次電池製造装置20によってコア材2の外周部に
巻回される際に始端側となる巻回始端部3aから所定の
長さ領域が、正極集電体5の表面上に正極活物質6が塗
布されていない正極活物質未塗布部8として構成されて
いる。正極材3には、巻回始端部3aに位置して正極端
子部材9が接合されている。正極端子部材9は、例えば
アルミニウムやニッケル等の金属導線を網目状に織った
ものが用いられる。正極端子部材9は、最内周部から外
方へと引き出される。
As shown in FIG. 1, the positive electrode material 3 has a predetermined length from the winding start end 3a, which is the start end when the polymer secondary battery manufacturing apparatus 20 is wound around the outer periphery of the core material 2 as described later. The region is constituted as a positive electrode active material non-applied portion 8 in which the positive electrode active material 6 is not applied on the surface of the positive electrode current collector 5. A positive electrode terminal member 9 is joined to the positive electrode material 3 at a winding start end 3a. As the positive electrode terminal member 9, for example, a metal wire such as aluminum or nickel woven in a mesh shape is used. The positive electrode terminal member 9 is drawn out from the innermost peripheral portion.

【0034】負極材4は、銅箔等の帯状フィルム材から
なる負極集電体10と、この負極集電体10の両面上に
成膜された負極活物質11と、この負極活物質11及び
負極集電体10の表面上に塗布されたゲル状の負極電解
質12とからなる。負極材4は、詳細を後述するように
ポリマ二次電池製造装置20内で所定の位置において切
断され、ここを巻回始端部4aとしてコア材2の外周部
に所定の長さ分巻回される。
The negative electrode material 4 includes a negative electrode current collector 10 made of a strip-shaped film material such as a copper foil, a negative electrode active material 11 formed on both surfaces of the negative electrode current collector 10, It comprises a gelled negative electrode electrolyte 12 applied on the surface of the negative electrode current collector 10. The negative electrode material 4 is cut at a predetermined position in the polymer secondary battery manufacturing apparatus 20 as described in detail later, and is wound around the outer periphery of the core material 2 by a predetermined length as a winding start end 4a. You.

【0035】負極活物質11は、例えばグラファイトや
難黒鉛化炭素或いは易黒鉛化炭素等の炭素材料が用いら
れる。負極活物質11は、この炭素材料に対して、バイ
ンダとしてPYdF、溶剤としてNMPを加えてスラリ
ー状とし、例えばドクタープレード法等によって負極集
電体10上に均一塗布される。負極活物質11は、高温
乾燥処理によってNMPが飛ばされ、さらにロールプレ
スによる加圧処理が施されて高密度化が図られて負極集
電体10上に成膜形成される。なお、負極電解質12
は、上述した正極電解質7と同一であるからその説明を
省略する。
As the negative electrode active material 11, a carbon material such as graphite, non-graphitizable carbon, or graphitizable carbon is used. The negative electrode active material 11 is formed into a slurry by adding PYdF as a binder and NMP as a solvent to the carbon material, and is uniformly applied on the negative electrode current collector 10 by, for example, a doctor blade method. The negative electrode active material 11 is subjected to a high-temperature drying treatment to remove NMP, and further subjected to a pressure treatment by a roll press to achieve a high density, thereby forming a film on the negative electrode current collector 10. The negative electrode electrolyte 12
Is the same as the positive electrode electrolyte 7 described above, and the description thereof is omitted.

【0036】負極材4は、図1に示すように後述するポ
リマ二次電池製造装置20によってコア材2の外周部に
巻回される際に始端側となる巻回始端部4aから所定の
長さ領域が、負極集電体10の表面上に負極活物質11
が塗布されていない負極活物質未塗布部13として構成
されている。負極材4には、巻回始端部4aに位置して
負極端子部材14が接合されている。負極端子部材14
は、例えば銅やニッケル等の金属導線を網目状に織った
ものが用いられる。負極端子部材14は、最内周部から
外方へと引き出される。
As shown in FIG. 1, the negative electrode material 4 has a predetermined length from a winding start end 4a which is a start end when the negative electrode material 4 is wound around the outer peripheral portion of the core material 2 by a polymer secondary battery manufacturing apparatus 20 described later. The negative electrode active material 11 is formed on the surface of the negative electrode current collector 10.
Are applied as the negative electrode active material non-applied portions 13 to which no is applied. A negative electrode terminal member 14 is joined to the negative electrode material 4 at a winding start end 4a. Negative electrode terminal member 14
For example, a metal wire such as copper or nickel woven in a mesh shape is used. The negative electrode terminal member 14 is drawn out from the innermost peripheral portion.

【0037】ポリマ二次電池1は、図1に示すように一
方のコア材2aを巻芯として上述した正極材3が時計方
向に渦巻き状に巻回され、また他方のコア材2bを巻芯
として上述した負極材4が反時計方向に渦巻き状に巻回
されてなる。ポリマ二次電池1は、コア材2aが正極材
3に対して正極活物質未塗布部8の内周部に位置されて
正極端子部材9を被覆した状態となっている。コア材2
aは、正極材3の先端部を被覆した状態となっている。
同様に、ポリマ二次電池1は、コア材2bが負極材4に
対して負極活物質未塗布部13の内周部に位置されて負
極端子部材14を被覆した状態となっている。コア材2
bは、負極材4の先端部を被覆した状態となっている。
As shown in FIG. 1, the polymer secondary battery 1 has one of the core members 2a as a core, the above-described positive electrode member 3 is spirally wound clockwise, and the other core member 2b is a core. The negative electrode material 4 described above is spirally wound counterclockwise. In the polymer secondary battery 1, the core material 2 a is located on the inner peripheral portion of the positive electrode active material non-applied portion 8 with respect to the positive electrode material 3 and covers the positive electrode terminal member 9. Core material 2
a is a state in which the front end of the positive electrode material 3 is covered.
Similarly, the polymer secondary battery 1 is in a state in which the core material 2 b is located on the inner peripheral portion of the negative electrode active material non-applied portion 13 with respect to the negative electrode material 4 and covers the negative electrode terminal member 14. Core material 2
b shows a state in which the tip of the negative electrode material 4 is covered.

【0038】以上のように構成されたポリマ二次電池1
は、正極端子部材9や負極端子部材14がコア材2によ
って被覆されることから、これら端子部材のスリットバ
リ等による正極材3と負極材4との内部ショートの発生
が抑制される。ポリマ二次電池1は、正極材3と負極材
4の先端部をコア材2によって被覆することから、これ
らを切断した際に生じたバリ等による正極材3と負極材
4との内部ショートの発生が抑制される。
The polymer secondary battery 1 configured as described above
Since the positive electrode terminal member 9 and the negative electrode terminal member 14 are covered with the core member 2, occurrence of an internal short circuit between the positive electrode member 3 and the negative electrode member 4 due to slit burrs or the like of these terminal members is suppressed. In the polymer secondary battery 1, since the tips of the positive electrode material 3 and the negative electrode material 4 are covered with the core material 2, an internal short-circuit between the positive electrode material 3 and the negative electrode material 4 due to burrs or the like generated when these are cut off. Generation is suppressed.

【0039】正極材3及び負極材4は、それぞれの巻回
始端部3a、4aに正極端子部材9及び負極端子部材1
4を接合するためにそれぞれ正極活物質未塗布部8及び
負極活物質未塗布部13が構成されている。正極材3及
び負極材4には、これら正極活物質未塗布部8及び負極
活物質未塗布部13にミックス飛び等が生じている。ポ
リマ二次電池1は、正極活物質未塗布部8及び負極活物
質未塗布部13をコア材2によって被覆することから、
ミックス飛びによる内部ショートの発生が抑制される。
The positive electrode member 3 and the negative electrode member 4 are respectively provided with a positive terminal member 9 and a negative terminal member 1 at winding start ends 3a and 4a.
The positive electrode active material non-applied portion 8 and the negative electrode active material non-applied portion 13 are respectively formed to join the four. In the positive electrode material 3 and the negative electrode material 4, a mix jump or the like occurs in the positive electrode active material non-coated portion 8 and the negative electrode active material non-coated portion 13. Since the polymer secondary battery 1 covers the positive electrode active material non-coated portion 8 and the negative electrode active material non-coated portion 13 with the core material 2,
The occurrence of an internal short due to a mix jump is suppressed.

【0040】ポリマ二次電池1は、コア材2を正極材3
と負極材4との巻芯を構成するに足る長さとしている。
したがって、ポリマ二次電池1は、正極材3と負極材4
の、集電体5、10にそれぞれ極活物質6、11と電解
質7、12とが塗布された領域を重ね合わせる電池領域
が充分に確保される。ポリマ二次電池1は、この電池領
域にはコア材2が存在しないので、セパレータを介在さ
せる場合と比較して正極材3と負極材4との間隔が狭く
構成される。ポリマ二次電池1は、正極材3と負極材4
とが集電体5、10に対して電解質7、12を30ミク
ロン〜40ミクロン程度の膜厚で形成すればよい。した
がって、ポリマ二次電池1は、正極材3及び負極材4の
集電体5、10に対する電解質7、12の塗布工程が容
易かつ高精度化されることから、生産性と信頼性の向上
が図られるようになる。
In the polymer secondary battery 1, the core material 2 is
And a length sufficient to constitute the core of the anode material 4.
Therefore, the polymer secondary battery 1 includes the positive electrode material 3 and the negative electrode material 4.
A sufficient battery area is provided in which the areas where the polar active materials 6, 11 and the electrolytes 7, 12 are respectively applied to the current collectors 5, 10 are overlapped. Since the polymer secondary battery 1 does not have the core material 2 in this battery area, the interval between the positive electrode material 3 and the negative electrode material 4 is smaller than that in the case where the separator is interposed. The polymer secondary battery 1 includes a positive electrode material 3 and a negative electrode material 4.
The electrolytes 7 and 12 may be formed to a thickness of about 30 to 40 microns with respect to the current collectors 5 and 10. Therefore, in the polymer secondary battery 1, the process of applying the electrolytes 7, 12 to the current collectors 5, 10 of the positive electrode material 3 and the negative electrode material 4 can be performed easily and with high accuracy, so that productivity and reliability are improved. It will be planned.

【0041】ポリマ二次電池1は、図2及び図3に概略
の構成を図示したポリマ二次電池製造装置20によって
製造される。ポリマ二次電池製造装置20は、機器ベー
ス21にそれぞれ配設された、コア材供給部22と、正
極材供給部23と、負極材供給部24と、巻取り部25
等の各部によって構成されている。ポリマ二次電池製造
装置20は、コア材供給部22から供給されるコア材2
と、正極材供給部23から供給される正極材3と、負極
材供給部24から供給される負極材4とを巻取り部25
において後述する巻き取り操作を施してポリマ二次電池
1を製造する。
The polymer secondary battery 1 is manufactured by a polymer secondary battery manufacturing apparatus 20 whose schematic structure is shown in FIGS. The polymer secondary battery manufacturing apparatus 20 includes a core material supply unit 22, a positive electrode material supply unit 23, a negative electrode material supply unit 24, and a winding unit 25, which are provided on the device base 21.
And so on. The polymer secondary battery manufacturing apparatus 20 includes a core material 2 supplied from a core material supply unit 22.
A positive electrode material 3 supplied from a positive electrode material supply unit 23 and a negative electrode material 4 supplied from a negative electrode material supply unit 24;
, A winding operation described later is performed to manufacture the polymer secondary battery 1.

【0042】コア材供給部22は、図2において機器ベ
ース21のほぼ中央下方部に設けたコア材供給軸26
に、所定幅に裁断されたコア材2を巻回したコア材供給
ロール27が装着されてなる。コア材供給部22には、
コア材供給ロール27から繰り出されたコア材2に対し
て所定の走行テンションを付与するコア材ダンサローラ
機構28と、後述する巻取り部25に対するコア材2の
供給動作とこれを所定の長さに調整切断するコア材供給
制御機構29等が備えられて構成される。
The core material supply section 22 is provided with a core material supply shaft 26 provided substantially below the center of the equipment base 21 in FIG.
And a core material supply roll 27 around which a core material 2 cut to a predetermined width is wound. The core material supply unit 22 includes:
A core material dancer roller mechanism 28 for applying a predetermined running tension to the core material 2 fed from the core material supply roll 27, and a supply operation of the core material 2 to a winding unit 25 described later and a predetermined length. A core material supply control mechanism 29 for adjusting and cutting is provided.

【0043】正極材供給部23は、図2において機器ベ
ース21の右側領域に配置されており、層間に離型紙3
0が介挿された正極材3を巻回した正極材供給ロール3
1が装着される正極材供給軸32と、正極材供給ロール
31から離型紙30と正極材3とを分離しながら繰り出
させる正極材供給機構33と、分離された離型紙30を
所定の巻取りテンションを付与する離型紙ダンサローラ
機構34を介して巻き取る離型紙巻取りロール35とを
備えている。また、正極材供給部23は、繰り出された
正極材3を巻取り部25へと導く多数個のガイドローラ
等によって構成される走行ガイド機構36と、正極材3
に所定の走行テンションを付与する正極材ダンサローラ
機構37とが備えられて構成される。
The positive electrode material supply section 23 is arranged in the right area of the device base 21 in FIG.
Positive electrode material supply roll 3 wound with positive electrode material 3 with 0 inserted
1, a positive electrode material supply shaft 32, a positive electrode material supply mechanism 33 for separating and releasing the release paper 30 and the positive electrode material 3 from the positive electrode material supply roll 31, and a predetermined winding of the separated release paper 30 And a release paper take-up roll 35 that takes up via a release paper dancer roller mechanism 34 for applying tension. Further, the positive electrode material supply unit 23 includes a traveling guide mechanism 36 including a plurality of guide rollers and the like for guiding the fed positive electrode material 3 to the winding unit 25, and a positive electrode material 3
And a positive electrode material dancer roller mechanism 37 for applying a predetermined running tension to the motor.

【0044】負極材供給部24は、図2において機器ベ
ース21の左側領域に配置されており、層間に離型紙3
8が介挿された負極材4を巻回した負極材供給ロール3
9が装着される負極材供給軸40と、負極材供給ロール
39から離型紙38と負極材4とを分離しながら繰り出
させる負極材供給機構41と、分離された離型紙38を
所定の巻取りテンションを付与する離型紙ダンサローラ
機構42を介して巻き取る離型紙巻取りロール43とを
備えている。負極材供給部24は、繰り出された負極材
4を巻取り部25へと導く多数個のガイドローラ等によ
って構成される走行ガイド機構44と、負極材4に所定
の走行テンションを付与する負極材ダンサローラ機構4
5とが備えられて構成される。
The negative electrode material supply section 24 is disposed in the left area of the device base 21 in FIG.
Negative electrode material supply roll 3 around which negative electrode material 4 with inserted 8 is wound
A negative electrode material supply shaft 40 on which the sheet 9 is mounted, a negative electrode material supply mechanism 41 for separating and releasing the release paper 38 and the negative electrode material 4 from the negative electrode material supply roll 39, and winding the separated release paper 38 into a predetermined shape And a release paper take-up roll 43 that takes up a release paper dancer roller mechanism 42 for applying tension. The negative electrode material supply unit 24 includes a traveling guide mechanism 44 including a plurality of guide rollers and the like for guiding the fed negative electrode material 4 to the winding unit 25, and a negative electrode material that applies a predetermined traveling tension to the negative electrode material 4. Dancer roller mechanism 4
5 is provided.

【0045】巻取り部25は、図2において機器ベース
21の中央上部に配置されており、図示しない回転駆動
機構によって回転駆動されるとともに円周軌道L上を周
回動作される巻取り軸46と、この巻取り軸46の先端
部に取り付けられた巻芯部材47と、巻込みローラ機構
48と、ニップローラ機構49等を備えている。巻取り
部25は、上述した各部を回転基盤50に搭載する。巻
取り部25には、この回転基盤50の外周部にコア材2
のコア材供給ガイド機構51及びコア材カッタ機構52
が配設されるとともに、正極材3の正極材供給ガイド機
構53及び正極材カッタ機構54と、負極材4の負極材
供給ガイド機構55及び負極材カッタ機構56とが駆動
ユニットUTに搭載されて配設されている。
The winding unit 25 is disposed at the upper center of the equipment base 21 in FIG. 2, and is driven by a rotation driving mechanism (not shown) to rotate, and is operated around the circumferential orbit L by a winding shaft 46. A winding core member 47 attached to the tip of the winding shaft 46, a winding roller mechanism 48, a nip roller mechanism 49, and the like are provided. The winding unit 25 mounts the above-described units on the rotating base 50. The winding member 25 includes a core material 2 on the outer periphery of the rotating base 50.
Core material supply guide mechanism 51 and core material cutter mechanism 52
And a cathode material supply guide mechanism 53 and a cathode material cutter mechanism 54 for the cathode material 3 and an anode material supply guide mechanism 55 and an anode material cutter mechanism 56 for the anode material 4 are mounted on the drive unit UT. It is arranged.

【0046】駆動ユニットUTは、後述する巻取り操作
に際して正極材供給ガイド機構53と負極材供給ガイド
機構55とを図2において左右方向へと切換移動させ
る。供給ガイド機構53、55は、これによって巻芯部
材47に対して選択的に対応位置される。なお、巻取り
部25は、図2において上方位置を後述する巻取り操作
に際してのスタンバイ位置とし、このスタンバイ位置に
ニップローラ機構49が配置されている。また、これら
供給ガイド機構53、55は、スタンバイ位置において
巻芯部材47に対して等間隔に位置される。
The drive unit UT switches the positive electrode material supply guide mechanism 53 and the negative electrode material supply guide mechanism 55 in the horizontal direction in FIG. The supply guide mechanisms 53 and 55 are thereby selectively positioned corresponding to the core member 47. The winding section 25 has an upper position in FIG. 2 as a standby position for a winding operation described later, and a nip roller mechanism 49 is arranged at this standby position. Further, the supply guide mechanisms 53 and 55 are located at equal intervals with respect to the core member 47 in the standby position.

【0047】巻芯部材47は、図3に示すように全体略
楔状を呈する一対の部材47a、47bを組み合わせて
なり、全体略紡錘形を呈している。巻芯部材47には、
詳細を後述するように、その外周部に所定量のコア材2
が巻回された状態において正極材3と負極材4とが重ね
合わされた状態で巻回される。
As shown in FIG. 3, the core member 47 is formed by combining a pair of members 47a and 47b each having a substantially wedge shape, and has a substantially spindle shape as a whole. The core member 47 includes
As will be described later in detail, a predetermined amount of core material 2
Is wound in a state where the positive electrode material 3 and the negative electrode material 4 are overlapped with each other.

【0048】巻込みローラ機構48は、巻取り軸46に
対応して円周軌道L上を周回動作され、L字状のブラケ
ット部材57に対して巻込みローラ58が回転自在に支
持されている。巻込みローラ機構48は、詳細を後述す
るように巻込みローラ58が巻芯部材47に対して接離
動作するようにブラケット部材57が図示しない駆動機
構によって揺動動作される。巻込みローラ機構48は、
後述するように巻込みローラ58の外周部にコア材2を
掛け合わせて巻芯部材47の外周部へと導く作用を奏す
る。巻込みローラ機構48は、正極材供給ガイド機構5
3から供給された正極材3を巻芯部材47の外周部に巻
き込ませる作用を奏する。巻込みローラ機構48は、負
極材供給ガイド機構55から供給された負極材4を巻芯
部材47の外周部に巻き込ませる作用を奏する。
The take-up roller mechanism 48 is circulated on the circumferential orbit L corresponding to the take-up shaft 46, and the take-up roller 58 is rotatably supported by an L-shaped bracket member 57. . The winding roller mechanism 48 has a bracket member 57 oscillated by a drive mechanism (not shown) so that the winding roller 58 moves toward and away from the core member 47 as described in detail below. The take-up roller mechanism 48
As will be described later, the core member 2 is hung on the outer peripheral portion of the winding roller 58 and guided to the outer peripheral portion of the core member 47. The winding roller mechanism 48 includes the positive electrode material supply guide mechanism 5.
The positive electrode material 3 supplied from 3 is wound around the outer periphery of the core member 47. The winding roller mechanism 48 has an operation of winding the negative electrode material 4 supplied from the negative electrode material supply guide mechanism 55 around the outer periphery of the core member 47.

【0049】ニップローラ機構49は、シリンダ59
と、ニップローラ60等によって構成され、図3に示す
ように巻芯部材47に対して巻込みローラ機構48と対
向した位置に配置されている。ニップローラ機構49
は、シリンダ59が動作することによってニップローラ
60を巻芯部材47に対して接離動作させる。ニップロ
ーラ機構49は、正極材供給ガイド機構53から供給さ
れた正極材3を巻芯部材47の外周部に巻き込ませる作
用を奏する。ニップローラ機構49は、負極材供給ガイ
ド機構55から供給された負極材4を巻芯部材47の外
周部に巻き込ませる作用を奏する。
The nip roller mechanism 49 includes a cylinder 59
And a nip roller 60 and the like, and are arranged at a position facing the winding roller mechanism 48 with respect to the core member 47 as shown in FIG. Nip roller mechanism 49
Moves the nip roller 60 toward and away from the core member 47 by operating the cylinder 59. The nip roller mechanism 49 has an effect of causing the positive electrode material 3 supplied from the positive electrode material supply guide mechanism 53 to be wound around the outer peripheral portion of the core member 47. The nip roller mechanism 49 has an effect of causing the negative electrode material 4 supplied from the negative electrode material supply guide mechanism 55 to be wound around the outer periphery of the core member 47.

【0050】コア材供給ガイド機構51は、複数個のガ
イドローラや図示しない可動型のテンションローラ等に
よって構成され、コア材2に対して所定のテンションを
付与した状態で巻芯部材47へと走行ガイドさせる。コ
ア材供給ガイド機構51は、後述するコア材カッタ機構
52に対応して配設されたガイドプレート61が備えら
れている。
The core material supply guide mechanism 51 includes a plurality of guide rollers, a movable tension roller (not shown), and the like, and runs to the core member 47 with a predetermined tension applied to the core material 2. Let me guide you. The core material supply guide mechanism 51 includes a guide plate 61 disposed corresponding to a core material cutter mechanism 52 described later.

【0051】コア材カッタ機構52は、図3に示すよう
に巻取り部25のスタンバイ位置に対応位置されてい
る。コア材カッタ機構52は、同図に示すようにコア材
供給ガイド機構51のガイドプレート61に対向位置さ
れたニップローラ62と、このニップローラ62をガイ
ドプレート61に対して接離動作させるシリンダ63
と、ニップローラ62とともにシリンダ63によって駆
動されるカッタ64等の部材によって構成されている。
The core material cutter mechanism 52 is located at the standby position of the winding section 25 as shown in FIG. The core material cutter mechanism 52 includes a nip roller 62 facing the guide plate 61 of the core material supply guide mechanism 51 as shown in the figure, and a cylinder 63 for moving the nip roller 62 toward and away from the guide plate 61.
And a member such as a cutter 64 driven by a cylinder 63 together with the nip roller 62.

【0052】コア材カッタ機構52は、後述するように
コア材2が巻芯部材47に対して所定の長さ分巻き込ま
れた状態において、シリンダ63が動作してニップロー
ラ62とカッタ64とをガイドプレート61側へと移動
させる。コア材カッタ機構52は、ニップローラ62と
ガイドプレート61との間でコア材2を挟持した状態
で、カッタ64によってコア材2を切断する。
The core member cutter mechanism 52 guides the nip roller 62 and the cutter 64 by operating the cylinder 63 when the core member 2 is wound around the core member 47 by a predetermined length as described later. It is moved to the plate 61 side. The core material cutter mechanism 52 cuts the core material 2 by the cutter 64 in a state where the core material 2 is sandwiched between the nip roller 62 and the guide plate 61.

【0053】正極材供給ガイド機構53は、ガイドロー
ラ65と、正極材グリッパ部材66等の部材によって構
成され、スタンバイ位置において巻芯部材47の上方右
側に位置して配置されている。正極材供給ガイド機構5
3は、上述したように駆動ユニットUTによってスタン
バイ位置と巻芯部材47の上方位置とに切換位置され
る。正極材グリッパ66部材は、図示しない駆動機構に
よってガイドローラ65に対して接離動作されるととも
に供給方向に対してスライド動作される。正極材供給ガ
イド機構53は、後述するように正極材グリッパ66が
動作されてガイドローラ65との間で正極材3を挟持し
た状態でスライド動作されることによって、正極材3を
巻芯部材47の外周部に送り込む作用を奏する。
The positive electrode material supply guide mechanism 53 is composed of members such as a guide roller 65 and a positive electrode material gripper member 66, and is disposed at the standby position on the right side above the core member 47. Positive electrode material supply guide mechanism 5
3 is switched between the standby position and the position above the core member 47 by the drive unit UT as described above. The positive electrode material gripper 66 is moved toward and away from the guide roller 65 by a drive mechanism (not shown), and is slid in the supply direction. The positive-electrode material supply guide mechanism 53 slides the positive-electrode material 3 in a state where the positive-electrode material gripper 66 is operated to slide the positive-electrode material 3 between the guide roller 65 and the core member 47 as described later. To the outer peripheral portion.

【0054】正極材カッタ機構54は、正極材供給ガイ
ド機構53と巻芯部材47との間に配置されており、詳
細を省略するがカッタと押えプレート等の部材によって
構成されている。正極材カッタ機構54は、巻芯部材4
7に対して所定量の正極材3の巻取り操作が行われた場
合に駆動されて、正極材3を切断する。正極材カッタ機
構54は、この場合、正極材供給部23の供給動作に基
づいて制御され、正極材3の正極活物質未塗布部8で正
極材3の切断動作を行う。
The positive electrode material cutter mechanism 54 is disposed between the positive electrode material supply guide mechanism 53 and the core member 47, and is constituted by members such as a cutter and a press plate, although details are omitted. The positive electrode material cutter mechanism 54 includes the core member 4.
It is driven when a predetermined amount of winding operation of the positive electrode material 3 is performed on 7, and cuts the positive electrode material 3. In this case, the positive electrode material cutter mechanism 54 is controlled based on the supply operation of the positive electrode material supply unit 23, and performs the operation of cutting the positive electrode material 3 at the positive electrode active material non-applied portion 8 of the positive electrode material 3.

【0055】負極材供給ガイド機構55は、ガイドロー
ラ67と、負極材グリッパ部材68等の部材によって構
成され、スタンバイ位置において巻芯部材47の上方左
側に位置して配置されている。負極材供給ガイド機構5
5は、上述したように駆動ユニットUTによってスタン
バイ位置と巻芯部材47の上方位置とに切換位置され
る。負極材グリッパ68部材は、図示しない駆動機構に
よってガイドローラ67に対して接離動作されるととも
に供給方向に対してスライド動作される。負極材供給ガ
イド機構55は、後述するように負極材グリッパ68が
動作されてガイドローラ67との間で負極材4を挟持し
た状態でスライド動作されることによって、負極材4を
巻芯部材47の外周部に送り込む作用を奏する。
The negative electrode material supply guide mechanism 55 is composed of members such as a guide roller 67 and a negative electrode material gripper member 68, and is located at the standby position on the upper left side of the core member 47. Anode material supply guide mechanism 5
5 is switched between the standby position and the position above the core member 47 by the drive unit UT as described above. The negative electrode material gripper 68 is moved toward and away from the guide roller 67 by a drive mechanism (not shown), and is slid in the supply direction. The negative electrode material supply guide mechanism 55 slides the negative electrode material 4 with the core member 47 by operating the negative electrode material gripper 68 and sliding the negative electrode material 4 with the guide roller 67 as described later. To the outer peripheral portion.

【0056】負極材カッタ機構56は、負極材供給ガイ
ド機構55と巻芯部材47との間に配置されており、詳
細を省略するがカッタと押えプレート等の部材によって
構成されている。負極材カッタ機構56は、巻芯部材4
7に対して所定量の負極材4の巻取り操作が行われた場
合に駆動されて、負極材4を切断する。負極材カッタ機
構56は、この場合、負極材供給部24の供給動作に基
づいて制御され、負極材4の活物質未塗布部13で負極
材4の切断動作を行う。
The negative electrode material cutter mechanism 56 is disposed between the negative electrode material supply guide mechanism 55 and the core member 47, and is constituted by members such as a cutter and a press plate, although details are omitted. The negative electrode material cutter mechanism 56 includes the core member 4.
When the winding operation of the predetermined amount of the negative electrode material 4 is performed with respect to 7, it is driven to cut the negative electrode material 4. In this case, the negative electrode material cutter mechanism 56 is controlled based on the supply operation of the negative electrode material supply unit 24, and performs a cutting operation of the negative electrode material 4 at the active material non-applied portion 13 of the negative electrode material 4.

【0057】以上のように構成されたポリマ二次電池製
造装置20においては、コア材供給部22のコア材供給
軸26にコア材供給ロール27がセットされ、このコア
材供給ロール27から引き出されたコア材2がコア材ダ
ンサロール機構28、コア材供給制御機構29を介して
コア材供給ガイド機構51へとローディングされる。ポ
リマ二次電池製造装置20においては、正極材供給部2
3の正極材供給軸32に正極材供給ロール31がセット
され、この正極材供給ロール31から引き出された正極
材3が正極材供給機構33へとローディングされる。
In the polymer secondary battery manufacturing apparatus 20 configured as described above, the core material supply roll 27 is set on the core material supply shaft 26 of the core material supply unit 22 and is pulled out from the core material supply roll 27. The core material 2 is loaded onto the core material supply guide mechanism 51 via the core material dancer roll mechanism 28 and the core material supply control mechanism 29. In the polymer secondary battery manufacturing apparatus 20, the positive electrode material supply unit 2
The positive electrode material supply roll 31 is set on the positive electrode material supply shaft 32 of No. 3, and the positive electrode material 3 drawn from the positive electrode material supply roll 31 is loaded into the positive electrode material supply mechanism 33.

【0058】正極材3は、正極材供給機構33において
離型紙30が剥離され、走行ガイド機構36、正極材ダ
ンサロール機構37を介して正極材供給ガイド機構53
へとローディングされる。離型紙30は、正極材供給機
構33において正極材3から剥離されて離型紙ダンサロ
ール機構37を介して離型紙巻取ロール35にローディ
ングされる。
The release material 30 is peeled off from the positive electrode material 3 in the positive electrode material supply mechanism 33, and the positive electrode material supply guide mechanism 53 is passed through the traveling guide mechanism 36 and the positive electrode material dancer roll mechanism 37.
Will be loaded. The release paper 30 is separated from the positive electrode material 3 in the positive electrode material supply mechanism 33 and is loaded on the release paper take-up roll 35 via the release paper dancer roll mechanism 37.

【0059】ポリマ二次電池製造装置20においては、
負極材供給部24の負極材供給軸40に負極材供給ロー
ル39がセットされ、この負極材供給ロール39から引
き出された負極材4が負極材供給機構41へとローディ
ングされる。負極材4は、負極材供給機構41において
離型紙38が剥離され、走行ガイド機構44、負極材ダ
ンサロール機構45を介して負極材供給ガイド機構55
へとローディングされる。離型紙38は、負極材供給機
構41において負極材4から剥離されて離型紙ダンサロ
ール機構42を介して離型紙巻取ロール43にローディ
ングされる。
In the apparatus 20 for manufacturing a polymer secondary battery,
A negative electrode material supply roll 39 is set on the negative electrode material supply shaft 40 of the negative electrode material supply part 24, and the negative electrode material 4 drawn from the negative electrode material supply roll 39 is loaded into the negative electrode material supply mechanism 41. The release material 38 of the negative electrode material 4 is peeled off in the negative electrode material supply mechanism 41, and the negative electrode material supply guide mechanism 55 passes through the travel guide mechanism 44 and the negative electrode material dancer roll mechanism 45.
Will be loaded. The release paper 38 is separated from the negative electrode material 4 in the negative electrode material supply mechanism 41 and is loaded on the release paper take-up roll 43 via the release paper dancer roll mechanism 42.

【0060】ポリマ二次電池製造装置20においては、
コア材供給ガイド機構51からコア材2が繰り出されて
巻芯部材47の外周部に所定量巻回される。ポリマ二次
電池製造装置20においては、巻取り軸46が回転駆動
されるとともに正極材供給ガイド機構53から正極材3
が繰り出されかつ負極材供給ガイド機構55から負極材
4が繰り出される。ポリマ二次電池製造装置20におい
ては、正極材3或いは負極材4の巻回始端部3a、3b
の巻回動作に連動してコア材2のカッティング動作が行
われる。ポリマ二次電池製造装置20においては、正極
材3或いは負極材4の巻回始端部3a、3bの範囲にお
いてコア材2がその巻芯を構成し、正極材3及び負極材
4が互いに重ね合わせ状態で順次その外周部に巻回され
ていく。
In the apparatus 20 for producing a polymer secondary battery,
The core material 2 is fed out from the core material supply guide mechanism 51 and wound around the core member 47 by a predetermined amount. In the polymer secondary battery manufacturing apparatus 20, the winding shaft 46 is driven to rotate, and the positive electrode material supply guide mechanism 53 supplies the positive electrode material 3.
And the negative electrode material 4 is fed from the negative electrode material supply guide mechanism 55. In the polymer secondary battery manufacturing apparatus 20, winding start ends 3a, 3b of the positive electrode material 3 or the negative electrode material 4 are formed.
The cutting operation of the core material 2 is performed in conjunction with the winding operation. In the polymer secondary battery manufacturing apparatus 20, the core material 2 constitutes a winding core in the range of the winding start ends 3a and 3b of the positive electrode material 3 or the negative electrode material 4, and the positive electrode material 3 and the negative electrode material 4 overlap each other. It is sequentially wound around the outer periphery in this state.

【0061】ポリマ二次電池製造装置20においては、
正極材3及び負極材4の所定量の巻回動作が終了すると
巻取り軸46の回転動作が終了する。ポリマ二次電池製
造装置20においては、正極材カッタ機構54及び負極
材カッタ機構56が動作して正極材3と負極材4のカッ
ティングが行われる。ポリマ二次電池製造装置20から
は、巻取り部25の巻芯部材47から製作されたポリマ
二次電池10の取り出しが行われる。
In the polymer secondary battery manufacturing apparatus 20,
When a predetermined amount of winding operation of the positive electrode material 3 and the negative electrode material 4 is completed, the rotation operation of the winding shaft 46 ends. In the polymer secondary battery manufacturing apparatus 20, the positive electrode material cutter mechanism 54 and the negative electrode material cutter mechanism 56 operate to cut the positive electrode material 3 and the negative electrode material 4. The polymer secondary battery 10 manufactured from the core member 47 of the winding unit 25 is taken out of the polymer secondary battery manufacturing device 20.

【0062】ポリマ二次電池製造装置20は、上述した
工程を経てコア材2を巻芯としてその外周部に正極材3
と負極材4とを重ね合わせ状態で巻回してなるポリマ二
次電池10を製造する。ポリマ二次電池製造装置20
は、コア材2が正極材3及び負極材4に対してそれぞれ
の正極活物質未塗布部8及び負極活物質未塗布部13の
内周部に位置されて正極端子部材9及び負極端子部材1
4を被覆したポリマ二次電池10を製造する。
The polymer secondary battery manufacturing apparatus 20 uses the core material 2 as a core through the above-described steps to form a positive electrode material 3
And a negative electrode material 4 are wound in a superposed state to produce a polymer secondary battery 10. Polymer secondary battery manufacturing equipment 20
The core material 2 is located on the inner periphery of the positive electrode active material non-coated portion 8 and the negative electrode active material non-coated portion 13 with respect to the positive electrode material 3 and the negative electrode material 4, respectively.
4 is manufactured.

【0063】したがって、ポリマ二次電池製造装置20
は、コア材2によって正極端子部材9や負極端子部材1
4を被覆してそれらのスリットバリ等による正極材3と
負極材4との内部ショートの発生が抑制された信頼性の
高いポリマ二次電池1を製造する。ポリマ二次電池製造
装置20は、コア材2によって正極端子部材9や負極端
子部材14の先端部を被覆してそれらのカッティングの
際に生じたバリ等による正極材3と負極材4との内部シ
ョートの発生が抑制され信頼性の高いポリマ二次電池1
を製造する。ポリマ二次電池製造装置20は、コア材2
によって正極材3及び負極材4の正極活物質未塗布部8
及び負極活物質未塗布部13を被覆してこれらの部位に
発生したミックス飛びによる内部ショートの発生を抑制
した信頼性の高いポリマ二次電池1を製造する。
Therefore, the polymer secondary battery manufacturing apparatus 20
The positive electrode terminal member 9 and the negative electrode terminal member 1 depend on the core material 2.
4 to produce a highly reliable polymer secondary battery 1 in which the occurrence of an internal short circuit between the positive electrode material 3 and the negative electrode material 4 due to slit burrs or the like is suppressed. The polymer secondary battery manufacturing apparatus 20 covers the inside of the positive electrode material 3 and the negative electrode material 4 due to burrs and the like generated at the time of cutting the ends of the positive electrode terminal member 9 and the negative electrode terminal member 14 with the core material 2. Highly reliable polymer secondary battery 1 in which short circuit is suppressed.
To manufacture. The polymer secondary battery manufacturing apparatus 20 includes the core material 2
The positive electrode active material uncoated portion 8 of the positive electrode material 3 and the negative electrode material 4
In addition, the highly reliable polymer secondary battery 1 which covers the non-applied portion 13 of the negative electrode active material and suppresses the occurrence of an internal short circuit caused by a mix jump generated in these portions is manufactured.

【0064】ポリマ二次電池製造装置20は、比較的高
価なセパレータを不要とすることから、そのコストダウ
ンが図られたポリマ二次電池1を製造する。ポリマ二次
電池製造装置20は、コア材2が正極材3と負極材4の
巻芯部分にのみ存在することから、集電体5、10に対
して電解質7、12を30ミクロン〜40ミクロン程度
の膜厚とした政策が比較的容易でかつ高精度の正極材3
や負極材4を用いることを可能とし、生産性と信頼性の
向上が図られるとともにコストダウンが図られたポリマ
二次電池1を製造する。
Since the polymer secondary battery manufacturing apparatus 20 does not require a relatively expensive separator, it manufactures the polymer secondary battery 1 whose cost is reduced. Since the core material 2 exists only in the core portion of the positive electrode material 3 and the negative electrode material 4, the polymer secondary battery manufacturing apparatus 20 applies the electrolytes 7 and 12 to the current collectors 5 and 10 by 30 μm to 40 μm. Positive electrode material 3 with relatively easy and high-precision policy with a thickness of about 3
And the negative electrode material 4 can be used to manufacture the polymer secondary battery 1 in which productivity and reliability are improved and cost is reduced.

【0065】ポリマ二次電池製造装置20は、巻芯部材
47にコア材2を巻回した状態でその外周部に正極材3
と負極材4とを重ね合わせた状態で巻回することから、
巻芯部材47やその他の部位への粘度の高いゲル状正極
電解質7やゲル状負極電解質12の付着が抑制される。
したがって、ポリマ二次電池製造装置20は、巻芯部材
47からポリマ二次電池1を取り外す際に付着したゲル
状正極電解質7やゲル状負極電解質12の粘着力によっ
て正極材3と負極材4の内周部が損傷されることが無い
信頼性の高いポリマ二次電池1を歩留りよく製造する。
ポリマ二次電池製造装置20は、各部に付着したゲル状
正極電解質7やゲル状負極電解質12に含まれる電解質
塩による腐蝕等の発生が抑制され、耐久性が向上され
る。
The polymer secondary battery manufacturing apparatus 20 has a structure in which the core material 2 is wound around the core member 47 and the positive electrode material 3
And the negative electrode material 4 are wound in a superposed state,
Adhesion of the gelled positive electrode electrolyte 7 and the gelled negative electrode electrolyte 12 having high viscosity to the core member 47 and other parts is suppressed.
Therefore, the polymer secondary battery manufacturing apparatus 20 uses the adhesive force of the gelled positive electrode electrolyte 7 and the gelled negative electrode electrolyte 12 attached when the polymer secondary battery 1 is detached from the core member 47 to form the positive electrode material 3 and the negative electrode material 4. A highly reliable polymer secondary battery 1 whose inner peripheral portion is not damaged is manufactured with high yield.
In the polymer secondary battery manufacturing apparatus 20, the occurrence of corrosion and the like due to the electrolyte salt contained in the gelled positive electrode electrolyte 7 and the gelled negative electrode electrolyte 12 attached to each part is suppressed, and the durability is improved.

【0066】上述したポリマ二次電池製造装置20を用
いたポリマ二次電池1の具体的な製造工程について、以
下図4乃至図15に示した巻取り部25における各部の
動作形態図を参照して詳細に説明する。
With respect to a specific manufacturing process of the polymer secondary battery 1 using the above-described polymer secondary battery manufacturing apparatus 20, the operation form of each part in the winding unit 25 shown in FIGS. 4 to 15 will be described below. This will be described in detail.

【0067】ポリマ二次電池製造装置20は、図4に示
すスタンバイ位置において、コア材2が巻込みローラ機
構48の巻込みローラ58にガイドされて巻芯部材47
の外周部に巻回された状態にある。巻芯部材47は、不
特定な姿勢にあるとともに、巻込みローラ58及びニッ
プルローラ機構49のニップルローラ60とが離間した
位置にある。正極材3は、正極材供給ガイド機構53の
ガイドローラ65と正極材グリッパ部材66とによっ
て、その先端部分が挟持されている。同様に、負極材4
も、負極材供給ガイド機構55のガイドローラ67と負
極材グリッパ部材68とによってその先端部分が挟持さ
れている。巻芯部材47は、正極材供給ガイド機構53
と負極材供給ガイド機構55との中間に位置している。
In the polymer secondary battery manufacturing apparatus 20, the core member 2 is guided by the winding roller 58 of the winding roller mechanism 48 in the standby position shown in FIG.
In a state of being wound around the outer peripheral portion of the. The winding core member 47 is in an unspecified posture, and is at a position where the winding roller 58 and the nipple roller 60 of the nipple roller mechanism 49 are separated. The leading end of the positive electrode material 3 is sandwiched between the guide roller 65 of the positive electrode material supply guide mechanism 53 and the positive electrode material gripper member 66. Similarly, the negative electrode material 4
Also, the leading end portion is held between the guide roller 67 of the negative electrode material supply guide mechanism 55 and the negative electrode material gripper member 68. The core member 47 includes a positive electrode material supply guide mechanism 53.
And the negative electrode material supply guide mechanism 55.

【0068】ポリマ二次電池製造装置20においては、
巻取り動作の開始に伴って、駆動ユニットUTが動作し
て負極材供給ガイド機構55を巻芯部材47に対応位置
させる。負極材供給ガイド機構55は、負極材グリッパ
部材68がガイドローラ67との間で負極材4を挟持し
た状態のまま図5矢印で示すように巻芯部材47側へと
下降動作する。負極材4は、この負極材グリッパ部材6
8の動作によって先端部が巻芯部材47の外周部まで送
り出される。
In the apparatus 20 for manufacturing a polymer secondary battery,
With the start of the winding operation, the drive unit UT operates to move the negative electrode material supply guide mechanism 55 to a position corresponding to the winding core member 47. The negative electrode material supply guide mechanism 55 moves down to the core member 47 side as shown by the arrow in FIG. 5 with the negative electrode material gripper member 68 sandwiching the negative electrode material 4 between the guide roller 67 and the negative electrode material gripper member 68. The negative electrode material 4 includes the negative electrode material gripper member 6.
By the operation 8, the leading end is sent out to the outer peripheral portion of the core member 47.

【0069】ポリマ二次電池製造装置20においては、
次工程で、図6に示すように負極材4の送出し動作と巻
芯部材47に対する巻込み動作とが行われる。巻芯部材
47は、上述したように不特定な姿勢にあり、巻取り軸
46の調整動作によって同図(A)矢印で示すように調
整回動されて負極材4に対して平行な状態とする巻芯角
度合わせが行われる。
In the polymer secondary battery manufacturing apparatus 20,
In the next step, the delivery operation of the negative electrode material 4 and the winding operation of the core member 47 are performed as shown in FIG. The winding core member 47 is in an unspecified posture as described above, and is adjusted and rotated by the adjusting operation of the winding shaft 46 as shown by the arrow in FIG. Core angle adjustment is performed.

【0070】ポリマ二次電池製造装置20においては、
次に巻込みローラ機構48とニップルローラ機構49と
が動作される。巻込みローラ機構48は、図6(B)矢
印で示すように巻込みローラ58を巻芯部材47の外周
部に当接させる。巻込みローラ58は、この状態におい
て負極材4の巻回始端部4aを巻芯部材47の外周部に
押し付けて保持する。ニップルローラ機構49は、同様
にニップルローラ60を巻芯部材47の外周部に当接さ
せる。
In the polymer secondary battery manufacturing apparatus 20,
Next, the winding roller mechanism 48 and the nipple roller mechanism 49 are operated. The winding roller mechanism 48 causes the winding roller 58 to abut on the outer peripheral portion of the winding core member 47 as shown by the arrow in FIG. In this state, the winding roller 58 presses and holds the winding start end 4 a of the negative electrode material 4 against the outer peripheral portion of the core member 47. The nipple roller mechanism 49 similarly causes the nipple roller 60 to contact the outer peripheral portion of the core member 47.

【0071】ポリマ二次電池製造装置20においては、
負極材供給機構55の負極材グリッパ部材68の動作が
行われる。負極材グリッパ部材68は、負極材4が巻芯
部材47と巻込みローラ58とによって保持された状態
で、図6(C)矢印で示すようにガイドローラ67から
離間する方向に移動する。ポリマ二次電池製造装置20
においては、さらに負極材グリッパ部材68を同図
(D)矢印で示すようにスタンバイ位置へと復帰させる
動作が行われる。負極材供給ガイド機構55は、駆動ユ
ニットUTが動作されることによってスタンバイ位置へ
と復帰する。
In the polymer secondary battery manufacturing apparatus 20,
The operation of the negative electrode material gripper member 68 of the negative electrode material supply mechanism 55 is performed. The negative electrode material gripper member 68 moves in a direction away from the guide roller 67 as shown by an arrow in FIG. 6C in a state where the negative electrode material 4 is held by the core member 47 and the winding roller 58. Polymer secondary battery manufacturing equipment 20
Then, an operation of returning the negative electrode material gripper member 68 to the standby position is performed as shown by the arrow (D) in FIG. The negative electrode material supply guide mechanism 55 returns to the standby position when the drive unit UT is operated.

【0072】ポリマ二次電池製造装置20においては、
コア材カッタ機構52が駆動されて図7に示すようにカ
ッタ64によりコア材2のカッティング動作が行われ
る。コア材2は、コア材カッタ機構52によってその長
さが負極材4の負極活物質未塗布部13の長さの範囲に
おいてカッティングされる。
In the apparatus 20 for producing a polymer secondary battery,
The core material cutter mechanism 52 is driven, and the cutting operation of the core material 2 is performed by the cutter 64 as shown in FIG. The core material 2 is cut by the core material cutter mechanism 52 so that its length is within the range of the length of the negative electrode active material-uncoated portion 13 of the negative electrode material 4.

【0073】ポリマ二次電池製造装置20においては、
巻取り軸46が駆動されることによって巻芯部材47が
図8矢印で示すように反時計方向へと回転する。巻芯部
材47には、その外周部にコア材2と負極材4とが重な
り合った状態で巻回される。巻芯部材47には、上述し
たようにその外周部にコア材2が先に巻回された状態に
あることから負極材4が直接接触することはなく、この
負極材4がコア材2の外周部に巻回されることになる。
したがって、ポリマ二次電池製造装置20においては、
巻芯部材47に対する負極材4の負極電解質12の付着
が抑制される。
In the apparatus 20 for producing a polymer secondary battery,
When the winding shaft 46 is driven, the core member 47 rotates counterclockwise as indicated by the arrow in FIG. The core member 2 and the negative electrode material 4 are wound around the core member 47 in a state where the core member 2 and the negative electrode material 4 overlap each other. As described above, since the core material 2 is wound on the outer peripheral portion of the core member 47 first, the negative electrode material 4 does not come into direct contact with the core material 47. It will be wound around the outer periphery.
Therefore, in the polymer secondary battery manufacturing apparatus 20,
Adhesion of the negative electrode electrolyte 12 of the negative electrode material 4 to the core member 47 is suppressed.

【0074】ポリマ二次電池製造装置20においては、
次工程で、図9に示すように正極材3の送出し動作と巻
芯部材47に対する巻込み動作とが行われる。ポリマ二
次電池製造装置20においては、同図(A)に示すよう
に駆動ユニットUTの動作によって正極材供給ガイド機
構53を巻芯部材47の上方に位置させるとともに巻込
みローラ機構48の動作によって巻込みローラ58を巻
芯部材47から離間させる動作が行われる。また、ポリ
マ二次電池製造装置20においては、正極材供給ガイド
機構53が動作することにより正極材グリッパ部材66
がガイドローラ65との間で正極材3を挟持した状態の
まま同図矢印で示すように巻芯部材47側へと下降する
動作が行われる。正極材3は、この正極材グリッパ部材
66の動作によって巻回始端部3aが巻芯部材47の外
周部まで送り出される。
In the polymer secondary battery manufacturing apparatus 20,
In the next step, the feeding operation of the positive electrode material 3 and the winding operation of the core member 47 are performed as shown in FIG. In the polymer secondary battery manufacturing apparatus 20, the operation of the drive unit UT positions the positive electrode material supply guide mechanism 53 above the core member 47 and the operation of the winding roller mechanism 48 as shown in FIG. An operation of separating the winding roller 58 from the core member 47 is performed. Further, in the polymer secondary battery manufacturing apparatus 20, the positive electrode material gripper member 66 is operated by operating the positive electrode material supply guide mechanism 53.
As shown by the arrow in the figure, an operation of lowering the positive electrode material 3 with the guide roller 65 while holding the positive electrode material 3 therebetween is performed. The positive-electrode material 3 is fed by the operation of the positive-electrode material gripper member 66 so that the winding start end 3 a is sent out to the outer peripheral portion of the core member 47.

【0075】ポリマ二次電池製造装置20においては、
同図(B)に示すように巻芯部材47の巻芯角度合わせ
が行われる。巻芯部材47は、巻取り軸46の調整動作
によって矢印で示すように調整回動されて正極材3に対
して平行な状態とされる。
In the polymer secondary battery manufacturing apparatus 20,
The core angle of the core member 47 is adjusted as shown in FIG. The winding core member 47 is adjusted and rotated as indicated by the arrow by the adjusting operation of the winding shaft 46, and is brought into a state parallel to the positive electrode material 3.

【0076】ポリマ二次電池製造装置20においては、
次に巻込みローラ機構48とニップルローラ機構49と
がそれぞれ動作されることによって、同図(C)矢印で
示すように巻込みローラ58とニップルローラ60とが
それぞれ巻芯部材47の外周部に当接する動作が行われ
る。巻込みローラ58は、この状態において正極材3の
巻回始端部3aを巻芯部材47の外周部に押し付けて保
持する。ポリマ二次電池製造装置20においては、正極
材3が巻芯部材47と巻込みローラ58とによって保持
された状態で、図9(D)矢印で示すように正極材グリ
ッパ部材66をガイドローラ65から離間する方向に移
動させる動作が行われる。
In the polymer secondary battery manufacturing apparatus 20,
Next, the winding roller mechanism 48 and the nipple roller mechanism 49 are operated, respectively, so that the winding roller 58 and the nipple roller 60 are respectively disposed on the outer peripheral portion of the core member 47 as shown by arrows in FIG. An abutting operation is performed. In this state, the winding roller 58 presses and holds the winding start end 3 a of the positive electrode material 3 against the outer peripheral portion of the core member 47. In the polymer secondary battery manufacturing apparatus 20, with the positive electrode material 3 held by the core member 47 and the winding roller 58, the positive electrode material gripper member 66 is moved by the guide roller 65 as shown by the arrow in FIG. Is performed in a direction away from the camera.

【0077】ポリマ二次電池製造装置20においては、
上述した正極材3の送出し動作とともに、図10に示す
ように駆動ユニットUTが動作して巻芯部材47を正極
材供給ガイド機構53と負極材供給ガイド機構55との
中立位置に位置させる動作が行われる。巻芯部材47
は、この状態で同図矢印で示すように反時計方向へと回
転され、その外周部に正極材3及び負極材4を互いに重
ね合わせた状態で順次巻取り動作を行う。勿論、正極材
3及び負極材4は、巻芯部材47の外周部に最初に巻回
されたコア材2の外周部に巻回される。
In the polymer secondary battery manufacturing apparatus 20,
As shown in FIG. 10, the drive unit UT operates to move the winding core member 47 to the neutral position between the positive electrode material supply guide mechanism 53 and the negative electrode material supply guide mechanism 55 together with the above-described operation of feeding the positive electrode material 3. Is performed. Core member 47
Is rotated counterclockwise in this state, as indicated by the arrow in the figure, and the winding operation is sequentially performed in a state where the positive electrode material 3 and the negative electrode material 4 are superimposed on each other on the outer periphery thereof. Of course, the positive electrode material 3 and the negative electrode material 4 are wound around the outer periphery of the core material 2 which is first wound around the outer periphery of the core member 47.

【0078】ポリマ二次電池製造装置20においては、
正極材3及び負極材4の所定量の巻き取りを行うと、図
11に示す正極材3のカッテイング動作の準備工程が行
われる。ポリマ二次電池製造装置20においては、駆動
ユニットUTが動作して正極材供給ガイド機構53を巻
芯部材47に対応位置させるとともに、この正極材供給
ガイド機構53によって正極材グリッパ部材66とガイ
ドローラ65とを上下方向に調整移動して位置決めする
動作を行う。正極材グリッパ部材66は、同図(A)に
示すようにガイドローラ65に対して接合することによ
って正極材3を挟み込んで固定する。また、ポリマ二次
電池製造装置20においては、この状態で正極材カッタ
機構54が正極材3の走行路中に進入させる動作が行わ
れる。
In the polymer secondary battery manufacturing apparatus 20,
When a predetermined amount of the positive electrode material 3 and the negative electrode material 4 have been wound, a preparation process for a cutting operation of the positive electrode material 3 shown in FIG. 11 is performed. In the polymer secondary battery manufacturing apparatus 20, the driving unit UT operates to position the positive electrode material supply guide mechanism 53 corresponding to the core member 47, and the positive electrode material supply guide mechanism 53 causes the positive electrode material gripper member 66 and the guide roller to move. The positioning operation is performed by adjusting the position of the lens 65 in the vertical direction. The positive electrode material gripper member 66 is fixed to the positive electrode material 3 by being joined to the guide roller 65 as shown in FIG. Further, in the polymer secondary battery manufacturing apparatus 20, in this state, an operation is performed in which the positive electrode material cutter mechanism 54 enters the positive electrode material 3 into the traveling path.

【0079】ポリマ二次電池製造装置20においては、
上述した一連の動作によって正極材3のカッティング位
置が規定され、図11(B)に示すように正極材カッタ
機構54が動作して正極材3のカッティングが行われ
る。正極材3は、正極活物質未塗布部8の範囲において
カッティングされ、この部位が次ぎの巻回始端部3aと
して構成される。ポリマ二次電池製造装置20において
は、正極材3のカッティングにおいて巻回始端部3aに
生じるカッティングバリによる内部ショートの発生を、
上述したようにコア材2によって巻回始端部3aを被覆
することで抑制する。正極材3は、巻芯部材47の外周
部に当接した巻込みローラ58とニップルローラ60と
によって巻芯部材47に対する巻回状態が保持される。
In the apparatus 20 for manufacturing a polymer secondary battery,
The cutting position of the positive electrode material 3 is defined by the series of operations described above, and the positive electrode material cutting mechanism 54 operates to cut the positive electrode material 3 as shown in FIG. 11B. The positive electrode material 3 is cut in the range of the positive electrode active material non-applied portion 8, and this portion is configured as the next winding start end 3a. In the polymer secondary battery manufacturing apparatus 20, the occurrence of an internal short circuit due to the cutting burr generated at the winding start end 3a in the cutting of the positive electrode material 3
As described above, the winding start end 3a is covered with the core material 2 to suppress the winding. The wound state of the positive electrode material 3 with respect to the core member 47 is maintained by the winding roller 58 and the nipple roller 60 which are in contact with the outer peripheral portion of the core member 47.

【0080】ポリマ二次電池製造装置20においては、
上述した正極材3のカッティング動作が終了すると、図
12矢印で示すようにガイドローラ65と正極材グリッ
パ部材66とが正極材3を保持した状態のままスタンバ
イ位置へと復帰する動作が行われる。ポリマ二次電池製
造装置20においては、同図矢印で示すように正極材3
の走行路から正極材カッタ機構54を退避させる動作が
行われる。
In the apparatus 20 for producing a polymer secondary battery,
When the above-described cutting operation of the positive electrode material 3 is completed, an operation of returning to the standby position with the guide roller 65 and the positive electrode material gripper member 66 holding the positive electrode material 3 is performed as shown by an arrow in FIG. In the polymer secondary battery manufacturing apparatus 20, as shown by arrows in FIG.
The operation of retracting the positive electrode material cutter mechanism 54 from the travel path of the above is performed.

【0081】ポリマ二次電池製造装置20においては、
次に負極材4のカッティング工程が行われる。ポリマ二
次電池製造装置20においては、駆動ユニットUTが動
作して負極供給ガイド機構55が巻芯部材47に対応位
置されるとともに、負極供給ガイド機構55と負極材カ
ッタ機構56の動作が行われる。負極供給ガイド機構5
5は、図13(A)矢印で示すように負極材グリッパ部
材68をガイドローラ67に接合させて負極材3を保持
する。負極供給ガイド機構55は、この場合上下方向へ
と調整移動して位置決めされる。負極材カッタ機構56
は、負極材4の走行路中に進入する。
In the apparatus 20 for producing a polymer secondary battery,
Next, a cutting step of the negative electrode material 4 is performed. In the polymer secondary battery manufacturing apparatus 20, the drive unit UT operates to position the negative electrode supply guide mechanism 55 corresponding to the core member 47, and the operations of the negative electrode supply guide mechanism 55 and the negative electrode material cutter mechanism 56 are performed. . Negative electrode supply guide mechanism 5
5 holds the negative electrode material 3 by joining the negative electrode material gripper member 68 to the guide roller 67 as indicated by the arrow in FIG. In this case, the negative electrode supply guide mechanism 55 is adjusted and moved vertically to be positioned. Negative electrode cutter mechanism 56
Enters the traveling path of the negative electrode material 4.

【0082】ポリマ二次電池製造装置20においては、
上述した一連の動作によって負極材4のカッティング位
置が規定され、図13(B)に示すように負極材カッタ
機構56が動作して負極材4のカッティングが行われ
る。負極材4は、負極活物質未塗布部13の範囲におい
てカッティングされ、この部位が次ぎの巻回始端部4a
として構成される。ポリマ二次電池製造装置20におい
ては、負極材4のカッティングにおいて次の巻回始端部
4aに生じるカッティングバリによる内部ショートの発
生を、上述したようにコア材2によって巻回始端部4a
を被覆することで抑制する。負極材3は、巻芯部材47
の外周部に当接した巻込みローラ58とニップルローラ
60とによってその巻回状態が保持される。
In the apparatus 20 for manufacturing a polymer secondary battery,
The cutting position of the negative electrode material 4 is defined by the series of operations described above, and the negative electrode material cutting mechanism 56 operates to cut the negative electrode material 4 as shown in FIG. 13B. The negative electrode material 4 is cut in the range of the negative electrode active material non-applied portion 13, and this portion is the next winding start end 4 a
Is configured as In the polymer secondary battery manufacturing apparatus 20, the occurrence of an internal short due to the cutting burr generated at the next winding start end 4 a in the cutting of the negative electrode material 4 is reduced by the core material 2 as described above.
By coating. The negative electrode material 3 includes a core member 47.
The winding state is maintained by the winding roller 58 and the nipple roller 60 abutting on the outer peripheral portion of the roller.

【0083】ポリマ二次電池製造装置20においては、
巻芯部材47が回転して上述した工程によってカッティ
ングされた正極材3と負極材4の先端部が巻き取られる
ことによって所定量の正極材3と負極材4とを重ね合わ
せ状態で巻回してなるポリマ二次電池1が製造される。
ポリマ二次電池製造装置20においては、負極材4の走
行路からの負極材カッタ機構56の退避動作が行われ
る。ポリマ二次電池製造装置20においては、図14矢
印で示すように負極供給ガイド機構55がスタンバイ位
置へと復帰する。
In the polymer secondary battery manufacturing apparatus 20,
A predetermined amount of the positive electrode material 3 and a predetermined amount of the negative electrode material 4 are wound in a superposed state by rotating the core member 47 and winding the leading ends of the positive electrode material 3 and the negative electrode material 4 cut by the above-described process. The polymer secondary battery 1 is manufactured.
In the polymer secondary battery manufacturing apparatus 20, the retreat operation of the negative electrode material cutter mechanism 56 from the traveling path of the negative electrode material 4 is performed. In the polymer secondary battery manufacturing apparatus 20, the negative electrode supply guide mechanism 55 returns to the standby position as shown by the arrow in FIG.

【0084】ポリマ二次電池製造装置20においては、
以上の工程を経た後、巻込みローラ機構48とニップル
ローラ機構49とが動作して、図15に示すように巻芯
部材47から巻込みローラ58とニップルローラ60と
が離間する動作が行われる。ポリマ二次電池製造装置2
0においては、巻芯部材47から製造されたポリマ二次
電池1の取り出しが行われる。ポリマ二次電池製造装置
20においては、上述したように正極材3と負極材4と
を巻芯部材47の外周部にコア材2を介して巻回するこ
とで粘度の高い電解質7、12が巻芯部材47に付着さ
れないようにしている。したがって、ポリマ二次電池1
は、巻芯部材47から取り出される際に内周部にダメー
ジが発生することが抑制される。
In the apparatus 20 for manufacturing a polymer secondary battery,
After the above steps, the winding roller mechanism 48 and the nipple roller mechanism 49 operate to perform the operation of separating the winding roller 58 and the nipple roller 60 from the core member 47 as shown in FIG. . Polymer secondary battery manufacturing equipment 2
At 0, the polymer secondary battery 1 manufactured from the core member 47 is taken out. In the polymer secondary battery manufacturing apparatus 20, the high-viscosity electrolytes 7, 12 are formed by winding the positive electrode material 3 and the negative electrode material 4 around the outer periphery of the core member 47 via the core material 2 as described above. It is prevented from being attached to the core member 47. Therefore, the polymer secondary battery 1
Thus, it is possible to prevent the inner peripheral portion from being damaged when being taken out from the core member 47.

【0085】なお、本発明は、上述したポリマ二次電池
製造装置20及びポリマ二次電池1の製造工程に限定さ
れるものではないことは勿論である。
The present invention is, of course, not limited to the polymer secondary battery manufacturing apparatus 20 and the manufacturing steps of the polymer secondary battery 1 described above.

【0086】[0086]

【発明の効果】以上詳細に説明したように、本発明にか
かるリチウムイオンポリマ二次電池によれば、負極材と
正極材とがコア材を巻芯として重ね合せ状態で巻回され
て構成されることから、巻取り軸にゲル状電解質が付着
することは無く、製造装置から取り出す際にこの付着ゲ
ル状電解質による内周部位のダメージの発生が抑制され
るとともに製造装置の耐久性を向上させるようになる。
また、リチウムイオンポリマ二次電池によれば、極活物
質を塗布した部位と未塗布部位との間に介在するコア材
によって、負極材や正極材の始端部位に発生する極活物
質のミックス飛びや電極端子のスリットバリに起因する
内部ショートの発生が抑制されることで、信頼性の向上
が図られる。
As described above in detail, according to the lithium ion polymer secondary battery of the present invention, the negative electrode material and the positive electrode material are wound by being wound with the core material as the core. Therefore, the gel electrolyte does not adhere to the winding shaft, and when the gel electrolyte is taken out of the manufacturing apparatus, damage to the inner peripheral portion due to the adhered gel electrolyte is suppressed, and the durability of the manufacturing apparatus is improved. Become like
In addition, according to the lithium ion polymer secondary battery, the core material interposed between the part where the polar active material is applied and the part where the polar active material is not applied causes the mixture of the polar active material generated at the starting end of the negative electrode material and the positive electrode material to jump. In addition, the occurrence of internal short-circuits due to the electrode and the slit burrs of the electrode terminals is suppressed, thereby improving the reliability.

【0087】また、本発明にかかるリチウムイオンポリ
マ二次電池の製造装置及び製造方法によれば、負極材と
正極材とがコア材を巻芯として重ね合せ状態で巻回され
て構成されたリチウムイオンポリマ二次電池を製造する
ことから、巻取り軸に負極材或いは正極材が直接巻回さ
れないためにゲル状電解質が付着することは無く、電極
材の巻回操作終了後に巻取り軸からリチウムイオンポリ
マ二次電池を取り外す際にゲル状電解質の粘着力によっ
て内周部にダメージを発生させず、またゲル状電解質に
よる巻取り軸等の腐蝕も抑制して耐久性の向上が図られ
る。リチウムイオンポリマ二次電池の製造装置及び製造
方法によれば、負極材及び正極材それぞれの極活物質を
塗布した部位と未塗布部位との間にコア材が介在させ、
このコア材の外周部に正極材と負極材とを重ね合わせ状
態で巻回することから、負極材や正極材の始端部位に発
生する極活物質のミックス飛びや電極端子のスリットバ
リ或いは負極材や正極材の切断の際のバリ等に起因する
内部ショートの発生を抑制した高精度で信頼性の高いリ
チウムイオンポリマ二次電池を効率よく製造する。
Further, according to the manufacturing apparatus and the manufacturing method of the lithium ion polymer secondary battery according to the present invention, the negative electrode material and the positive electrode material are wound around the core material in a superposed state and wound. Since the ion-polymer secondary battery is manufactured, the negative electrode material or the positive electrode material is not directly wound on the winding shaft, so that the gel electrolyte does not adhere to the winding material. When the ion polymer secondary battery is removed, the inner peripheral portion is not damaged by the adhesive force of the gel electrolyte, and corrosion of the winding shaft and the like due to the gel electrolyte is suppressed, thereby improving durability. According to the manufacturing apparatus and the manufacturing method of the lithium ion polymer secondary battery, the core material is interposed between the portion where the polar active material of each of the negative electrode material and the positive electrode material is applied and the uncoated portion,
Since the positive electrode material and the negative electrode material are wound around the outer periphery of the core material in a superimposed state, a mix jump of the positive electrode active material generated at the beginning of the negative electrode material or the positive electrode material, a slit burr of the electrode terminal, or the negative electrode material And efficient production of a highly accurate and highly reliable lithium ion polymer secondary battery that suppresses the occurrence of internal short-circuits due to burrs and the like when cutting the positive electrode material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態として示すリチウムイオン
ポリマ二次電池の概略構成を説明する模式図である。
FIG. 1 is a schematic diagram illustrating a schematic configuration of a lithium ion polymer secondary battery shown as an embodiment of the present invention.

【図2】同リチウムイオンポリマ二次電池の製造装置を
説明する概要図である。
FIG. 2 is a schematic diagram illustrating an apparatus for manufacturing the lithium ion polymer secondary battery.

【図3】同製造装置の巻取り部の構成説明図である。FIG. 3 is an explanatory diagram of a configuration of a winding section of the manufacturing apparatus.

【図4】同製造装置によるリチウムイオンポリマ二次電
池の製造工程を説明する巻取り部の概要図であり、スタ
ンバイ状態を示す。
FIG. 4 is a schematic view of a winding section illustrating a manufacturing process of a lithium ion polymer secondary battery by the manufacturing apparatus, and shows a standby state.

【図5】同巻取り部の概要図であり、負極材の送出し動
作工程を示す。
FIG. 5 is a schematic view of the winding section, showing a negative electrode material sending operation step.

【図6】同巻取り部の概要図であり、負極材の巻込み動
作工程を示す。
FIG. 6 is a schematic view of the winding section, showing a winding operation process of a negative electrode material.

【図7】同巻取り部の概要図であり、コア材のカッティ
ング工程を示す。
FIG. 7 is a schematic view of the winding section, showing a core material cutting step.

【図8】同巻取り部の概要図であり、負極材の巻込み動
作工程を示す。
FIG. 8 is a schematic view of the winding section, showing a winding operation process of a negative electrode material.

【図9】同巻取り部の概要図であり、正極材の送出し動
作から巻込み動作工程を示す。
FIG. 9 is a schematic diagram of the winding unit, showing a winding operation process from a positive electrode material feeding operation.

【図10】同巻取り部の概要図であり、負極材と正極材
との巻取り動作工程を示す。
FIG. 10 is a schematic diagram of the winding section, showing a winding operation process of a negative electrode material and a positive electrode material.

【図11】同巻取り部の概要図であり、正極材のカッテ
ィング工程を示す。
FIG. 11 is a schematic view of the winding section, showing a cutting step of the positive electrode material.

【図12】同巻取り部の概要図であり、正極材カッティ
ング機構の復帰工程を示す。
FIG. 12 is a schematic view of the winding section, showing a return process of a positive electrode material cutting mechanism.

【図13】同巻取り部の概要図であり、負極材のカッテ
ィング工程を示す。
FIG. 13 is a schematic view of the winding section, showing a cutting step of the negative electrode material.

【図14】同巻取り部の概要図であり、スタンバイ位置
復帰工程を示す。
FIG. 14 is a schematic view of the winding section, showing a standby position return step.

【図15】同巻取り部の概要図であり、リチウムイオン
ポリマ二次電池の取出し工程を示す。
FIG. 15 is a schematic view of the winding section, showing a step of taking out a lithium ion polymer secondary battery.

【図16】スタック型ポリマ二次電池の構成説明図であ
り、同図(A)は単セルを示し、同図(B)は全体図を
示す。
FIGS. 16A and 16B are explanatory diagrams of a configuration of a stack type polymer secondary battery. FIG. 16A shows a single cell, and FIG. 16B shows an overall view.

【図17】セパレータ型ポリマ二次電池の構成説明図で
ある。
FIG. 17 is a diagram illustrating the configuration of a separator-type polymer secondary battery.

【図18】コアレス型ポリマ二次電池の構成説明図であ
る。
FIG. 18 is an explanatory diagram of a configuration of a coreless polymer secondary battery.

【符号の説明】[Explanation of symbols]

1 ポリマ二次電池(リチウムイオン二次電池)、2
コア材、3 正極材、3a 巻回始端部、4 負極材、
5 正極集電体、6 正極活物質、7 正極電解質、8
正極活物質未塗布部、9 正極端子部材、10 負極
集電体、11負極活物質、12 負極電解質、13 負
極活物質未塗布部、14 負極端子部材、20 ポリマ
二次電池製造装置、22 コア材供給部、23 正極材
供給部、24 負極材供給部、25 巻取り部、27
コア材供給ロール、31 正極材供給ロール、39 負
極材供給ロール、46 巻取り軸、47 巻芯部材、4
8 巻込みローラ機構、49 ニップルローラ機構、5
1 コア材供給ガイド機構、52 コア材カッタ機構、
53 正極材供給ガイド機構、54 正極材カッタ機
構、55 負極材供給ガイド機構、56 負極材カッタ
機構、58 巻込みローラ、60 ニップルローラ、6
6 正極材グリッパ部材、68 負極材グリッパ部材
1 polymer secondary battery (lithium ion secondary battery), 2
Core material, 3 positive electrode material, 3a winding start end, 4 negative electrode material,
5 positive electrode current collector, 6 positive electrode active material, 7 positive electrode electrolyte, 8
Positive electrode active material uncoated portion, 9 positive electrode terminal member, 10 negative electrode current collector, 11 negative electrode active material, 12 negative electrode electrolyte, 13 negative electrode active material non-coated portion, 14 negative electrode terminal member, 20 polymer secondary battery manufacturing apparatus, 22 cores Material supply section, 23 positive electrode material supply section, 24 negative electrode material supply section, 25 winding section, 27
Core material supply roll, 31 positive electrode material supply roll, 39 negative electrode material supply roll, 46 take-up shaft, 47 core member, 4
8 Roll-in roller mechanism, 49 nipple roller mechanism, 5
1 core material supply guide mechanism, 52 core material cutter mechanism,
53 cathode material supply guide mechanism, 54 cathode material cutter mechanism, 55 anode material supply guide mechanism, 56 anode material cutter mechanism, 58 winding roller, 60 nipple roller, 6
6 Positive electrode material gripper member, 68 Negative electrode material gripper member

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西口 昌男 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 Fターム(参考) 5H014 AA04 AA06 BB00 BB04 BB17 CC07 5H028 AA01 BB17 BB19 CC08 CC13 5H029 AJ14 AK03 AL06 AM00 AM03 AM07 AM16 BJ02 BJ14 CJ01 CJ07 CJ28 CJ30 DJ07 EJ12 HJ12  ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Masao Nishiguchi 6-35 Kita-Shinagawa, Shinagawa-ku, Tokyo Sony Corporation F-term (reference) 5H014 AA04 AA06 BB00 BB04 BB17 CC07 5H028 AA01 BB17 BB19 CC08 CC13 5H029 AJ14 AK03 AL06 AM00 AM03 AM07 AM16 BJ02 BJ14 CJ01 CJ07 CJ28 CJ30 DJ07 EJ12 HJ12

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 それぞれ帯状集電体に極活物質とゲル状
電解質とを塗布してなる負極材と正極材とを重ね合せ状
態で巻回してなるポリマ二次電池において、 上記負極材と正極材とは、フイルム状のコア材を巻芯と
してその外周部に重ね合せ状態で巻回されることを特徴
とするリチウムイオンポリマ二次電池。
1. A polymer secondary battery in which a negative electrode material obtained by applying a polar active material and a gel electrolyte to a belt-shaped current collector and a positive electrode material are wound in a superposed state, wherein the negative electrode material and the positive electrode The material is a lithium-ion polymer secondary battery characterized in that a film-shaped core material is used as a core and wound around the outer periphery thereof in a superposed state.
【請求項2】 上記負極材と正極材とは、上記帯状集電
体に上記極活物質を塗布した部位と未塗布部位との間に
上記コア材が介在するようにしてその外周部に重ね合せ
状態で巻回されることを特徴とする請求項1に記載のリ
チウムイオンポリマ二次電池。
2. The negative electrode material and the positive electrode material are superimposed on an outer peripheral portion of the belt-like current collector such that the core material is interposed between a portion where the pole active material is applied to the current collector and an uncoated portion. The lithium-ion polymer secondary battery according to claim 1, wherein the lithium-ion polymer secondary battery is wound in an assembled state.
【請求項3】 上記負極材及び正極材には、上記極活物
質未塗布部位にそれぞれ電極端子が接合されるととも
に、これら電極端子と上記極活物質塗布部位との間に上
記コア材が介在するようにしてその外周部に重ね合せ状
態で巻回されることを特徴とする請求項2に記載のリチ
ウムイオンポリマ二次電池。
3. The negative electrode material and the positive electrode material each have an electrode terminal joined to the part where the pole active material is not applied, and the core material is interposed between the electrode terminal and the part where the pole active material is applied. 3. The lithium ion polymer secondary battery according to claim 2, wherein the secondary battery is wound around the outer periphery of the lithium ion polymer battery in an overlapping manner.
【請求項4】 上記コア材は、その長さが上記負極材及
び正極材の上記極活物質未塗布部位の長さよりも短いこ
とを特徴とする請求項2に記載のリチウムイオンポリマ
二次電池。
4. The lithium ion polymer secondary battery according to claim 2, wherein the length of the core material is shorter than the length of the non-electrode active material-uncoated portion of the negative electrode material and the positive electrode material. .
【請求項5】 帯状の負極集電体に負極活物質とゲル状
電解質とを塗布してなる負極材を供給する負極材供給機
構と、 帯状の正極集電体に正極活物質とゲル状電解質とを塗布
してなる正極材を供給する正極材供給機構と、 フイルム材からなるコア材を供給するコア供給機構と、 巻取り軸を有し、この巻取り軸の外周部に上記コア供給
機構から供給された上記コア材と、上記負極材供給機構
から供給された上記負極材と、上記正極材供給機構から
供給された上記正極材とを重ね合せ状態で巻回する電極
材巻取機構とを備え、 上記電極材巻取機構は、上記巻取り軸の外周部に所定の
長さにカットした上記コア材を巻回した状態でその外周
部に上記負極材と正極材とを重ね合せ状態で巻回するこ
とを特徴とするリチウムイオンポリマ二次電池の製造装
置。
5. A negative electrode material supply mechanism for supplying a negative electrode material obtained by applying a negative electrode active material and a gel electrolyte to a strip-shaped negative electrode current collector, and a positive electrode active material and a gel electrolyte being applied to a strip-shaped positive electrode current collector A positive-electrode supply mechanism for supplying a positive-electrode material formed by applying a core material; a core-supply mechanism for supplying a core material made of a film material; and a winding shaft. The core material supplied from the, the negative electrode material supplied from the negative electrode material supply mechanism, and an electrode material winding mechanism for winding the positive electrode material supplied from the positive electrode material supply mechanism in a superposed state The electrode material take-up mechanism includes a state in which the core material cut to a predetermined length is wound around the outer periphery of the winding shaft, and the negative electrode material and the positive electrode material are superimposed on the outer periphery thereof. Of a lithium-ion polymer secondary battery characterized by being wound by Apparatus.
【請求項6】 上記コア供給機構には、上記コア材のカ
ット手段が設けられ、先端部が上記電極材巻取機構の巻
取り軸に巻き取られた上記コア材を、上記負極材及び正
極材の上記帯状負極集電体及び正極集電体に上記負極活
物質及び正極活物質が塗布されていない極活物質未塗布
部位よりも短い長さにカットすることを特徴とする請求
項5に記載のリチウムイオンポリマ二次電池の製造装
置。
6. The core supply mechanism is provided with a means for cutting the core material, and the core material having a leading end wound around a winding shaft of the electrode material winding mechanism is used to remove the core material from the negative electrode material and the positive electrode. 6. The method according to claim 5, wherein the strip-shaped negative electrode current collector and the positive electrode current collector of the material are cut to a length shorter than a portion where the negative electrode active material and the positive electrode active material are not applied. The manufacturing apparatus of the lithium ion polymer secondary battery according to the above.
【請求項7】 上記電極材巻取機構は、上記負極材及び
正極材とを上記コア材の外周部に対して、上記極活物質
未塗布部位と極活物質塗布部位との間に上記コア材が介
在するようにして重ね合せ状態で巻回することを特徴と
する請求項6に記載のリチウムイオンポリマ二次電池の
製造装置。
7. The electrode material take-up mechanism, wherein the negative electrode material and the positive electrode material are disposed between the non-polar active material-coated portion and the polar active material-coated portion with respect to an outer peripheral portion of the core material. The apparatus for manufacturing a lithium-ion polymer secondary battery according to claim 6, wherein the material is wound in a superposed state with a material interposed therebetween.
【請求項8】 上記電極材巻取機構は、上記負極材及び
正極材とを上記コア材の外周部に対して、上記極活物質
未塗布部位にそれぞれ接合された電極端子と上記極活物
質塗布部位との間に上記コア材が介在するようにして重
ね合せ状態で巻回することを特徴とする請求項6に記載
のリチウムイオンポリマ二次電池の製造装置。
8. The electrode material winding mechanism comprises: an electrode terminal in which the negative electrode material and the positive electrode material are bonded to an outer peripheral portion of the core material at a portion where the polar active material is not applied; The apparatus for manufacturing a lithium ion polymer secondary battery according to claim 6, wherein the core material is wound in an overlapped state so as to be interposed between the core and the application site.
【請求項9】 巻取り軸を有する電極材巻取装置が用い
られ、 上記電極材巻取装置に、帯状の負極集電体に負極活物質
とゲル状電解質とを塗布してなる負極材と、帯状の正極
集電体に正極活物質とゲル状電解質とを塗布してなる正
極材と、フイルム状のコア材とを供給し、 上記巻取り軸の外周部に、所定の長さにカットした上記
コア材を巻回するとともに、このコア材の外周部に上記
負極材と正極材とを重ね合せ状態で巻回することを特徴
とするリチウムイオンポリマ二次電池の製造方法。
9. An electrode material winding device having a winding shaft, wherein the electrode material winding device is provided with a negative electrode material obtained by applying a negative electrode active material and a gel electrolyte to a strip-shaped negative electrode current collector. A positive electrode material obtained by applying a positive electrode active material and a gel electrolyte to a belt-shaped positive electrode current collector and a film-shaped core material are supplied, and cut to a predetermined length on the outer peripheral portion of the winding shaft. A method for manufacturing a lithium-ion polymer secondary battery, comprising: winding the above-mentioned core material, and winding the above-mentioned negative electrode material and positive electrode material in an overlapped state around the outer periphery of the core material.
【請求項10】 上記コア材は、先端部を上記電極材巻
取装置の巻取り軸に巻回された状態で、上記負極材及び
正極材の上記帯状負極集電体及び正極集電体に上記負極
活物質及び正極活物質が塗布されていない極活物質未塗
布部位よりも短い長さにカットされることを特徴とする
請求項9に記載のリチウムイオンポリマ二次電池の製造
装置。
10. The core material is wound on a winding shaft of the electrode material winding device, and the core material is wound on the strip-shaped negative electrode current collector and the positive electrode current collector of the negative electrode material and the positive electrode material. The apparatus for manufacturing a lithium ion polymer secondary battery according to claim 9, wherein the length of the lithium ion polymer secondary battery is cut shorter than a portion where the negative electrode active material and the positive electrode active material are not applied.
【請求項11】 上記負極材及び正極材は、上記極活物
質未塗布部位と極活物質塗布部位との間に上記コア材が
介在するようにしてその外周部に重ね合せ状態で巻回さ
れることを特徴とする請求項10に記載のリチウムイオ
ンポリマ二次電池の製造方法。
11. The negative electrode material and the positive electrode material are wound around the outer periphery thereof in a state of being overlapped with each other so that the core material is interposed between the pole active material-uncoated portion and the pole active material-coated portion. The method for producing a lithium ion polymer secondary battery according to claim 10, wherein:
【請求項12】 上記負極材及び正極材は、上記極活物
質未塗布部位にそれぞれ接合された電極端子と上記極活
物質塗布部位との間に上記コア材が介在するようにして
その外周部に重ね合せ状態で巻回されることを特徴とす
る請求項10に記載のリチウムイオンポリマ二次電池の
製造方法。
12. The outer periphery of the negative electrode material and the positive electrode material such that the core material is interposed between the electrode terminal bonded to the non-polar active material-uncoated portion and the polar active material-coated portion, respectively. The method for producing a lithium ion polymer secondary battery according to claim 10, wherein the secondary battery is wound in a superposed state.
JP31147498A 1998-10-30 1998-10-30 Lithium ion polymer secondary battery, manufacturing apparatus and manufacturing method thereof Expired - Fee Related JP4714952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31147498A JP4714952B2 (en) 1998-10-30 1998-10-30 Lithium ion polymer secondary battery, manufacturing apparatus and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31147498A JP4714952B2 (en) 1998-10-30 1998-10-30 Lithium ion polymer secondary battery, manufacturing apparatus and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000138076A true JP2000138076A (en) 2000-05-16
JP4714952B2 JP4714952B2 (en) 2011-07-06

Family

ID=18017665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31147498A Expired - Fee Related JP4714952B2 (en) 1998-10-30 1998-10-30 Lithium ion polymer secondary battery, manufacturing apparatus and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4714952B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010287517A (en) * 2009-06-15 2010-12-24 Gs Yuasa Corp Manufacturing method of battery and its power generation element
WO2014207883A1 (en) * 2013-06-28 2014-12-31 日立オートモティブシステムズ株式会社 Flat-winding type secondary battery
JP2015185335A (en) * 2014-03-24 2015-10-22 Ckd株式会社 Winding device
US9577239B2 (en) 2009-11-27 2017-02-21 Samsung Sdi Co., Ltd. Secondary battery having an electrode assembly
JP2017195207A (en) * 2012-09-12 2017-10-26 Necエナジーデバイス株式会社 Method of manufacturing electrode roll body
JP2019169353A (en) * 2018-03-23 2019-10-03 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2020035701A (en) * 2018-08-31 2020-03-05 株式会社皆藤製作所 Electrode material winding device without separator

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51121727U (en) * 1975-03-26 1976-10-02
JPH0582122A (en) * 1991-09-20 1993-04-02 Asahi Chem Ind Co Ltd Battery coil winding device
JPH05283069A (en) * 1992-03-30 1993-10-29 Shin Kobe Electric Mach Co Ltd Spiral electrode
JPH07240208A (en) * 1993-11-16 1995-09-12 Bollore Technol Preparation of electrochemical multilayer assembly
JPH07240207A (en) * 1994-02-25 1995-09-12 Kaitou Seisakusho:Kk Winding device for battery element
JPH07320770A (en) * 1994-05-25 1995-12-08 Sanyo Electric Co Ltd Battery with spiral electrode body
JPH09510825A (en) * 1994-08-29 1997-10-28 ベル コミュニケーションズ リサーチ,インコーポレイテッド Rechargeable battery structure and manufacturing method thereof
JPH09293537A (en) * 1996-04-25 1997-11-11 Seiko Instr Kk Nonaqueous electrolyte secondary battery and manufacture thereof
JPH10241737A (en) * 1997-02-26 1998-09-11 Fuji Film Selltec Kk Nonaqueous secondary battery with group of rolled electrodes and manufacture thereof
JPH10270070A (en) * 1997-03-27 1998-10-09 Fuji Film Selltec Kk Wound electrode group and battery using it
JP2000067907A (en) * 1998-08-21 2000-03-03 Mitsubishi Electric Corp Electrode structure and battery using it

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51121727U (en) * 1975-03-26 1976-10-02
JPH0582122A (en) * 1991-09-20 1993-04-02 Asahi Chem Ind Co Ltd Battery coil winding device
JPH05283069A (en) * 1992-03-30 1993-10-29 Shin Kobe Electric Mach Co Ltd Spiral electrode
JPH07240208A (en) * 1993-11-16 1995-09-12 Bollore Technol Preparation of electrochemical multilayer assembly
JPH07240207A (en) * 1994-02-25 1995-09-12 Kaitou Seisakusho:Kk Winding device for battery element
JPH07320770A (en) * 1994-05-25 1995-12-08 Sanyo Electric Co Ltd Battery with spiral electrode body
JPH09510825A (en) * 1994-08-29 1997-10-28 ベル コミュニケーションズ リサーチ,インコーポレイテッド Rechargeable battery structure and manufacturing method thereof
JPH09293537A (en) * 1996-04-25 1997-11-11 Seiko Instr Kk Nonaqueous electrolyte secondary battery and manufacture thereof
JPH10241737A (en) * 1997-02-26 1998-09-11 Fuji Film Selltec Kk Nonaqueous secondary battery with group of rolled electrodes and manufacture thereof
JPH10270070A (en) * 1997-03-27 1998-10-09 Fuji Film Selltec Kk Wound electrode group and battery using it
JP2000067907A (en) * 1998-08-21 2000-03-03 Mitsubishi Electric Corp Electrode structure and battery using it

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010287517A (en) * 2009-06-15 2010-12-24 Gs Yuasa Corp Manufacturing method of battery and its power generation element
US9577239B2 (en) 2009-11-27 2017-02-21 Samsung Sdi Co., Ltd. Secondary battery having an electrode assembly
JP2017195207A (en) * 2012-09-12 2017-10-26 Necエナジーデバイス株式会社 Method of manufacturing electrode roll body
US10424808B2 (en) 2012-09-12 2019-09-24 Envision Aesc Energy Devices, Ltd. Electrode roll and manufacturing method for electrode roll
WO2014207883A1 (en) * 2013-06-28 2014-12-31 日立オートモティブシステムズ株式会社 Flat-winding type secondary battery
JP2015185335A (en) * 2014-03-24 2015-10-22 Ckd株式会社 Winding device
JP2019169353A (en) * 2018-03-23 2019-10-03 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP7109950B2 (en) 2018-03-23 2022-08-01 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP2020035701A (en) * 2018-08-31 2020-03-05 株式会社皆藤製作所 Electrode material winding device without separator
JP7217495B2 (en) 2018-08-31 2023-02-03 株式会社皆藤製作所 Electrode material winding device without separator

Also Published As

Publication number Publication date
JP4714952B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
CN110476275B (en) Prelithiation apparatus, method of producing negative electrode unit, and negative electrode unit
US8067112B2 (en) Stacked lithium secondary battery and its fabrication utilizing a folded configuration
WO2010010717A1 (en) Bipolar cell
JP5772397B2 (en) Battery electrode manufacturing method and battery electrode
WO2015129320A1 (en) Electrode for secondary cell, secondary cell, and method for manufacturing electrode for secondary cell and secondary cell
JP6038813B2 (en) Electrode manufacturing method and non-aqueous electrolyte battery manufacturing method
US20070037049A1 (en) Auxiliary power unit
JP4087343B2 (en) Lithium ion secondary battery and method for charging lithium ion secondary battery
JP4524510B2 (en) Battery manufacturing method and coating apparatus used therefor
US6884270B2 (en) Method of manufacturing a battery including a positive electrode, a negative electrode and an electrolyte layer
JP3403678B2 (en) Method for producing lithium secondary battery and wound electrode body
KR100987848B1 (en) Apparatus and method for winding electrode assembly
CN104285329A (en) Flat wound secondary battery and method for producing same
JP4714952B2 (en) Lithium ion polymer secondary battery, manufacturing apparatus and manufacturing method thereof
JP2003168481A (en) Secondary battery, its manufacturing method, and application equipment
KR20100070008A (en) Electrodes assembly for lithium secondary cell and manufacturing method thereof
WO2013098969A1 (en) Method for producing electrode and method for producing non-aqueous electrolyte battery
JP4609353B2 (en) Charging system
JP3795894B2 (en) Power supply, charging device and charging system
EP4345962A1 (en) Method for manufacturing battery
EP4336614A2 (en) Method of manufacturing battery
US11114701B2 (en) Method of producing an electrode-separator winding, electrode-separator winding and button cell with such a winding
US20240128434A1 (en) Battery electrode and manufacture thereof
JP4609352B2 (en) Power supply
US20230103490A1 (en) Electrode body, power storage element, and power storage module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110314

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees