JP4636920B2 - Battery with spiral electrode - Google Patents

Battery with spiral electrode Download PDF

Info

Publication number
JP4636920B2
JP4636920B2 JP2005095584A JP2005095584A JP4636920B2 JP 4636920 B2 JP4636920 B2 JP 4636920B2 JP 2005095584 A JP2005095584 A JP 2005095584A JP 2005095584 A JP2005095584 A JP 2005095584A JP 4636920 B2 JP4636920 B2 JP 4636920B2
Authority
JP
Japan
Prior art keywords
separator
electrode
battery
electrode plate
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005095584A
Other languages
Japanese (ja)
Other versions
JP2006278143A (en
Inventor
英治 奥谷
卓弥 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005095584A priority Critical patent/JP4636920B2/en
Publication of JP2006278143A publication Critical patent/JP2006278143A/en
Application granted granted Critical
Publication of JP4636920B2 publication Critical patent/JP4636920B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、正極と負極とをセパレータを挟んで渦巻状に巻き、これを両面からプレスして所定の厚さとして外装体に収納している渦巻式電極の電池に関する。   The present invention relates to a battery of a spiral electrode in which a positive electrode and a negative electrode are wound in a spiral shape with a separator interposed between them and pressed from both sides to be housed in an exterior body with a predetermined thickness.

正極と負極とセパレータの積層体を渦巻状に巻き、これをプレスして所定の厚さとする電極体を外装缶に入れた電池は開発されている(特許文献1参照)。
この電池は、渦巻状に巻いた電極体をプレスして所定の厚さに加工した後、プレス状態を開放すると、電極の復元性によって電極体が膨化して厚くなる。さらに、この電極体は、充放電させることでさらに厚くなる。すなわち、この構造の電極体は、プレスされた厚さに保持できず、次第に厚くなる欠点がある。電池が次第に厚くなることは、現実の使用状態で決して好ましいことでない。それは、電池が電気機器のケースを膨らせる等の弊害があるからである。
A battery has been developed in which a laminated body of a positive electrode, a negative electrode, and a separator is wound in a spiral shape and an electrode body having a predetermined thickness is pressed into an outer can (see Patent Document 1).
In this battery, after the electrode body wound in a spiral shape is pressed and processed to a predetermined thickness, when the pressed state is released, the electrode body expands and becomes thick due to the restoring property of the electrode. Furthermore, this electrode body becomes thicker by charging and discharging. That is, the electrode body having this structure has a drawback that it cannot be kept in the pressed thickness and becomes gradually thicker. Increasing battery thickness is never desirable in real-life conditions. This is because the battery has an adverse effect such as expanding the case of the electric device.

以上の弊害を防止するために、電池は、使用状態における形状変化をできるかぎり少なくすることが要求される。渦巻式電極体の形状を保持するために、電極を接着材で接着して積層する技術が開発されている(特許文献2及び3参照)。
特許文献2と3に記載する電極体は、接着材で電極を接着するので、製造工程が複雑になって製造コストが高くなる欠点がある。また、電極の間に接着層を設けるので、電極体の外形が大きくなる欠点もある。
さらに、芯体と活物質層との接着を確実にするために、芯体表面のRa(表面の算術平均粗度)とRz(表面の十点平均粗度)を特定する技術も開発されている(特許文献4参照)。
特開平8−339817号公報 特開2000−77091号公報 特開2001−126769号公報 特開2001−356855号公報
In order to prevent the above adverse effects, the battery is required to minimize the shape change in the usage state. In order to maintain the shape of the spiral electrode body, a technique has been developed in which electrodes are bonded and laminated with an adhesive (see Patent Documents 2 and 3).
The electrode bodies described in Patent Documents 2 and 3 have the drawback that the manufacturing process becomes complicated and the manufacturing cost increases because the electrodes are bonded with an adhesive. In addition, since an adhesive layer is provided between the electrodes, there is a disadvantage that the outer shape of the electrode body becomes large.
Furthermore, in order to ensure the adhesion between the core and the active material layer, a technique for identifying Ra (surface arithmetic average roughness) and Rz (surface ten-point average roughness) of the core surface has also been developed. (See Patent Document 4).
JP-A-8-339817 JP 2000-77091 A JP 2001-126769 A JP 2001-356855 A

芯体表面のRa(表面の算術平均粗度)とRz(表面の十点平均粗度)を特定することは、活物質層と芯体との接着強度を向上することには効果がある。しかしながら、所定の厚さにプレスした渦巻式電極体は、芯体表面のRaとRzを特定して芯体と活物質層との接着強度を向上する技術によっては、電極体のプレス後の膨化を阻止できず、また充放電後に厚くなる欠点も解消できなかった。   Specifying Ra (the arithmetic average roughness of the surface) and Rz (10-point average roughness of the surface) on the surface of the core is effective in improving the adhesive strength between the active material layer and the core. However, the spiral electrode body pressed to a predetermined thickness may be expanded after the electrode body is pressed depending on the technique for improving the adhesive strength between the core body and the active material layer by specifying Ra and Rz on the surface of the core body. In addition, it was not possible to prevent the drawbacks of thickening after charging and discharging.

本発明者は、従来の渦巻式電極体が有する以上の欠点を解決することを目的に種々の試行錯誤を繰り返した結果、極めて簡単な構造で、プレス後における膨化を著しく小さくし、さらに充放電した後に膨れる弊害も確実に阻止することに成功した。したがって、本発明の大切な目的は、簡単な構造としながら、プレス後の変形を著しく少なくできる渦巻式電極の電池を提供することにある。   As a result of repeating various trials and errors for the purpose of solving the above disadvantages of the conventional spiral electrode body, the present inventor has an extremely simple structure, significantly reduces the swelling after pressing, and further charge / discharge. After that, we succeeded in reliably preventing the harmful effects of swelling. Therefore, an important object of the present invention is to provide a battery of a spiral electrode that has a simple structure and can significantly reduce deformation after pressing.

本発明の電池は、前述の目的を達成するために以下の構成を備える。渦巻式電極の電池は、渦巻き状に巻取りした電極体10を加熱状態でプレスして所定の厚さに加工している。この電極体10は、正極板/セパレータ/負極板を均一に対向させる状態で積層し、平面部11ができるようにプレスしている。本発明者は、種々の実験を繰り返した結果、この構造の電池は、連続した充放電反応(サイクル、連続充電)において、極板の活物質部とセパレータの密着性に対して、芯体とセパレータの密着性が劣ることを見いだした。従来は、極板の活物質層とセパレータを確実に密着することで、充放電サイクルによる電極体の膨れを阻止できると考えられていた。ところが、意外にも芯体とセパレータとの密着を向上することで、充放電サイクルによる電極体の膨れを阻止できることを見い出して、本発明を実現した。   The battery of the present invention has the following configuration in order to achieve the above-described object. In the battery of the spiral electrode, the electrode body 10 wound in a spiral shape is pressed in a heated state and processed into a predetermined thickness. The electrode body 10 is laminated so that the positive electrode plate / separator / negative electrode plate are uniformly opposed to each other, and is pressed so that the flat portion 11 is formed. As a result of repeating various experiments, the present inventor has found that the battery of this structure has a core body with respect to the adhesion between the active material portion of the electrode plate and the separator in continuous charge / discharge reactions (cycle, continuous charge). It was found that the separator has poor adhesion. Conventionally, it has been considered that the electrode body can be prevented from swelling due to a charge / discharge cycle by reliably adhering the active material layer of the electrode plate and the separator. However, surprisingly, it was found that the adhesion between the core body and the separator can be improved to prevent the electrode body from swelling due to the charge / discharge cycle, and the present invention has been realized.

とくに、渦巻式電極の電池は、電極体の中心部において、極板の巻き始めに活物質層を積層しない芯体が存在する場合、充放電による電極体の膨れが大きくなる。それは、この構造の電極体を加熱してプレスする場合、電極体の中心部には、熱と圧力の両方が伝達され難く、極板とセパレータを安定して密着することが難しいからである。このため、電池を繰り返し充放電して充放電サイクルが多くなり、あるいは連続して充電すると、芯体とセパレータの密着が無くなり、ここに緩みが生じて、電極体にたわみが発生する。電極体のたわみは、電池の中央部を膨らせるほか、正極と負極の間に距離が生じ、正常な充放電反応を阻害する。この欠点を解決する対策として、渦巻状の電極体のプレス圧力を上げて、芯体とセパレータの密着性を良くする方法が考えられる。しかしながら、この方法によると、セパレータが過圧縮されて空孔率が低下し、これによって電池の負荷特性、低温特性、安全性などの性能が低下する。   In particular, in a battery of a spiral electrode, when a core body in which an active material layer is not stacked is present at the beginning of the electrode plate at the center of the electrode body, swelling of the electrode body due to charge / discharge increases. This is because, when the electrode body having this structure is heated and pressed, both heat and pressure are hardly transmitted to the central portion of the electrode body, and it is difficult to stably adhere the electrode plate and the separator. For this reason, if the battery is repeatedly charged and discharged to increase the charge / discharge cycle or continuously charged, the core body and the separator are not in close contact with each other, loosening occurs, and the electrode body is deflected. The deflection of the electrode body swells the central part of the battery and creates a distance between the positive electrode and the negative electrode, thereby inhibiting normal charge / discharge reaction. As a countermeasure for solving this drawback, a method of increasing the press pressure of the spiral electrode body to improve the adhesion between the core body and the separator can be considered. However, according to this method, the separator is over-compressed and the porosity is lowered, thereby lowering the performance of the battery such as load characteristics, low-temperature characteristics, and safety.

本発明は、この欠点を解消するために、セパレータ3に直接に積層される芯体4のセパレータ積層面17を粗化処理して、表面粗さピッチ(Sm)を50μm以下に粗化処理している。ただし、本明細書において「表面粗さピッチ(Sm)」は、触針先端半径を2μmとする触針式粗さ計を使用し、「JIS B 0601−1994」に準拠して測定する値とする。粗化処理したセパレータ積層面17の表面粗さピッチ(Sm)を50μm以下に特定するのは、50μmよりも大きいと、芯体とセパレータとの密着度が低下して、充放電反応を行うと、電極体の形状を安定できず膨れるからである。   In the present invention, in order to eliminate this drawback, the separator lamination surface 17 of the core body 4 directly laminated on the separator 3 is roughened, and the surface roughness pitch (Sm) is roughened to 50 μm or less. ing. However, in this specification, the “surface roughness pitch (Sm)” is a value measured according to “JIS B 0601-1994” using a stylus roughness meter with a stylus tip radius of 2 μm. To do. The surface roughness pitch (Sm) of the separator laminate surface 17 subjected to the roughening treatment is specified to be 50 μm or less. When the surface roughness pitch is larger than 50 μm, the adhesion between the core body and the separator is lowered, and the charge / discharge reaction is performed. This is because the shape of the electrode body cannot be stabilized and swells.

このように粗化処理されたセパレータ積層面17は、電極体10のプレス工程において、セパレータ3との食い込み面積が広くなってズレ難くなる。このため、芯体4のセパレータ積層面17とセパレータ3の密着度を向上する。したがって、電極体10のプレス圧力を上げることなく、電極体10を安定した形状に保つことができる。このことは、芯体4の両面にセパレータ積層面17を設けた電極体10には言うにおよばず、芯体の片面にセパレータ積層面を設けた電極体においても効果がある。芯体のセパレータ積層面とセパレータとの密着性が向上するからである。   The separator laminated surface 17 that has been roughened in this manner has a large bite area with the separator 3 in the pressing process of the electrode body 10 and is difficult to shift. For this reason, the adhesion degree of the separator lamination surface 17 of the core body 4 and the separator 3 is improved. Therefore, the electrode body 10 can be maintained in a stable shape without increasing the press pressure of the electrode body 10. This is effective not only in the electrode body 10 in which the separator laminated surface 17 is provided on both surfaces of the core body 4, but also in the electrode body in which the separator laminated surface is provided on one surface of the core body. This is because the adhesion between the separator laminate surface of the core and the separator is improved.

本発明の請求項2の電池は、電極体10の巻き中心部に積層している極板1の芯体4にセパレータ積層面17を設けており、このセパレータ積層面17にセパレータ3を直接に積層している。   In the battery according to claim 2 of the present invention, the separator laminated surface 17 is provided on the core body 4 of the electrode plate 1 laminated at the winding center portion of the electrode body 10, and the separator 3 is directly attached to the separator laminated surface 17. Laminated.

本発明の請求項3の電池は、芯体4の両面をセパレータ積層面17として、極板1の両面のセパレータ積層面17に直接にセパレータ3を積層している。   In the battery according to claim 3 of the present invention, the separator 4 is directly laminated on the separator lamination surfaces 17 on both surfaces of the electrode plate 1 with both surfaces of the core body 4 as separator lamination surfaces 17.

本発明の請求項4の電池は、リチウムイオン二次電池であって、セパレータ積層面17のある芯体4を金属箔とし、セパレータ3をプラスチック製の微多孔膜としている。さらに、本発明の請求項5の電池は、セパレータ積層面17のある極板1をリチウムイオン二次電池の負極とし、金属箔を銅箔としている。   The battery according to claim 4 of the present invention is a lithium ion secondary battery, in which the core body 4 having the separator laminated surface 17 is made of metal foil, and the separator 3 is made of a microporous film made of plastic. Furthermore, in the battery according to claim 5 of the present invention, the electrode plate 1 having the separator lamination surface 17 is used as the negative electrode of the lithium ion secondary battery, and the metal foil is used as the copper foil.

さらに、本発明の請求項6の電池は、芯体4のセパレータ積層面17にリード15を接続している。   Further, in the battery according to claim 6 of the present invention, the lead 15 is connected to the separator lamination surface 17 of the core body 4.

本発明の渦巻式電極の電池は、簡単な構造としながら、プレス後の変形を著しく少なくできる特長がある。それは、本発明の渦巻式電極の電池が、正極の極板と負極の極板とでセパレータを挟んで積層して巻回した電極体を、極板に平面部ができるようにプレスして外装体に収納しており、極板の平面部には、芯体の表面を直接にセパレータに接触させるセパレータ積層面を設けて、このセパレータ積層面の表面粗さピッチ(Sm)を50μm以下に粗化処理しているからである。この構造の電池は、表面粗さピッチ(Sm)を50μm以下に粗化処理した極板のセパレータ積層面の表面に、直接にセパレータを押圧して積層するので、極板とセパレータとの密着度を向上させて、プレス後の電極体の変形を著しく少なくできると共に、電池のサイクル充放電や連続充電時に起こる電池厚みの膨れ量を低減できる。   The spiral electrode battery according to the present invention has a simple structure and can significantly reduce deformation after pressing. The battery of the spiral electrode of the present invention is formed by pressing an electrode body obtained by laminating and winding a separator between a positive electrode plate and a negative electrode plate so that a flat portion is formed on the electrode plate. The separator plate is provided on the flat portion of the electrode plate so that the surface of the core is in direct contact with the separator. The surface roughness pitch (Sm) of the separator plate is roughened to 50 μm or less. This is because it is processed. Since the battery having this structure is laminated by pressing the separator directly on the surface of the separator lamination surface of the electrode plate roughened to a surface roughness pitch (Sm) of 50 μm or less, the degree of adhesion between the electrode plate and the separator As a result, the deformation of the electrode body after pressing can be remarkably reduced, and the amount of swelling of the battery thickness that occurs during cycle charge / discharge and continuous charge of the battery can be reduced.

以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための渦巻式電極の電池を例示するものであって、本発明は電池を以下のものに特定しない。   Embodiments of the present invention will be described below with reference to the drawings. However, the examples shown below exemplify spiral electrode batteries for embodying the technical idea of the present invention, and the present invention does not specify the following batteries.

さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲」および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。   Further, in this specification, in order to facilitate understanding of the scope of claims, numbers corresponding to the members shown in the examples are indicated in the “claims” and “means for solving problems” sections. It is added to the members. However, the members shown in the claims are not limited to the members in the embodiments.

図1に示す渦巻式電極の電池は角型電池で、角型の外装缶である外装体20に、電極体10と電解液を入れて開口部を封口板21で密閉している。電極体10は、正極の極板1Aと負極の極板1Bを、セパレータ3を挟んで積層して巻回したものである。以下の実施例は、渦巻式電極の電池をリチウムイオン二次電池として詳述する。ただし、本発明は、電池をリチウムイオン二次電池に特定するものではなく、非水電解質二次電池やアルカリ電池等の二次電池とすることもできる。   The spiral electrode battery shown in FIG. 1 is a prismatic battery, in which an electrode body 10 and an electrolytic solution are placed in an exterior body 20 which is a rectangular exterior can and the opening is sealed with a sealing plate 21. The electrode body 10 is obtained by laminating and winding a positive electrode plate 1A and a negative electrode plate 1B with a separator 3 interposed therebetween. In the following examples, a spiral electrode battery is described in detail as a lithium ion secondary battery. However, the present invention does not specify a battery as a lithium ion secondary battery, and may be a secondary battery such as a nonaqueous electrolyte secondary battery or an alkaline battery.

電池の極板1は、図2の断面図に示すように、芯体4の表面に活物質層5を積層している。芯体4は金属箔である。芯体4を金属箔とする電極体10は、極板1の電気抵抗を小さくできる。芯体4の金属箔は、アルミニウム箔や銅箔等である。リチウムイオン二次電池は、正極の極板1Aの芯体4をアルミニウム箔とし、負極の極板1Bの芯体4に銅箔とする。   As shown in the sectional view of FIG. 2, the battery electrode plate 1 has an active material layer 5 laminated on the surface of a core body 4. The core body 4 is a metal foil. The electrode body 10 having the core body 4 as a metal foil can reduce the electric resistance of the electrode plate 1. The metal foil of the core body 4 is an aluminum foil or a copper foil. In the lithium ion secondary battery, the core body 4 of the positive electrode plate 1A is made of aluminum foil, and the core body 4 of the negative electrode plate 1B is made of copper foil.

極板1は、活物質ペーストを芯体4の表面に塗布し、これを乾燥させて活物質層5を設ける。活物質層5は、芯体4の両面の全面には設けられず、正極と負極との対向面に設けられる。   The electrode plate 1 is provided with an active material layer 5 by applying an active material paste to the surface of the core body 4 and drying it. The active material layer 5 is not provided on the entire surface of both surfaces of the core body 4 but provided on the opposing surfaces of the positive electrode and the negative electrode.

図の電極体10は、最内周極板16を負極とし、最外周極板6を正極としている。負極である最内周極板16は銅箔で、巻き始め部にリード15を接続している。リード15を接続している巻き始め部は、芯体4の平面部11である。図の電極体10の芯体4は、巻き始め部の両面に活物質層5を設けず、両面をセパレータ3に直接に接触させるセパレータ積層面17としている。この電極体10は、芯体4の巻き始め部の両面をセパレータ積層面17とするが、巻き始め部の片面をセパレータ積層面とすることもできる。   The electrode body 10 shown in the figure has the innermost peripheral electrode plate 16 as a negative electrode and the outermost peripheral electrode plate 6 as a positive electrode. The innermost peripheral electrode plate 16 which is a negative electrode is a copper foil, and the lead 15 is connected to the winding start portion. The winding start portion connecting the leads 15 is the flat portion 11 of the core body 4. The core body 4 of the electrode body 10 shown in the figure does not have the active material layer 5 on both surfaces of the winding start portion, but has a separator laminated surface 17 in which both surfaces are in direct contact with the separator 3. In this electrode body 10, both surfaces of the winding start portion of the core body 4 are the separator lamination surface 17, but one surface of the winding start portion can be the separator lamination surface.

芯体4である銅箔は、セパレータ積層面17に、活物質層5を介することなく、直接にセパレータ3を接触させている。この芯体4のセパレータ積層面17は、後に記述するプレス工程において、セパレータ3との密着度を向上させることが大切である。プレス後に、芯体4の巻き始め部とセパレータ3の密着度を向上させて、電池のサイクル充放電や連続充電時に起こる電極体10の変形を抑制でき、さらに電池厚みの膨れ量を低減できるからである。とくに、芯体4の巻き始め部は、電極体10の中心部にあるために、電極体10を加熱プレスするときの熱と圧力が外側部に比べ小さくなり、セパレータ3に安定して密着させるのが難しい。芯体4とセパレータ3との密着度が充分でない状態で、電池を充放電反応させると、芯体4の巻き始め部とセパレータ3の密着が無くなり、緩みが生じ、電極体10の形状が安定しない形状となる。電極体10のたわみは、電池厚み膨れが大きくなるほか、正常な充放電反応を阻害する要因となる。   The copper foil which is the core body 4 is making the separator 3 contact the separator lamination surface 17 directly without passing through the active material layer 5. It is important for the separator laminated surface 17 of the core body 4 to improve the degree of adhesion with the separator 3 in a pressing process described later. After pressing, the degree of adhesion between the winding start portion of the core body 4 and the separator 3 can be improved, so that deformation of the electrode body 10 that occurs during cycle charge / discharge or continuous charge of the battery can be suppressed, and further, the amount of swelling of the battery thickness can be reduced. It is. In particular, since the winding start portion of the core body 4 is in the center of the electrode body 10, heat and pressure when the electrode body 10 is hot-pressed are smaller than those of the outer portion, and the separator body 3 is stably adhered to the separator body 3. It is difficult. If the battery is charged and discharged in a state where the adhesion between the core body 4 and the separator 3 is not sufficient, the winding start portion of the core body 4 and the separator 3 are not adhered, loosening occurs, and the shape of the electrode body 10 is stable. It becomes a shape that does not. The deflection of the electrode body 10 increases the thickness of the battery and becomes a factor that inhibits a normal charge / discharge reaction.

芯体4の巻き始め部のセパレータ積層面17は、セパレータ3との密着度を向上して前述の弊害を解消するために、表面粗さピッチ(Sm)が50μm以下となるように粗化処理している。セパレータ積層面17の表面粗さピッチ(Sm)を50μm以下に特定するのは、これよりも大きいと、プレスした電極体10の膨化量が大きくなるからである。   The separator lamination surface 17 at the winding start portion of the core body 4 is roughened so that the surface roughness pitch (Sm) is 50 μm or less in order to improve the adhesion with the separator 3 and eliminate the above-described adverse effects. is doing. The reason why the surface roughness pitch (Sm) of the separator lamination surface 17 is specified to be 50 μm or less is that if it is larger than this, the amount of expansion of the pressed electrode body 10 becomes large.

たとえば、セパレータ積層面の表面粗さピッチ(Sm)を60μmとする芯体の電極体は、プレス1時間後の電極体の厚さが50μm〜100μmも厚くなり、さらに、表面粗さピッチ(Sm)を70μmとする芯体の電極体は、プレス1時間後の膨化量が80μm〜150μmとなり、さらに、表面粗さピッチ(Sm)を80μmとする芯体の電極体は、プレス1時間後の膨化量が100μm〜200μmと極めて大きくなる。これに対して、セパレータ積層面17の表面粗さピッチ(Sm)を50μmに粗化処理した芯体4の電極体10は、プレス1時間後の膨化量が20μm〜50μmと極めて小さくでき、さらに表面粗さピッチ(Sm)を40μmとする芯体4の電極体10は、プレス1時間後の膨化量を20μm以下とほとんど無視できるまで極減できる。   For example, a core electrode body having a separator lamination surface having a surface roughness pitch (Sm) of 60 μm has a thickness of 50 μm to 100 μm after one hour of pressing, and further has a surface roughness pitch (Sm ) Is 70 μm, the core electrode body has an expansion amount of 80 μm to 150 μm after 1 hour of pressing, and the core body of which the surface roughness pitch (Sm) is 80 μm is 1 hour after pressing. The amount of swelling is as extremely large as 100 μm to 200 μm. On the other hand, the electrode body 10 of the core body 4 in which the surface roughness pitch (Sm) of the separator lamination surface 17 is roughened to 50 μm can have an extremely small expansion amount after 20 hours of pressing, 20 μm to 50 μm. The electrode body 10 of the core body 4 having a surface roughness pitch (Sm) of 40 μm can be extremely reduced until the amount of expansion after 1 hour of pressing is almost negligible at 20 μm or less.

さらに、セパレータ積層面17の表面粗さピッチ(Sm)を50μm以下に粗化処理した芯体4の電極体10は、充放電サイクルを繰り返した後の厚さが厚くなる割合を著しく減少できる。充放電サイクル後における厚さの変化量は、表面粗さピッチ(Sm)で変動する。たとえば、セパレータ積層面の表面粗さピッチ(Sm)を60μmとする芯体の電極体の充放電サイクルにおける厚さを基準として測定すると、以下のようになる。
以下は、プレス1時間後におけるセパレータ積層面の表面粗さピッチ(Sm)に対する厚さの変化を示している。
80μm…………150μm〜200μm厚くなる。
70μm…………厚くなる量は50μm以下となる。
60μm…………これを基準値とする。
50μm…………50μm〜150μm薄くなる。
40μm…………200μm〜350μm薄くなる。
Furthermore, the electrode body 10 of the core body 4 having the surface roughness pitch (Sm) of the separator laminated surface 17 roughened to 50 μm or less can remarkably reduce the rate of increase in thickness after repeated charge / discharge cycles. The amount of change in thickness after the charge / discharge cycle varies with the surface roughness pitch (Sm). For example, when the thickness in the charge / discharge cycle of the electrode body of the core body having a surface roughness pitch (Sm) of the separator stack surface of 60 μm is measured as a reference, it is as follows.
The following shows the change in thickness with respect to the surface roughness pitch (Sm) of the separator laminate surface after 1 hour of pressing.
80 .mu.m ..... thicker from 150 to 200 .mu.m.
70 μm …… The amount of thickening is 50 μm or less.
60 μm ………… This is the reference value.
50 μm …… .. 50 μm to 150 μm thinner.
40 μm ............ 200 μm to 350 μm thinner.

以上のことから、芯体4のセパレータ積層面17の表面粗さピッチ(Sm)を50μm以下とする電極体10は、表面粗さピッチ(Sm)を60μmとする電極体に比較して、50μm〜350μmも薄くなる。いいかえると、充放電サイクル後に厚くなる割合を著しく減少できる。   From the above, the electrode body 10 in which the surface roughness pitch (Sm) of the separator lamination surface 17 of the core body 4 is 50 μm or less is 50 μm compared to the electrode body in which the surface roughness pitch (Sm) is 60 μm. It is as thin as ˜350 μm. In other words, the rate of thickening after the charge / discharge cycle can be significantly reduced.

本発明は、セパレータ積層面17の表面粗さピッチ(Sm)を50μm以下に特定するが、粗化処理する方法を特定しない。セパレータ積層面17は、現在すでに開発されている粗化処理により、さらにこれから開発されるあらゆる粗化処理によって、表面粗さピッチ(Sm)を50μm以下にできるからである。   Although this invention specifies the surface roughness pitch (Sm) of the separator lamination surface 17 to 50 micrometers or less, it does not specify the method of roughening. This is because the separator laminated surface 17 can be made to have a surface roughness pitch (Sm) of 50 μm or less by a roughening process that has already been developed, and by any roughening process that will be developed in the future.

たとえば、ドラムの表面にメッキの作用で金属箔を成長させる方法で製造される電解金属箔を使用する場合、電解金属箔を析出させるドラムの表面粗度を調整して、ドラム表面に特定の表面粗さピッチ(Sm)に粗化処理された金属箔を製作できる。この粗化処理は、ドラムの表面粗さピッチ(Sm)を小さくして、セパレータ積層面17の表面粗さピッチ(Sm)を小さくできる。この方法は、ドラムに接触する面の表面粗さピッチ(Sm)をコントロールできる。   For example, when using an electrolytic metal foil manufactured by a method of growing a metal foil by plating on the surface of the drum, the surface roughness of the drum on which the electrolytic metal foil is deposited is adjusted, and a specific surface is formed on the drum surface. A metal foil roughened to a roughness pitch (Sm) can be produced. This roughening treatment can reduce the surface roughness pitch (Sm) of the drum and reduce the surface roughness pitch (Sm) of the separator stack surface 17. This method can control the surface roughness pitch (Sm) of the surface in contact with the drum.

さらに、芯体4のセパレータ積層面17は、芯体4の表面に微細な粒子を空気で噴射するサンドブラスト等の粗化処理によっても、セパレータ積層面17を特定の表面粗さピッチ(Sm)に粗化処理できる。サンドブラストによる粗化処理は、噴射する粒子の粒径で表面粗さピッチ(Sm)をコントロールする。粒子の平均粒子径を小さくして、表面粗さピッチ(Sm)を小さくできるからである。このサンドブラストによる粗化処理は、芯体4の両面に設けているセパレータ積層面17の表面粗さピッチ(Sm)を粗化処理できる。電解金属箔の芯体4は、ドラムとの接触面の表面粗さピッチ(Sm)をドラムの表面粗度で粗化処理し、反対側の面をサンドブラストの粗化処理で表面粗さピッチ(Sm)を調製して、両面に設けたセパレータ積層面17の表面粗さピッチ(Sm)をコントロールできる。   Furthermore, the separator laminated surface 17 of the core body 4 is made to have a specific surface roughness pitch (Sm) even by a roughening process such as sandblasting in which fine particles are sprayed onto the surface of the core body 4 with air. It can be roughened. In the roughening treatment by sandblasting, the surface roughness pitch (Sm) is controlled by the particle size of the particles to be injected. This is because the average particle diameter of the particles can be reduced to reduce the surface roughness pitch (Sm). The roughening treatment by sandblasting can roughen the surface roughness pitch (Sm) of the separator laminated surface 17 provided on both surfaces of the core body 4. The core 4 of the electrolytic metal foil has a surface roughness pitch (Sm) of the contact surface with the drum roughened by the surface roughness of the drum, and a surface roughness pitch ( Sm) can be prepared to control the surface roughness pitch (Sm) of the separator laminate surface 17 provided on both sides.

正極の極板1Aは、芯体4であるアルミニウム箔の表面に正極の活物質層5を設けている。この極板1は、終端部の巻き終わり部である最外周極板6に活物質層5を設けていない。活物質層5のない芯体4の巻き終わり部の終端縁は、図3に示すように、湾曲コーナー部12に位置している。正極の芯体4は、活物質層5を設けない平面部11の一部を切断して折り返し片9を設けている。芯体4の折り返し片9は、正極の極板1Aを外装体20に接続するリードに使用する。この電極体10は、芯体4の折り返し片9を介して、正極の極板1Aを低抵抗な状態で安定して外装体20に電気接続できる。折り返し片9を設けている極板1の平面部11は、活物質層5を設けていない芯体4である。このため、折り返し片9は、活物質層5を介することなく、芯体4を直接に低抵抗な状態で外装体20に接続できる。折り返し片9のある電極体10は、渦巻状に巻いた電極体10を所定の厚さにプレスした後、折り返し片9を180度折曲して、リードに使用できる状態とする。渦巻状の電極体10をプレス加工するとき、芯体4の折り返し片9は平面部11にある。この電極体10は、折り返し片9のある最外周極板6の平面部11を、均一な押圧力で平面状にプレスできる。折り返し片9は、図1に示すように、外装体20と封口板21との間に挟着されて、外装体20と封口板21とに溶接される。   The positive electrode plate 1 </ b> A is provided with a positive electrode active material layer 5 on the surface of an aluminum foil that is a core body 4. In this electrode plate 1, the active material layer 5 is not provided on the outermost peripheral electrode plate 6, which is the winding end portion of the terminal portion. The end edge of the winding end portion of the core body 4 without the active material layer 5 is located at the curved corner portion 12 as shown in FIG. The positive electrode core 4 is provided with a folded piece 9 by cutting a part of the flat portion 11 on which the active material layer 5 is not provided. The folded piece 9 of the core body 4 is used as a lead for connecting the positive electrode plate 1 </ b> A to the exterior body 20. The electrode body 10 can electrically connect the positive electrode plate 1 </ b> A to the exterior body 20 stably in a low resistance state via the folded piece 9 of the core body 4. The flat portion 11 of the electrode plate 1 on which the folded piece 9 is provided is a core body 4 on which the active material layer 5 is not provided. For this reason, the folded piece 9 can connect the core body 4 directly to the exterior body 20 in a low-resistance state without using the active material layer 5. The electrode body 10 having the folded piece 9 is pressed to a predetermined thickness after the electrode body 10 wound in a spiral shape is bent, and the folded piece 9 is bent 180 degrees to be in a state where it can be used for a lead. When the spiral electrode body 10 is pressed, the folded piece 9 of the core body 4 is in the plane portion 11. The electrode body 10 can press the flat portion 11 of the outermost peripheral electrode plate 6 with the folded piece 9 into a flat shape with a uniform pressing force. As shown in FIG. 1, the folded piece 9 is sandwiched between the exterior body 20 and the sealing plate 21 and welded to the exterior body 20 and the sealing plate 21.

セパレータ3は、ポリプロピレン等のプラスチック製の微多孔膜である。ただ、セパレータ3は、正極と負極を絶縁して電解液やイオンを通過させる全てのものが使用できる。したがって、セパレータ3には、プラスチック繊維を立体的に集合してシート状にプレスした不織布も使用できるが、芯体との密着性を考慮すると微多孔膜が好ましい。   The separator 3 is a microporous film made of plastic such as polypropylene. However, the separator 3 can be any separator that insulates the positive electrode and the negative electrode and allows the electrolyte and ions to pass therethrough. Therefore, although the nonwoven fabric which gathered the plastic fiber three-dimensionally and pressed into the sheet form can also be used for the separator 3, a microporous film is preferable when the adhesiveness with the core is taken into consideration.

渦巻状に巻かれた電極体10は、これを両面から平面状で互いに平行に配置している押圧板で加熱しながら挟着するようにプレスして、対向面を互いに平行な平面部11に加工する。セパレータ3は、極板1の間にあって、隣接して積層される極板1を絶縁する。図の電極体10は、セパレータ3の幅を極板1よりも広くしている。この電極体10は、極板1の巻き位置が多少ずれても、セパレータ3で確実に絶縁できる。   The electrode body 10 wound in a spiral shape is pressed so as to be sandwiched while being heated by pressing plates arranged in parallel with each other in a planar shape from both sides, and the opposing surfaces are formed into flat portions 11 parallel to each other. Process. The separator 3 is between the electrode plates 1 and insulates the electrode plates 1 stacked adjacent to each other. In the illustrated electrode assembly 10, the width of the separator 3 is wider than that of the electrode plate 1. The electrode body 10 can be reliably insulated by the separator 3 even if the winding position of the electrode plate 1 is slightly shifted.

正極の極板1Aと負極の極板1Bの間にセパレータ3を積層して渦巻状に巻かれた電極体10は、極板1の一部を平面部11とする状態にプレスされる。プレスされた極板1は、平行に積層させる平面部11の両側が湾曲コーナー部12に連続される状態となる。極板1の平面部11は、セパレータ3を挟んで平行に積層される。セパレータ3に直接に接触して積層されるセパレータ積層面17は、表面粗さピッチ(Sm)が50μm以下に粗化処理している。このセパレータ積層面17は、セパレータ3に密着される。極板1のセパレータ積層面ではない表面は、活物質層5をセパレータ3に密着させる。活物質層5は、表面に微細な凹凸があるので、セパレータ3と密着度が優れている。   The electrode body 10 having a separator 3 stacked between a positive electrode plate 1A and a negative electrode plate 1B and wound in a spiral shape is pressed into a state in which a part of the electrode plate 1 is a flat portion 11. The pressed electrode plate 1 is in a state where both sides of the flat portion 11 to be laminated in parallel are connected to the curved corner portion 12. The flat portion 11 of the electrode plate 1 is laminated in parallel with the separator 3 interposed therebetween. The separator lamination surface 17 laminated in direct contact with the separator 3 is subjected to a roughening treatment so that the surface roughness pitch (Sm) is 50 μm or less. The separator lamination surface 17 is in close contact with the separator 3. The active material layer 5 is brought into close contact with the separator 3 on the surface of the electrode plate 1 that is not the separator lamination surface. Since the active material layer 5 has fine irregularities on the surface, the active material layer 5 has excellent adhesion to the separator 3.

渦巻状に巻いたものを両面からプレスして所定の厚さに加工した電極体10は、図1ないし図3に示すように、極板1が、平面部11から湾曲コーナー部12の方向に連続するように巻回された構造となる。プレス加工は、巻き始め部の先端縁と、巻き終わり部の終端縁を湾曲コーナー部12に配置させるようにして、電極体10を両面からプレスする。それは、プレス加工するときの押圧力を全面に均一に作用させて、極板1の平面部11を平面状に保持しながら所定の厚さに加工するためである。極板の巻き始め部の先端縁と巻き終わり部の終端縁が電極体の平面部の途中にあると、極板の先端縁や終端縁の境界線に沿って、極板が平面部において段差のある形状にプレスされるからである。   As shown in FIGS. 1 to 3, the electrode body 10 obtained by pressing a spirally wound material from both sides to have a predetermined thickness has the electrode plate 1 in the direction from the flat surface portion 11 to the curved corner portion 12. The structure is wound continuously. In the pressing process, the electrode body 10 is pressed from both sides so that the leading edge of the winding start portion and the terminal edge of the winding end portion are arranged in the curved corner portion 12. This is because the pressing force at the time of pressing is uniformly applied to the entire surface, and the flat portion 11 of the electrode plate 1 is processed into a predetermined thickness while being held flat. When the leading edge of the winding start part of the electrode plate and the terminal edge of the winding end part are in the middle of the flat part of the electrode body, the electrode plate is stepped at the flat part along the boundary line of the leading edge or terminal edge of the electrode plate. This is because it is pressed into a certain shape.

リチウムイオン二次電池である渦巻式電極の角型電池は以下のようにして製造される。
[正極スラリーの作製]
正極活物質として、平均粒径5μmのLiCoO粉末と、正極導電剤としての人造黒鉛粉末を、質量比9:1で混合して、正極合剤を調製する。この正極合剤とポリフッ化ビニリデンをN−メチル−2−ピロリドン(NMP)に5質量%溶かした結着剤溶液とを、固形分質量比95:5で混練して、正極極板作製用スラリーを調製する。
A spiral electrode square battery, which is a lithium ion secondary battery, is manufactured as follows.
[Preparation of positive electrode slurry]
As a positive electrode active material, LiCoO 2 powder having an average particle diameter of 5 μm and artificial graphite powder as a positive electrode conductive agent are mixed at a mass ratio of 9: 1 to prepare a positive electrode mixture. This positive electrode mixture and a binder solution prepared by dissolving 5% by mass of polyvinylidene fluoride in N-methyl-2-pyrrolidone (NMP) are kneaded at a solid content mass ratio of 95: 5 to obtain a slurry for producing a positive electrode plate. To prepare.

[正極極板の作製]
このスラリーを、正極芯体4としてアルミ箔(箔厚み:15μm)にドクターブレードを用いて塗布する。塗布質量は、両面塗布部の乾燥後質量で500g/m(片面塗布250g/m、集電体除く)とする。塗布した後、乾燥させてその極板を加圧して圧縮し、活物質の充填密度3.7g/ccの極板を作製する。その後、極板を電池幅に合うように切断し、150℃に2時間で真空乾燥して、正極の極板1Aとする。
[Preparation of positive electrode plate]
This slurry is applied to the aluminum foil (foil thickness: 15 μm) as the positive electrode core 4 using a doctor blade. The coating mass is 500 g / m 2 (single-side coating 250 g / m 2 , excluding current collector) as the mass after drying of the double-side coated part. After coating, the electrode plate is dried and pressed and compressed to produce an electrode plate having an active material packing density of 3.7 g / cc. Thereafter, the electrode plate is cut to fit the battery width and vacuum dried at 150 ° C. for 2 hours to obtain a positive electrode plate 1A.

[負極極板の作製]
リン片状天然黒鉛(d002値:0.3356nm、Lc値:100nm、平均粒径:20μm)と、スチレン−ブタジエンゴム(SBR)のディスパージョン(固形分:48%)を水に分散させて、増粘剤であるカルボキシメチルセルロース(CMC)を添加してスラリーを調製する。なお、この負極の乾燥後の固形分質量組成比が、黒鉛:SBR:CMC=100:3: 2となるように調製する。負極集電体としての銅箔(箔厚み:10μm)の両面に、乾燥後質量で200g/m(片面塗布100g/m、集電体除く)となるよう塗布する。その後、乾燥させてその極板を加圧して圧縮し、活物質の充填密度1.7g/ccの極板を作製する。その後、極板を電池幅に合うように切断し、110℃、2時間で真空乾燥して負極の極板1Bを得る。
[Production of negative electrode plate]
A flake shaped natural graphite (d 002 value: 0.3356 nm, Lc value: 100 nm, average particle size: 20 μm) and a styrene-butadiene rubber (SBR) dispersion (solid content: 48%) were dispersed in water. Then, carboxymethyl cellulose (CMC) as a thickener is added to prepare a slurry. In addition, it prepares so that the solid content mass composition ratio after drying of this negative electrode may become graphite: SBR: CMC = 100: 3: 2. It apply | coats on both surfaces of copper foil (foil thickness: 10 micrometers) as a negative electrode collector so that it may become 200 g / m < 2 > (single-sided application | coating 100g / m < 2 >, collector is excluded) by mass after drying. Then, the electrode plate is dried and pressed and compressed to produce an electrode plate having an active material packing density of 1.7 g / cc. Thereafter, the electrode plate is cut to fit the battery width and vacuum dried at 110 ° C. for 2 hours to obtain a negative electrode plate 1B.

電極体10は、負極の極板1Bを最内周極板16として電極体10の中心に配置させる。負極の巻き始め部は、平面部11をセパレータ積層面17として、ここにリード15を接続している。図2の断面図に示す電極体10は、負極の極板1Bの巻き始め部をU極して折り返し、平面部11の対向面をセパレータ積層面17としている。図の電極体10は、対向するセパレータ積層面17をセパレータ3で挟着している。このセパレータ積層面17は、表面粗さピッチ(Sm)が以下の値となるように粗化処理している。
実施例1…表面粗さピッチ(Sm)を50μm
実施例2…表面粗さピッチ(Sm)を40μm
実施例3…表面粗さピッチ(Sm)を30μm
In the electrode body 10, the negative electrode plate 1 </ b> B is disposed at the center of the electrode body 10 as the innermost peripheral electrode plate 16. The winding start portion of the negative electrode has the flat portion 11 as the separator lamination surface 17 and the lead 15 is connected thereto. In the electrode body 10 shown in the cross-sectional view of FIG. 2, the winding start portion of the negative electrode plate 1 </ b> B is folded back with the U pole, and the opposing surface of the flat portion 11 is used as the separator lamination surface 17. The electrode body 10 shown in the figure has a separator separator surface 17 sandwiched between the separators 3. The separator lamination surface 17 is roughened so that the surface roughness pitch (Sm) has the following value.
Example 1... Surface roughness pitch (Sm) is 50 μm
Example 2 Surface roughness pitch (Sm) is 40 μm
Example 3 Surface roughness pitch (Sm) is 30 μm

[電解液とセパレータ]
非水電解液として、エチレンカーボネート(EC)とジエチルカーボネート(DEC)を、体積比50/50の混合溶媒に、LiPFを1モル/リットル溶かした溶液を使用する。また、セパレータ3としては、ポリプロピレン製の微多孔膜を使用する。
[Electrolyte and separator]
As the non-aqueous electrolyte, a solution obtained by dissolving 1 mol / liter of LiPF 6 in a mixed solvent of 50/50 volume ratio of ethylene carbonate (EC) and diethyl carbonate (DEC) is used. As the separator 3, a microporous film made of polypropylene is used.

[電極体の作製]
以上のようにして得られた正極の極板1A及び負極の極板1Bと、セパレータ3を渦巻状に巻き取った後、プレス面を50℃に加熱し、78N/cmの面圧で加圧成型する。この状態で製造される電極体10は、厚さが4mm、セパレータ3の幅となる縦幅が48mm、横幅が32mmとなる。なお、極板1の幅は、セパレータ3よりも狭く、44mmとしている。
[Production of electrode body]
After the positive electrode plate 1A and the negative electrode plate 1B obtained as described above and the separator 3 are wound in a spiral shape, the press surface is heated to 50 ° C. and applied with a surface pressure of 78 N / cm 2. Press molding. The electrode body 10 manufactured in this state has a thickness of 4 mm, a vertical width that is the width of the separator 3 is 48 mm, and a horizontal width is 32 mm. In addition, the width | variety of the electrode plate 1 is narrower than the separator 3, and is 44 mm.

[電池の作製]
以上の電極体10を外装体20である外装缶に挿入して角型電池とする。外装体20は、内形を電極体10の外形よりもわずかに大きくするアルミニウムやアルミニウム合金の金属ケースである。電極体10を挿入した外装体20は、開口部に封口板21を溶接して閉塞する。その後、封口板21に設けた注液口から外装体20の内部に電解液を注液し、その後、注液口を気密に封止する。
以上の工程で、厚さ:5mm、幅:34mm、高さ:50mm(設計容量:1000mAh)の角型電池を作製する。
[Production of battery]
The above electrode body 10 is inserted into an outer can as the outer body 20 to obtain a square battery. The outer package 20 is a metal case made of aluminum or aluminum alloy whose inner shape is slightly larger than the outer shape of the electrode body 10. The exterior body 20 in which the electrode body 10 is inserted is closed by welding a sealing plate 21 to the opening. Thereafter, the electrolytic solution is injected into the exterior body 20 from the injection port provided in the sealing plate 21, and then the injection port is hermetically sealed.
Through the above steps, a square battery having a thickness of 5 mm, a width of 34 mm, and a height of 50 mm (design capacity: 1000 mAh) is manufactured.

比較例Comparative example

実施例の電池の優れた特性を実証するために、比較例の角型電池を試作する。比較例の電池は、負極極板のセパレータ積層面の表面粗さピッチ(Sm)を60μm(比較例1)、70μm(比較例2)、80μm(比較例3)とする以外は、実施例と同じようにして作製する。   In order to demonstrate the excellent characteristics of the battery of the example, a square battery of a comparative example is prototyped. The battery of the comparative example is the same as the example except that the surface roughness pitch (Sm) of the separator laminate surface of the negative electrode plate is 60 μm (Comparative Example 1), 70 μm (Comparative Example 2), and 80 μm (Comparative Example 3). Produced in the same way.

[加熱プレス1時間後における電極体の厚み膨化量]
以上のようにして、各々の実施例と比較例において20個の電極体を製作して電極体の厚さの膨化量を測定すると以下のようになる。
実施例1………20μm〜50μm
実施例2………0μm〜20μm
実施例3………0μm〜20μm
比較例1………50μm〜100μm
比較例2………80μm〜150μm
比較例3………100μm〜200μm
[Thickening amount of electrode body after 1 hour of heating press]
As described above, 20 electrode bodies are manufactured in each of the examples and the comparative examples, and the expansion amount of the thickness of the electrode bodies is measured as follows.
Example 1 ... 20 µm to 50 µm
Example 2 ............ 0 μm to 20 μm
Example 3 ............ 0 μm to 20 μm
Comparative Example 1 ... 50 μm to 100 μm
Comparative Example 2 ... 80 to 150 [mu] m
Comparative Example 3 ... 100m to 200m

以上の測定結果から、本発明の実施例の電極体10は、加熱プレス1時間後における膨化量を0〜50μmと極めて小さくできることが明らかとなる。これに対して、比較例の電極体の膨化量は、50μm〜200μmと極めて大きくなる。   From the above measurement results, it is clear that the electrode body 10 of the example of the present invention can have a very small expansion amount of 0 to 50 μm after 1 hour of hot pressing. On the other hand, the amount of swelling of the electrode body of the comparative example is extremely large, 50 μm to 200 μm.

[充放電サイクル後の電池の厚さ]
実施例と比較例の電池を、満充電と完全放電を繰り返して充放電サイクルを500サイクルさせた後に、外装缶の厚さの変化を、比較例1の電池を基準とする相対値として測定すると以下のようになる。
実施例1………−50μm〜−150μm
実施例2………−200μm〜−350μm
実施例3………−200μm〜−350μm
比較例2………0μm〜+50μm
比較例3………+150μm〜+200μm
[Battery thickness after charge / discharge cycle]
When the batteries of the example and the comparative example were subjected to 500 cycles of charge / discharge cycles by repeating full charge and complete discharge, the change in the thickness of the outer can was measured as a relative value based on the battery of the comparative example 1. It becomes as follows.
Example 1 ......- 50 μm to −150 μm
Example 2..., −200 μm to −350 μm
Example 3 ............- 200 μm to −350 μm
Comparative Example 2 ... 0 μm to +50 μm
Comparative Example 3 ......... + 150 μm to +200 μm

以上の測定結果から、実施例の電池は充放電サイクルにおける外装缶の厚さが、比較例1に対して50μm〜350μmも薄くなる。これに対して、セパレータ積層面の表面粗さピッチ(Sm)を80μmとする比較例3の電池は、比較例1の電池に対して150μm〜200μmも厚くなる。   From the above measurement results, in the battery of the example, the thickness of the outer can in the charge / discharge cycle is 50 μm to 350 μm thinner than that of Comparative Example 1. In contrast, the battery of Comparative Example 3 in which the surface roughness pitch (Sm) of the separator stack surface is 80 μm is 150 μm to 200 μm thicker than the battery of Comparative Example 1.

本発明の一実施例にかかる渦巻式電極の電池の一部断面斜視図である。It is a partial cross section perspective view of the battery of the spiral electrode concerning one Example of this invention. 図1に示す電池の電極体の中心部を示す拡大水平断面図である。FIG. 2 is an enlarged horizontal sectional view showing a central part of an electrode body of the battery shown in FIG. 1. 図1に示す電池の電極体の斜視図である。It is a perspective view of the electrode body of the battery shown in FIG.

符号の説明Explanation of symbols

1…極板 1A…正極の極板
1B…負極の極板
3…セパレータ
4…芯体
5…活物質層
6…最外周極板
9…折り返し片
10…電極体
11…平面部
12…湾曲コーナー部
15…リード
16…最内周極板
17…セパレータ積層面
20…外装体
21…封口板
1 ... Electrode plate 1A ... Electrode plate of positive electrode
DESCRIPTION OF SYMBOLS 1B ... Electrode plate of negative electrode 3 ... Separator 4 ... Core body 5 ... Active material layer 6 ... Outermost peripheral electrode plate 9 ... Folded piece 10 ... Electrode body 11 ... Planar part 12 ... Curved corner part 15 ... Lead 16 ... Innermost peripheral electrode Plate 17 ... Separator lamination surface 20 ... Exterior body 21 ... Sealing plate

Claims (6)

正極の極板(1A)と負極の極板(1B)がセパレータ(3)を挟んで積層して巻かれた電極体(10)が、極板(1)に平面部(11)ができるようにプレスして外装体(20)に収納している渦巻式電極の電池であって、
極板(1)の平面部(11)に、芯体(4)の表面を直接にセパレータ(3)に接触させているセパレータ積層面(17)を有し、この極板(1)のセパレータ積層面(17)の表面粗さピッチ(Sm)を50μm以下に粗化処理しており、このセパレータ積層面(17)の表面にセパレータ(3)を押圧して直接に積層してなることを特徴とする渦巻式電極の電池。
An electrode body (10) in which a positive electrode plate (1A) and a negative electrode plate (1B) are stacked and sandwiched with a separator (3) sandwiched between them makes a flat portion (11) on the electrode plate (1). A battery of spiral electrodes that is pressed into a housing (20),
The flat portion (11) of the electrode plate (1) has a separator lamination surface (17) in which the surface of the core (4) is in direct contact with the separator (3), and the separator of the electrode plate (1) The surface roughness pitch (Sm) of the laminated surface (17) is roughened to 50 μm or less, and the separator (3) is pressed directly on the surface of the separator laminated surface (17) and laminated directly. A battery with a spiral electrode.
電極体(10)の巻き中心部において、極板(1)の芯体(4)がセパレータ(3)に直接に積層されるセパレータ積層面(17)を有する請求項1に記載される渦巻式電極の電池。   The spiral type according to claim 1, wherein the core body (4) of the electrode plate (1) has a separator lamination surface (17) directly laminated on the separator (3) at the winding center portion of the electrode body (10). Electrode battery. 極板(1)の芯体(4)の両面をセパレータ積層面(17)とする請求項1に記載される渦巻式電極の電池。   The battery of a spiral electrode according to claim 1, wherein both surfaces of the core body (4) of the electrode plate (1) are separator lamination surfaces (17). 電池がリチウムイオン二次電池で、セパレータ積層面(17)のある極板(1)の芯体(4)を金属箔とし、セパレータ(3)をプラスチック製の微多孔膜とする請求項1に記載される渦巻式電極の電池。   2. The battery according to claim 1, wherein the battery is a lithium ion secondary battery, the core (4) of the electrode plate (1) having the separator lamination surface (17) is a metal foil, and the separator (3) is a plastic microporous film. A spiral electrode battery as described. セパレータ積層面(17)のある極板(1)がリチウムイオン二次電池の負極で、金属箔が銅箔である請求項4に記載される渦巻式電極の電池。   The battery of a spiral electrode according to claim 4, wherein the electrode plate (1) having the separator lamination surface (17) is a negative electrode of a lithium ion secondary battery, and the metal foil is a copper foil. 極板(1)のセパレータ積層面(17)にリード(15)を接続している請求項1に記載される渦巻式電極の電池。
The spiral electrode battery according to claim 1, wherein a lead (15) is connected to the separator lamination surface (17) of the electrode plate (1).
JP2005095584A 2005-03-29 2005-03-29 Battery with spiral electrode Active JP4636920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005095584A JP4636920B2 (en) 2005-03-29 2005-03-29 Battery with spiral electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005095584A JP4636920B2 (en) 2005-03-29 2005-03-29 Battery with spiral electrode

Publications (2)

Publication Number Publication Date
JP2006278143A JP2006278143A (en) 2006-10-12
JP4636920B2 true JP4636920B2 (en) 2011-02-23

Family

ID=37212692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005095584A Active JP4636920B2 (en) 2005-03-29 2005-03-29 Battery with spiral electrode

Country Status (1)

Country Link
JP (1) JP4636920B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4683044B2 (en) 2007-12-28 2011-05-11 Tdk株式会社 Wound-type electrochemical device and method for manufacturing wound-type electrochemical device
JP5326340B2 (en) * 2008-04-28 2013-10-30 ソニー株式会社 Negative electrode for secondary battery, secondary battery and electronic device
EP2381510A4 (en) * 2008-12-24 2016-04-20 Mitsubishi Plastics Inc Separator for battery, and non-aqueous lithium battery
JP2010198987A (en) * 2009-02-26 2010-09-09 Sumitomo Chemical Co Ltd Manufacturing method of power storage device, and power storage device
JP5994354B2 (en) * 2011-09-05 2016-09-21 ソニー株式会社 Separator and nonaqueous electrolyte battery, battery pack, electronic device, electric vehicle, power storage device, and power system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001273904A (en) * 2000-03-27 2001-10-05 Hitachi Cable Ltd Copper foil for lithium-ion battery
JP2003151615A (en) * 2001-11-14 2003-05-23 Nec Tokin Tochigi Ltd Sealed battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001273904A (en) * 2000-03-27 2001-10-05 Hitachi Cable Ltd Copper foil for lithium-ion battery
JP2003151615A (en) * 2001-11-14 2003-05-23 Nec Tokin Tochigi Ltd Sealed battery

Also Published As

Publication number Publication date
JP2006278143A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
JP5954674B2 (en) Battery and battery manufacturing method
EP3252862B1 (en) Secondary battery
JP3428448B2 (en) Electrode structure and battery using the same
JP5444781B2 (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
KR20140132307A (en) Electrode for a secondary battery, preparation method thereof, secondary battery and cable-type secondary battery including the same
JP3471238B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP7211119B2 (en) SECONDARY BATTERY AND METHOD FOR MANUFACTURING SECONDARY BATTERY
JP2013109866A (en) Lithium secondary battery
JP2011204660A (en) Lithium secondary battery
JP2010225545A (en) Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5736049B2 (en) Non-aqueous electrolyte secondary battery
KR20090027314A (en) Secondary battery of improved stability by both sides adhesive tape
US20230100167A1 (en) Secondary battery and method for producing same
JP4636920B2 (en) Battery with spiral electrode
CN113922000A (en) Winding type battery cell and electrochemical device
EP4207427A1 (en) Electrode assembly and battery cell including same
CN113994502B (en) Energy storage element and method for manufacturing energy storage element
KR20190114122A (en) Method for Manufacturing an Electrode Assembly for a Secondary Battery Having an Embossed Separator
WO2013031213A1 (en) Electrode plate for non-aqueous secondary battery and non-aqueous secondary battery using same
WO2013005358A1 (en) Power storage apparatus and vehicle
JP4240312B2 (en) battery
JP2011096504A (en) Nonaqueous electrolyte secondary battery and manufacturing method of the same
CN220233231U (en) Pole piece and battery cell
JP2012043592A (en) Electrode plate for nonaqueous secondary battery, and nonaqueous secondary battery using the same
WO2023162823A1 (en) Cylindrical non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4636920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350