WO2013031213A1 - Electrode plate for non-aqueous secondary battery and non-aqueous secondary battery using same - Google Patents

Electrode plate for non-aqueous secondary battery and non-aqueous secondary battery using same Download PDF

Info

Publication number
WO2013031213A1
WO2013031213A1 PCT/JP2012/005442 JP2012005442W WO2013031213A1 WO 2013031213 A1 WO2013031213 A1 WO 2013031213A1 JP 2012005442 W JP2012005442 W JP 2012005442W WO 2013031213 A1 WO2013031213 A1 WO 2013031213A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
mixture layer
surface layer
secondary battery
layer
Prior art date
Application number
PCT/JP2012/005442
Other languages
French (fr)
Japanese (ja)
Inventor
元貴 衣川
伊達 健二
了介 大前
智文 柳
渡邉 耕三
藤原 勲
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011185503A external-priority patent/JP2014211944A/en
Priority claimed from JP2011187199A external-priority patent/JP2014211945A/en
Priority claimed from JP2011188425A external-priority patent/JP2014211947A/en
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013031213A1 publication Critical patent/WO2013031213A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • one aspect of the present invention includes a rectangular current collector and a mixture layer including a first active material formed on a surface of the current collector, and the mixture layer includes the current collector.
  • the thickness of one predetermined end is smaller than the thickness of the main part of the mixture layer, and the surface of the predetermined end is a surface layer containing a second active material having a higher reactivity with lithium than the active material It is related with the electrode plate for non-aqueous secondary batteries covered.
  • FIG. 1 is a partially cutaway perspective view of a nonaqueous secondary battery in a first embodiment of the present invention. It is a schematic diagram of the cross section of the electrode plate for non-aqueous secondary batteries in 1st Embodiment of this invention. It is a schematic diagram of the front of the electrode plate. It is a schematic diagram of the cross section of the electrode plate for non-aqueous secondary batteries in 2nd Embodiment of this invention. It is a schematic diagram of the cross section of the electrode plate for non-aqueous secondary batteries in 3rd Embodiment of this invention. It is a schematic diagram of the front of the electrode plate for non-aqueous secondary batteries in 4th Embodiment of this invention.
  • the rectangle may be a long and narrow strip rectangle. Further, the rectangle does not mean only a perfect rectangle but includes a shape close to a rectangle.
  • Each end mentioned above refers to a portion having a width of 20 mm or less (for example, 10 mm or less) from the outermost end.
  • the extreme end corresponds to the position at which the mixture paint is applied to the current collector or the position at which the application is completed.
  • each of the first active material and the second active material is a material that can electrochemically react with lithium, for example, a material capable of reversibly occluding and releasing lithium ions.
  • the thickness of at least one end of the mixture layer is made thinner than the thickness (main part) other than the end of the mixture layer, and the surface of the end includes the second active material.
  • the reactivity of the mixture layer can be smoothed over the entire mixture layer. Specifically, the charge concentration can be prevented only by making the thickness of the end portion of the mixture layer thinner than the thickness of the main portion, but the capacity of the end portion is reduced.
  • the surface of the end by covering the surface of the end with a surface layer having high reactivity with lithium, the capacity of the end is supplemented and the acceptability of lithium ions at the end is improved. Thereby, it is considered that precipitation of lithium can be suppressed while preventing concentration of electric charges at the end portion of the mixture layer. Therefore, the charge / discharge cycle characteristics can be improved.
  • the surface layer may be a layer that is more excellent in lithium ion acceptability than the mixture layer and can suppress the precipitation of lithium. Therefore, the modified example of the above configuration does not necessarily include the second active material.
  • the surface layer may be a layer containing alumina, magnesia, silica, titania or the like.
  • the surface layer may include an end corresponding portion that covers the surface of the predetermined end portion, and a main portion corresponding portion that covers the surface of the main portion of the mixture layer. That is, the surface layer may cover not only the end portion of the mixture layer but also the entire mixture layer or, for example, 40% or more of the surface of the mixture layer.
  • the thickness of the end corresponding part is preferably larger than the thickness of the main part corresponding part. This makes it easy to control the balance between the lithium ion acceptability at the end of the mixture layer where lithium is likely to precipitate and the lithium ion acceptability at the main part.
  • the thickness of the end portion corresponding portion of the surface layer is increased toward the end of the predetermined end.
  • the surface layer covers the surface of the predetermined end portion and covers at least a part of the surface of the current collector. Thereby, the edge part of a mixture layer becomes difficult to drop
  • the maximum height roughness Rmax is obtained by extracting only the reference length from the roughness curve in the direction of the average line, and setting the interval between the peak line and the valley line of the extracted part in the direction of the vertical magnification of the roughness curve. Measured and expressed in micrometer ⁇ m.
  • the mixture layer is not exposed from the surface layer from the viewpoint of enhancing the effect of suppressing the internal short circuit.
  • a plurality of through holes may be scattered in the main part corresponding part.
  • Such a through-hole can be easily formed by enclosing a sufficient amount of bubbles in the coating material for forming the surface layer and rupturing the bubbles in the state of the coating film.
  • the first active material is a carbon material capable of reversibly occluding and releasing lithium ions
  • the second active material is capable of reversibly occluding and releasing lithium ions.
  • the case where it is a lithium titanium complex oxide is mentioned.
  • Such an electrode plate is useful as a negative electrode for a lithium ion secondary battery.
  • the non-aqueous secondary battery of the present invention includes an electrode group, a non-aqueous electrolyte, and an exterior body that houses the electrode group together with the non-aqueous electrolyte.
  • the electrode group includes a positive electrode, a negative electrode, and a porous insulating layer interposed therebetween.
  • the positive electrode and the negative electrode are laminated or wound through a porous insulating layer.
  • at least one of the positive electrode and the negative electrode is the electrode plate for a non-aqueous secondary battery.
  • the combination of the first active material and the second active material is not particularly limited as long as the lithium active material acceptability of the second active material is higher than that of the first active material.
  • nickel-based composite oxide, cobalt-based composite oxide, cobalt acid nanoparticles, cobalt-based oxynitride, manganese-based composite oxide, chromium-based composite oxide, iron phosphate It is possible to use a system composite oxide, a vanadium system composite oxide, a carbon material (graphite, hard carbon, etc.), a titanium system composite oxide, a tin system material, a silicon system material, or metallic lithium.
  • FIG. 1 is a perspective view in which a part of a cylindrical lithium ion secondary battery 11 which is an example of a non-aqueous secondary battery is cut away.
  • the cylindrical lithium ion secondary battery 11 includes an electrode group 4 configured by winding a positive electrode 1 and a negative electrode 2 in a spiral shape through a separator 3 that is a porous insulating layer.
  • the electrode group 4 is accommodated in a state of being insulated from the battery case 5 by an insulating plate 6 inside a bottomed cylindrical battery case 5 as an exterior body.
  • a negative electrode lead (not shown) led out from the lower part of the electrode group 4 is connected to the bottom of the battery case 5.
  • the positive electrode lead 8 led out from the upper part of the electrode group 4 is connected to a sealing plate 9 having a positive electrode terminal 9a.
  • a predetermined amount of nonaqueous electrolyte is injected into the battery case 5.
  • the nonaqueous electrolyte is impregnated in the gaps of the electrode group 4 and the gaps of the mixture layer and the separator.
  • the opening of the battery case 5 is sealed by a sealing plate 9 having a gasket 10 attached to the periphery.
  • the open end of the battery case 5 is bent inward and is crimped to the peripheral edge (gasket 10) of the sealing plate 9.
  • FIG. 2 is a schematic diagram of a cross section of the negative electrode 2 in the present embodiment.
  • FIG. 3 is a schematic diagram of the front surface of the negative electrode 2 in the present embodiment.
  • the negative electrode 2 includes a strip-shaped rectangular negative electrode current collector 12 and a negative electrode mixture layer 13 formed on the surface thereof.
  • the negative electrode mixture layer 13 includes a first end 13 a along the short direction of the current collector 12, a second end 13 b opposite to the first end 13 a, and a first end along the longitudinal direction of the current collector 12. It is a rectangle having a three end portion 13c and a fourth end portion 13d opposite to the third end portion 13c.
  • the portion other than the first to fourth end portions of the mixture layer 13 is a main portion 13A.
  • the negative electrode 2 is wound so that the first end portion 13a side of the mixture layer 13 is on the outer peripheral side. In the vicinity of the first end portion 13a, the negative electrode lead 7 is bonded to the negative electrode current collector 12.
  • first end portion 13a and the second end portion 13b are predetermined end portions having a thickness smaller than that of the main portion 13A of the mixture layer.
  • the thickness of the 1st end part 13a and the 2nd end part 13b is thin as it goes to the endmost part of each end part.
  • the surfaces of the first end portion 13a and the second end portion 13b are covered with the surface layer 14 together with the surface of the main portion 13A.
  • the thickness of the surface layer 14 is uniform, and the entire surface of the negative electrode mixture layer 13 is covered with the surface layer 14.
  • the negative electrode mixture layer 13 includes, for example, a carbon material or a silicon-based material capable of reversibly occluding and releasing lithium ions as the first active material.
  • the carbon material include graphite (various natural graphite and artificial graphite), hard carbon, and soft carbon.
  • the silicon-based material include silicon oxide (SiOx, where 0.1 ⁇ x ⁇ 1.8), silicon alloy (such as Ti—Si alloy), and the like.
  • the negative electrode mixture layer 13 may contain a fluorine resin such as polyvinylidene fluoride (PVdF), rubber particles such as a styrene-butadiene copolymer (SBR), and a cellulose resin such as carboxymethyl cellulose (CMC) as a binder. . From the viewpoint of improving the lithium ion acceptability, it is preferable to use SBR and CMC in combination. Further, the negative electrode mixture layer 13 can include carbon black, carbon nanotube, VGCF, and the like as a conductive material. As carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and the like can be used.
  • PVdF polyvinylidene fluoride
  • SBR styrene-butadiene copolymer
  • CMC carboxymethyl cellulose
  • the negative electrode mixture layer 13 can include carbon black, carbon nanotube, VGCF, and the like as a conductive material. As carbon black, ace
  • the surface layer 14 includes, for example, a lithium titanium composite oxide capable of reversibly occluding and releasing lithium ions as the second active material.
  • a lithium titanium composite oxide capable of reversibly occluding and releasing lithium ions as the second active material.
  • the lithium titanium composite oxide for example, Li 4 Ti 5 O 12 having a spinel structure and a modified product thereof are preferable, but not particularly limited.
  • the modified products of Li 4 Ti 5 O 12, a material part of the Ti and / or Li of the Li 4 Ti 5 O 12 is replaced with another element.
  • the other element include at least one selected from the group consisting of Ni, Co, Mn, Fe, Al, Mg, and Cr.
  • the ratio of elements substituted for Ti and / or Li is preferably 20 atomic% or less of the total of Ti sites and Li sites.
  • the surface layer 14 may also contain a binder as described above.
  • the average particle diameter D1 of the first active material is preferably 2 to 50 ⁇ m.
  • the average particle diameter D2 (D1> D2) of the second active material is preferably 0.5 to 5 ⁇ m.
  • the ratio of D1 / D2 is preferably 4 to 10.
  • D1 and D2 are median diameters corresponding to a cumulative volume of 50% in the volume-based particle size distribution.
  • the mixture layer 13 is prepared by mixing the first active material together with an optional component with a liquid dispersion medium to prepare a mixture paint, applying the paint onto the surface of the current collector, and drying the mixture. Can be obtained.
  • the thickness of the mixture layer is, for example, 30 to 150 ⁇ m.
  • a copper foil or copper alloy foil having a thickness of 5 to 25 ⁇ m is used for the negative electrode current collector.
  • the coated film after drying may be rolled. Or you may transfer to the formation process of the following surface layers 14, without drying the coating film of mixture paint.
  • the surface layer 14 can be obtained by mixing the second active material together with an optional component with a liquid dispersion medium to prepare a surface layer coating material, applying the coating material to the surface of the mixture layer, and drying. . Thereafter, the surface layer 14 may be rolled together with the mixture layer 13.
  • Preparation of the mixture paint and the surface layer paint is carried out by dispersing the material in a dispersion medium such as N-methyl-2-pyrrolidone (NMP) using a dispersing machine such as a planetary mixer.
  • NMP N-methyl-2-pyrrolidone
  • the viscosity of each paint is adjusted so as to be optimal for application to the current collector 12 or the mixture layer 13.
  • Application of each paint may be performed by a die coater, for example.
  • the maximum height roughness Rmax of the interface between the mixture layer 13 and the surface layer 14 is set to, for example, 3 to 25 ⁇ m, and further 5 to 20 ⁇ m.
  • the maximum height roughness Rmax corresponds to the distance in the thickness direction between the interface farthest from the current collector 12 and the interface closest to the current collector 12 among the interface between the mixture layer 13 and the surface layer 14. .
  • the structure of the mixture layer 13 and the surface layer 14 and the maximum height roughness Rmax of these interfaces may be set so that a part of the mixture layer 13 is exposed through the surface layer 14.
  • the impregnation property of the nonaqueous electrolyte to the mixture layer 13 can be improved.
  • the ratio of the area where the main part is exposed to the area of the main part of the mixture layer 13 is preferably 60% or less, and more preferably 1 to 10%.
  • a part of the mixture layer 13 can be exposed by providing an outward projecting portion on the surface of the mixture layer 13 and passing the projecting portion through the surface layer 14.
  • the maximum height roughness Rmax of the interface between the mixture layer 13 and the surface layer 14 is set to be larger than 25 ⁇ m, and more preferably Rmax is set to 30 to 60 ⁇ m by providing the protruding portion.
  • the diameter of the protrusion is preferably 20 to 100 ⁇ m at the center height.
  • a part of the mixture layer 13 may be exposed by interspersing a plurality of through holes in the surface layer 14.
  • the through-hole can be easily formed by enclosing a sufficient amount of bubbles in the surface layer paint.
  • the diameter of the through hole may be, for example, 20 ⁇ m or less, but may be, for example, 20-100 ⁇ m from the viewpoint of sufficiently enhancing the impregnation property of the nonaqueous electrolyte.
  • the positive electrode 1 has the same shape as the negative electrode 2 and includes a strip-shaped rectangular positive electrode current collector and a positive electrode mixture layer formed on the surface thereof.
  • the positive electrode mixture layer includes a first end along the short side direction of the current collector, a second end opposite to the first end, a third end along the longitudinal direction of the current collector, A rectangular shape having a fourth end opposite to the three ends.
  • a positive electrode lead 8 is joined to the positive electrode current collector.
  • the positive electrode current collector for example, an aluminum foil, an aluminum alloy foil, a nickel foil, or a nickel alloy foil having a thickness of 5 ⁇ m to 30 ⁇ m can be used.
  • the positive electrode mixture paint applied to the surface of the positive electrode current collector is prepared, for example, by mixing a positive electrode active material, a conductive material, and a binder together with a dispersion medium using a disperser such as a planetary mixer. The mixture paint is applied to the positive electrode current collector using, for example, a die coater. Then, the positive electrode 1 is obtained by drying and then rolling the coating film.
  • the positive electrode mixture layer is, for example, a nickel composite oxide, a cobalt composite oxide, a manganese composite oxide, a cobalt acid nanoparticle, a cobalt oxynitride, a chromium composite oxide, or phosphoric acid as a positive electrode active material.
  • a nickel composite oxide a cobalt composite oxide
  • a manganese composite oxide a cobalt acid nanoparticle
  • a cobalt oxynitride a cobalt oxynitride
  • chromium composite oxide phosphoric acid
  • phosphoric acid as a positive electrode active material.
  • iron-based composite oxides vanadium-based composite oxides, and the like.
  • the nickel-based composite oxide include lithium nickelate and materials obtained by substituting nickel of lithium nickelate with other elements.
  • the cobalt-based composite oxide include a material in which aluminum or magnesium is dissolved in lithium cobaltate or lithium cobaltate.
  • the manganese-based composite oxide include lithium manganate
  • the positive electrode mixture layer can contain a binder and a conductive material as optional components.
  • a binder polyvinylidene fluoride (PVdF), a modified polyvinylidene fluoride, polytetrafluoroethylene (PTFE), rubber particles containing an acrylate unit, or the like can be used.
  • PTFE polytetrafluoroethylene
  • the conductive material the carbon black and various graphites already described can be used.
  • the negative electrode active material, the positive electrode active material, the negative electrode binder, the positive electrode binder, the negative electrode conductive material, and the positive electrode conductive material may be used singly or in combination. Also good.
  • the non-aqueous electrolyte includes a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the electrolyte salt for example, various lithium compounds such as LiPF 6 and LiBF 4 can be used.
  • the non-aqueous solvent for example, ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC) and the like can be used.
  • an additive such as vinylene carbonate (VC) or cyclohexylbenzene (CHB) may be used in order to form a film on the surface of the positive electrode or the negative electrode or to ensure stability during overcharge.
  • Any one of the electrolyte salt and the non-aqueous solvent may be used alone, or a plurality of them may be used in combination.
  • a separator that can be used as a separator for a non-aqueous secondary battery can be used without particular limitation.
  • a microporous film formed of an olefin resin such as polyethylene or polypropylene is generally used alone or in an improved manner.
  • the thickness of the separator is, for example, 10 to 25 ⁇ m.
  • the negative electrode lead 7 is joined to the exposed portion of the negative electrode current collector 12 on the outer peripheral side in the electrode group 4. Therefore, electric charges are particularly likely to concentrate on the first end portion 13a of the negative electrode mixture layer 13 corresponding to the outer peripheral side of the electrode group 4, and lithium is likely to precipitate.
  • the positive electrode 1 and the negative electrode 2 are wound in a spiral shape with the separator 3 interposed, a stronger tension than the outer peripheral side must be applied to the inner peripheral side of the electrode group 4. Therefore, on the inner peripheral side of the electrode group 4, the distance between the positive electrode 1 and the negative electrode 2 is shorter than the distance on the outer peripheral side of the electrode group 4. Accordingly, lithium is likely to be deposited also on the second end portion 13 b of the negative electrode mixture layer 13 corresponding to the inner peripheral side of the electrode group 4.
  • the thickness of both the first end portion 13a and the second end portion 13b of the negative electrode mixture layer 13 is made thinner than the thickness of the main portion of the mixture layer, and the surfaces of both ends are made lithium. It is covered with a surface layer 14 having high ion acceptability. Therefore, local precipitation of lithium can be suppressed.
  • FIG. 4 is a schematic diagram of a cross section of the negative electrode 2A in the present embodiment. Since the negative electrode 2A has substantially the same structure as the negative electrode 2 of the first embodiment except that the details of the end portions of the mixture layer and the surface layer are different, common constituent elements will be described using the same reference numerals.
  • the negative electrode 2A includes a strip-shaped rectangular negative electrode current collector 12 and a negative electrode mixture layer 13 formed on the surface thereof.
  • the first end portion 13a and the second end portion 13b are predetermined end portions having a thickness smaller than the main portion 13A of the mixture layer, and the thicknesses of the first end portion 13a and the second end portion 13b are as follows. It becomes thinner toward the extreme end of the end.
  • the surfaces of the first end portion 13a and the second end portion 13b are covered with the surface layer 14 together with the surface of the main portion 13A. That is, the surface of the negative electrode mixture layer 13 is completely covered with the surface layer 14.
  • the thickness of the end corresponding portion of the surface layer 14 corresponding to the first end portion 13a and the second end portion 13b is on average larger than the thickness of the main portion corresponding portion. This makes it easy to control the balance between the lithium ion acceptability at the end of the mixture layer where lithium is likely to precipitate and the lithium ion acceptability at the main part.
  • the thickness of the end corresponding portion of the surface layer 14 increases toward the end. Thereby, lithium ion acceptance property becomes large as it goes to the endmost part of a mixture layer.
  • the thickness of the end corresponding portion does not need to gradually increase in the entire region up to the end. For example, such a change may not be required in a region from the endmost part to 10 mm or 5 mm. Even in that case, it is possible to obtain a certain effect by gradually increasing the thickness of the end corresponding portion toward the end.
  • FIG. 5 is a schematic view of a cross section of the negative electrode 2B in the present embodiment.
  • the negative electrode 2B has substantially the same structure as that of the negative electrode 2 of the first embodiment except that the details of the end portions of the mixture layer and the surface layer are different. Therefore, common constituent elements will be described using the same reference numerals.
  • the negative electrode 2B includes a strip-shaped rectangular negative electrode current collector 12 and a negative electrode mixture layer 13 formed on the surface thereof.
  • the first end portion 13a and the second end portion 13b are predetermined end portions having a thickness smaller than the main portion 13A of the mixture layer, and the thicknesses of the first end portion 13a and the second end portion 13b are as follows. It becomes smaller as it goes to the extreme end of the end.
  • the surfaces of the first end portion 13a and the second end portion 13b are covered with the surface layer 14 together with the surface of the main portion 13A. That is, the surface of the negative electrode mixture layer 13 is completely covered with the surface layer 14.
  • the thickness of the portion corresponding to the end of the surface layer 14 increases as it goes toward the end, and also covers a part of the surface of the current collector 12. At this time, the distance from the extreme end of the mixture layer to the extreme end of the end corresponding portion of the surface layer 14 is, for example, 0.01 to 1 mm.
  • FIG. 6 is a schematic diagram of the front surface of the negative electrode 2C in the present embodiment. Since the negative electrode 2C has substantially the same structure as the negative electrode 2 of the first embodiment except that the coating layer and the surface layer have different application regions, the same reference numerals are used for common components.
  • the negative electrode 2C includes a strip-shaped rectangular negative electrode current collector 12 and a negative electrode mixture layer 13 formed on the surface thereof.
  • the negative electrode mixture layer 13 is formed on the negative electrode current collector so that one end portion along the longitudinal direction of the current collector 12 is exposed.
  • the thickness of the end portion along the longitudinal direction instead of the end portion along the short direction of the negative electrode current collector 12 can be a predetermined end portion having a small thickness. That is, the third end portion 13c and the fourth end portion 13d can be predetermined end portions having a thickness smaller than that of the main portion of the mixture layer.
  • the thickness of the third end portion 13c and the fourth end portion 13d becomes smaller toward the extreme end of each end portion. And the surface of the 3rd end part 13c and the 4th end part 13d is covered with the surface layer 14 with the surface of the principal part.
  • a current collector plate serving as a current collector terminal is welded to the exposed portion of the current collector 12. Accordingly, electric charges are particularly concentrated on the exposed portion of the current collector 12, and lithium is likely to be deposited. Therefore, it is desirable that at least the third end portion 13c of the negative electrode mixture layer 13 be a predetermined end portion.
  • the thickness of both the first end and the second end of the negative electrode mixture layer 13 is made smaller than the thickness of the main part, and the end is covered with the surface layer.
  • the thickness of only one of the first end portion and the second end portion may be made smaller than the thickness of the main portion, and the end portion may be covered with the surface layer.
  • the thickness of only one of a 3rd edge part and a 4th edge part may be made smaller than the thickness of a principal part, and the said edge part may be covered with a surface layer.
  • the case where the electrode group 4 in which the positive electrode 1 and the negative electrode 2 are wound in a spiral shape is described.
  • the positive electrode 1 and the negative electrode 2 are stacked via the separator 3. The same effect can be obtained even when an electrode group is formed.
  • the surface layer 14 is formed on the surface of the negative electrode mixture layer 13 has been described.
  • the surface layer may be formed on the surface of the positive electrode mixture layer. Good.
  • you may form a surface layer in the surface of both the positive mix layer and the negative mix layer, respectively.
  • FIG. 8 is a schematic diagram of a cross section of the electrode 2D in the present embodiment.
  • the same reference numerals are used for the components corresponding to those in the first embodiment.
  • the electrode 2D includes a strip-shaped rectangular current collector 12D and a mixture layer 13D formed on the surface thereof.
  • the mixture layer 13 ⁇ / b> D includes a first end along the short direction of the current collector, a second end opposite to the first end, and the current collector 12. It is the rectangle which comprises the 3rd end part along the longitudinal direction, and the 4th end part on the opposite side of the 3rd end part. Portions other than the first to fourth end portions of the mixture layer 13 are main portions.
  • the thickness of the mixture layer at the first end and the second end of the electrode 2D is not particularly limited.
  • the surfaces of the first end and the second end need not be covered with the surface layer 14.
  • the surface layer 14 only needs to cover at least the main part of the mixture layer 13.
  • the maximum height roughness Rmax of the interface between the mixture layer 13 and the surface layer 14 is set to, for example, 3 to 25 ⁇ m, and further 5 to 20 ⁇ m.
  • the maximum height roughness Rmax in the above range, the anchor effect in adhesion between the mixture layer 13 and the surface layer 14 is increased, and the mixture layer 13 is suppressed from being exposed from the surface layer 14. Internal short circuit is extremely difficult to occur.
  • the thickness of the surface layer 14 by setting the thickness of the surface layer 14 to 3 to 20 ⁇ m, further 5 to 15 ⁇ m, the adhesion strength between the mixture layer 13 and the surface layer 14 can be further increased, and the battery capacity can be secured. It becomes easy.
  • the surface layer coating for forming the surface layer 14 may contain a second active material such as lithium titanium composite oxide, and may contain alumina, magnesia, silica, titania and the like. These ceramic powders may be used alone or in combination of two or more. Similar to the first embodiment, the surface layer coating is prepared by mixing the ceramic powder and optional binders, conductive materials, thickeners, and the like together with a dispersion medium using a disperser. .
  • the surface layer 13 may be formed on the surface of the negative electrode mixture layer, or may be formed on the surface of the positive electrode mixture layer.
  • the surface layer paint may be applied immediately after the mixture paint is applied. In that case, the mixture layer coating and the surface layer coating are simultaneously dried and then rolled to form the mixture layer and the surface layer. Moreover, after drying the coating film of a mixture layer coating material and rolling and forming a mixture layer, you may apply
  • the method for forming the mixture layer and the surface layer is not limited thereto.
  • FIG. 9 is a schematic diagram of a cross section of the electrode 2E in the present embodiment.
  • FIG. 10 is a partial schematic view of the surface of the electrode 2E.
  • the same reference numerals are used for the components corresponding to those in the first embodiment.
  • the electrode 2E includes a strip-shaped rectangular current collector 12E and a mixture layer 13E formed on the surface thereof.
  • the mixture layer 13 ⁇ / b> E includes a first end along the short direction of the current collector, a second end opposite to the first end, and the current collector 12. It is the rectangle which comprises the 3rd end part along the longitudinal direction, and the 4th end part on the opposite side of the 3rd end part. Portions other than the first to fourth end portions of the mixture layer 13 are main portions.
  • the thickness of the mixture layer at the first end and the second end of the electrode 2E is not particularly limited.
  • the surfaces of the first end and the second end need not be covered with the surface layer 14.
  • the surface layer 14 only needs to cover at least the main part of the mixture layer 13.
  • the surface layer 13 may be formed on the surface of the negative electrode mixture layer, or may be formed on the surface of the positive electrode mixture layer.
  • the impregnation property of the nonaqueous electrolyte to the mixture layer is not excessively hindered by the surface layer 14, and the impregnation property is improved.
  • examples of the method for partially exposing the mixture layer 13 include the following methods.
  • the maximum height roughness Rmax of the interface between the mixture layer 13 and the surface layer 14 is set to be larger than 25 ⁇ m, for example, and preferably Rmax is set to 30 to 60 ⁇ m.
  • corrugation in the surface of the mixture layer 13 becomes large, and a part of convex part penetrates the surface layer 14.
  • the surface layer paint may be applied immediately after the mixture paint is applied.
  • the mixture layer coating and the surface layer coating are simultaneously dried and then rolled to form the mixture layer and the surface layer.
  • FIG. 11 is a schematic diagram of a cross section of the electrode 2F in a modification of the present embodiment.
  • FIG. 12 is a partial schematic view of the surface of the electrode 2F. A part of the mixture layer 13 can be exposed by allowing the protruding portion 15 to penetrate the surface layer 14. The diameter of the protrusion is preferably 20 to 100 ⁇ m at the center height.
  • the coating film is rolled with a roller having concave portions in a regular pattern on the surface. Thereby, the mixture layer 13 which has the convex part 15 by a regular pattern can be obtained.
  • FIG. 13 is a schematic view of a cross section of an electrode 2G in another modification of the present embodiment.
  • FIG. 14 is a partial schematic view of the surface of the electrode 2G.
  • Such a through-hole 16 can be easily formed by enclosing a sufficient amount of bubbles in the surface layer paint.
  • the diameter of the through hole is preferably 20 ⁇ m or less, for example.
  • lithium titanium composite oxide powder and optional components such as a binder and a conductive material are put into a dispersion medium and mixed by a dispersing machine such as a planetary mixer.
  • a sufficient amount of air is included in the surface layer paint.
  • a surface layer coating material containing bubbles is applied to the surface of the mixture layer 13 and left for a while, the bubbles burst, and through holes are formed at positions corresponding to at least a part thereof.
  • the ratio of the area where the main part is exposed to the area of the main part of the mixture layer 13 is preferably 60% or less, and more preferably 1 to 10%.
  • Example 1 In this example, a negative electrode having the same structure as that shown in FIG. 2 was produced, and a non-aqueous secondary battery similar to that shown in FIG. 1 was produced using this negative electrode.
  • ⁇ Mixture paint 2.5 parts by mass of a dispersion of styrene-butadiene copolymer rubber particles (binder) (solid content 40% by weight) with respect to 100 parts by mass of artificial graphite (first active material) (1 mass in terms of solid content) Part), 1 part by mass of carboxymethylcellulose (CMC) (thickener) and an appropriate amount of water were mixed and stirred with a double-arm kneader to prepare a negative electrode mixture paint.
  • binder solid content 40% by weight
  • a negative electrode mixture paint is applied to both surfaces of a strip-like negative electrode current collector made of a copper foil having a thickness of 10 ⁇ m, and then dried.
  • a surface layer paint is applied to the surface of the coating film of the negative electrode mixture paint. It apply
  • both end portions (the first end portion and the second end portion) along the short direction of the negative electrode mixture layer was made thinner toward the respective end portions.
  • the surface layer was apply
  • the negative electrode lead was connected to the portion where the negative electrode current collector of the negative electrode was exposed, and then a protective tape was applied so as to cover the negative electrode lead.
  • the positive electrode lead was connected to the portion where the positive electrode current collector of the positive electrode was exposed, and then a protective tape was applied so as to cover the positive electrode lead.
  • the positive electrode and the negative electrode were wound through a polyethylene microporous film (porous insulating layer) having a thickness of 20 ⁇ m to constitute an electrode group.
  • the electrode group was inserted into the cylindrical battery case together with the insulating plate, and the negative electrode lead led out from the lower part of the electrode group was connected to the bottom of the battery case. Moreover, the positive electrode lead led out from the upper part of the electrode group was connected to the sealing plate. Thereafter, 5.5 g of a nonaqueous electrolyte was added, and then the opening of the battery case was sealed with a sealing plate to complete a lithium ion secondary battery.
  • the nonaqueous electrolyte is obtained by dissolving LiPF 6 at a concentration of 1 mol / L in a mixed solvent having a volume ratio of EC / 5DMC / MEC of 80/5/15. In the nonaqueous electrolyte, 3 parts by mass of VC was dissolved per 100 parts by mass of the mixed solvent.
  • Example 2 A surface layer is formed so that only the main part of the negative electrode mixture layer and the first end corresponding to the inner peripheral side of the electrode group are completely covered with the surface layer, and the second end corresponding to the outer peripheral side of the electrode group was not covered with a surface layer, and a negative electrode was produced in the same manner as in Example 1. Further, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode was used.
  • Example 3 A surface layer is formed so that only the main part of the negative electrode mixture layer and the second end corresponding to the outer peripheral side of the electrode group are completely covered with the surface layer, and the first end corresponding to the inner peripheral side of the electrode group Was not covered with a surface layer, and a negative electrode was produced in the same manner as in Example 1. Further, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode was used.
  • Example 4 In this example, a negative electrode having the same structure as that shown in FIG. 4 was produced, and a non-aqueous secondary battery similar to that shown in FIG. 1 was produced using this negative electrode. Specifically, after applying the same negative electrode mixture paint as in Example 1 to the current collector, the surface layer paint was applied to the surface of the paint film of the mixture paint without drying, and the two-layer paint film was formed. It was dried at the same time. Then, it rolled so that total thickness might be 200 micrometers, and produced the negative electrode. However, the thickness of the surface layer at both ends (first end and second end) is increased by increasing the pressure of the die coater that discharges the surface layer coating at the beginning and end of the coating of the surface layer coating. The size was gradually increased.
  • the obtained negative electrode has basically the same structure as the negative electrode of Example 1, except that the structure of the surface layers at both ends is different. Next, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained negative electrode was used.
  • Example 5 In this example, a negative electrode having the same structure as that shown in FIG. 5 was produced, and a non-aqueous secondary battery similar to that shown in FIG. 1 was produced using this negative electrode.
  • the negative electrode mixture layer and the surface layer were formed in substantially the same manner as in Example 1, using the same negative electrode mixture coating material and surface layer coating material as in Example 1.
  • the surface layer is formed in the vicinity of both ends (first end and second end) by shifting the discharge timing of the surface layer coating from the die coater.
  • the obtained negative electrode has basically the same structure as the negative electrode of Example 1, except that the structure of the surface layers at both ends is different.
  • a lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained negative electrode was used.
  • Example 1 a negative electrode 2H having a structure as shown in FIG. 7 was produced, and a non-aqueous secondary battery similar to that shown in FIG. 1 was produced using the negative electrode 2H.
  • the negative electrode mixture layer 13 and the surface layer 14 were formed in substantially the same manner as in Example 1, using the same negative electrode mixture coating material and surface layer coating material as in Example 1.
  • both ends are placed on the surface layer 14 by shifting the discharge timing of the surface layer paint from the die coater. It was not covered with and exposed.
  • the obtained negative electrode has basically the same structure as the negative electrode of Example 1, except that the structure of the surface layers at both ends is different.
  • a lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained negative electrode was used.
  • Example 4 in which the thickness of the surface layer of the end corresponding portion of the negative electrode mixture layer was gradually increased, lithium deposition was suppressed in the same manner as in Example 1, and the capacity retention rate after 500 cycles was Better than 1. From this, it is presumed that the action of the surface layer becomes obvious by gradually increasing the thickness of the surface layer toward the extreme end.
  • Example 5 in which the surface layer was bound from the end of the negative electrode mixture layer to the surface of the negative electrode current collector, lithium deposition was suppressed in the same manner as in Example 1, and the capacity was maintained after 500 cycles. The rate was further improved than in Example 1. This is presumably because the binding force between the surface layer and the negative electrode current collector was increased, and the mixture was prevented from falling off at the end of the negative electrode mixture layer.
  • the surface layer was provided in the negative electrode mixture layer to improve the reactivity with lithium, but the surface layer was provided in the positive electrode mixture layer to improve the reactivity with lithium. A similar effect can also be obtained by improving.
  • Reference Example 1 (Preparation of negative electrode)
  • a negative electrode having the same cross-sectional structure as shown in FIG. 8 was produced, and a non-aqueous secondary battery similar to that shown in FIG. 1 was produced using this negative electrode.
  • the negative electrode mixture paint and the surface layer paint similar to those in Example 1 were used, and the negative electrode mixture layer and the surface layer were formed in substantially the same manner as in Comparative Example 1 except for the following points. Got.
  • the viscosity ratio between the surface layer coating material and the mixture coating material was adjusted to be 1: 0.01 to 0.05.
  • the surface layer coating material was apply
  • the viscosity ratio between the surface layer paint and the mixture paint is adjusted to be 1: 0.05 to 0.2, the negative electrode mixture layer thickness per side is 91 ⁇ m, the surface layer thickness is 3 ⁇ m, and the negative electrode mixture A negative electrode was produced in the same manner as in Reference Example 1 except that the maximum height roughness Rmax at the interface between the agent layer and the surface layer was 15 ⁇ m.
  • the negative electrode mixture layer was not exposed from the surface layer, and the surface layer completely covered the mixture layer as shown in FIG.
  • a lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained negative electrode was used.
  • Reference Example 4 A negative electrode was produced in the same manner as in Reference Example 3 except that the thickness of the negative electrode mixture layer per side was 74 ⁇ m and the thickness of the surface layer was 20 ⁇ m. In the obtained negative electrode, the negative electrode mixture layer was not exposed from the surface layer, and the surface layer completely covered the mixture layer as shown in FIG. Next, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained negative electrode was used.
  • a negative electrode was produced in the same manner as in Reference Example 2 except that the thickness of the negative electrode mixture layer per side was 91 ⁇ m and the thickness of the surface layer was 3 ⁇ m.
  • the negative electrode mixture layer was not exposed from the surface layer, and the surface layer completely covered the mixture layer as shown in FIG.
  • a lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained negative electrode was used.
  • the thickness of the negative electrode mixture layer For the batteries of Reference Examples 1 to 5, the thickness of the negative electrode mixture layer, the thickness of the surface layer, the maximum height roughness Rmax of the interface between the negative electrode mixture layer and the surface layer, the presence or absence of exposure of the negative electrode mixture layer, and the internal The evaluation results of the short circuit test are shown in Table 2.
  • ⁇ Maximum roughness Rmax> The cross section of the negative electrode was observed with an electron microscope, and the distance in the thickness direction between the interface farthest from the current collector and the interface closest to the current collector among the interface between the mixture layer and the surface layer was measured.
  • the thickness of the surface layer is preferably 3 to 20 ⁇ m, and the maximum height roughness of the interface is preferably 3 to 25 ⁇ m.
  • the surface layer was formed on the surface of the negative electrode mixture layer, but the surface layer may be formed on the surface of the positive electrode mixture layer, and in that case, a similar effect can be obtained. .
  • Reference Example 6 (Preparation of negative electrode)
  • a negative electrode having a structure as shown in FIGS. 9 and 10 was produced, and a non-aqueous secondary battery similar to that shown in FIG. 1 was produced using the negative electrode.
  • the negative electrode mixture paint and the surface layer paint similar to those in Example 1 were used, and the negative electrode mixture layer and the surface layer were formed in substantially the same manner as in Comparative Example 1 except for the following points. Got. That is, in this reference example, a part of the mixture layer was exposed from the surface layer.
  • the surface roughness of the mixture layer was increased by increasing the flow rate when the surface layer coating was applied to the coating film of the mixture coating before drying. Then, a negative electrode having a total thickness of the negative electrode mixture layer and the surface layer per side of 94 ⁇ m and a maximum height roughness Rmax of 30 ⁇ m at the interface between the negative electrode mixture layer and the surface layer was prepared.
  • a part of the negative electrode mixture layer was exposed from the surface layer. The degree of exposure was 10%.
  • the distribution of exposure per square centimeter of the area where the surface layer was applied (main part of the mixture layer) was taken, there was a variation of 0.01 to 20%.
  • a lithium ion secondary battery was produced in the same manner as in Reference Example 1 except that the obtained negative electrode was used.
  • Reference Example 7 a negative electrode having a structure as shown in FIGS. 11 and 12 was produced, and a non-aqueous secondary battery similar to that shown in FIG. 1 was produced using the negative electrode. Specifically, the negative electrode mixture paint and the surface layer paint similar to those in Example 1 were used, and the negative electrode mixture layer and the surface layer were formed in substantially the same manner as in Comparative Example 1 except for the following points. Got.
  • a protrusion was provided on the mixture layer, and then a surface layer coating was applied to form a surface layer.
  • the negative electrode mixture paint was applied to the surface of the current collector, the coating film was dried, and then the coating film was rolled with a roller in which elliptical hemispherical recesses having a depth of 10 ⁇ m were formed at intervals of 500 ⁇ m. .
  • a negative electrode mixture layer having an elliptical hemispherical protrusion having a height of 10 ⁇ m was formed. Thereafter, a surface layer coating was applied to the surface of the negative electrode mixture layer and dried.
  • the coating film was rolled with a roller having no recess as described above, and a negative electrode having a total thickness of 94 ⁇ m of the negative electrode mixture layer and the surface layer per side was produced.
  • a part of the negative electrode mixture layer was exposed from the surface layer. The degree of exposure was 0.1%.
  • a lithium ion secondary battery was produced in the same manner as in Reference Example 1 except that the obtained negative electrode was used.
  • Reference Example 8 A negative electrode was produced in the same manner as in Reference Example 7 except that a roller in which elliptical hemispherical recesses having a depth of 10 ⁇ m were formed at intervals of 27 ⁇ m was used as a roller for rolling the coating film of the negative electrode mixture paint. When the surface layer of the obtained negative electrode was observed, a part of the negative electrode mixture layer was exposed from the surface layer. The degree of exposure was 60%. Next, a lithium ion secondary battery was produced in the same manner as in Reference Example 1 except that the obtained negative electrode was used.
  • Reference Example 9 a negative electrode having a structure as shown in FIGS. 13 and 14 was produced, and a non-aqueous secondary battery similar to that shown in FIG. 1 was produced using the negative electrode. Specifically, the negative electrode mixture paint and the surface layer paint similar to those in Example 1 were used, and the negative electrode mixture layer and the surface layer were formed in substantially the same manner as in Comparative Example 1 except for the following points. Got.
  • a sufficient amount of bubbles were included in the surface layer coating material, and the bubbles were ruptured, thereby interspersing a plurality of through holes in the surface layer.
  • the air was encapsulated in the coating material with a rotating disk type disperser after stirring with a double-arm kneader.
  • the negative electrode mixture paint was applied to the current collector, dried, and after rolling, the surface layer paint was applied to the surface of the negative electrode mixture layer. Then, the coating film of the surface layer coating material was dried. At that time, bubbles contained in the surface layer coating burst during drying, and a large number of minute through holes having a diameter of about 20 ⁇ m or less were formed.
  • the thickness of the negative electrode mixture layer per side was 84 ⁇ m, and the thickness of the surface layer was 10 ⁇ m.
  • the degree of exposure of the negative electrode mixture layer from the surface layer was 1%.
  • Reference Example 10 the surface roughness of the mixture layer was reduced. And the negative electrode mixture layer thickness per one side was 79 micrometers, the thickness of the surface layer was 15 micrometers, and the negative electrode whose maximum height roughness Rmax of the interface of a negative electrode mixture layer and a surface layer was 20 micrometers was produced. When the surface layer of the obtained negative electrode was observed, the negative electrode mixture layer was not exposed from the surface layer (exposure degree 0%). Next, a lithium ion secondary battery was produced in the same manner as in Reference Example 1 except that the obtained negative electrode was used.
  • Table 3 shows the results of evaluation of the degree of exposure of the negative electrode mixture layer, the non-aqueous electrolyte injection property, and the charge / discharge cycle characteristics of the batteries of Reference Examples 6 to 10.
  • the electrode plate for a non-aqueous secondary battery according to the present invention is excellent in charge / discharge cycle characteristics, and thus is useful as a power source for various electronic devices, communication devices, and mobile objects that are desired to have a long life.
  • it is useful as a power source for a multifunctional portable device or a power source for an EV (electric vehicle) or HEV (hybrid vehicle).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

An electrode plate for a non-aqueous secondary battery. Said electrode plate is provided with a rectangular collector and a mixture layer that is formed on the surface of the collector and contains a first active material. The mixture layer has: a first edge section that runs along one edge of the collector; a second edge section on the opposite side from the first edge section; a third edge section that runs along an edge of the collector perpendicular to the aforementioned one edge; a fourth edge section on the opposite side from the third edge section; and a main section consisting of the area that is not part of the first through fourth edge sections. At least one prescribed edge section selected from the group consisting of the first through fourth edge sections is thinner than the main section of the mixture layer. The surface of the prescribed edge section(s) is covered by a surface layer containing a second active material that is more reactive with respect to lithium than the first active material is.

Description

非水系二次電池用電極板およびこれを用いた非水系二次電池Non-aqueous secondary battery electrode plate and non-aqueous secondary battery using the same
 本発明は、リチウムイオン電池に代表される非水系二次電池用電極板およびこれを用いた非水系二次電池に関する。 The present invention relates to an electrode plate for a non-aqueous secondary battery represented by a lithium ion battery and a non-aqueous secondary battery using the same.
 近年、電気自動車用電源として、リチウムイオン二次電池などの非水系二次電池の利用が広がりつつある。代表的なリチウムイオン二次電池は、負極活物質にリチウムの吸蔵および放出が可能な炭素材料等を用い、正極活物質にLiCoO2等のリチウム含有複合酸化物を正極活物質として用いている。これにより、高電圧で高容量の二次電池を実現している。しかし、近年の電気自動車用電源の需要増加に伴い、更なる高容量、長寿命、安全性の改善が求められている。 In recent years, the use of non-aqueous secondary batteries such as lithium ion secondary batteries has been expanding as power sources for electric vehicles. A typical lithium ion secondary battery uses a carbon material that can store and release lithium as a negative electrode active material, and a lithium-containing composite oxide such as LiCoO 2 as a positive electrode active material. As a result, a high voltage and high capacity secondary battery is realized. However, with the recent increase in demand for power sources for electric vehicles, further improvements in capacity, long life, and safety are required.
 上記の要求に応えるために、正極および負極の様々な改良が検討されている。その一つが、集電体の表面に、活物質を含む合剤層となる塗料を塗布した後、組成の異なる塗料を表面層として塗布する方法である。この際、塗布される表面層の特性により、長寿命化や安全性の改善が可能となる(特許文献1、2参照)。 In order to meet the above requirements, various improvements of the positive electrode and the negative electrode have been studied. One of them is a method in which a coating material having a mixture layer containing an active material is applied to the surface of a current collector, and then a coating material having a different composition is applied as a surface layer. At this time, it is possible to extend the life and improve the safety depending on the characteristics of the applied surface layer (see Patent Documents 1 and 2).
 一方、集電体に活物質を含む塗料を塗布する際には、塗膜の表面張力により、合剤層の端部が盛り上がる傾向がある。したがって、正極と負極の端部が重なると、セパレータが圧迫され、内部短絡の原因となる。そこで、端部の盛り上がりの位置を規制することにより、内部短絡を防止する方法が検討されている(特許文献3参照)。 On the other hand, when applying a paint containing an active material to the current collector, the end of the mixture layer tends to rise due to the surface tension of the coating film. Therefore, when the end portions of the positive electrode and the negative electrode overlap, the separator is pressed, causing an internal short circuit. Then, the method of preventing an internal short circuit is considered by restrict | limiting the position of the swelling of an edge part (refer patent document 3).
特開2005-183179号公報JP 2005-183179 A 特開2010-97720号公報JP 2010-97720 A 特開2010-262773号公報JP 2010-262773 A
 上記のように、端部の盛り上がりの位置を規制する場合でも、盛り上った端部では、正極と負極との距離が近くなる。従って、合剤層の端部に電荷が集中し、リチウムが析出することがある。このようなリチウムの析出は、充放電サイクル特性の低下の原因となる。 As described above, even when the rising position of the end portion is regulated, the distance between the positive electrode and the negative electrode is close at the rising end portion. Therefore, electric charges may concentrate on the end portion of the mixture layer, and lithium may be deposited. Such lithium deposition causes deterioration of charge / discharge cycle characteristics.
 上記に鑑み、本発明の一局面は、矩形の集電体と、前記集電体の表面に形成された第1活物質を含む合剤層とを具備し、前記合剤層は、前記集電体の一端部に沿う第1端部と、前記第1端部の反対側の第2端部と、前記集電体の前記一端部に垂直な他端部に沿う第3端部と、前記第3端部の反対側の第4端部と、前記第1から第4端部以外の主要部と、を有し、前記第1から第4端部よりなる群から選択される少なくとも1つの所定端部の厚みが、前記合剤層の主要部の厚みよりも小さく、前記所定端部の表面が、前記活物質よりもリチウムとの反応性が高い第2活物質を含む表面層で覆われている、非水系二次電池用電極板に関する。 In view of the above, one aspect of the present invention includes a rectangular current collector and a mixture layer including a first active material formed on a surface of the current collector, and the mixture layer includes the current collector. A first end along one end of the electrical current body, a second end opposite to the first end, a third end along the other end perpendicular to the one end of the current collector, At least one selected from the group consisting of the first to fourth ends, and a fourth end opposite to the third end and a main portion other than the first to fourth ends. The thickness of one predetermined end is smaller than the thickness of the main part of the mixture layer, and the surface of the predetermined end is a surface layer containing a second active material having a higher reactivity with lithium than the active material It is related with the electrode plate for non-aqueous secondary batteries covered.
 本発明の他の一局面は、電極群、非水電解質および前記電極群を前記非水電解質とともに収容する外装体を具備し、前記電極群は、正極と、負極と、前記正極と前記負極との間に介在する多孔質絶縁層とを具備し、前記正極と前記負極とが、前記多孔質絶縁層を介して積層または捲回されており、前記正極および前記負極の少なくとも一方が、上記の非水系二次電池用電極板である、非水系二次電池に関する。 Another aspect of the present invention includes an electrode group, a nonaqueous electrolyte, and an exterior body that houses the electrode group together with the nonaqueous electrolyte. The electrode group includes a positive electrode, a negative electrode, the positive electrode, and the negative electrode. The positive electrode and the negative electrode are laminated or wound via the porous insulating layer, and at least one of the positive electrode and the negative electrode is the above-described porous insulating layer. The present invention relates to a non-aqueous secondary battery which is an electrode plate for a non-aqueous secondary battery.
 本発明によれば、合剤層の少なくとも1つの端部の厚みが、合剤層の主要部の厚みより小さくなっているため、当該端部に対する電荷の集中が起りにくい。従って、端部でのリチウムの析出も起りにくい。よって、充放電サイクル特性に優れた非水系二次電池を得ることができる。 According to the present invention, since the thickness of at least one end portion of the mixture layer is smaller than the thickness of the main portion of the mixture layer, the concentration of charges on the end portion is unlikely to occur. Therefore, lithium is hardly deposited at the end. Therefore, a non-aqueous secondary battery excellent in charge / discharge cycle characteristics can be obtained.
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。 While the novel features of the invention are set forth in the appended claims, the invention will be further described by reference to the following detailed description, taken in conjunction with the other objects and features of the invention, both in terms of construction and content. It will be well understood.
本発明の第1実施形態における非水系二次電池の一部切欠斜視図である。1 is a partially cutaway perspective view of a nonaqueous secondary battery in a first embodiment of the present invention. 本発明の第1実施形態における非水系二次電池用電極板の断面の模式図である。It is a schematic diagram of the cross section of the electrode plate for non-aqueous secondary batteries in 1st Embodiment of this invention. 同電極板の正面の模式図である。It is a schematic diagram of the front of the electrode plate. 本発明の第2実施形態における非水系二次電池用電極板の断面の模式図である。It is a schematic diagram of the cross section of the electrode plate for non-aqueous secondary batteries in 2nd Embodiment of this invention. 本発明の第3実施形態における非水系二次電池用電極板の断面の模式図である。It is a schematic diagram of the cross section of the electrode plate for non-aqueous secondary batteries in 3rd Embodiment of this invention. 本発明の第4実施形態における非水系二次電池用電極板の正面の模式図である。It is a schematic diagram of the front of the electrode plate for non-aqueous secondary batteries in 4th Embodiment of this invention. 比較例1の非水系二次電池用電極板の断面の模式図である。6 is a schematic view of a cross section of a nonaqueous secondary battery electrode plate of Comparative Example 1. FIG. 本発明の第1参考形態における非水系二次電池用電極板の断面の模式図である。It is a schematic diagram of the cross section of the electrode plate for non-aqueous secondary batteries in the 1st reference form of this invention. 本発明の第2参考形態における非水系二次電池用電極板の断面の模式図である。It is a schematic diagram of the cross section of the electrode plate for non-aqueous secondary batteries in the 2nd reference form of this invention. 同電極板の表面の部分模式図である。It is a partial schematic diagram of the surface of the same electrode plate. 第2参考形態の変形例における非水系二次電池用電極板の断面の模式図である。It is a schematic diagram of the cross section of the electrode plate for non-aqueous secondary batteries in the modification of 2nd reference form. 同電極板の表面の部分模式図である。It is a partial schematic diagram of the surface of the same electrode plate. 第2参考形態の別の変形例における非水系二次電池用電極板の断面の模式図である。It is a schematic diagram of the cross section of the electrode plate for non-aqueous secondary batteries in another modification of the second reference embodiment. 同電極板の表面の部分模式図である。It is a partial schematic diagram of the surface of the same electrode plate.
 本発明の非水系二次電池用電極板は、矩形の集電体と、集電体の表面に形成された第1活物質を含む合剤層とを具備する。合剤層は、集電体の一端部に沿う第1端部と、第1端部の反対側の第2端部と、集電体の前記一端部に垂直な他端部に沿う第3端部と、第3端部の反対側の第4端部と、第1から第4端部以外の主要部と、を有する。すなわち、主要部は、矩形の合剤層の四辺に沿う端部を除いた部分である。 The electrode plate for a non-aqueous secondary battery of the present invention comprises a rectangular current collector and a mixture layer containing a first active material formed on the surface of the current collector. The mixture layer includes a first end along one end of the current collector, a second end opposite to the first end, and a third end along the other end perpendicular to the one end of the current collector. An end portion, a fourth end portion opposite to the third end portion, and a main portion other than the first to fourth end portions. That is, the main portion is a portion excluding the end portions along the four sides of the rectangular mixture layer.
 矩形とは、細長い帯状の長方形でもよい。また、矩形とは、完全な四角形だけを意味するものではなく、四角形に近い形状を含む。 The rectangle may be a long and narrow strip rectangle. Further, the rectangle does not mean only a perfect rectangle but includes a shape close to a rectangle.
 合剤層は、例えば、第1活物質を、任意成分とともに液状の分散媒と混合して、合剤塗料を調製し、その塗料を集電体の表面に塗布し、乾燥させることにより得ることができる。任意成分としては、結着剤、導電剤、増粘剤などが挙げられる。 The mixture layer is obtained, for example, by mixing the first active material with a liquid dispersion medium together with optional components to prepare a mixture paint, applying the paint to the surface of the current collector, and drying the mixture. Can do. Examples of optional components include a binder, a conductive agent, and a thickener.
 なお、上記の各端部は、その最端部から20mm以下(例えば10mm以下)の幅の部分をいう。最端部は、集電体に合剤塗料を塗り始めた位置または塗り終わった位置に対応する。 Each end mentioned above refers to a portion having a width of 20 mm or less (for example, 10 mm or less) from the outermost end. The extreme end corresponds to the position at which the mixture paint is applied to the current collector or the position at which the application is completed.
 ここで、合剤層の所定端部の厚みは、合剤層の主要部の厚みよりも小さくなっており、更に、所定端部の表面は、第1活物質よりもリチウムとの反応性が高い第2活物質を含む表面層で覆われている。ただし、所定端部とは、第1から第4端部よりなる群から選択される少なくとも1つの端部である。すなわち、所定端部は、第1から第4端部のいずれか1つであってもよく、第1から第4端部の全てであってもよく、第1端部と第2端部の組であってもよく、第3端部と第4端部の組であってもよく、その他の組であってもよい。 Here, the thickness of the predetermined end portion of the mixture layer is smaller than the thickness of the main portion of the mixture layer, and the surface of the predetermined end portion is more reactive with lithium than the first active material. It is covered with a surface layer containing a high second active material. However, the predetermined end is at least one end selected from the group consisting of the first to fourth ends. That is, the predetermined end may be any one of the first to fourth ends, or may be all of the first to fourth ends, and the first end and the second end. It may be a set, a set of the third end and the fourth end, or another set.
 表面層は、例えば、第2活物質を、任意成分とともに液状の分散媒と混合して、表面層塗料を調製し、その塗料を合剤層の表面に塗布し、乾燥させることにより得ることができる。任意成分としては、結着剤、導電剤、増粘剤などが挙げられる。 The surface layer can be obtained, for example, by mixing the second active material together with an optional component with a liquid dispersion medium to prepare a surface layer coating material, applying the coating material to the surface of the mixture layer, and drying. it can. Examples of optional components include a binder, a conductive agent, and a thickener.
 なお、第1活物質および第2活物質は、いずれも、電気化学的にリチウムと反応し得る材料であり、例えば、リチウムイオンを可逆的に吸蔵および放出可能な材料である。 Note that each of the first active material and the second active material is a material that can electrochemically react with lithium, for example, a material capable of reversibly occluding and releasing lithium ions.
 上記のように、合剤層の少なくとも1つの端部の厚みを、合剤層の端部以外(主要部)の厚みよりも薄くするとともに、当該端部の表面を、第2活物質を含む表面層で覆うことにより、合剤層の反応性を合剤層の全体にわたって平滑化させることができる。具体的には、合剤層の端部の厚みを主要部の厚みよりも薄くするだけでは、電荷の集中は防止できるものの、端部の容量が低減する。一方、当該端部の表面をリチウムとの反応性が高い表面層で覆うことで、端部の容量が補われるとともに、端部におけるリチウムイオンの受け入れ性が向上する。これにより、合剤層の端部での電荷の集中を防ぎつつ、リチウムの析出を抑制することができると考えられる。よって、充放電サイクル特性を向上させることができる。 As described above, the thickness of at least one end of the mixture layer is made thinner than the thickness (main part) other than the end of the mixture layer, and the surface of the end includes the second active material. By covering with the surface layer, the reactivity of the mixture layer can be smoothed over the entire mixture layer. Specifically, the charge concentration can be prevented only by making the thickness of the end portion of the mixture layer thinner than the thickness of the main portion, but the capacity of the end portion is reduced. On the other hand, by covering the surface of the end with a surface layer having high reactivity with lithium, the capacity of the end is supplemented and the acceptability of lithium ions at the end is improved. Thereby, it is considered that precipitation of lithium can be suppressed while preventing concentration of electric charges at the end portion of the mixture layer. Therefore, the charge / discharge cycle characteristics can be improved.
 なお、表面層は、合剤層よりもリチウムイオン受け入れ性に優れ、リチウムの析出を抑制できる層であればよい。従って、上記構成の変形例は、必ずしも、第2活物質を含む必要はない。この場合、表面層は、アルミナ、マグネシア、シリカ、チタニアなどを含む層でもよい。 It should be noted that the surface layer may be a layer that is more excellent in lithium ion acceptability than the mixture layer and can suppress the precipitation of lithium. Therefore, the modified example of the above configuration does not necessarily include the second active material. In this case, the surface layer may be a layer containing alumina, magnesia, silica, titania or the like.
 所定端部の厚みは、所定端部の最端部に向かうにつれて小さくなっていることが好ましい。これにより、合剤層の反応性(特に端部での反応性)を平滑化させる効果が大きくなる。 It is preferable that the thickness of the predetermined end portion becomes smaller toward the endmost portion of the predetermined end portion. Thereby, the effect of smoothing the reactivity (especially the reactivity at the end) of the mixture layer is increased.
 表面層は、所定端部の表面を覆う端部対応部と、合剤層の主要部の表面を覆う主要部対応部とを具備してもよい。すなわち、表面層は、合剤層の端部だけでなく、合剤層の全体または合剤層の表面の例えば40%以上を覆うものでもよい。このとき、端部対応部の厚みは、主要部対応部の厚みより大きくなっていることが好ましい。これにより、リチウムが析出しやすい合剤層の端部におけるリチウムイオンの受け入れ性と、主要部におけるリチウムイオンの受け入れ性とのバランスを制御しやすくなる。 The surface layer may include an end corresponding portion that covers the surface of the predetermined end portion, and a main portion corresponding portion that covers the surface of the main portion of the mixture layer. That is, the surface layer may cover not only the end portion of the mixture layer but also the entire mixture layer or, for example, 40% or more of the surface of the mixture layer. At this time, the thickness of the end corresponding part is preferably larger than the thickness of the main part corresponding part. This makes it easy to control the balance between the lithium ion acceptability at the end of the mixture layer where lithium is likely to precipitate and the lithium ion acceptability at the main part.
 表面層の端部対応部の厚みは、所定端部の最端部に向かうにつれて大きくなっていることが好ましい。これにより、最端部に向かうにつれて、所定端部のリチウムイオン受け入れ性が大きくなるため、合剤層の反応性(特に端部での反応性)を平滑化させる効果がより大きくなる。 It is preferable that the thickness of the end portion corresponding portion of the surface layer is increased toward the end of the predetermined end. Thereby, since the lithium ion acceptance property of a predetermined edge part becomes large as it goes to the end part, the effect of smoothing the reactivity (especially the reactivity in an edge part) of a mixture layer becomes larger.
 表面層は、所定端部の表面を覆うとともに、集電体の表面の少なくとも一部を覆っていることが好ましい。これにより、充放電時に、合剤層の端部が集電体から脱落しにくくなる。 It is preferable that the surface layer covers the surface of the predetermined end portion and covers at least a part of the surface of the current collector. Thereby, the edge part of a mixture layer becomes difficult to drop | omit from a collector at the time of charging / discharging.
 合剤層の主要部と、表面層の主要部対応部と、の界面における、最大高さ粗さRmaxは、3~25μmであることが好ましい。また、主要部対応部の厚みは、3~20μmであることが好ましい。これにより、合剤層と表面層との密着強度を高めることができ、より優れた充放電サイクル特性を確保することが可能となる。また、合剤層が表面層から露出することが抑制されるため、内部短絡が極めて発生しにくくなる。 The maximum height roughness Rmax at the interface between the main part of the mixture layer and the main part corresponding part of the surface layer is preferably 3 to 25 μm. The thickness of the main part corresponding part is preferably 3 to 20 μm. Thereby, the adhesion strength between the mixture layer and the surface layer can be increased, and more excellent charge / discharge cycle characteristics can be ensured. Moreover, since it is suppressed that a mixture layer is exposed from a surface layer, an internal short circuit becomes very difficult to generate | occur | produce.
 ここで、最大高さ粗さRmaxは、粗さ曲線からその平均線の方向に基準長さだけを抜き取り、この抜取り部分の山頂線と谷底線との間隔を粗さ曲線の縦倍率の方向に測定し、この値をマイクロメートルμmで表したものをいう。 Here, the maximum height roughness Rmax is obtained by extracting only the reference length from the roughness curve in the direction of the average line, and setting the interval between the peak line and the valley line of the extracted part in the direction of the vertical magnification of the roughness curve. Measured and expressed in micrometer μm.
 上記のように、内部短絡を抑制する効果を高める観点からは、合剤層は表面層から露出していないことが望ましい。ただし、本発明によれば、合剤層の露出の有無に関わらず、内部短絡を抑制する十分な効果を得ることが可能である。むしろ、生産性の向上の観点からは、合剤層の主要部の一部が、表面層の主要部対応部から露出していることが望ましい場合がある。具体的には、非水電解質が合剤層に含浸されるときのスピードは、合剤層が露出している方が速くなる。 As mentioned above, it is desirable that the mixture layer is not exposed from the surface layer from the viewpoint of enhancing the effect of suppressing the internal short circuit. However, according to the present invention, it is possible to obtain a sufficient effect of suppressing the internal short circuit regardless of whether or not the mixture layer is exposed. Rather, from the viewpoint of improving productivity, it may be desirable that a part of the main part of the mixture layer is exposed from the part corresponding to the main part of the surface layer. Specifically, the speed at which the non-aqueous electrolyte is impregnated in the mixture layer becomes faster when the mixture layer is exposed.
 合剤層の主要部の一部を、表面層の主要部対応部から露出させるには、例えば、主要部対応部に、複数の貫通孔を点在させればよい。このような貫通孔は、表面層を形成するための塗料に、十分な量の気泡を内包させておき、塗膜の状態で気泡を破裂させることにより、容易に形成することができる。あるいは、例えばRmaxが25μmを超えるように、合剤層に凹凸を形成することにより、表面層から合剤層の凸部を露出させてもよい。 In order to expose a part of the main part of the mixture layer from the main part corresponding part of the surface layer, for example, a plurality of through holes may be scattered in the main part corresponding part. Such a through-hole can be easily formed by enclosing a sufficient amount of bubbles in the coating material for forming the surface layer and rupturing the bubbles in the state of the coating film. Or you may expose the convex part of a mixture layer from a surface layer by forming an unevenness | corrugation in a mixture layer so that Rmax may exceed 25 micrometers, for example.
 主要部の面積に対する、主要部が露出する面積の割合(露出度)は、60%以下とすることが好ましく、1~10%とすることがより好ましい。露出度を上記範囲とすることで、内部短絡を抑制する高い効果を維持しつつ、電池の製造時には、非水電解質が合剤層に含浸されるときのスピードを速めることができる。 The ratio of the area where the main part is exposed to the area of the main part (exposure degree) is preferably 60% or less, and more preferably 1 to 10%. By setting the degree of exposure within the above range, it is possible to increase the speed at which the nonaqueous electrolyte is impregnated in the mixture layer at the time of manufacturing the battery while maintaining the high effect of suppressing the internal short circuit.
 本発明の電極板の好ましい一形態としては、第1活物質が、リチウムイオンを可逆的に吸蔵および放出可能な炭素材料であり、第2活物質が、リチウムイオンを可逆的に吸蔵および放出可能なリチウムチタン複合酸化物である場合が挙げられる。このような電極板は、リチウムイオン二次電池用負極として有用である。 As a preferred embodiment of the electrode plate of the present invention, the first active material is a carbon material capable of reversibly occluding and releasing lithium ions, and the second active material is capable of reversibly occluding and releasing lithium ions. The case where it is a lithium titanium complex oxide is mentioned. Such an electrode plate is useful as a negative electrode for a lithium ion secondary battery.
 本発明の非水系二次電池は、電極群、非水電解質および電極群を非水電解質とともに収容する外装体を具備する。電極群は、正極と、負極と、これらの間に介在する多孔質絶縁層とを具備する。正極と負極とは、多孔質絶縁層を介して積層または捲回されている。ここで、正極および負極の少なくとも一方は、上記の非水系二次電池用電極板である。 The non-aqueous secondary battery of the present invention includes an electrode group, a non-aqueous electrolyte, and an exterior body that houses the electrode group together with the non-aqueous electrolyte. The electrode group includes a positive electrode, a negative electrode, and a porous insulating layer interposed therebetween. The positive electrode and the negative electrode are laminated or wound through a porous insulating layer. Here, at least one of the positive electrode and the negative electrode is the electrode plate for a non-aqueous secondary battery.
 第1活物質と第2活物質との組み合わせは、第1活物質よりも第2活物質のリチウムイオン受け入れ性が高い限り、特に限定されない。第1活物質および第2活物質としては、ニッケル系複合酸化物、コバルト系複合酸化物、コバルト酸ナノ粒子、コバルト系酸窒化物、マンガン系複合酸化物、クロム系複合酸化物、リン酸鉄系複合酸化物、バナジウム系複合酸化物、炭素材料(黒鉛、ハードカーボンなど)、チタン系複合酸化物、錫系材料、珪素系材料、金属リチウムなどを用いることができる。 The combination of the first active material and the second active material is not particularly limited as long as the lithium active material acceptability of the second active material is higher than that of the first active material. As the first active material and the second active material, nickel-based composite oxide, cobalt-based composite oxide, cobalt acid nanoparticles, cobalt-based oxynitride, manganese-based composite oxide, chromium-based composite oxide, iron phosphate It is possible to use a system composite oxide, a vanadium system composite oxide, a carbon material (graphite, hard carbon, etc.), a titanium system composite oxide, a tin system material, a silicon system material, or metallic lithium.
 以下、本発明を実施形態に基づいて、図面を参照しながら説明する。ただし、以下の実施形態は、本発明を限定するものではない。 Hereinafter, the present invention will be described based on embodiments with reference to the drawings. However, the following embodiments do not limit the present invention.
(第1実施形態)
 図1は、非水系二次電池の一例である円筒形リチウムイオン二次電池11の一部を切欠した斜視図である。
(First embodiment)
FIG. 1 is a perspective view in which a part of a cylindrical lithium ion secondary battery 11 which is an example of a non-aqueous secondary battery is cut away.
 円筒形リチウムイオン二次電池11は、正極1と、負極2とを、多孔質絶縁層であるセパレータ3を介して渦巻状に捲回して構成された電極群4を具備する。電極群4は、外装体である有底円筒形の電池ケース5の内部に、絶縁板6により電池ケース5と絶縁された状態で収容されている。一方、電極群4の下部から導出された負極リード(図示せず)は、電池ケース5の底部に接続されている。電極群4の上部より導出された正極リード8は、正極端子9aを有する封口板9に接続されている。電極群4を電池ケース5の内部に収容した後、電池ケース5に所定量の非水電解質が注液される。これにより、電極群4の隙間、合剤層やセパレータが有する空隙に非水電解質が含浸される。電池ケース5の開口は、ガスケット10を周縁に取り付けた封口板9により封口されている。電池ケース5の開口端部は、内方向に折り曲げられ、封口板9の周縁部(ガスケット10)に加締められている。 The cylindrical lithium ion secondary battery 11 includes an electrode group 4 configured by winding a positive electrode 1 and a negative electrode 2 in a spiral shape through a separator 3 that is a porous insulating layer. The electrode group 4 is accommodated in a state of being insulated from the battery case 5 by an insulating plate 6 inside a bottomed cylindrical battery case 5 as an exterior body. On the other hand, a negative electrode lead (not shown) led out from the lower part of the electrode group 4 is connected to the bottom of the battery case 5. The positive electrode lead 8 led out from the upper part of the electrode group 4 is connected to a sealing plate 9 having a positive electrode terminal 9a. After the electrode group 4 is accommodated in the battery case 5, a predetermined amount of nonaqueous electrolyte is injected into the battery case 5. Thereby, the nonaqueous electrolyte is impregnated in the gaps of the electrode group 4 and the gaps of the mixture layer and the separator. The opening of the battery case 5 is sealed by a sealing plate 9 having a gasket 10 attached to the periphery. The open end of the battery case 5 is bent inward and is crimped to the peripheral edge (gasket 10) of the sealing plate 9.
 図2は、本実施形態における負極2の断面の模式図である。更に、図3は、本実施形態における負極2の正面の模式図である。 FIG. 2 is a schematic diagram of a cross section of the negative electrode 2 in the present embodiment. Furthermore, FIG. 3 is a schematic diagram of the front surface of the negative electrode 2 in the present embodiment.
 負極2は、帯状の矩形の負極集電体12と、その表面に形成された負極合剤層13とを具備する。負極合剤層13は、集電体12の短手方向に沿う第1端部13aと、第1端部13aの反対側の第2端部13bと、集電体12の長手方向に沿う第3端部13cと、第3端部13cの反対側の第4端部13dとを具備する矩形である。合剤層13の第1から第4端部以外の部分は、主要部13Aである。負極2は、合剤層13の第1端部13a側が外周側になるように捲回される。第1端部13aの近傍では、負極集電体12に負極リード7が接合されている。 The negative electrode 2 includes a strip-shaped rectangular negative electrode current collector 12 and a negative electrode mixture layer 13 formed on the surface thereof. The negative electrode mixture layer 13 includes a first end 13 a along the short direction of the current collector 12, a second end 13 b opposite to the first end 13 a, and a first end along the longitudinal direction of the current collector 12. It is a rectangle having a three end portion 13c and a fourth end portion 13d opposite to the third end portion 13c. The portion other than the first to fourth end portions of the mixture layer 13 is a main portion 13A. The negative electrode 2 is wound so that the first end portion 13a side of the mixture layer 13 is on the outer peripheral side. In the vicinity of the first end portion 13a, the negative electrode lead 7 is bonded to the negative electrode current collector 12.
 ここで、第1端部13aおよび第2端部13bは、合剤層の主要部13Aよりも厚みの小さい所定端部である。第1端部13aおよび第2端部13bの厚みは、各端部の最端部に向かうにつれて薄くなっている。第1端部13aおよび第2端部13bの表面は、主要部13Aの表面とともに、表面層14で覆われている。表面層14の厚みは均一であり、負極合剤層13の表面の全面が表面層14で覆われている。 Here, the first end portion 13a and the second end portion 13b are predetermined end portions having a thickness smaller than that of the main portion 13A of the mixture layer. The thickness of the 1st end part 13a and the 2nd end part 13b is thin as it goes to the endmost part of each end part. The surfaces of the first end portion 13a and the second end portion 13b are covered with the surface layer 14 together with the surface of the main portion 13A. The thickness of the surface layer 14 is uniform, and the entire surface of the negative electrode mixture layer 13 is covered with the surface layer 14.
 負極合剤層13は、第1活物質として、例えば、リチウムイオンを可逆的に吸蔵および放出可能な炭素材料や珪素系材料を含んでいる。炭素材料としては、黒鉛(各種天然黒鉛、人造黒鉛)、ハードカーボン、ソフトカーボンなどが挙げられる。珪素系材料としては、珪素酸化物(SiOx、ただし0.1≦x≦1.8)、珪素合金(Ti-Si合金など)などが挙げられる。また、負極合剤層13は、ポリフッ化ビニリデン(PVdF)などのフッ素樹脂、スチレン-ブタジエン共重合体(SBR)などのゴム粒子、カルボキシメチルセルロース(CMC)などのセルロース樹脂を結着材として含み得る。リチウムイオン受入れ性を向上させる観点からは、SBRとCMCを併用することが好ましい。更に、負極合剤層13は、導電材として、カーボンブラック、カーボンナノチューブ、VGCFなどを含み得る。カーボンブラックとしては、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどを用いることができる。 The negative electrode mixture layer 13 includes, for example, a carbon material or a silicon-based material capable of reversibly occluding and releasing lithium ions as the first active material. Examples of the carbon material include graphite (various natural graphite and artificial graphite), hard carbon, and soft carbon. Examples of the silicon-based material include silicon oxide (SiOx, where 0.1 ≦ x ≦ 1.8), silicon alloy (such as Ti—Si alloy), and the like. Further, the negative electrode mixture layer 13 may contain a fluorine resin such as polyvinylidene fluoride (PVdF), rubber particles such as a styrene-butadiene copolymer (SBR), and a cellulose resin such as carboxymethyl cellulose (CMC) as a binder. . From the viewpoint of improving the lithium ion acceptability, it is preferable to use SBR and CMC in combination. Further, the negative electrode mixture layer 13 can include carbon black, carbon nanotube, VGCF, and the like as a conductive material. As carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and the like can be used.
 表面層14は、第2活物質として、例えば、リチウムイオンを可逆的に吸蔵および放出可能なリチウムチタン複合酸化物を含んでいる。リチウムチタン複合酸化物としては、例えば、スピネル構造を有するLi4Ti512およびその変性体が好ましいが、特に限定されない。Li4Ti512の変性体としては、Li4Ti512のTiおよび/またはLiの一部が他元素で置換された材料である。他元素としては、例えば、Ni、Co、Mn、Fe、Al、MgおよびCrよりなる群から選択される少なくとも1種が挙げられる。Tiおよび/またはLiと置換される元素の割合は、TiサイトおよびLiサイトの合計の20原子%以下であることが好ましい。 The surface layer 14 includes, for example, a lithium titanium composite oxide capable of reversibly occluding and releasing lithium ions as the second active material. As the lithium titanium composite oxide, for example, Li 4 Ti 5 O 12 having a spinel structure and a modified product thereof are preferable, but not particularly limited. The modified products of Li 4 Ti 5 O 12, a material part of the Ti and / or Li of the Li 4 Ti 5 O 12 is replaced with another element. Examples of the other element include at least one selected from the group consisting of Ni, Co, Mn, Fe, Al, Mg, and Cr. The ratio of elements substituted for Ti and / or Li is preferably 20 atomic% or less of the total of Ti sites and Li sites.
 表面層14も、上記のような結着剤を含み得る。第2活物質の平均粒径を、第1活物質の平均粒径よりも小さくし、かつ第2活物質の比表面積を第1活物質の比表面積よりも大きくすることで、表面層14と、負極合剤層13や負極集電体12との接触面積が大きくなり、これらの間での結着性が高くなる。 The surface layer 14 may also contain a binder as described above. By making the average particle size of the second active material smaller than the average particle size of the first active material and making the specific surface area of the second active material larger than the specific surface area of the first active material, In addition, the contact area between the negative electrode mixture layer 13 and the negative electrode current collector 12 is increased, and the binding property between them is increased.
 ここで、第1活物質の平均粒径D1は、2~50μmであることが好ましい。また、第2活物質の平均粒径D2(D1>D2)は、0.5~5μmであることが好ましい。D1/D2の比は、4~10であることが好ましい。なお、D1およびD2は、体積基準粒度分布における累積体積50%相当のメディアン径である。 Here, the average particle diameter D1 of the first active material is preferably 2 to 50 μm. The average particle diameter D2 (D1> D2) of the second active material is preferably 0.5 to 5 μm. The ratio of D1 / D2 is preferably 4 to 10. D1 and D2 are median diameters corresponding to a cumulative volume of 50% in the volume-based particle size distribution.
 合剤層13は、上記のように、第1活物質を、任意成分とともに液状の分散媒と混合して、合剤塗料を調製し、その塗料を集電体の表面に塗布し、乾燥させることにより得ることができる。合剤層の厚みは、例えば、30~150μmである。負極集電体には、例えば、厚み5~25μmの銅箔、銅合金箔が用いられる。乾燥後の塗膜は圧延してもよい。あるいは、合剤塗料の塗膜を乾燥させず、以下の表面層14の形成工程に移行してもよい。 As described above, the mixture layer 13 is prepared by mixing the first active material together with an optional component with a liquid dispersion medium to prepare a mixture paint, applying the paint onto the surface of the current collector, and drying the mixture. Can be obtained. The thickness of the mixture layer is, for example, 30 to 150 μm. For the negative electrode current collector, for example, a copper foil or copper alloy foil having a thickness of 5 to 25 μm is used. The coated film after drying may be rolled. Or you may transfer to the formation process of the following surface layers 14, without drying the coating film of mixture paint.
 表面層14は、第2活物質を、任意成分とともに液状の分散媒と混合して、表面層塗料を調製し、その塗料を合剤層の表面に塗布し、乾燥させることにより得ることができる。その後、合剤層13とともに表面層14を圧延してもよい。 The surface layer 14 can be obtained by mixing the second active material together with an optional component with a liquid dispersion medium to prepare a surface layer coating material, applying the coating material to the surface of the mixture layer, and drying. . Thereafter, the surface layer 14 may be rolled together with the mixture layer 13.
 合剤塗料および表面層塗料の調製は、プラネタリーミキサー等の分散機により、材料をN-メチル-2-ピロリドン(NMP)などの分散媒に分散させることにより行われる。各塗料の粘度は、集電体12または合剤層13への塗布に最適となるように調整される。各塗料の塗布は、例えばダイコーターで行えばよい。 Preparation of the mixture paint and the surface layer paint is carried out by dispersing the material in a dispersion medium such as N-methyl-2-pyrrolidone (NMP) using a dispersing machine such as a planetary mixer. The viscosity of each paint is adjusted so as to be optimal for application to the current collector 12 or the mixture layer 13. Application of each paint may be performed by a die coater, for example.
 合剤層13と表面層14との界面の最大高さ粗さRmaxは、例えば3~25μm、更には5~20μmに設定される。最大高さ粗さRmaxは、合剤層13と表面層14との界面のうち、集電体12から最も離れた界面と、集電体12に最も近い界面との厚み方向の距離に相当する。最大高さ粗さRmaxを上記範囲とすることにより、合剤層13と表面層14の接着におけるアンカー効果が大きくなるとともに、合剤層13が表面層14から露出することが抑制されるため、内部短絡が極めて発生しにくくなる。この場合、表面層14の厚みを3~20μm、更には5~15μmに設定することで、合剤層13と表面層14との密着強度を、更に高めることができるとともに、電池容量の確保が容易となる。 The maximum height roughness Rmax of the interface between the mixture layer 13 and the surface layer 14 is set to, for example, 3 to 25 μm, and further 5 to 20 μm. The maximum height roughness Rmax corresponds to the distance in the thickness direction between the interface farthest from the current collector 12 and the interface closest to the current collector 12 among the interface between the mixture layer 13 and the surface layer 14. . By setting the maximum height roughness Rmax in the above range, the anchor effect in adhesion between the mixture layer 13 and the surface layer 14 is increased, and the mixture layer 13 is suppressed from being exposed from the surface layer 14. Internal short circuit is extremely difficult to occur. In this case, by setting the thickness of the surface layer 14 to 3 to 20 μm, further 5 to 15 μm, the adhesion strength between the mixture layer 13 and the surface layer 14 can be further increased, and the battery capacity can be secured. It becomes easy.
 一方、表面層14を介して合剤層13の一部が露出するように、合剤層13と表面層14の構造や、これらの界面の最大高さ粗さRmaxを設定してもよい。これにより、合剤層13への非水電解質の含浸性を向上させることができる。ただし、合剤層13の主要部の面積に対する、主要部が露出する面積の割合(露出度)は、60%以下とすることが好ましく、1~10%とすることがより好ましい。 On the other hand, the structure of the mixture layer 13 and the surface layer 14 and the maximum height roughness Rmax of these interfaces may be set so that a part of the mixture layer 13 is exposed through the surface layer 14. Thereby, the impregnation property of the nonaqueous electrolyte to the mixture layer 13 can be improved. However, the ratio of the area where the main part is exposed to the area of the main part of the mixture layer 13 (exposure degree) is preferably 60% or less, and more preferably 1 to 10%.
 例えば、合剤層13の表面に外方への突出部を設け、突出部を表面層14に貫通させることにより、合剤層13の一部を露出させることができる。この場合、突出部を設けることにより、合剤層13と表面層14との界面の最大高さ粗さRmaxを、25μmより大きく設定することが好ましく、Rmaxを30~60μmとすることがより好ましい。非水電解質の含浸性を十分に高める観点から、突出部の直径は、その中心高さにおいて、20~100μmであることが好ましい。 For example, a part of the mixture layer 13 can be exposed by providing an outward projecting portion on the surface of the mixture layer 13 and passing the projecting portion through the surface layer 14. In this case, it is preferable that the maximum height roughness Rmax of the interface between the mixture layer 13 and the surface layer 14 is set to be larger than 25 μm, and more preferably Rmax is set to 30 to 60 μm by providing the protruding portion. . From the viewpoint of sufficiently increasing the impregnation property of the nonaqueous electrolyte, the diameter of the protrusion is preferably 20 to 100 μm at the center height.
 表面層14に複数の貫通孔を点在させることにより、合剤層13の一部を露出させてもよい。貫通孔は、表面層塗料に、十分な量の気泡を内包させることにより、容易に形成することができる。貫通孔の直径は、例えば20μm以下であればよいが、非水電解質の含浸性を十分に高める観点から、例えば20~100μmであってもよい。 A part of the mixture layer 13 may be exposed by interspersing a plurality of through holes in the surface layer 14. The through-hole can be easily formed by enclosing a sufficient amount of bubbles in the surface layer paint. The diameter of the through hole may be, for example, 20 μm or less, but may be, for example, 20-100 μm from the viewpoint of sufficiently enhancing the impregnation property of the nonaqueous electrolyte.
 正極1は、負極2と同様の形状を有し、帯状の矩形の正極集電体と、その表面に形成された正極合剤層とを具備する。正極合剤層は、集電体の短手方向に沿う第1端部と、第1端部の反対側の第2端部と、集電体の長手方向に沿う第3端部と、第3端部の反対側の第4端部とを具備する矩形である。正極集電体には正極リード8が接合されている。 The positive electrode 1 has the same shape as the negative electrode 2 and includes a strip-shaped rectangular positive electrode current collector and a positive electrode mixture layer formed on the surface thereof. The positive electrode mixture layer includes a first end along the short side direction of the current collector, a second end opposite to the first end, a third end along the longitudinal direction of the current collector, A rectangular shape having a fourth end opposite to the three ends. A positive electrode lead 8 is joined to the positive electrode current collector.
 正極集電体としては、例えば、厚み5μm~30 μmのアルミニウム箔、アルミニウム合金箔、ニッケル箔、ニッケル合金箔を用いることができる。正極集電体の表面に塗布する正極の合剤塗料は、例えば、正極活物質、導電材および結着材を、分散媒とともにプラネタリーミキサー等の分散機により混合することにより調製される。合剤塗料は、例えばダイコーターを用いて正極集電体に塗布する。その後、塗膜を乾燥し、次に圧延することで正極1が得られる。 As the positive electrode current collector, for example, an aluminum foil, an aluminum alloy foil, a nickel foil, or a nickel alloy foil having a thickness of 5 μm to 30 μm can be used. The positive electrode mixture paint applied to the surface of the positive electrode current collector is prepared, for example, by mixing a positive electrode active material, a conductive material, and a binder together with a dispersion medium using a disperser such as a planetary mixer. The mixture paint is applied to the positive electrode current collector using, for example, a die coater. Then, the positive electrode 1 is obtained by drying and then rolling the coating film.
 正極合剤層は、正極活物質として、例えば、ニッケル系複合酸化物、コバルト系複合酸化物、マンガン系複合酸化物、コバルト酸ナノ粒子、コバルト系酸窒化物、クロム系複合酸化物、リン酸鉄系複合酸化物、バナジウム系複合酸化物などを含む。ニッケル系複合酸化物としては、ニッケル酸リチウムやニッケル酸リチウムのニッケルを他元素に置換した材料が挙げられる。コバルト系複合酸化物としては、例えばコバルト酸リチウムやコバルト酸リチウムにアルミニウムやマグネシウムを固溶させた材料が挙げられる。マンガン系複合酸化物としては、スピネル構造を有するマンガン酸リチウムが挙げられる。 The positive electrode mixture layer is, for example, a nickel composite oxide, a cobalt composite oxide, a manganese composite oxide, a cobalt acid nanoparticle, a cobalt oxynitride, a chromium composite oxide, or phosphoric acid as a positive electrode active material. Includes iron-based composite oxides, vanadium-based composite oxides, and the like. Examples of the nickel-based composite oxide include lithium nickelate and materials obtained by substituting nickel of lithium nickelate with other elements. Examples of the cobalt-based composite oxide include a material in which aluminum or magnesium is dissolved in lithium cobaltate or lithium cobaltate. Examples of the manganese-based composite oxide include lithium manganate having a spinel structure.
 正極合剤層は、任意成分として、結着剤や導電材を含み得る。また、結着材としては、ポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデンの変性体、ポリテトラフルオロエチレン(PTFE)、アクリレート単位を含むゴム粒子などを用いることができる。導電材としては、既に述べたカーボンブラックや各種黒鉛を用いることができる。 The positive electrode mixture layer can contain a binder and a conductive material as optional components. As the binder, polyvinylidene fluoride (PVdF), a modified polyvinylidene fluoride, polytetrafluoroethylene (PTFE), rubber particles containing an acrylate unit, or the like can be used. As the conductive material, the carbon black and various graphites already described can be used.
 なお、上記の負極活物質、正極活物質、負極結着材、正極結着材、負極導電材、正極導電材は、いずれも1種を単独で用いてもよく、複数種を組み合わせて用いてもよい。 The negative electrode active material, the positive electrode active material, the negative electrode binder, the positive electrode binder, the negative electrode conductive material, and the positive electrode conductive material may be used singly or in combination. Also good.
 非水電解質は、非水溶媒およびこれに溶解させた電解質塩を含む。電解質塩としては例えば、LiPF6およびLiBF4のような各種リチウム化合物を用いることができる。また、非水溶媒としては、例えば、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)などを用いることができる。また、正極または負極の表面に皮膜を形成させたり、過充電時の安定性を確保したりするために、ビニレンカーボネート(VC)やシクロヘキシルベンゼン(CHB)などの添加剤を用いてもよい。電解質塩および非水溶媒は、いずれも1種を単独で用いてもよく、複数種を組み合わせて用いてもよい。 The non-aqueous electrolyte includes a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent. As the electrolyte salt, for example, various lithium compounds such as LiPF 6 and LiBF 4 can be used. As the non-aqueous solvent, for example, ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC) and the like can be used. In addition, an additive such as vinylene carbonate (VC) or cyclohexylbenzene (CHB) may be used in order to form a film on the surface of the positive electrode or the negative electrode or to ensure stability during overcharge. Any one of the electrolyte salt and the non-aqueous solvent may be used alone, or a plurality of them may be used in combination.
 多孔質絶縁層であるセパレータ3は、非水系二次電池のセパレータとして使用可能なものを特に限定なく用いることができる。例えば、ポリエチレン、ポリプロピレンなどのオレフィン系樹脂で形成された微多孔質フィルムを単独で、または改良して用いるのが一般的である。セパレータの厚みは、例えば10~25μmである。 As the separator 3 that is a porous insulating layer, a separator that can be used as a separator for a non-aqueous secondary battery can be used without particular limitation. For example, a microporous film formed of an olefin resin such as polyethylene or polypropylene is generally used alone or in an improved manner. The thickness of the separator is, for example, 10 to 25 μm.
 以上のような構成を有する非水系二次電池では、電極群4において、その外周側の負極集電体12の露出部に、負極リード7が接合されている。そのため、電極群4の外周側に対応する負極合剤層13の第1端部13aには、特に電荷が集中しやすく、リチウムが析出しやすい。 In the non-aqueous secondary battery having the above-described configuration, the negative electrode lead 7 is joined to the exposed portion of the negative electrode current collector 12 on the outer peripheral side in the electrode group 4. Therefore, electric charges are particularly likely to concentrate on the first end portion 13a of the negative electrode mixture layer 13 corresponding to the outer peripheral side of the electrode group 4, and lithium is likely to precipitate.
 また、正極1と負極2とをセパレータ3を介在させて渦巻状に捲回する際には、電極群4の内周側に対し、外周側よりも強い張力を印加しなければならない。そのため、電極群4の内周側では、正極1と負極2との距離が、電極群4の外周側での距離よりも近くなる。従って、電極群4の内周側に対応する負極合剤層13の第2端部13bにも、リチウムが析出しやすい。 Further, when the positive electrode 1 and the negative electrode 2 are wound in a spiral shape with the separator 3 interposed, a stronger tension than the outer peripheral side must be applied to the inner peripheral side of the electrode group 4. Therefore, on the inner peripheral side of the electrode group 4, the distance between the positive electrode 1 and the negative electrode 2 is shorter than the distance on the outer peripheral side of the electrode group 4. Accordingly, lithium is likely to be deposited also on the second end portion 13 b of the negative electrode mixture layer 13 corresponding to the inner peripheral side of the electrode group 4.
 しかしながら、本実施形態では、負極合剤層13の第1端部13aおよび第2端部13bの両方の厚みを、合剤層の主要部の厚みよりも薄くするとともに、両端部の表面をリチウムイオンの受け入れ性の高い表面層14で覆っている。よって、局所的なリチウムの析出を抑制することができる。 However, in the present embodiment, the thickness of both the first end portion 13a and the second end portion 13b of the negative electrode mixture layer 13 is made thinner than the thickness of the main portion of the mixture layer, and the surfaces of both ends are made lithium. It is covered with a surface layer 14 having high ion acceptability. Therefore, local precipitation of lithium can be suppressed.
(第2実施形態)
 図4は、本実施形態における負極2Aの断面の模式図である。負極2Aは、合剤層および表面層の端部の詳細が異なる点以外、第1実施形態の負極2とほぼ同様の構造を有するため、共通の構成要素には同じ符号を用いて説明する。
(Second Embodiment)
FIG. 4 is a schematic diagram of a cross section of the negative electrode 2A in the present embodiment. Since the negative electrode 2A has substantially the same structure as the negative electrode 2 of the first embodiment except that the details of the end portions of the mixture layer and the surface layer are different, common constituent elements will be described using the same reference numerals.
 負極2Aは、帯状の矩形の負極集電体12と、その表面に形成された負極合剤層13とを具備する。ここで、第1端部13aおよび第2端部13bは、合剤層の主要部13Aよりも厚みの小さい所定端部であり、第1端部13aおよび第2端部13bの厚みは、各端部の最端部に向かうにつれて薄くなっている。第1端部13aおよび第2端部13bの表面は、主要部13Aの表面とともに、表面層14で覆われている。すなわち、負極合剤層13の表面は、表面層14で完全に覆われている。 The negative electrode 2A includes a strip-shaped rectangular negative electrode current collector 12 and a negative electrode mixture layer 13 formed on the surface thereof. Here, the first end portion 13a and the second end portion 13b are predetermined end portions having a thickness smaller than the main portion 13A of the mixture layer, and the thicknesses of the first end portion 13a and the second end portion 13b are as follows. It becomes thinner toward the extreme end of the end. The surfaces of the first end portion 13a and the second end portion 13b are covered with the surface layer 14 together with the surface of the main portion 13A. That is, the surface of the negative electrode mixture layer 13 is completely covered with the surface layer 14.
 第1端部13aおよび第2端部13bに対応する表面層14の端部対応部の厚みは、主要部対応部の厚みより、平均的に大きくなっている。これにより、リチウムが析出しやすい合剤層の端部におけるリチウムイオンの受け入れ性と、主要部におけるリチウムイオンの受け入れ性とのバランスを制御しやすくなる。 The thickness of the end corresponding portion of the surface layer 14 corresponding to the first end portion 13a and the second end portion 13b is on average larger than the thickness of the main portion corresponding portion. This makes it easy to control the balance between the lithium ion acceptability at the end of the mixture layer where lithium is likely to precipitate and the lithium ion acceptability at the main part.
 また、表面層14の端部対応部の厚みは、その最端部に向かうにつれて大きくなっている。これにより、合剤層の最端部に向かうにつれてリチウムイオン受け入れ性が大きくなる。なお、端部対応部の厚みは、その最端部に至るまでの全領域で、次第に大きくなる必要はない。例えば、最端部から10mmもしくは5mmまでの領域では、そのような変化がなくてもよい。その場合でも、端部対応部の厚みを最端部に向かうにつれて徐々に大きくすることによる一定の効果を得ることができる。 Further, the thickness of the end corresponding portion of the surface layer 14 increases toward the end. Thereby, lithium ion acceptance property becomes large as it goes to the endmost part of a mixture layer. Note that the thickness of the end corresponding portion does not need to gradually increase in the entire region up to the end. For example, such a change may not be required in a region from the endmost part to 10 mm or 5 mm. Even in that case, it is possible to obtain a certain effect by gradually increasing the thickness of the end corresponding portion toward the end.
(第3実施形態)
 図5は、本実施形態における負極2Bの断面の模式図である。負極2Bは、合剤層および表面層の端部の詳細が異なる点以外、第1実施形態の負極2とほぼ同様の構造を有するため、共通の構成要素には同じ符号を用いて説明する。
(Third embodiment)
FIG. 5 is a schematic view of a cross section of the negative electrode 2B in the present embodiment. The negative electrode 2B has substantially the same structure as that of the negative electrode 2 of the first embodiment except that the details of the end portions of the mixture layer and the surface layer are different. Therefore, common constituent elements will be described using the same reference numerals.
 負極2Bは、帯状の矩形の負極集電体12と、その表面に形成された負極合剤層13とを具備する。ここでも、第1端部13aおよび第2端部13bは、合剤層の主要部13Aよりも厚みの小さい所定端部であり、第1端部13aおよび第2端部13bの厚みは、各端部の最端部に向かうにつれて小さくなっている。第1端部13aおよび第2端部13bの表面は、主要部13Aの表面とともに、表面層14で覆われている。すなわち、負極合剤層13の表面は、表面層14で完全に覆われている。 The negative electrode 2B includes a strip-shaped rectangular negative electrode current collector 12 and a negative electrode mixture layer 13 formed on the surface thereof. Also here, the first end portion 13a and the second end portion 13b are predetermined end portions having a thickness smaller than the main portion 13A of the mixture layer, and the thicknesses of the first end portion 13a and the second end portion 13b are as follows. It becomes smaller as it goes to the extreme end of the end. The surfaces of the first end portion 13a and the second end portion 13b are covered with the surface layer 14 together with the surface of the main portion 13A. That is, the surface of the negative electrode mixture layer 13 is completely covered with the surface layer 14.
 表面層14の端部対応部の厚みは、その最端部に向かうにつれて大きくなるとともに、集電体12の表面の一部をも覆っている。このとき、合剤層の最端部から表面層14の端部対応部の最端部までの距離は、例えば0.01~1mmである。これにより、負極合剤層13の両端部のリチウムイオン受け入れ性を向上させるとともに、集電体12との結着性の高い表面層14を集電体12と接触させることができる。よって、充放電時の負極2Bの膨張および収縮に伴う合剤層の脱落を効果的に防止することができる。よって、良好な充放電サイクル特性を得ることができる。 The thickness of the portion corresponding to the end of the surface layer 14 increases as it goes toward the end, and also covers a part of the surface of the current collector 12. At this time, the distance from the extreme end of the mixture layer to the extreme end of the end corresponding portion of the surface layer 14 is, for example, 0.01 to 1 mm. Thereby, while being able to improve the lithium ion acceptability of the both ends of the negative mix layer 13, the surface layer 14 with high binding property with the collector 12 can be made to contact with the collector 12. FIG. Therefore, it is possible to effectively prevent the mixture layer from dropping off due to the expansion and contraction of the negative electrode 2B during charging and discharging. Thus, good charge / discharge cycle characteristics can be obtained.
(第4実施形態)
 図6は、本実施形態における負極2Cの正面の模式図である。負極2Cは、合剤層および表面層の塗布領域が異なる点以外、第1実施形態の負極2とほぼ同様の構造を有するため、共通の構成要素には同じ符号を用いて説明する。
(Fourth embodiment)
FIG. 6 is a schematic diagram of the front surface of the negative electrode 2C in the present embodiment. Since the negative electrode 2C has substantially the same structure as the negative electrode 2 of the first embodiment except that the coating layer and the surface layer have different application regions, the same reference numerals are used for common components.
 負極2Cは、帯状の矩形の負極集電体12と、その表面に形成された負極合剤層13とを具備する。ただし、負極合剤層13は、集電体12の長手方向に沿う一端部を露出させるように、負極集電体に形成されている。このような負極の場合、負極集電体12の短手方向に沿う端部ではなく、長手方向に沿う端部の厚みを、厚みの小さい所定端部とすることができる。すなわち、第3端部13cおよび第4端部13dを、合剤層の主要部よりも厚みの小さい所定端部とすることができる。 The negative electrode 2C includes a strip-shaped rectangular negative electrode current collector 12 and a negative electrode mixture layer 13 formed on the surface thereof. However, the negative electrode mixture layer 13 is formed on the negative electrode current collector so that one end portion along the longitudinal direction of the current collector 12 is exposed. In the case of such a negative electrode, the thickness of the end portion along the longitudinal direction instead of the end portion along the short direction of the negative electrode current collector 12 can be a predetermined end portion having a small thickness. That is, the third end portion 13c and the fourth end portion 13d can be predetermined end portions having a thickness smaller than that of the main portion of the mixture layer.
 図示しないが、負極2Cでは、第3端部13cおよび第4端部13dの厚みが、各端部の最端部に向かうにつれて小さくなっている。そして、第3端部13cおよび第4端部13dの表面は、主要部の表面とともに、表面層14で覆われている。 Although not shown, in the negative electrode 2C, the thickness of the third end portion 13c and the fourth end portion 13d becomes smaller toward the extreme end of each end portion. And the surface of the 3rd end part 13c and the 4th end part 13d is covered with the surface layer 14 with the surface of the principal part.
 上記のような構成を有する負極2Cにおいては、集電体12の露出部に、集電端子となる集電板が溶接される。従って、集電体12の露出部には、特に電荷が集中しやすく、リチウムが析出しやすい。よって、少なくとも、負極合剤層13の第3端部13cを所定端部とすることが望ましい。 In the negative electrode 2 </ b> C having the above-described configuration, a current collector plate serving as a current collector terminal is welded to the exposed portion of the current collector 12. Accordingly, electric charges are particularly concentrated on the exposed portion of the current collector 12, and lithium is likely to be deposited. Therefore, it is desirable that at least the third end portion 13c of the negative electrode mixture layer 13 be a predetermined end portion.
 なお、上記第1~第3実施形態では、負極合剤層13の第1端部および第2端部の両方の厚みを主要部の厚みよりも小さくし、かつ当該端部を表面層で覆う場合について説明したが、第1端部および第2端部の一方のみの厚みを主要部の厚みよりも小さくし、かつ当該端部を表面層で覆ってもよい。また、上記第4実施形態では、第3端部および第4端部の一方のみの厚みを主要部の厚みよりも小さくし、かつ当該端部を表面層で覆ってもよい。 In the first to third embodiments, the thickness of both the first end and the second end of the negative electrode mixture layer 13 is made smaller than the thickness of the main part, and the end is covered with the surface layer. Although the case has been described, the thickness of only one of the first end portion and the second end portion may be made smaller than the thickness of the main portion, and the end portion may be covered with the surface layer. Moreover, in the said 4th Embodiment, the thickness of only one of a 3rd edge part and a 4th edge part may be made smaller than the thickness of a principal part, and the said edge part may be covered with a surface layer.
 また、上記第1~第4実施形態では、正極1と負極2とを渦巻状に捲回した電極群4を具備する場合について説明したが、正極1と負極2とをセパレータ3を介して積層するだけの電極群を形成する場合でも、同様の効果が得られる。 In the first to fourth embodiments, the case where the electrode group 4 in which the positive electrode 1 and the negative electrode 2 are wound in a spiral shape is described. However, the positive electrode 1 and the negative electrode 2 are stacked via the separator 3. The same effect can be obtained even when an electrode group is formed.
 また、上記第1~第4実施形態では、負極合剤層13の表面に表面層14を形成する場合について説明したが、表面層を形成する場所は、正極合剤層の表面であってもよい。更に、正極合剤層と負極合剤層の両方の表面に、それぞれ表面層を形成してもよい。 In the first to fourth embodiments, the case where the surface layer 14 is formed on the surface of the negative electrode mixture layer 13 has been described. However, the surface layer may be formed on the surface of the positive electrode mixture layer. Good. Furthermore, you may form a surface layer in the surface of both the positive mix layer and the negative mix layer, respectively.
(第1参考形態)
 次に、本発明の第1参考形態について、図8を参照しながら説明する。図8は、本参考形態における電極2Dの断面の模式図である。ここでも、第1実施形態と対応する構成要素には同じ符号を用いて説明する。
(First reference form)
Next, a first reference embodiment of the present invention will be described with reference to FIG. FIG. 8 is a schematic diagram of a cross section of the electrode 2D in the present embodiment. Here, the same reference numerals are used for the components corresponding to those in the first embodiment.
 電極2Dは、帯状の矩形の集電体12Dと、その表面に形成された合剤層13Dとを具備する。合剤層13Dは、第1実施形態の負極2と同様に、集電体の短手方向に沿う第1端部と、第1端部の反対側の第2端部と、集電体12の長手方向に沿う第3端部と、第3端部の反対側の第4端部とを具備する矩形である。合剤層13の第1から第4端部以外の部分は、主要部である。 The electrode 2D includes a strip-shaped rectangular current collector 12D and a mixture layer 13D formed on the surface thereof. Similarly to the negative electrode 2 of the first embodiment, the mixture layer 13 </ b> D includes a first end along the short direction of the current collector, a second end opposite to the first end, and the current collector 12. It is the rectangle which comprises the 3rd end part along the longitudinal direction, and the 4th end part on the opposite side of the 3rd end part. Portions other than the first to fourth end portions of the mixture layer 13 are main portions.
 ただし、第1実施形態の負極2とは異なり、電極2Dの第1端部および第2端部における合剤層の厚みは特に限定されない。また、第1端部および第2端部の表面は、表面層14で覆われている必要はない。表面層14は、合剤層13の少なくとも主要部を覆っていればよい。 However, unlike the negative electrode 2 of the first embodiment, the thickness of the mixture layer at the first end and the second end of the electrode 2D is not particularly limited. The surfaces of the first end and the second end need not be covered with the surface layer 14. The surface layer 14 only needs to cover at least the main part of the mixture layer 13.
 合剤層13と表面層14との界面の最大高さ粗さRmaxは、例えば3~25μm、更には5~20μmに設定される。最大高さ粗さRmaxを上記範囲とすることにより、合剤層13と表面層14の接着におけるアンカー効果が大きくなるとともに、合剤層13が表面層14から露出することが抑制されるため、内部短絡が極めて発生しにくくなる。この場合、表面層14の厚みを3~20μm、更には5~15μmに設定することで、合剤層13と表面層14との密着強度を、更に高めることができるとともに、電池容量の確保が容易となる。 The maximum height roughness Rmax of the interface between the mixture layer 13 and the surface layer 14 is set to, for example, 3 to 25 μm, and further 5 to 20 μm. By setting the maximum height roughness Rmax in the above range, the anchor effect in adhesion between the mixture layer 13 and the surface layer 14 is increased, and the mixture layer 13 is suppressed from being exposed from the surface layer 14. Internal short circuit is extremely difficult to occur. In this case, by setting the thickness of the surface layer 14 to 3 to 20 μm, further 5 to 15 μm, the adhesion strength between the mixture layer 13 and the surface layer 14 can be further increased, and the battery capacity can be secured. It becomes easy.
 表面層14を形成するための表面層塗料は、リチウムチタン複合酸化物のような第2活物質を含んでもよく、アルミナ、マグネシア、シリカ、チタニアなどを含んでもよい。これらのセラミックス粉末は、1種を単独で用いてもよく、複数種を組み合わせて用いてもよい。表面層塗料は、第1実施形態と同様に、上記のセラミックス粉末と、任意成分である結着材、導電材、増粘剤などとを、分散媒とともに分散機により混合することにより調製される。 The surface layer coating for forming the surface layer 14 may contain a second active material such as lithium titanium composite oxide, and may contain alumina, magnesia, silica, titania and the like. These ceramic powders may be used alone or in combination of two or more. Similar to the first embodiment, the surface layer coating is prepared by mixing the ceramic powder and optional binders, conductive materials, thickeners, and the like together with a dispersion medium using a disperser. .
 表面層13は、負極合剤層の表面に形成してもよく、正極合剤層の表面に形成してもよい。また、表面層塗料は、合剤塗料の塗布後、直ちに塗布してもよい。その場合、合剤層塗料の塗膜と表面層塗料の塗膜とを同時に乾燥させ、その後、圧延することにより、合剤層と表面層とが形成される。また、合剤層塗料の塗膜を乾燥後、圧延して合剤層を形成した後、表面層塗料を合剤層の表面に塗布してもよい。また、合剤層塗料の塗膜を乾燥させた後、合剤層と表面層との界面の最大高さ粗さRmaxを調整する目的で、合剤層塗料の塗膜に凹凸を形成する加工を施し、その後、表面層塗料を塗布してもよい。ただし、合剤層および表面層を形成する方法は、これらに限定されるものではない。 The surface layer 13 may be formed on the surface of the negative electrode mixture layer, or may be formed on the surface of the positive electrode mixture layer. The surface layer paint may be applied immediately after the mixture paint is applied. In that case, the mixture layer coating and the surface layer coating are simultaneously dried and then rolled to form the mixture layer and the surface layer. Moreover, after drying the coating film of a mixture layer coating material and rolling and forming a mixture layer, you may apply | coat a surface layer coating material on the surface of a mixture layer. Moreover, after drying the coating film of the mixture layer coating, a process for forming irregularities on the coating film of the mixture layer coating for the purpose of adjusting the maximum height roughness Rmax of the interface between the mixture layer and the surface layer After that, the surface layer paint may be applied. However, the method for forming the mixture layer and the surface layer is not limited thereto.
(第2参考形態)
 次に、本発明の第2参考形態について、図9、10を参照しながら説明する。図9は、本参考形態における電極2Eの断面の模式図である。図10は、同電極2Eの表面の部分模式図である。ここでも、第1実施形態と対応する構成要素には同じ符号を用いて説明する。
(Second reference form)
Next, a second reference embodiment of the present invention will be described with reference to FIGS. FIG. 9 is a schematic diagram of a cross section of the electrode 2E in the present embodiment. FIG. 10 is a partial schematic view of the surface of the electrode 2E. Here, the same reference numerals are used for the components corresponding to those in the first embodiment.
 電極2Eは、帯状の矩形の集電体12Eと、その表面に形成された合剤層13Eとを具備する。合剤層13Eは、第1実施形態の負極2と同様に、集電体の短手方向に沿う第1端部と、第1端部の反対側の第2端部と、集電体12の長手方向に沿う第3端部と、第3端部の反対側の第4端部とを具備する矩形である。合剤層13の第1から第4端部以外の部分は、主要部である。 The electrode 2E includes a strip-shaped rectangular current collector 12E and a mixture layer 13E formed on the surface thereof. Similarly to the negative electrode 2 of the first embodiment, the mixture layer 13 </ b> E includes a first end along the short direction of the current collector, a second end opposite to the first end, and the current collector 12. It is the rectangle which comprises the 3rd end part along the longitudinal direction, and the 4th end part on the opposite side of the 3rd end part. Portions other than the first to fourth end portions of the mixture layer 13 are main portions.
 ただし、第1実施形態の負極2とは異なり、電極2Eの第1端部および第2端部における合剤層の厚みは特に限定されない。また、第1端部および第2端部の表面は、表面層14で覆われている必要はない。表面層14は、合剤層13の少なくとも主要部を覆っていればよい。表面層13は、負極合剤層の表面に形成してもよく、正極合剤層の表面に形成してもよい。 However, unlike the negative electrode 2 of the first embodiment, the thickness of the mixture layer at the first end and the second end of the electrode 2E is not particularly limited. The surfaces of the first end and the second end need not be covered with the surface layer 14. The surface layer 14 only needs to cover at least the main part of the mixture layer 13. The surface layer 13 may be formed on the surface of the negative electrode mixture layer, or may be formed on the surface of the positive electrode mixture layer.
 電極2Eでは、表面層14を介して合剤層13の一部が、例えば島状に露出している。これにより、合剤層への非水電解質の含浸性が表面層14により過度に妨げられず、含浸性が向上する。 In the electrode 2E, a part of the mixture layer 13 is exposed, for example, in an island shape through the surface layer. Thereby, the impregnation property of the nonaqueous electrolyte to the mixture layer is not excessively hindered by the surface layer 14, and the impregnation property is improved.
 上記のように、合剤層13を部分的に露出させる方法としては、例えば、以下の方法がある。 As described above, examples of the method for partially exposing the mixture layer 13 include the following methods.
 第1の方法では、合剤層13と表面層14との界面の最大高さ粗さRmaxを、例えば25μmより大きく設定し、好ましくは、Rmaxを30~60μmに設定する。これにより、合剤層13の表面における凹凸が大きくなり、凸部の一部が表面層14を貫通する。この場合、表面層塗料は、合剤塗料の塗布後、直ちに塗布してもよい。その場合、合剤層塗料の塗膜と表面層塗料の塗膜とを同時に乾燥させ、その後、圧延することにより、合剤層と表面層とが形成される。また、合剤層塗料の塗膜を乾燥後、圧延して合剤層を形成した後、表面層塗料を合剤層の表面に塗布してもよい。 In the first method, the maximum height roughness Rmax of the interface between the mixture layer 13 and the surface layer 14 is set to be larger than 25 μm, for example, and preferably Rmax is set to 30 to 60 μm. Thereby, the unevenness | corrugation in the surface of the mixture layer 13 becomes large, and a part of convex part penetrates the surface layer 14. In this case, the surface layer paint may be applied immediately after the mixture paint is applied. In that case, the mixture layer coating and the surface layer coating are simultaneously dried and then rolled to form the mixture layer and the surface layer. Moreover, after drying the coating film of a mixture layer coating material and rolling and forming a mixture layer, you may apply | coat a surface layer coating material on the surface of a mixture layer.
 第2の方法では、図11、12に示すように、合剤層13の表面に、意図的に外方への突出部15を設ける。図11は、本参考形態の変形例における電極2Fの断面の模式図である。図12は、同電極2Fの表面の部分模式図である。このような突出部15を表面層14に貫通させることにより、合剤層13の一部を露出させることができる。突出部の直径は、その中心高さにおいて、20~100μmであることが好ましい。上記のような突出部15を設ける場合、合剤層塗料の塗膜を乾燥させた後、合剤層塗料の塗膜に凹凸を形成する加工を施し、その後、表面層塗料を塗布すればよい。塗膜に凹凸を形成する加工としては、例えば、表面に規則的パターンで凹部を有するローラで塗膜を圧延する。これにより、規則的パターンで凸部15を有する合剤層13を得ることができる。 In the second method, as shown in FIGS. 11 and 12, an outward projecting portion 15 is intentionally provided on the surface of the mixture layer 13. FIG. 11 is a schematic diagram of a cross section of the electrode 2F in a modification of the present embodiment. FIG. 12 is a partial schematic view of the surface of the electrode 2F. A part of the mixture layer 13 can be exposed by allowing the protruding portion 15 to penetrate the surface layer 14. The diameter of the protrusion is preferably 20 to 100 μm at the center height. When providing the protrusion 15 as described above, after the coating film of the mixture layer coating is dried, the coating film of the mixture layer coating is processed to form irregularities, and then the surface layer coating is applied. . As a process for forming irregularities on the coating film, for example, the coating film is rolled with a roller having concave portions in a regular pattern on the surface. Thereby, the mixture layer 13 which has the convex part 15 by a regular pattern can be obtained.
 第3の方法では、図13、14に示すように、表面層14に複数の貫通孔16を点在させることにより、合剤層13の一部を露出させる。図13は、本参考形態の別の変形例における電極2Gの断面の模式図である。図14は、同電極2Gの表面の部分模式図である。このような貫通孔16は、表面層塗料に、十分な量の気泡を内包させることにより、容易に形成することができる。この場合、貫通孔の直径は、例えば20μm以下であることが好ましい。例えば、リチウムチタン複合酸化物の粉末と、任意成分である結着材、導電材などとを分散媒に投入し、プラネタリーミキサー等の分散機により混合する。その際、例えば、回転円盤式分散機を用いることにより、表面層塗料には十分な量の大気が内包される。このように、気泡を内包する表面層塗料を合剤層13の表面に塗布し、暫く放置すると、気泡が破裂し、その少なくとも一部に対応する箇所には貫通孔が形成される。 In the third method, as shown in FIGS. 13 and 14, a part of the mixture layer 13 is exposed by interspersing a plurality of through holes 16 in the surface layer 14. FIG. 13 is a schematic view of a cross section of an electrode 2G in another modification of the present embodiment. FIG. 14 is a partial schematic view of the surface of the electrode 2G. Such a through-hole 16 can be easily formed by enclosing a sufficient amount of bubbles in the surface layer paint. In this case, the diameter of the through hole is preferably 20 μm or less, for example. For example, lithium titanium composite oxide powder and optional components such as a binder and a conductive material are put into a dispersion medium and mixed by a dispersing machine such as a planetary mixer. At that time, for example, by using a rotating disk type disperser, a sufficient amount of air is included in the surface layer paint. As described above, when a surface layer coating material containing bubbles is applied to the surface of the mixture layer 13 and left for a while, the bubbles burst, and through holes are formed at positions corresponding to at least a part thereof.
 なお、合剤層13の主要部の面積に対する、主要部が露出する面積の割合(露出度)は、60%以下とすることが好ましく、1~10%とすることがより好ましい。露出度を上記範囲とすることで、内部短絡を抑制する高い効果を維持しつつ、電池の製造時には、非水電解質が合剤層に含浸されるときのスピードを十分に速めることができる。
 次に、実施例に基づいて、本発明をより具体的に説明する。
The ratio of the area where the main part is exposed to the area of the main part of the mixture layer 13 (exposure degree) is preferably 60% or less, and more preferably 1 to 10%. By setting the exposure level within the above range, the speed at which the non-aqueous electrolyte is impregnated in the mixture layer can be sufficiently increased during the production of the battery while maintaining the high effect of suppressing the internal short circuit.
Next, based on an Example, this invention is demonstrated more concretely.
《実施例1》
 本実施例では、図2に示したのと同じ構造の負極を作製し、これを用いて図1に示したのと同様の非水系二次電池を作製した。
Example 1
In this example, a negative electrode having the same structure as that shown in FIG. 2 was produced, and a non-aqueous secondary battery similar to that shown in FIG. 1 was produced using this negative electrode.
(負極の作製)
<合剤塗料>
 人造黒鉛(第1活物質)100質量部に対し、スチレン-ブタジエン共重合体ゴム粒子(結着材)の分散液(固形分40重量%)を2.5質量部(固形分換算では1質量部)、カルボキシメチルセルロース(CMC)(増粘剤)を1質量部、および適量の水を配合し、双腕式練合機で攪拌し、負極合剤塗料を調製した。
(Preparation of negative electrode)
<Mixture paint>
2.5 parts by mass of a dispersion of styrene-butadiene copolymer rubber particles (binder) (solid content 40% by weight) with respect to 100 parts by mass of artificial graphite (first active material) (1 mass in terms of solid content) Part), 1 part by mass of carboxymethylcellulose (CMC) (thickener) and an appropriate amount of water were mixed and stirred with a double-arm kneader to prepare a negative electrode mixture paint.
<表面層塗料>
 一方、リチウムチタン複合酸化物(第2活物質、Li4Ti512)100質量部に対し、上記と同じスチレン-ブタジエン共重合体ゴム粒子の分散液(固形分40重量%)を2.5質量部、CMCを1質量部、アセチレンブラック(導電材)を3.0質量部、および適量の水を配合し、双腕式練合機で攪拌し、表面層塗料を調製した。
<Surface layer paint>
On the other hand, with respect to 100 parts by mass of lithium-titanium composite oxide (second active material, Li 4 Ti 5 O 12 ), the same dispersion of styrene-butadiene copolymer rubber particles (solid content 40% by weight) as above was added. 5 parts by mass, 1 part by mass of CMC, 3.0 parts by mass of acetylene black (conductive material), and an appropriate amount of water were blended and stirred with a double-arm kneader to prepare a surface layer paint.
 まず、厚み10μmの銅箔からなる帯状の負極集電体の両面に、負極合剤塗料を塗布し、乾燥し、次に、負極合剤塗料の塗膜の表面に、表面層塗料を、負極合剤層100質量部に対して20質量部となるように塗布し、乾燥した。その後、負極集電体と塗膜との総厚が200μmとなるように圧延し、負極を作製した。 First, a negative electrode mixture paint is applied to both surfaces of a strip-like negative electrode current collector made of a copper foil having a thickness of 10 μm, and then dried. Next, a surface layer paint is applied to the surface of the coating film of the negative electrode mixture paint. It apply | coated so that it might become 20 mass parts with respect to 100 mass parts of mixture layers, and it dried. Then, it rolled so that the total thickness of a negative electrode collector and a coating film might be set to 200 micrometers, and the negative electrode was produced.
 ただし、負極合剤層の短手方向に沿う両端部(第1端部および第2端部)の厚みは、それぞれの最端部に向かうにつれて薄くなるようにした。また、負極合剤層の両端部の表面を含む合剤層の全面に表面層を均一な厚さとなるように塗布し、負極合剤層を表面層で完全に覆った。 However, the thickness of both end portions (the first end portion and the second end portion) along the short direction of the negative electrode mixture layer was made thinner toward the respective end portions. Moreover, the surface layer was apply | coated to the whole surface of the mixture layer containing the surface of the both ends of a negative mix layer so that it might become uniform thickness, and the negative mix layer was completely covered with the surface layer.
 負極の負極集電体が露出した部分に負極リードを接続し、次に、負極リードを被覆するように保護テープを貼り付けた。 The negative electrode lead was connected to the portion where the negative electrode current collector of the negative electrode was exposed, and then a protective tape was applied so as to cover the negative electrode lead.
(正極の作製)
 コバルト酸リチウム(正極活物質)100質量部に対し、アセチレンブラック(導電材)を2質量部、ポリフッ化ビニリデン(結着材)を2質量部、および適量のN-メチル-2-ピロリドンを配合し、双腕式練合機で攪拌し、正極合剤塗料を調製した。この塗料を厚み15μmのアルミニウム箔からなる正極集電体の両面に塗布し、乾燥し、総厚が170μmとなるように圧延して、正極を得た。
(Preparation of positive electrode)
2 parts by mass of acetylene black (conductive material), 2 parts by mass of polyvinylidene fluoride (binder), and an appropriate amount of N-methyl-2-pyrrolidone per 100 parts by mass of lithium cobalt oxide (positive electrode active material) The mixture was stirred with a double arm kneader to prepare a positive electrode mixture paint. This paint was applied to both surfaces of a positive electrode current collector made of an aluminum foil having a thickness of 15 μm, dried, and rolled to a total thickness of 170 μm to obtain a positive electrode.
 正極の正極集電体が露出した部分に正極リードを接続し、次に、正極リードを被覆するように保護テープを貼り付けた。 The positive electrode lead was connected to the portion where the positive electrode current collector of the positive electrode was exposed, and then a protective tape was applied so as to cover the positive electrode lead.
(リチウムイオン二次電池の作製)
 正極と負極とを、厚み20μmのポリエチレン製微多孔質フィルム(多孔質絶縁層)を介して捲回し、電極群を構成した。電極群を絶縁板とともに円筒型の電池ケース内に挿入し、電極群の下部より導出した負極リードを電池ケースの底部に接続した。また、電極群の上部より導出した正極リードを封口板に接続した。その後、非水電解質を5.5g添加してから、電池ケースの開口を封口板で封口し、リチウムイオン二次電池を完成させた。非水電解質は、EC/DMC/MECの体積比80/5/15の混合溶媒にLiPF6を1mol/Lの濃度で溶解したものである。非水電解質には、混合溶媒100質量部あたり、3質量部のVCを溶解させた。
(Production of lithium ion secondary battery)
The positive electrode and the negative electrode were wound through a polyethylene microporous film (porous insulating layer) having a thickness of 20 μm to constitute an electrode group. The electrode group was inserted into the cylindrical battery case together with the insulating plate, and the negative electrode lead led out from the lower part of the electrode group was connected to the bottom of the battery case. Moreover, the positive electrode lead led out from the upper part of the electrode group was connected to the sealing plate. Thereafter, 5.5 g of a nonaqueous electrolyte was added, and then the opening of the battery case was sealed with a sealing plate to complete a lithium ion secondary battery. The nonaqueous electrolyte is obtained by dissolving LiPF 6 at a concentration of 1 mol / L in a mixed solvent having a volume ratio of EC / 5DMC / MEC of 80/5/15. In the nonaqueous electrolyte, 3 parts by mass of VC was dissolved per 100 parts by mass of the mixed solvent.
《実施例2》
 負極合剤層の主要部と電極群の内周側に対応する第1端部だけが表面層で完全に覆われるように表面層を形成し、電極群の外周側に対応する第2端部を表面層で覆わなかったこと以外、実施例1と同様に、負極を作製した。また、その負極を用いたこと以外、実施例1と同様に、リチウムイオン二次電池を作製した。
Example 2
A surface layer is formed so that only the main part of the negative electrode mixture layer and the first end corresponding to the inner peripheral side of the electrode group are completely covered with the surface layer, and the second end corresponding to the outer peripheral side of the electrode group Was not covered with a surface layer, and a negative electrode was produced in the same manner as in Example 1. Further, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode was used.
《実施例3》
 負極合剤層の主要部と電極群の外周側に対応する第2端部だけが表面層で完全に覆われるように表面層を形成し、電極群の内周側に対応する第1端部を表面層で覆わなかったこと以外、実施例1と同様に、負極を作製した。また、その負極を用いたこと以外、実施例1と同様に、リチウムイオン二次電池を作製した。
Example 3
A surface layer is formed so that only the main part of the negative electrode mixture layer and the second end corresponding to the outer peripheral side of the electrode group are completely covered with the surface layer, and the first end corresponding to the inner peripheral side of the electrode group Was not covered with a surface layer, and a negative electrode was produced in the same manner as in Example 1. Further, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode was used.
《実施例4》
 本実施例では、図4に示したのと同じ構造の負極を作製し、これを用いて図1に示したのと同様の非水系二次電池を作製した。具体的には、実施例1と同様の負極合剤塗料を集電体に塗布した後、乾燥させずに表面層塗料を合剤塗料の塗膜の表面に塗布し、2層の塗膜を同時に乾燥させた。その後、総厚が200μmとなるように圧延し、負極を作製した。ただし、表面層塗料の塗膜の始端部および終端部では、表面層塗膜を吐出するダイコーターの圧力を上げることにより、両端部(第1端部および第2端部)の表面層の厚さを徐々に大きくした。得られた負極は、両端部の表面層の構造が異なること以外、実施例1の負極と基本的に同じ構造を有する。次に、得られた負極を用いたこと以外、実施例1と同様に、リチウムイオン二次電池を作製した。
Example 4
In this example, a negative electrode having the same structure as that shown in FIG. 4 was produced, and a non-aqueous secondary battery similar to that shown in FIG. 1 was produced using this negative electrode. Specifically, after applying the same negative electrode mixture paint as in Example 1 to the current collector, the surface layer paint was applied to the surface of the paint film of the mixture paint without drying, and the two-layer paint film was formed. It was dried at the same time. Then, it rolled so that total thickness might be 200 micrometers, and produced the negative electrode. However, the thickness of the surface layer at both ends (first end and second end) is increased by increasing the pressure of the die coater that discharges the surface layer coating at the beginning and end of the coating of the surface layer coating. The size was gradually increased. The obtained negative electrode has basically the same structure as the negative electrode of Example 1, except that the structure of the surface layers at both ends is different. Next, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained negative electrode was used.
《実施例5》
 本実施例では、図5に示したのと同じ構造の負極を作製し、これを用いて図1に示したのと同様の非水系二次電池を作製した。具体的には、実施例1と同様の負極合剤塗料と表面層塗料を用い、実施例1とほぼ同様の方法で、負極合剤層と表面層とを形成した。ただし、表面層塗料の塗膜の始端部および終端部では、表面層塗料のダイコーターからの吐出タイミングをずらすことで、両端部(第1端部および第2端部)の近傍において、表面層が単一層として負極集電体の表面に接着する箇所を設けた。得られた負極は、両端部の表面層の構造が異なること以外、実施例1の負極と基本的に同じ構造を有する。次に、得られた負極を用いたこと以外、実施例1と同様に、リチウムイオン二次電池を作製した。
Example 5
In this example, a negative electrode having the same structure as that shown in FIG. 5 was produced, and a non-aqueous secondary battery similar to that shown in FIG. 1 was produced using this negative electrode. Specifically, the negative electrode mixture layer and the surface layer were formed in substantially the same manner as in Example 1, using the same negative electrode mixture coating material and surface layer coating material as in Example 1. However, at the start and end portions of the coating film of the surface layer coating, the surface layer is formed in the vicinity of both ends (first end and second end) by shifting the discharge timing of the surface layer coating from the die coater. Are provided as a single layer on the surface of the negative electrode current collector. The obtained negative electrode has basically the same structure as the negative electrode of Example 1, except that the structure of the surface layers at both ends is different. Next, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained negative electrode was used.
(比較例1)
 本実施例では、図7に示すような構造の負極2Hを作製し、これを用いて図1に示したのと同様の非水系二次電池を作製した。具体的には、実施例1と同様の負極合剤塗料と表面層塗料を用い、実施例1とほぼ同様の方法で、負極合剤層13と表面層14とを形成した。ただし、表面層塗料の塗膜の始端部および終端部では、表面層塗料のダイコーターからの吐出タイミングをずらすことで、両端部(第1端部13aおよび第2端部13b)を表面層14で覆わず、露出させた。得られた負極は、両端部の表面層の構造が異なること以外、実施例1の負極と基本的に同じ構造を有する。次に、得られた負極を用いたこと以外、実施例1と同様に、リチウムイオン二次電池を作製した。
(Comparative Example 1)
In this example, a negative electrode 2H having a structure as shown in FIG. 7 was produced, and a non-aqueous secondary battery similar to that shown in FIG. 1 was produced using the negative electrode 2H. Specifically, the negative electrode mixture layer 13 and the surface layer 14 were formed in substantially the same manner as in Example 1, using the same negative electrode mixture coating material and surface layer coating material as in Example 1. However, at the start and end portions of the coating film of the surface layer paint, both ends (the first end portion 13a and the second end portion 13b) are placed on the surface layer 14 by shifting the discharge timing of the surface layer paint from the die coater. It was not covered with and exposed. The obtained negative electrode has basically the same structure as the negative electrode of Example 1, except that the structure of the surface layers at both ends is different. Next, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained negative electrode was used.
[評価]
 実施例1~5および比較例1のリチウムイオン二次電池について、以下の要領で、充放電サイクル特性の評価を行った。評価結果を表1に示す。
[Evaluation]
For the lithium ion secondary batteries of Examples 1 to 5 and Comparative Example 1, the charge / discharge cycle characteristics were evaluated in the following manner. The evaluation results are shown in Table 1.
(i)まず、完成後の電池について、慣らし充放電を2回行い、その後、45℃環境で7日間保存した。
(ii)次に、以下の充放電サイクルを500回繰り返した。
 充電:定電流1400mAで充電終止電圧4.2Vまで充電を行い、引き続き、充電電流が100mAに低下するまで4.2Vで定電圧充電を行った。
 放電:定電流2000mAで放電終止電圧3Vまで放電した。
 上記の充電と放電の組み合わせを1サイクルとする。
(iii)1サイクル目の放電容量に対する500サイクル目の放電容量の割合を、500サイクル後の容量維持率として求めた。
(iv)次に、充放電サイクルを500回繰り返した後の電池を分解し、電極群内部でのリチウムの析出状態を観察した。
(I) First, the battery after completion was conditioned and discharged twice, and then stored in a 45 ° C. environment for 7 days.
(Ii) Next, the following charge / discharge cycle was repeated 500 times.
Charging: Charging was performed at a constant current of 1400 mA up to a charging end voltage of 4.2 V, and then, constant voltage charging was performed at 4.2 V until the charging current decreased to 100 mA.
Discharge: Discharged to a final discharge voltage of 3 V at a constant current of 2000 mA.
A combination of the above charging and discharging is defined as one cycle.
(Iii) The ratio of the discharge capacity at the 500th cycle to the discharge capacity at the first cycle was determined as the capacity retention rate after 500 cycles.
(Iv) Next, the battery after the charge / discharge cycle was repeated 500 times was disassembled, and the lithium deposition state inside the electrode group was observed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示したように、負極合剤層の端部を表面層で覆った場合には、合剤層の端部でのリチウムの析出が抑制されており、500サイクル後の容量維持率も高くなっている。更に、実施例2、3のように、負極合剤層の短手方向に沿う一方の端部を表面層で覆っただけでも、比較例1に比べると、容量維持率の向上効果が見られる。また、電極群の内周側よりも外周側の端部を表面層で覆う方が、容量維持率が高くなることがわかる。これは、負極リードの位置が、負極集電体の外周側の端部近傍に設置されているためであると考えられる。つまり、リチウムが析出しやすい集電部の近傍に位置する合剤層の端部を表面層で覆う方が、リチウムの析出を抑制する効果が大きいと推察される。 As shown in Table 1, when the end portion of the negative electrode mixture layer was covered with a surface layer, lithium deposition at the end portion of the mixture layer was suppressed, and the capacity retention rate after 500 cycles was also It is high. Further, as in Examples 2 and 3, even when only one end portion along the short direction of the negative electrode mixture layer is covered with the surface layer, an effect of improving the capacity retention rate is seen as compared with Comparative Example 1. . Moreover, it turns out that the capacity | capacitance maintenance factor becomes higher in the direction which covers the edge part of an outer peripheral side with a surface layer rather than the inner peripheral side of an electrode group. This is presumably because the position of the negative electrode lead is located near the outer peripheral end of the negative electrode current collector. That is, it is presumed that the effect of suppressing lithium deposition is greater when the end portion of the mixture layer located in the vicinity of the current collecting portion where lithium is likely to precipitate is covered with the surface layer.
 また、負極合剤層の端部対応部の表面層の厚みを徐々に大きくした実施例4では、リチウムの析出は実施例1と同様に抑制され、かつ500サイクル後の容量維持率は実施例1よりも良化した。このことから、表面層の厚みを最端部に向かって徐々に大きくすることで、表面層の作用が顕在化するものと推察される。 Further, in Example 4 in which the thickness of the surface layer of the end corresponding portion of the negative electrode mixture layer was gradually increased, lithium deposition was suppressed in the same manner as in Example 1, and the capacity retention rate after 500 cycles was Better than 1. From this, it is presumed that the action of the surface layer becomes obvious by gradually increasing the thickness of the surface layer toward the extreme end.
 更に、表面層を負極合剤層の端部から負極集電体の表面にまで結着させた実施例5では、リチウムの析出は実施例1と同様に抑制され、かつ500サイクル後の容量維持率は実施例1よりも更に良化した。これは、表面層と負極集電体との結着力が高められ、負極合剤層の端部での合剤の脱落が防止されたためと推察される。 Furthermore, in Example 5 in which the surface layer was bound from the end of the negative electrode mixture layer to the surface of the negative electrode current collector, lithium deposition was suppressed in the same manner as in Example 1, and the capacity was maintained after 500 cycles. The rate was further improved than in Example 1. This is presumably because the binding force between the surface layer and the negative electrode current collector was increased, and the mixture was prevented from falling off at the end of the negative electrode mixture layer.
 一方、負極合剤層の両端部をいずれも表面層で覆わない比較例1では、内周側および外周側のいずれの端部でも、リチウムが析出しており、500サイクル後の容量維持率も低かった。 On the other hand, in Comparative Example 1 in which both ends of the negative electrode mixture layer are not covered with the surface layer, lithium is deposited at both the inner and outer ends, and the capacity retention rate after 500 cycles is also obtained. It was low.
 以上のように、負極合剤層の端部を表面層で覆うことにより、負極合剤層の端部におけるリチウムの析出を抑制できること、更に、結着力の高い表面層と負極集電体とを接触させることで、負極合剤層の端部での合剤の脱落も防止でき、容量維持率の向上に有利であることが確認できた。 As described above, by covering the end portion of the negative electrode mixture layer with the surface layer, precipitation of lithium at the end portion of the negative electrode mixture layer can be suppressed, and furthermore, the surface layer having a high binding force and the negative electrode current collector By contacting, it was possible to prevent the mixture from falling off at the end of the negative electrode mixture layer, and it was confirmed that it was advantageous for improving the capacity retention rate.
 なお、実施例1~5においては、負極合剤層に表面層を設けることでリチウムとの反応性を向上させたが、正極合剤層に表面層を設けて、そのリチウムとの反応性を向上させることでも、類似の効果を得ることができる。 In Examples 1 to 5, the surface layer was provided in the negative electrode mixture layer to improve the reactivity with lithium, but the surface layer was provided in the positive electrode mixture layer to improve the reactivity with lithium. A similar effect can also be obtained by improving.
《参考例1》
(負極の作製)
 本参考例では、図8に示したのと同じ断面構造の負極を作製し、これを用いて図1に示したのと同様の非水系二次電池を作製した。具体的には、実施例1と同様の負極合剤塗料と表面層塗料を用い、以下の点以外、比較例1とほぼ同様の方法で、負極合剤層と表面層とを形成し、負極を得た。
<< Reference Example 1 >>
(Preparation of negative electrode)
In this reference example, a negative electrode having the same cross-sectional structure as shown in FIG. 8 was produced, and a non-aqueous secondary battery similar to that shown in FIG. 1 was produced using this negative electrode. Specifically, the negative electrode mixture paint and the surface layer paint similar to those in Example 1 were used, and the negative electrode mixture layer and the surface layer were formed in substantially the same manner as in Comparative Example 1 except for the following points. Got.
 本参考例では、表面層塗料と合剤塗料との粘度比を、1:0.01~0.05となるように調整した。また、上述の合剤塗料を塗布した後、乾燥させずに表面層塗料を合剤塗料の塗膜の表面に塗布し、2層の塗膜を同時に乾燥させた。その後、塗膜と集電体とを圧延して、片面あたりの負極合剤層の厚みが84μm、表面層13の厚みが10μm、負極合剤層と表面層との界面の最大高さ粗さRmaxが3μmの負極を作製した。 In this reference example, the viscosity ratio between the surface layer coating material and the mixture coating material was adjusted to be 1: 0.01 to 0.05. Moreover, after apply | coating the above-mentioned mixture coating material, the surface layer coating material was apply | coated to the surface of the coating film of mixture coating material, without making it dry, and the two-layer coating film was dried simultaneously. Thereafter, the coating film and the current collector are rolled, and the thickness of the negative electrode mixture layer per side is 84 μm, the thickness of the surface layer 13 is 10 μm, and the maximum height roughness of the interface between the negative electrode mixture layer and the surface layer A negative electrode having an Rmax of 3 μm was produced.
 得られた負極では、負極合剤層が表面層から露出することがなく、図8に示すように、表面層が合剤層を完全に覆っていた。 In the obtained negative electrode, the negative electrode mixture layer was not exposed from the surface layer, and the surface layer completely covered the mixture layer as shown in FIG.
(正極の作製)
 コバルト酸リチウム(正極活物質)100質量部に対し、アセチレンブラック(導電材)を1質量部、ポリフッ化ビニリデン(結着材)を1質量部、および適量のNMPを配合し、双腕式練合機で攪拌し、正極合剤塗料を調製した。この塗料を厚み15μmのアルミニウム箔からなる正極集電体の両面に塗布し、乾燥し、片面あたりの合剤層の厚みが74μmとなるように圧延して、正極を得た。
(Preparation of positive electrode)
Mixing 1 part by weight of acetylene black (conductive material), 1 part by weight of polyvinylidene fluoride (binder), and an appropriate amount of NMP with respect to 100 parts by weight of lithium cobalt oxide (positive electrode active material) The mixture was stirred with a combination machine to prepare a positive electrode mixture paint. This paint was applied to both sides of a positive electrode current collector made of an aluminum foil having a thickness of 15 μm, dried, and rolled so that the thickness of the mixture layer per side was 74 μm, thereby obtaining a positive electrode.
(リチウムイオン二次電池の作製)
 本参考例で作製した上記の負極と正極を用いたこと以外、実施例1と同様に、図1に示したのと同様の電池を作製した。
(Production of lithium ion secondary battery)
A battery similar to that shown in FIG. 1 was produced in the same manner as in Example 1 except that the above-described negative electrode and positive electrode produced in this reference example were used.
(参考例2)
 表面層塗料と合剤塗料との粘度比を、1:0.2~1.0となるように調整したこと以外、参考例1と同様に負極を作製した。得られた負極においては、負極合剤層が表面層から露出することがなく、図8に示すように、表面層が合剤層を完全に覆っていた。また、片面あたりの負極合剤層の厚みは84μm、表面層13の厚みは10μm、負極合剤層と表面層との界面の最大高さ粗さRmaxは25μmであった。次に、得られた負極を用いたこと以外、実施例1と同様に、リチウムイオン二次電池を作製した。
(Reference Example 2)
A negative electrode was produced in the same manner as in Reference Example 1 except that the viscosity ratio of the surface layer coating material to the mixture coating material was adjusted to be 1: 0.2 to 1.0. In the obtained negative electrode, the negative electrode mixture layer was not exposed from the surface layer, and the surface layer completely covered the mixture layer as shown in FIG. The thickness of the negative electrode mixture layer per side was 84 μm, the thickness of the surface layer 13 was 10 μm, and the maximum height roughness Rmax of the interface between the negative electrode mixture layer and the surface layer was 25 μm. Next, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained negative electrode was used.
(参考例3)
 表面層塗料と合剤塗料との粘度比を、1:0.05~0.2となるように調整し、片面あたりの負極合剤層の厚みを91μm、表面層の厚みを3μm、負極合剤層と表面層との界面の最大高さ粗さRmaxを15μmとしたこと以外、参考例1と同様に負極を作製した。得られた負極においては、負極合剤層が表面層から露出することがなく、図8に示すように、表面層が合剤層を完全に覆っていた。次に、得られた負極を用いたこと以外、実施例1と同様に、リチウムイオン二次電池を作製した。
(Reference Example 3)
The viscosity ratio between the surface layer paint and the mixture paint is adjusted to be 1: 0.05 to 0.2, the negative electrode mixture layer thickness per side is 91 μm, the surface layer thickness is 3 μm, and the negative electrode mixture A negative electrode was produced in the same manner as in Reference Example 1 except that the maximum height roughness Rmax at the interface between the agent layer and the surface layer was 15 μm. In the obtained negative electrode, the negative electrode mixture layer was not exposed from the surface layer, and the surface layer completely covered the mixture layer as shown in FIG. Next, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained negative electrode was used.
(参考例4)
 片面あたりの負極合剤層の厚みを74μm、表面層の厚みを20μmとしたこと以外、参考例3と同様に負極を作製した。得られた負極においては、負極合剤層が表面層から露出することがなく、図8に示すように、表面層が合剤層を完全に覆っていた。次に、得られた負極を用いたこと以外、実施例1と同様に、リチウムイオン二次電池を作製した。
(Reference Example 4)
A negative electrode was produced in the same manner as in Reference Example 3 except that the thickness of the negative electrode mixture layer per side was 74 μm and the thickness of the surface layer was 20 μm. In the obtained negative electrode, the negative electrode mixture layer was not exposed from the surface layer, and the surface layer completely covered the mixture layer as shown in FIG. Next, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained negative electrode was used.
(参考例5)
 片面あたりの負極合剤層の厚みを91μm、表面層の厚みを3μmとしたこと以外、参考例2と同様に負極を作製した。得られた負極においては、負極合剤層が表面層から露出することがなく、図8に示すように、表面層が合剤層を完全に覆っていた。次に、得られた負極を用いたこと以外、実施例1と同様に、リチウムイオン二次電池を作製した。
(Reference Example 5)
A negative electrode was produced in the same manner as in Reference Example 2 except that the thickness of the negative electrode mixture layer per side was 91 μm and the thickness of the surface layer was 3 μm. In the obtained negative electrode, the negative electrode mixture layer was not exposed from the surface layer, and the surface layer completely covered the mixture layer as shown in FIG. Next, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained negative electrode was used.
 参考例1~5の電池について、負極合剤層の厚み、表面層の厚み、負極合剤層と表面層との界面の最大高さ粗さRmax、負極合剤層の露出の有無、および内部短絡試験の評価結果を表2に示す。 For the batteries of Reference Examples 1 to 5, the thickness of the negative electrode mixture layer, the thickness of the surface layer, the maximum height roughness Rmax of the interface between the negative electrode mixture layer and the surface layer, the presence or absence of exposure of the negative electrode mixture layer, and the internal The evaluation results of the short circuit test are shown in Table 2.
[評価]
<合剤層の露出の有無>
 負極の表面および断面を電子顕微鏡で観察し、表面層から負極合剤層の活物質が露出しているかどうかを確認した。
[Evaluation]
<Presence or absence of exposure of mixture layer>
The surface and cross section of the negative electrode were observed with an electron microscope, and it was confirmed whether or not the active material of the negative electrode mixture layer was exposed from the surface layer.
<最大高さ粗さRmax>
 負極の断面を電子顕微鏡で観察し、合剤層と表面層との界面のうち、集電体から最も離れた界面と、集電体に最も近い界面との厚み方向の距離を測定した。
<Maximum roughness Rmax>
The cross section of the negative electrode was observed with an electron microscope, and the distance in the thickness direction between the interface farthest from the current collector and the interface closest to the current collector among the interface between the mixture layer and the surface layer was measured.
<内部短絡試験>
 各参考例について、それぞれ5セルずつ電池を準備した。そして、各電池を充電後、電池ケース内から電極群を取り出した。次に、任意の大きさの金属片を、電極群の最外周に位置する正極とセパレータとの間に介在させた。そして、金属片を介在させた電極群を電池ケース内に、再度、収容した。次に、電池の側面を所定の圧力で押圧した。そして、各参考例において、5セルのうち短絡したセル数(短絡セル数/5)を確認した。
<Internal short circuit test>
For each reference example, 5 cells of each battery were prepared. And after charging each battery, the electrode group was taken out from the battery case. Next, a metal piece having an arbitrary size was interposed between the positive electrode located on the outermost periphery of the electrode group and the separator. And the electrode group which interposed the metal piece was again accommodated in the battery case. Next, the side surface of the battery was pressed with a predetermined pressure. And in each reference example, the number of cells short-circuited among the five cells (number of short-circuited cells / 5) was confirmed.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、参考例1~5においては、内部短絡試験における不良がないことから、安全性と充放電サイクル特性に優れていると考えられる。以上より、表面層の厚みは3~20μmが好ましく、界面の最大高さ粗さは3~25μmが好ましいことがわかる。 As is clear from Table 2, in Reference Examples 1 to 5, since there is no defect in the internal short circuit test, it is considered that the safety and charge / discharge cycle characteristics are excellent. From the above, it can be seen that the thickness of the surface layer is preferably 3 to 20 μm, and the maximum height roughness of the interface is preferably 3 to 25 μm.
 なお、参考例1~5では、負極合剤層の表面に表面層を形成したが、正極合剤層の表面に表面層を形成してもよく、その場合、類似の効果を得ることができる。 In Reference Examples 1 to 5, the surface layer was formed on the surface of the negative electrode mixture layer, but the surface layer may be formed on the surface of the positive electrode mixture layer, and in that case, a similar effect can be obtained. .
《参考例6》
(負極の作製)
 本参考例では、図9、10に示したような構造の負極を作製し、これを用いて図1に示したのと同様の非水系二次電池を作製した。具体的には、実施例1と同様の負極合剤塗料と表面層塗料を用い、以下の点以外、比較例1とほぼ同様の方法で、負極合剤層と表面層とを形成し、負極を得た。すなわち、本参考例では、表面層から合剤層の一部を露出させた。
<< Reference Example 6 >>
(Preparation of negative electrode)
In this reference example, a negative electrode having a structure as shown in FIGS. 9 and 10 was produced, and a non-aqueous secondary battery similar to that shown in FIG. 1 was produced using the negative electrode. Specifically, the negative electrode mixture paint and the surface layer paint similar to those in Example 1 were used, and the negative electrode mixture layer and the surface layer were formed in substantially the same manner as in Comparative Example 1 except for the following points. Got. That is, in this reference example, a part of the mixture layer was exposed from the surface layer.
 本参考例では、乾燥前の合剤塗料の塗膜に表面層塗料を塗布する際の流速を大きくすることにより、合剤層の表面粗さを大きくした。そして、片面あたりの負極合剤層と表面層との合計厚みが94μm、負極合剤層と表面層との界面の最大高さ粗さRmaxが30μmの負極を作製した。得られた負極の表面層を観察したところ、負極合剤層の一部が表面層から露出していた。また、その露出度は10%であった。なお、表面層を塗布した領域(合剤層の主要部)の1平方センチメートルあたりの露出度の分布を取ると、0.01~20%のばらつきがあった。次に、得られた負極を用いたこと以外、参考例1と同様に、リチウムイオン二次電池を作製した。 In this reference example, the surface roughness of the mixture layer was increased by increasing the flow rate when the surface layer coating was applied to the coating film of the mixture coating before drying. Then, a negative electrode having a total thickness of the negative electrode mixture layer and the surface layer per side of 94 μm and a maximum height roughness Rmax of 30 μm at the interface between the negative electrode mixture layer and the surface layer was prepared. When the surface layer of the obtained negative electrode was observed, a part of the negative electrode mixture layer was exposed from the surface layer. The degree of exposure was 10%. When the distribution of exposure per square centimeter of the area where the surface layer was applied (main part of the mixture layer) was taken, there was a variation of 0.01 to 20%. Next, a lithium ion secondary battery was produced in the same manner as in Reference Example 1 except that the obtained negative electrode was used.
《参考例7》
 本参考例では、図11、12に示したような構造の負極を作製し、これを用いて図1に示したのと同様の非水系二次電池を作製した。具体的には、実施例1と同様の負極合剤塗料と表面層塗料を用い、以下の点以外、比較例1とほぼ同様の方法で、負極合剤層と表面層とを形成し、負極を得た。
<< Reference Example 7 >>
In this reference example, a negative electrode having a structure as shown in FIGS. 11 and 12 was produced, and a non-aqueous secondary battery similar to that shown in FIG. 1 was produced using the negative electrode. Specifically, the negative electrode mixture paint and the surface layer paint similar to those in Example 1 were used, and the negative electrode mixture layer and the surface layer were formed in substantially the same manner as in Comparative Example 1 except for the following points. Got.
 本参考例では、負極合剤層を形成した後、合剤層に突出部を設け、その後、表面層塗料を塗布して表面層を形成した。具体的には、集電体の表面に負極合剤塗料を塗布し、塗膜を乾燥させた後、深さ10μmの楕円半球状の凹部が500μm間隔で形成されたローラで塗膜を圧延した。これにより、高さ10μmの楕円半球状の突出部を有する負極合剤層を形成した。その後、表面層塗料を負極合剤層の表面に塗布し、乾燥させた。その後、上記のような凹部を有さないローラで塗膜を圧延し、片面あたりの負極合剤層と表面層との合計厚みが94μmの負極を作製した。得られた負極の表面層を観察したところ、負極合剤層の一部が表面層から露出していた。また、その露出度は0.1%であった。次に、得られた負極を用いたこと以外、参考例1と同様に、リチウムイオン二次電池を作製した。 In this reference example, after forming the negative electrode mixture layer, a protrusion was provided on the mixture layer, and then a surface layer coating was applied to form a surface layer. Specifically, the negative electrode mixture paint was applied to the surface of the current collector, the coating film was dried, and then the coating film was rolled with a roller in which elliptical hemispherical recesses having a depth of 10 μm were formed at intervals of 500 μm. . Thus, a negative electrode mixture layer having an elliptical hemispherical protrusion having a height of 10 μm was formed. Thereafter, a surface layer coating was applied to the surface of the negative electrode mixture layer and dried. Thereafter, the coating film was rolled with a roller having no recess as described above, and a negative electrode having a total thickness of 94 μm of the negative electrode mixture layer and the surface layer per side was produced. When the surface layer of the obtained negative electrode was observed, a part of the negative electrode mixture layer was exposed from the surface layer. The degree of exposure was 0.1%. Next, a lithium ion secondary battery was produced in the same manner as in Reference Example 1 except that the obtained negative electrode was used.
《参考例8》
 負極合剤塗料の塗膜を圧延するローラとして、深さ10μmの楕円半球状の凹部が27μm間隔で形成されたローラを用いたこと以外、参考例7と同様に、負極を作製した。得られた負極の表面層を観察したところ、負極合剤層の一部が表面層から露出していた。また、その露出度は60%であった。次に、得られた負極を用いたこと以外、参考例1と同様に、リチウムイオン二次電池を作製した。
<< Reference Example 8 >>
A negative electrode was produced in the same manner as in Reference Example 7 except that a roller in which elliptical hemispherical recesses having a depth of 10 μm were formed at intervals of 27 μm was used as a roller for rolling the coating film of the negative electrode mixture paint. When the surface layer of the obtained negative electrode was observed, a part of the negative electrode mixture layer was exposed from the surface layer. The degree of exposure was 60%. Next, a lithium ion secondary battery was produced in the same manner as in Reference Example 1 except that the obtained negative electrode was used.
《参考例9》
 本参考例では、図13、14に示したような構造の負極を作製し、これを用いて図1に示したのと同様の非水系二次電池を作製した。具体的には、実施例1と同様の負極合剤塗料と表面層塗料を用い、以下の点以外、比較例1とほぼ同様の方法で、負極合剤層と表面層とを形成し、負極を得た。
<< Reference Example 9 >>
In this reference example, a negative electrode having a structure as shown in FIGS. 13 and 14 was produced, and a non-aqueous secondary battery similar to that shown in FIG. 1 was produced using the negative electrode. Specifically, the negative electrode mixture paint and the surface layer paint similar to those in Example 1 were used, and the negative electrode mixture layer and the surface layer were formed in substantially the same manner as in Comparative Example 1 except for the following points. Got.
 本参考例では、表面層塗料に十分な量の気泡を内包させ、気泡を破裂させることにより、表面層に複数の貫通孔を点在させた。具体的には、表面層塗料の調製において、双腕式練合機での攪拌後、回転円盤式分散機で塗料に大気を内包させた。 In this reference example, a sufficient amount of bubbles were included in the surface layer coating material, and the bubbles were ruptured, thereby interspersing a plurality of through holes in the surface layer. Specifically, in the preparation of the surface layer coating material, the air was encapsulated in the coating material with a rotating disk type disperser after stirring with a double-arm kneader.
 集電体に負極合剤塗料を塗布し、乾燥し、圧延後、表面層塗料を負極合剤層の表面に塗布した。その後、表面層塗料の塗膜を乾燥させた。その際、乾燥の途中で表面層塗料に内包されていた気泡が破裂し、直径約20μm以下の微小な貫通孔が多数形成された。片面あたりの負極合剤層厚みは84μm、表面層の厚みは10μmであった。表面層からの負極合剤層の露出度は1%であった。 The negative electrode mixture paint was applied to the current collector, dried, and after rolling, the surface layer paint was applied to the surface of the negative electrode mixture layer. Then, the coating film of the surface layer coating material was dried. At that time, bubbles contained in the surface layer coating burst during drying, and a large number of minute through holes having a diameter of about 20 μm or less were formed. The thickness of the negative electrode mixture layer per side was 84 μm, and the thickness of the surface layer was 10 μm. The degree of exposure of the negative electrode mixture layer from the surface layer was 1%.
《参考例10》
 本参考例では、合剤層の表面粗さを小さくした。そして、片面あたりの負極合剤層厚みは79μm、表面層の厚みは15μm、負極合剤層と表面層との界面の最大高さ粗さRmaxが20μmの負極を作製した。得られた負極の表面層を観察したところ、負極合剤層は表面層から露出していなかった(露出度0%)。次に、得られた負極を用いたこと以外、参考例1と同様に、リチウムイオン二次電池を作製した。
<< Reference Example 10 >>
In this reference example, the surface roughness of the mixture layer was reduced. And the negative electrode mixture layer thickness per one side was 79 micrometers, the thickness of the surface layer was 15 micrometers, and the negative electrode whose maximum height roughness Rmax of the interface of a negative electrode mixture layer and a surface layer was 20 micrometers was produced. When the surface layer of the obtained negative electrode was observed, the negative electrode mixture layer was not exposed from the surface layer (exposure degree 0%). Next, a lithium ion secondary battery was produced in the same manner as in Reference Example 1 except that the obtained negative electrode was used.
 参考例6~10の電池について、負極合剤層の露出度、非水電解質の注液性の評価、および充放電サイクル特性の評価の結果を表3に示す。 Table 3 shows the results of evaluation of the degree of exposure of the negative electrode mixture layer, the non-aqueous electrolyte injection property, and the charge / discharge cycle characteristics of the batteries of Reference Examples 6 to 10.
[評価]
<露出度>
 負極の表面および断面を電子顕微鏡で観察し、表面の画像処理により決定した。
[Evaluation]
<Exposure>
The surface and cross section of the negative electrode were observed with an electron microscope and determined by surface image processing.
<非水電解質の注液性>
 参考例6~10の電池を作製する際、5.5gの非水電解質を減圧下で電極群に含浸させるのに要した時間を測定した。
<Injectability of non-aqueous electrolyte>
When the batteries of Reference Examples 6 to 10 were manufactured, the time required to impregnate the electrode group with 5.5 g of nonaqueous electrolyte was measured.
<充放電サイクル特性>
 実施例1~5の評価方法と同様である。
<Charge / discharge cycle characteristics>
This is the same as the evaluation method in Examples 1 to 5.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、表面層から負極合剤層が露出している参考例6~9では、表面層から負極合剤層が露出していない参考例10よりも、注液時間が大幅に短くなっている。これは、参考例10では、負極合剤層を覆う表面層により、負極合剤層への非水電解質の含浸が妨げられていることを示している。参考例6~9では、負極合剤層の露出部分から非水電解質が含浸されるため、負極全体にわたって均一に非水電解質が含浸されるため、注液時間が短くなったと推察される。また、表面層からの負極合剤層の露出度が0.1~60%の範囲では、容量維持率も良好であった。 As is clear from Table 3, in Reference Examples 6 to 9 where the negative electrode mixture layer was exposed from the surface layer, the injection time was much longer than in Reference Example 10 where the negative electrode mixture layer was not exposed from the surface layer. It has become shorter. This indicates that in Reference Example 10, impregnation of the nonaqueous electrolyte into the negative electrode mixture layer is hindered by the surface layer covering the negative electrode mixture layer. In Reference Examples 6 to 9, since the nonaqueous electrolyte is impregnated from the exposed portion of the negative electrode mixture layer, the nonaqueous electrolyte is uniformly impregnated over the entire negative electrode, and it is assumed that the injection time is shortened. Further, when the degree of exposure of the negative electrode mixture layer from the surface layer was in the range of 0.1 to 60%, the capacity retention rate was also good.
 以上より、表面層から負極合剤層の一部を露出させることで、良好な注液性と優れた充放電サイクル特性の両立に有利となることがわかる。 From the above, it can be seen that by exposing a part of the negative electrode mixture layer from the surface layer, it is advantageous to achieve both good liquid injection properties and excellent charge / discharge cycle characteristics.
 本発明の非水系二次電池用電極板は、充放電サイクル特性に優れているので、長寿命化が望まれている様々な電子機器、通信機器、移動体の電源として有用である。例えば、多機能化されたポータブル機器用電源やEV(電気自動車)またはHEV(ハイブリッド自動車)用電源として有用である。 The electrode plate for a non-aqueous secondary battery according to the present invention is excellent in charge / discharge cycle characteristics, and thus is useful as a power source for various electronic devices, communication devices, and mobile objects that are desired to have a long life. For example, it is useful as a power source for a multifunctional portable device or a power source for an EV (electric vehicle) or HEV (hybrid vehicle).
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。 Although the present invention has been described in terms of the presently preferred embodiments, such disclosure should not be construed as limiting. Various changes and modifications will no doubt become apparent to those skilled in the art to which the present invention pertains after reading the above disclosure. Accordingly, the appended claims should be construed to include all variations and modifications without departing from the true spirit and scope of this invention.
 1:正極、2:負極、3:多孔質絶縁層、4電極群、5:電池ケース、6:絶縁板、7:負極リード、8:正極リード、9:封口板、10:ガスケット、11:リチウムイオン二次電池、12:負極集電体、13:負極合剤層、14:表面層、15:突出部 1: positive electrode, 2: negative electrode, 3: porous insulating layer, 4 electrode group, 5: battery case, 6: insulating plate, 7: negative electrode lead, 8: positive electrode lead, 9: sealing plate, 10: gasket, 11: Lithium ion secondary battery, 12: negative electrode current collector, 13: negative electrode mixture layer, 14: surface layer, 15: protrusion

Claims (12)

  1.  矩形の集電体と、前記集電体の表面に形成された第1活物質を含む合剤層と、を具備し、
     前記合剤層は、前記集電体の一端部に沿う第1端部と、前記第1端部の反対側の第2端部と、前記集電体の前記一端部に垂直な他端部に沿う第3端部と、前記第3端部の反対側の第4端部と、前記第1から第4端部以外の主要部と、を有し、
     前記第1から第4端部よりなる群から選択される少なくとも1つの所定端部の厚みが、前記合剤層の主要部の厚みよりも小さく、
     前記所定端部の表面が、前記第1活物質よりもリチウムとの反応性が高い第2活物質を含む表面層で覆われている、非水系二次電池用電極板。
    A rectangular current collector, and a mixture layer containing a first active material formed on the surface of the current collector,
    The mixture layer includes a first end along one end of the current collector, a second end opposite to the first end, and the other end perpendicular to the one end of the current collector. A third end along the fourth end, a fourth end opposite to the third end, and a main part other than the first to fourth ends,
    The thickness of at least one predetermined end selected from the group consisting of the first to fourth ends is smaller than the thickness of the main part of the mixture layer,
    The electrode plate for a non-aqueous secondary battery, wherein the surface of the predetermined end is covered with a surface layer containing a second active material that is more reactive with lithium than the first active material.
  2.  前記所定端部の厚みが、前記所定端部の最端部に向かうにつれて小さくなっている、請求項1記載の非水系二次電池用電極板。 The electrode plate for a non-aqueous secondary battery according to claim 1, wherein a thickness of the predetermined end portion becomes smaller toward an endmost portion of the predetermined end portion.
  3.  前記表面層が、前記所定端部の表面を覆う端部対応部と、前記合剤層の主要部の表面を覆う主要部対応部とを有し、
     前記端部対応部の厚みが、前記主要部対応部の厚みより大きくなっている、請求項1または2記載の非水系二次電池用電極板。
    The surface layer has an end corresponding portion that covers the surface of the predetermined end portion, and a main portion corresponding portion that covers the surface of the main portion of the mixture layer,
    The electrode plate for a non-aqueous secondary battery according to claim 1 or 2, wherein a thickness of the end corresponding part is larger than a thickness of the main part corresponding part.
  4.  前記端部対応部の厚みが、前記所定端部の最端部に向かうにつれて大きくなっている、請求項3に記載の非水系二次電池用電極板。 The electrode plate for a non-aqueous secondary battery according to claim 3, wherein a thickness of the end corresponding portion increases toward the endmost portion of the predetermined end.
  5.  前記表面層は、前記所定端部の表面を覆うとともに、前記集電体の表面の少なくとも一部を覆っている、請求項1~4のいずれか1項記載の非水系二次電池用電極板。 The electrode plate for a non-aqueous secondary battery according to any one of claims 1 to 4, wherein the surface layer covers a surface of the predetermined end portion and covers at least a part of a surface of the current collector. .
  6.  前記合剤層の主要部と、前記表面層の主要部対応部と、の界面における、最大高さ粗さRmaxが、3~25μmである、請求項3~5のいずれか1項記載の非水系二次電池用電極板。 The non-height according to any one of claims 3 to 5, wherein the maximum height roughness Rmax at the interface between the main part of the mixture layer and the main part corresponding part of the surface layer is 3 to 25 µm. Electrode plate for aqueous secondary battery.
  7.  前記主要部対応部の厚みが、3~20μmである、請求項6記載の非水系二次電池用電極板。 The electrode plate for a non-aqueous secondary battery according to claim 6, wherein the thickness of the main part corresponding part is 3 to 20 µm.
  8.  前記合剤層の主要部の一部が、前記表面層の主要部対応部から露出している、請求項3~7のいずれか1項記載の非水系二次電池用電極板。 The electrode plate for a non-aqueous secondary battery according to any one of claims 3 to 7, wherein a part of a main part of the mixture layer is exposed from a main part corresponding part of the surface layer.
  9.  前記主要部対応部には、複数の貫通孔が点在しており、前記貫通孔から前記合剤層の主要部の一部が露出している、請求項8記載の非水系二次電池用電極板。 The non-aqueous secondary battery according to claim 8, wherein the main part corresponding part is dotted with a plurality of through holes, and a part of the main part of the mixture layer is exposed from the through holes. Electrode plate.
  10.  前記主要部の面積に対する、前記主要部が露出する面積の割合が、60%以下である、請求項8または9記載の非水系二次電池用電極板。 The electrode plate for a non-aqueous secondary battery according to claim 8 or 9, wherein a ratio of an area where the main part is exposed to an area of the main part is 60% or less.
  11.  前記第1活物質が、リチウムイオンを可逆的に吸蔵および放出可能な炭素材料であり、
     前記第2活物質が、リチウムイオンを可逆的に吸蔵および放出可能なリチウムチタン複合酸化物である、請求項1~10のいずれか1項記載の非水系二次電池用電極板。
    The first active material is a carbon material capable of reversibly occluding and releasing lithium ions;
    The electrode plate for a non-aqueous secondary battery according to any one of claims 1 to 10, wherein the second active material is a lithium titanium composite oxide capable of reversibly occluding and releasing lithium ions.
  12.  電極群、非水電解質および前記電極群を前記非水電解質とともに収容する外装体を具備し、
     前記電極群は、正極と、負極と、前記正極と前記負極との間に介在する多孔質絶縁層とを具備し、
     前記正極と前記負極とが、前記多孔質絶縁層を介して積層または捲回されており、
     前記正極および前記負極の少なくとも一方が、請求項1~10のいずれか1項記載の非水系二次電池用電極板である、非水系二次電池。
    An electrode group, a non-aqueous electrolyte, and an exterior body that houses the electrode group together with the non-aqueous electrolyte,
    The electrode group includes a positive electrode, a negative electrode, and a porous insulating layer interposed between the positive electrode and the negative electrode,
    The positive electrode and the negative electrode are laminated or wound through the porous insulating layer,
    A nonaqueous secondary battery, wherein at least one of the positive electrode and the negative electrode is the electrode plate for a nonaqueous secondary battery according to any one of claims 1 to 10.
PCT/JP2012/005442 2011-08-29 2012-08-29 Electrode plate for non-aqueous secondary battery and non-aqueous secondary battery using same WO2013031213A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-185503 2011-08-29
JP2011185503A JP2014211944A (en) 2011-08-29 2011-08-29 Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP2011-187199 2011-08-30
JP2011187199A JP2014211945A (en) 2011-08-30 2011-08-30 Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP2011-188425 2011-08-31
JP2011188425A JP2014211947A (en) 2011-08-31 2011-08-31 Electrode plate for secondary battery and secondary battery using the same

Publications (1)

Publication Number Publication Date
WO2013031213A1 true WO2013031213A1 (en) 2013-03-07

Family

ID=47755741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005442 WO2013031213A1 (en) 2011-08-29 2012-08-29 Electrode plate for non-aqueous secondary battery and non-aqueous secondary battery using same

Country Status (1)

Country Link
WO (1) WO2013031213A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108258193A (en) * 2017-12-28 2018-07-06 湖南三迅新能源科技有限公司 A kind of negative plate and preparation method thereof, lithium ion battery
JP2019153434A (en) * 2018-03-01 2019-09-12 株式会社東芝 Laminate and secondary battery
WO2022236489A1 (en) * 2021-05-08 2022-11-17 宁德新能源科技有限公司 Battery cell and electrical device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068279A (en) * 2001-08-28 2003-03-07 Nec Mobile Energy Kk Battery electrode and manufacturing method of the same
JP2005174779A (en) * 2003-12-12 2005-06-30 Matsushita Electric Ind Co Ltd Lithium ion secondary cell
JP2006092815A (en) * 2004-09-22 2006-04-06 Hitachi Ltd Energy device
JP2007179864A (en) * 2005-12-28 2007-07-12 Hitachi Maxell Ltd Negative electrode for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery
JP2007250536A (en) * 2006-02-16 2007-09-27 Matsushita Electric Ind Co Ltd Electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous secondary battery using it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068279A (en) * 2001-08-28 2003-03-07 Nec Mobile Energy Kk Battery electrode and manufacturing method of the same
JP2005174779A (en) * 2003-12-12 2005-06-30 Matsushita Electric Ind Co Ltd Lithium ion secondary cell
JP2006092815A (en) * 2004-09-22 2006-04-06 Hitachi Ltd Energy device
JP2007179864A (en) * 2005-12-28 2007-07-12 Hitachi Maxell Ltd Negative electrode for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery
JP2007250536A (en) * 2006-02-16 2007-09-27 Matsushita Electric Ind Co Ltd Electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous secondary battery using it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108258193A (en) * 2017-12-28 2018-07-06 湖南三迅新能源科技有限公司 A kind of negative plate and preparation method thereof, lithium ion battery
JP2019153434A (en) * 2018-03-01 2019-09-12 株式会社東芝 Laminate and secondary battery
US11411284B2 (en) 2018-03-01 2022-08-09 Kabushiki Kaisha Toshiba Laminate and secondary battery
WO2022236489A1 (en) * 2021-05-08 2022-11-17 宁德新能源科技有限公司 Battery cell and electrical device

Similar Documents

Publication Publication Date Title
JP5472759B2 (en) Lithium secondary battery
JP5311157B2 (en) Lithium secondary battery
JP5218873B2 (en) Lithium secondary battery and manufacturing method thereof
KR101715540B1 (en) Nonaqueous electrolyte secondary battery
US20180294514A1 (en) Lithium ion secondary battery and method for manufacturing the same
JP2007258050A (en) Nonaqueous battery
JP6995738B2 (en) Positive electrode for lithium-ion secondary battery and lithium-ion secondary battery
KR102010014B1 (en) Lithium secondary battery and operating method thereof
WO2014203621A1 (en) Nonaqueous electrolyte secondary battery
JP5709010B2 (en) Non-aqueous electrolyte secondary battery
JP2018092707A (en) Method for manufacturing positive electrode plate, method for manufacturing nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2007328977A (en) Electrode plate for non-aqueous secondary battery, its manufacturing method, and non-aqueous secondary battery
JP2014026777A (en) Nonaqueous electrolyte secondary battery and method for manufacturing positive electrode for the secondary battery
WO2014128946A1 (en) Lithium-ion secondary cell negative electrode, lithium-ion secondary cell using lithium-ion secondary cell negative electrode, and method for manufacturing said electrode and said cell
JP4836185B2 (en) Non-aqueous electrolyte secondary battery
JP2014211944A (en) Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
WO2013031213A1 (en) Electrode plate for non-aqueous secondary battery and non-aqueous secondary battery using same
JP2012256544A (en) Manufacturing method of electrode for secondary battery
WO2013031211A1 (en) Electrode plate for non-aqueous secondary battery and non-aqueous secondary battery using same
KR20210010402A (en) Non-aqueous electrolyte secondary battery
JP2011070802A (en) Nonaqueous electrolyte secondary battery
WO2012001814A1 (en) Lithium secondary battery
JP7270833B2 (en) High nickel electrode sheet and manufacturing method thereof
JP6493766B2 (en) Lithium ion secondary battery
JP5725356B2 (en) Method for manufacturing electrode for secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12827291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP