WO2013031211A1 - Electrode plate for non-aqueous secondary battery and non-aqueous secondary battery using same - Google Patents

Electrode plate for non-aqueous secondary battery and non-aqueous secondary battery using same Download PDF

Info

Publication number
WO2013031211A1
WO2013031211A1 PCT/JP2012/005440 JP2012005440W WO2013031211A1 WO 2013031211 A1 WO2013031211 A1 WO 2013031211A1 JP 2012005440 W JP2012005440 W JP 2012005440W WO 2013031211 A1 WO2013031211 A1 WO 2013031211A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixture layer
negative electrode
surface layer
secondary battery
layer
Prior art date
Application number
PCT/JP2012/005440
Other languages
French (fr)
Japanese (ja)
Inventor
元貴 衣川
伊達 健二
了介 大前
智文 柳
渡邉 耕三
藤原 勲
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011187199A external-priority patent/JP2014211945A/en
Priority claimed from JP2011187209A external-priority patent/JP2014211946A/en
Priority claimed from JP2011188425A external-priority patent/JP2014211947A/en
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013031211A1 publication Critical patent/WO2013031211A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode plate for a non-aqueous secondary battery represented by a lithium ion battery and a non-aqueous secondary battery using the same.
  • non-aqueous secondary batteries such as lithium ion secondary batteries
  • a typical lithium ion secondary battery uses a carbon material that can store and release lithium as a negative electrode active material, and a lithium-containing composite oxide such as LiCoO 2 as a positive electrode active material.
  • a high voltage and high capacity secondary battery is realized.
  • further improvements in capacity, long life, and safety are required.
  • a general non-aqueous secondary battery manufacturing process includes a step of forming an electrode group including a positive electrode, a negative electrode, and a porous insulating layer interposed therebetween, a step of housing the electrode group in a battery case, Injecting a water electrolyte into the battery case and impregnating the electrode group.
  • the gap between the end portion of the electrode mixture layer and the separator becomes a main movement path of the non-aqueous electrolyte.
  • one aspect of the present invention includes a rectangular current collector and a mixture layer including a first active material formed on a surface of the current collector, and the mixture layer includes A first end along one end of the current collector, a second end opposite to the first end, a third end along the other end perpendicular to the one end of the current collector, And a fourth end opposite to the third end, and a main part other than the first to fourth ends, and at least selected from the group consisting of the first to fourth ends
  • the thickness of one predetermined end is smaller than the thickness of the main portion of the mixture layer, the surface of the mixture layer is exposed at least part of the surface of the predetermined end, and the surface of the main portion
  • the electrode plate for a non-aqueous secondary battery is covered with a surface layer having a smaller impregnation property with respect to the non-aqueous electrolyte than the mixture layer so that at least a part of the electrode plate is shielded.
  • Another aspect of the present invention includes an electrode group, a nonaqueous electrolyte, and an exterior body that houses the electrode group together with the nonaqueous electrolyte.
  • the electrode group includes a positive electrode, a negative electrode, the positive electrode, and the negative electrode.
  • the positive electrode and the negative electrode are laminated or wound via the porous insulating layer, and at least one of the positive electrode and the negative electrode is the above-described porous insulating layer.
  • the present invention relates to a non-aqueous secondary battery which is an electrode plate for a non-aqueous secondary battery.
  • the thickness of the predetermined end portion of the mixture layer is smaller than the thickness of the main portion of the mixture layer, and at least a part of the predetermined end portion is exposed from the surface layer.
  • the impregnation property of the mixture layer with the nonaqueous electrolyte is high, and the productivity of the battery can be improved.
  • the nonaqueous electrolyte once impregnated in the mixture layer is less likely to be released from the mixture layer, and the liquid retention by the mixture layer is reduced. improves. Therefore, it is also advantageous for improving the battery capacity.
  • FIG. 1 is a partially cutaway perspective view of a nonaqueous secondary battery in a first embodiment of the present invention. It is a schematic diagram of the cross section of the electrode plate for non-aqueous secondary batteries in 1st Embodiment of this invention. It is a schematic diagram of the front of the electrode plate. It is a schematic diagram of the cross section of the electrode plate for non-aqueous secondary batteries in 2nd Embodiment of this invention. It is a schematic diagram of the front of the electrode plate for non-aqueous secondary batteries in 3rd Embodiment of this invention. 6 is a schematic view of a cross section of a nonaqueous secondary battery electrode plate of Comparative Example 1.
  • FIG. 1 is a partially cutaway perspective view of a nonaqueous secondary battery in a first embodiment of the present invention. It is a schematic diagram of the cross section of the electrode plate for non-aqueous secondary batteries in 1st Embodiment of this invention. It is a schematic diagram of the front of the electrode plate. It is
  • the electrode plate for a non-aqueous secondary battery of the present invention comprises a rectangular current collector and a mixture layer containing a first active material formed on the surface of the current collector.
  • the mixture layer includes a first end along one end of the current collector, a second end opposite to the first end, and a third end along the other end perpendicular to the one end of the current collector.
  • the rectangle may be a long and narrow strip rectangle. Further, the rectangle does not mean only a perfect rectangle but includes a shape close to a rectangle.
  • the mixture layer is obtained, for example, by mixing the first active material with a liquid dispersion medium together with optional components to prepare a mixture paint, applying the paint to the surface of the current collector, and drying the mixture.
  • optional components include a binder, a conductive agent, and a thickener.
  • Each end mentioned above refers to a portion having a width of 20 mm or less (for example, 10 mm or less) from the outermost end.
  • the extreme end corresponds to the position at which the mixture paint is applied to the current collector or the position at which the application is completed.
  • the thickness of the predetermined end portion of the mixture layer is smaller than the thickness of the main portion of the mixture layer.
  • the predetermined end is at least one end selected from the group consisting of the first to fourth ends. That is, the predetermined end may be any one of the first to fourth ends, or may be all of the first to fourth ends, and the first end and the second end. It may be a set, a set of the third end and the fourth end, or another set.
  • the surface of the mixture layer is impregnated with a non-aqueous electrolyte so that at least a part of the surface of a predetermined end of the mixture layer is exposed and at least a part of the surface of the main part of the mixture layer is shielded. Is covered with a surface layer smaller than the mixture layer.
  • a surface layer is a layer provided for the purpose of extending the life of the battery and improving safety.
  • the surface layer for achieving such an object includes, for example, ceramic particles and a binder.
  • Such a surface layer may be less impregnated into the non-aqueous electrolyte than the mixture layer depending on the composition.
  • the thickness of the predetermined end portion of the mixture layer is smaller than the thickness of the main portion, and at least a part of the mixture layer is exposed without being shielded by the surface layer, the mixture The impregnation property of the nonaqueous electrolyte into the layer is ensured, and the liquid retention property of the nonaqueous electrolyte by the mixture layer is enhanced. Therefore, the productivity of the nonaqueous secondary battery can be improved. Further, since the predetermined end is not raised, it is not necessary to regulate the position of the predetermined end.
  • the impregnation property with respect to the nonaqueous electrolyte is impregnation property with respect to the nonaqueous electrolyte contained in the nonaqueous secondary battery in which the electrode plate of the present invention is used.
  • the impregnation with respect to the standard nonaqueous electrolyte may be used as an index.
  • LiPF 6 ethylene carbonate
  • DMC dimethyl carbonate
  • MEC methyl ethyl carbonate
  • the degree of impregnation is, for example, when the nonaqueous electrolyte is dropped into the mixture layer having no surface layer and when the nonaqueous electrolyte is dropped into the mixture layer having the surface layer. Alternatively, it can be determined by the speed of penetration into the surface layer.
  • the surface layer includes ceramic particles and a binder, for example, a second active material having a higher reactivity with lithium than the first active material is used as the ceramic particles. Since such a surface layer has excellent lithium ion acceptability, in addition to the effect of improving liquid retention, when a non-aqueous secondary battery is used for a long period of time, it suppresses lithium precipitation and extends the life. An effect is obtained.
  • each of the first active material and the second active material is a material that can electrochemically react with lithium, for example, a material capable of reversibly occluding and releasing lithium ions.
  • the surface layer can be obtained, for example, by mixing ceramic particles with a liquid dispersion medium together with an optional component to prepare a surface layer coating, applying the coating to the surface of the mixture layer, and drying.
  • optional components include a binder, a conductive agent, and a thickener.
  • the surface layer contains ceramic particles and a binder, alumina, magnesia, silica, titania or the like may be used as the ceramic particles. Since such a surface layer is superior to the mixture layer in terms of insulation, in addition to the effect of improving liquid retention, the expansion of the short-circuited part occurs when an internal short circuit occurs in a non-aqueous secondary battery. It has the function to prevent. Therefore, a non-aqueous secondary battery excellent in safety can be obtained.
  • the thickness of the predetermined end portion becomes smaller toward the endmost portion of the predetermined end portion. As a result, it is easy to secure a movement path of the nonaqueous electrolyte in the electrode group, the area of the predetermined end exposed from the surface layer can be increased, and the effect of promoting the impregnation of the nonaqueous electrolyte by the mixture layer is achieved. growing.
  • the first to fourth end portions are at least partially exposed from the surface layer.
  • a sufficiently large effect can be obtained, or only the third end and the fourth end are exposed. In some cases, a sufficiently large effect may be obtained.
  • the maximum height roughness Rmax at the interface between the main part of the mixture layer and the surface layer is preferably 3 to 25 ⁇ m.
  • the thickness of the surface layer is preferably 3 to 20 ⁇ m.
  • the maximum height roughness Rmax is obtained by extracting only the reference length from the roughness curve in the direction of the average line, and setting the interval between the peak line and the valley line of the extracted part in the direction of the vertical magnification of the roughness curve. Measured and the value expressed in micrometers ( ⁇ m).
  • the main part of the mixture layer is not exposed from the surface layer from the viewpoint of enhancing the effect of suppressing the internal short circuit.
  • a plurality of through holes may be scattered in the surface layer.
  • Such a through-hole can be easily formed by enclosing a sufficient amount of bubbles in the coating material for forming the surface layer and rupturing the bubbles in the state of the coating film.
  • the ratio of the area where the main part of the mixture layer is exposed to the area of the main part of the mixture layer is preferably 60% or less, and more preferably 1 to 10%.
  • the first active material is a carbon material capable of reversibly occluding and releasing lithium ions
  • the second active material is capable of reversibly occluding and releasing lithium ions.
  • the case where it is a lithium titanium complex oxide is mentioned.
  • Such an electrode plate is useful as a negative electrode for a lithium ion secondary battery.
  • the non-aqueous secondary battery of the present invention includes an electrode group, a non-aqueous electrolyte, and an exterior body that houses the electrode group together with the non-aqueous electrolyte.
  • the electrode group includes a positive electrode, a negative electrode, and a porous insulating layer interposed therebetween.
  • the positive electrode and the negative electrode are laminated or wound through a porous insulating layer.
  • at least one of the positive electrode and the negative electrode is the electrode plate for a non-aqueous secondary battery.
  • the combination of the first active material and the second active material is not particularly limited.
  • nickel-based composite oxide, cobalt-based composite oxide, cobalt acid nanoparticles, cobalt-based oxynitride, manganese-based composite oxide, chromium-based composite oxide, iron phosphate It is possible to use a system composite oxide, a vanadium system composite oxide, a carbon material (graphite, hard carbon, etc.), a titanium system composite oxide, a tin system material, a silicon system material, or metallic lithium.
  • FIG. 1 is a perspective view in which a part of a cylindrical lithium ion secondary battery 11 which is an example of a non-aqueous secondary battery is cut away.
  • the cylindrical lithium ion secondary battery 11 includes an electrode group 4 configured by winding a positive electrode 1 and a negative electrode 2 in a spiral shape through a separator 3 that is a porous insulating layer.
  • the electrode group 4 is accommodated in a state of being insulated from the battery case 5 by an insulating plate 6 inside a bottomed cylindrical battery case 5 as an exterior body.
  • a negative electrode lead (not shown) led out from the lower part of the electrode group 4 is connected to the bottom of the battery case 5.
  • the positive electrode lead 8 led out from the upper part of the electrode group 4 is connected to a sealing plate 9 having a positive electrode terminal 9a.
  • a predetermined amount of nonaqueous electrolyte is injected into the battery case 5.
  • the nonaqueous electrolyte is impregnated in the gaps of the electrode group 4 and the gaps of the mixture layer and the separator.
  • the opening of the battery case 5 is sealed by a sealing plate 9 having a gasket 10 attached to the periphery.
  • the open end of the battery case 5 is bent inward and is crimped to the peripheral edge (gasket 10) of the sealing plate 9.
  • FIG. 2 is a schematic diagram of a cross section of the negative electrode 2 in the present embodiment.
  • FIG. 3 is a schematic diagram of the front surface of the negative electrode 2 in the present embodiment.
  • the negative electrode 2 includes a strip-shaped rectangular negative electrode current collector 12 and a negative electrode mixture layer 13 formed on the surface thereof.
  • the negative electrode mixture layer 13 includes a first end 13 a along the short direction of the current collector 12, a second end 13 b opposite to the first end 13 a, and a first end along the longitudinal direction of the current collector 12. It is a rectangle having a three end portion 13c and a fourth end portion 13d opposite to the third end portion 13c.
  • the portion other than the first to fourth end portions of the mixture layer 13 is a main portion 13A.
  • the negative electrode 2 is wound so that the first end portion 13a side of the mixture layer 13 is on the outer peripheral side. In the vicinity of the first end portion 13a, the negative electrode lead 7 is bonded to the negative electrode current collector 12.
  • the first end portion 13a and the second end portion 13b are predetermined end portions having a thickness smaller than that of the main portion 13A of the mixture layer.
  • the thickness of the 1st end part 13a and the 2nd end part 13b is thin as it goes to the endmost part of each end part.
  • the surface of the mixture layer 13 is covered with the surface layer 14 so that the surfaces of the first end portion 13a and the second end portion 13b are exposed and the surface of the main portion 13A is shielded.
  • the thickness of the surface layer 14 is uniform, and the entire main part of the negative electrode mixture layer 13 is covered with the surface layer 14.
  • the length X of the end portion of the negative electrode mixture layer 13 that is thinner toward the outermost portion is larger than the thickness Z of the negative electrode mixture layer 13. That is, the relationship 1 ⁇ X / Z is satisfied.
  • the length X of the portion that is thinner toward the end the area of the end exposed from the surface layer can be effectively increased, and the nonaqueous electrolyte mixture layer
  • the effect of increasing the speed of impregnation into 13 is enhanced.
  • the end portion of the negative electrode mixture layer 13 is 20 mm or less (for example, 10 mm or less) from the end of the negative electrode mixture layer, that is, the position where the mixture paint is applied to the negative electrode current collector 12 or the position where the application is finished. ) Width part.
  • the width Y of the exposed end portion is set to be larger than the length X of the portion that is thinner toward the end portion. That is, the relationship 1 ⁇ Y / X is satisfied. By doing so, it becomes easier to secure the movement path of the nonaqueous electrolyte in the electrode group, and the area of the predetermined end exposed from the surface layer can be further increased. In order to enhance the above effect, it is more preferable that the relationship 1.2 ⁇ Y / X is satisfied.
  • the negative electrode mixture layer 13 includes, for example, a carbon material or a silicon-based material capable of reversibly occluding and releasing lithium ions as the first active material.
  • the carbon material include graphite (various natural graphite and artificial graphite), hard carbon, and soft carbon.
  • the silicon-based material include silicon oxide (SiOx, where 0.1 ⁇ x ⁇ 1.8), silicon alloy (such as Ti—Si alloy), and the like.
  • the negative electrode mixture layer 13 may contain a fluorine resin such as polyvinylidene fluoride (PVdF), rubber particles such as a styrene-butadiene copolymer (SBR), and a cellulose resin such as carboxymethyl cellulose (CMC) as a binder. . From the viewpoint of improving the lithium ion acceptability, it is preferable to use SBR and CMC in combination. Further, the negative electrode mixture layer 13 can include carbon black, carbon nanotube, VGCF, and the like as a conductive material. As carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and the like can be used.
  • PVdF polyvinylidene fluoride
  • SBR styrene-butadiene copolymer
  • CMC carboxymethyl cellulose
  • the negative electrode mixture layer 13 can include carbon black, carbon nanotube, VGCF, and the like as a conductive material. As carbon black, ace
  • the surface layer 14 includes, for example, a lithium titanium composite oxide capable of reversibly occluding and releasing lithium ions as the second active material.
  • a lithium titanium composite oxide capable of reversibly occluding and releasing lithium ions as the second active material.
  • the lithium titanium composite oxide for example, Li 4 Ti 5 O 12 having a spinel structure and a modified product thereof are preferable, but not particularly limited.
  • the modified products of Li 4 Ti 5 O 12, a material part of the Ti and / or Li of the Li 4 Ti 5 O 12 is replaced with another element.
  • the other element include at least one selected from the group consisting of Ni, Co, Mn, Fe, Al, Mg, and Cr.
  • the ratio of elements substituted for Ti and / or Li is preferably 20 atomic% or less of the total of Ti sites and Li sites.
  • the surface layer 14 may also contain a binder as described above.
  • the average particle diameter D1 of the first active material is preferably 2 to 50 ⁇ m.
  • the average particle diameter D2 (D1> D2) of the second active material is preferably 0.5 to 5 ⁇ m.
  • the ratio of D1 / D2 is preferably 4 to 10.
  • D1 and D2 are median diameters corresponding to a cumulative volume of 50% in the volume-based particle size distribution.
  • the mixture layer 13 is prepared by mixing the first active material together with an optional component with a liquid dispersion medium to prepare a mixture paint, applying the paint onto the surface of the current collector, and drying the mixture. Can be obtained.
  • the thickness of the mixture layer is, for example, 30 to 150 ⁇ m.
  • a copper foil or copper alloy foil having a thickness of 5 to 25 ⁇ m is used for the negative electrode current collector.
  • the coated film after drying may be rolled. Or you may transfer to the formation process of the following surface layers 14, without drying the coating film of mixture paint.
  • the surface layer 14 is prepared, for example, by mixing the second active material or ceramic particles together with an optional component with a liquid dispersion medium to prepare a surface layer coating material, applying the coating material to the surface of the mixture layer, and drying the coating material. Can be obtained. Thereafter, the surface layer 14 may be rolled together with the mixture layer 13.
  • Preparation of the mixture paint and the surface layer paint is carried out by dispersing the material in a dispersion medium such as N-methyl-2-pyrrolidone (NMP) using a dispersing machine such as a planetary mixer.
  • NMP N-methyl-2-pyrrolidone
  • the viscosity of each paint is adjusted so as to be optimal for application to the current collector 12 or the mixture layer 13.
  • Application of each paint may be performed by a die coater, for example.
  • the maximum height roughness Rmax of the interface between the mixture layer 13 and the surface layer 14 is set to, for example, 3 to 25 ⁇ m, and further 5 to 20 ⁇ m.
  • the maximum height roughness Rmax corresponds to the distance in the thickness direction between the interface farthest from the current collector 12 and the interface closest to the current collector 12 among the interface between the mixture layer 13 and the surface layer 14. .
  • the structure of the mixture layer 13 and the surface layer 14 and the maximum height roughness Rmax of these interfaces may be set so that a part of the mixture layer 13 is exposed through the surface layer 14.
  • the impregnation property of the nonaqueous electrolyte into the mixture layer 13 can be further improved.
  • the ratio of the area where the main part of the mixture layer 13 is exposed to the area of the main part of the surface layer 14 is preferably 60% or less, more preferably 1 to 10%. .
  • a part of the mixture layer 13 can be exposed by providing an outward projecting portion on the surface of the mixture layer 13 and passing the projecting portion through the surface layer 14.
  • the maximum height roughness Rmax of the interface between the mixture layer 13 and the surface layer 14 is set to be larger than 25 ⁇ m, and more preferably Rmax is set to 30 to 60 ⁇ m by providing the protruding portion.
  • the diameter of the protrusion is preferably 20 to 100 ⁇ m at the center height.
  • a part of the mixture layer 13 may be exposed by interspersing a plurality of through holes in the surface layer 14.
  • the through-hole can be easily formed by enclosing a sufficient amount of bubbles in the surface layer paint.
  • the diameter of the through hole may be, for example, 20 ⁇ m or less, but may be, for example, 20-100 ⁇ m from the viewpoint of sufficiently enhancing the impregnation property of the nonaqueous electrolyte.
  • the positive electrode 1 has the same shape as the negative electrode 2 and includes a strip-shaped rectangular positive electrode current collector and a positive electrode mixture layer formed on the surface thereof.
  • the positive electrode mixture layer includes a first end along the short side direction of the current collector, a second end opposite to the first end, a third end along the longitudinal direction of the current collector, A rectangular shape having a fourth end opposite to the three ends.
  • a positive electrode lead 8 is joined to the positive electrode current collector.
  • the positive electrode current collector for example, an aluminum foil, an aluminum alloy foil, a nickel foil, or a nickel alloy foil having a thickness of 5 ⁇ m to 30 ⁇ m can be used.
  • the positive electrode mixture paint applied to the surface of the positive electrode current collector is prepared, for example, by mixing a positive electrode active material, a conductive material, and a binder together with a dispersion medium using a disperser such as a planetary mixer. The mixture paint is applied to the positive electrode current collector using, for example, a die coater. Then, the positive electrode 1 is obtained by drying and then rolling the coating film.
  • the positive electrode mixture layer is, for example, a nickel composite oxide, a cobalt composite oxide, a manganese composite oxide, a cobalt acid nanoparticle, a cobalt oxynitride, a chromium composite oxide, or phosphoric acid as a positive electrode active material.
  • a nickel composite oxide a cobalt composite oxide
  • a manganese composite oxide a cobalt acid nanoparticle
  • a cobalt oxynitride a cobalt oxynitride
  • chromium composite oxide phosphoric acid
  • phosphoric acid as a positive electrode active material.
  • iron-based composite oxides vanadium-based composite oxides, and the like.
  • the nickel-based composite oxide include lithium nickelate and materials obtained by substituting nickel of lithium nickelate with other elements.
  • the cobalt-based composite oxide include a material in which aluminum or magnesium is dissolved in lithium cobaltate or lithium cobaltate.
  • the manganese-based composite oxide include lithium manganate
  • the positive electrode mixture layer can contain a binder and a conductive material as optional components.
  • a binder polyvinylidene fluoride (PVdF), a modified polyvinylidene fluoride, polytetrafluoroethylene (PTFE), rubber particles containing an acrylate unit, or the like can be used.
  • PTFE polytetrafluoroethylene
  • the conductive material the carbon black and various graphites already described can be used.
  • the negative electrode active material, the positive electrode active material, the negative electrode binder, the positive electrode binder, the negative electrode conductive material, and the positive electrode conductive material may be used singly or in combination. Also good.
  • the non-aqueous electrolyte includes a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the electrolyte salt for example, various lithium compounds such as LiPF 6 and LiBF 4 can be used.
  • the non-aqueous solvent for example, ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC) and the like can be used.
  • an additive such as vinylene carbonate (VC) or cyclohexylbenzene (CHB) may be used in order to form a film on the surface of the positive electrode or the negative electrode or to ensure stability during overcharge.
  • Any one of the electrolyte salt and the non-aqueous solvent may be used alone, or a plurality of them may be used in combination.
  • a separator that can be used as a separator for a non-aqueous secondary battery can be used without particular limitation.
  • a microporous film formed of an olefin resin such as polyethylene or polypropylene is generally used alone or in an improved manner.
  • the thickness of the separator is, for example, 10 to 25 ⁇ m.
  • the nonaqueous secondary battery having the above-described configuration, there are gaps between the electrode group 4 and the battery case 5 and in the central portion (near the winding axis) of the electrode group 4.
  • the nonaqueous electrolyte easily penetrates into the electrode group 4 from such a gap.
  • the nonaqueous electrolyte that has entered the gap passes through the outer peripheral side end portion (first end portion 13a) and the inner peripheral side end portion (second end portion 13b) of the electrode group 4 of the negative electrode mixture layer 13, that is, through the exposed portion.
  • the main part of the negative electrode mixture layer 13 is impregnated.
  • the outer peripheral side end and inner peripheral side end of the electrode group 4 of the negative electrode mixture layer 13 are smaller than the thickness of the main part of the negative electrode mixture layer 13 and are covered with the surface layer 14. Therefore, the non-aqueous electrolyte passage formed between the outer peripheral end and the inner peripheral end and the separator is wide. Therefore, the impregnation of the nonaqueous electrolyte into the main part of the negative electrode mixture layer 13 is significantly promoted. Furthermore, the productivity of the non-aqueous secondary battery can be improved.
  • the nonaqueous electrolyte impregnated in the main part of the negative electrode mixture layer 13 moves to the outside of the negative electrode mixture layer 13 through the surface of the negative electrode mixture layer 13 along with charge / discharge of the nonaqueous secondary battery. try to.
  • the surface of the main part other than the end portion of the negative electrode mixture layer 13 is covered with a surface layer 14 that is less invasive to the nonaqueous electrolyte than the negative electrode mixture layer 13. Therefore, the non-aqueous electrolyte once impregnated in the negative electrode mixture layer 13 does not easily pass through the surface layer 14 and is kept in the negative electrode mixture layer 13. Therefore, it is possible to prevent electrode drainage.
  • FIG. 4 is a schematic diagram of a cross section of the negative electrode 2A in the present embodiment. Since the negative electrode 2A has substantially the same structure as the negative electrode 2 of the first embodiment except that the details of the end portions of the mixture layer and the surface layer are different, common constituent elements will be described using the same reference numerals.
  • the negative electrode 2A includes a strip-shaped rectangular negative electrode current collector 12 and a negative electrode mixture layer 13 formed on the surface thereof.
  • the first end portion 13a and the second end portion 13b are predetermined end portions having a thickness smaller than the main portion 13A of the mixture layer, and the thicknesses of the first end portion 13a and the second end portion 13b are as follows. It becomes thinner toward the extreme end of the end.
  • the surface of the mixture layer 13 is covered with the surface layer 14 so that the surfaces of the first end portion 13a and the second end portion 13b are exposed and the surface of the main portion 13A is shielded.
  • the thickness of the surface layer 14 is uniform, and the entire main part of the negative electrode mixture layer 13 is covered with the surface layer 14.
  • the length X of the end portion of the negative electrode mixture layer 13 that is thinner toward the outermost portion is larger than the thickness Z of the negative electrode mixture layer 13. ing. That is, the relationship 1 ⁇ X / Z is satisfied. Here, it is more preferable that the relationship of 2 ⁇ X / Z is satisfied.
  • the width Y of the exposed end portion is set to be smaller than the length X of the portion that is thinner toward the end portion. That is, the relationship 1 ⁇ X / Y is satisfied. Also by doing this, the area of the end exposed from the surface layer can be increased, and the effect of increasing the impregnation speed of the nonaqueous electrolyte into the mixture layer 13 can be sufficiently obtained.
  • FIG. 5 is a schematic front view of the negative electrode 2B in the present embodiment.
  • the negative electrode 2B has substantially the same structure as that of the negative electrode 2 of the first embodiment except that the mixture layer and the surface layer have different application areas, and therefore, common constituent elements will be described using the same reference numerals.
  • the negative electrode 2B includes a strip-shaped rectangular negative electrode current collector 12 and a negative electrode mixture layer 13 formed on the surface thereof.
  • the negative electrode mixture layer 13 is formed on the negative electrode current collector so that one end portion along the longitudinal direction of the current collector 12 is exposed.
  • the thickness of the end portion along the longitudinal direction instead of the end portion along the short direction of the negative electrode current collector 12 can be a predetermined end portion having a small thickness. That is, at least one of the third end portion 13c and the fourth end portion 13d can be a predetermined end portion having a thickness smaller than the main portion of the mixture layer.
  • the thickness of the third end portion 13c becomes smaller toward the end of each end.
  • the surface of the mixture layer 13 is covered with the surface layer 14 so that the surface of the third end portion 13c is exposed and the surface of the main portion 13A is shielded.
  • the thickness of both the first end and the second end of the negative electrode mixture layer 13 is made smaller than the thickness of the main portion, and the end is exposed from the surface layer.
  • the thickness of only one of the first end and the second end may be made smaller than that of the main portion, and the end may be exposed from the surface layer.
  • the thickness of both a 3rd edge part and a 4th edge part may be made smaller than the thickness of a principal part, and the said edge part may be exposed from a surface layer.
  • the case where the electrode group 4 in which the positive electrode 1 and the negative electrode 2 are wound in a spiral shape is described.
  • the positive electrode 1 and the negative electrode 2 are stacked via the separator 3. The same effect can be obtained even when an electrode group is formed.
  • the surface layer 14 is formed on the surface of the negative electrode mixture layer 13 has been described.
  • the surface layer may be formed on the surface of the positive electrode mixture layer. Good.
  • you may form a surface layer in the surface of both the positive mix layer and the negative mix layer, respectively.
  • the surface layer paint may be applied immediately after the mixture paint is applied. In that case, the mixture layer coating and the surface layer coating are simultaneously dried and then rolled to form the mixture layer and the surface layer. Moreover, after drying the coating film of a mixture layer coating material and rolling and forming a mixture layer, you may apply
  • FIG. 7 is a schematic diagram of a cross section of the electrode 2D in the present embodiment.
  • the same reference numerals are used for the components corresponding to those in the first embodiment.
  • the electrode 2D includes a strip-shaped rectangular current collector 12 and a mixture layer 13 formed on the surface thereof.
  • the mixture layer 13 includes a first end along the short direction of the current collector, a second end opposite to the first end, and the current collector 12. It is the rectangle which comprises the 3rd end part along the longitudinal direction, and the 4th end part on the opposite side of the 3rd end part. Portions other than the first to fourth end portions of the mixture layer 13 are main portions.
  • the thickness of the mixture layer at the first end and the second end of the electrode 2D is not particularly limited. Further, the surfaces of the first end and the second end need not be exposed from the surface layer 14. The surface layer 14 only needs to cover at least the main part of the mixture layer 13. The surface layer 13 may be formed on the surface of the negative electrode mixture layer, or may be formed on the surface of the positive electrode mixture layer.
  • the maximum height roughness Rmax of the interface between the mixture layer 13 and the surface layer 14 is set to, for example, 3 to 25 ⁇ m, and further 5 to 20 ⁇ m.
  • the maximum height roughness Rmax in the above range, the anchor effect in adhesion between the mixture layer 13 and the surface layer 14 is increased, and the mixture layer 13 is suppressed from being exposed from the surface layer 14. While the liquid retention property of a mixture layer improves, an internal short circuit becomes very difficult to generate
  • the surface layer coating for forming the surface layer 14 may contain a second active material such as lithium titanium composite oxide, and may contain alumina, magnesia, silica, titania and the like. These ceramic powders may be used alone or in combination of two or more. Similar to the first embodiment, the surface layer coating is prepared by mixing the ceramic powder and optional binders, conductive materials, thickeners, and the like together with a dispersion medium using a disperser. .
  • FIG. 8 is a schematic diagram of a cross section of the electrode 2E in the present embodiment.
  • FIG. 9 is a partial schematic view of the surface of the electrode 2E.
  • the same reference numerals are used for the components corresponding to those in the first embodiment.
  • the electrode 2E includes a strip-shaped rectangular current collector 12 and a mixture layer 13 formed on the surface thereof.
  • the mixture layer 13 includes a first end along the short direction of the current collector, a second end opposite to the first end, and the current collector 12. It is the rectangle which comprises the 3rd end part along the longitudinal direction, and the 4th end part on the opposite side of the 3rd end part. Portions other than the first to fourth end portions of the mixture layer 13 are main portions.
  • the thickness of the mixture layer at the first end and the second end of the electrode 2E is not particularly limited. Further, the surfaces of the first end and the second end need not be exposed from the surface layer 14. The surface layer 14 only needs to cover at least the main part of the mixture layer 13. The surface layer 13 may be formed on the surface of the negative electrode mixture layer, or may be formed on the surface of the positive electrode mixture layer.
  • the electrode 2E a part of the mixture layer 13 is exposed, for example, in an island shape through the surface layer. Thereby, the impregnation property of the nonaqueous electrolyte in the mixture layer is further improved.
  • examples of the method for partially exposing the mixture layer 13 include the following methods.
  • the maximum height roughness Rmax of the interface between the mixture layer 13 and the surface layer 14 is set to be larger than 25 ⁇ m, for example, and preferably Rmax is set to 30 to 60 ⁇ m.
  • corrugation in the surface of the mixture layer 13 becomes large, and a part of convex part penetrates the surface layer 14.
  • the surface layer paint may be applied immediately after the mixture paint is applied.
  • the mixture layer coating and the surface layer coating are simultaneously dried and then rolled to form the mixture layer and the surface layer.
  • FIG. 10 is a schematic diagram of a cross section of the electrode 2F in a modification of the present embodiment.
  • FIG. 11 is a partial schematic view of the surface of the electrode 2F.
  • a part of the mixture layer 13 can be exposed by allowing the protruding portion 15 to penetrate the surface layer 14.
  • the diameter of the protrusion is preferably 20 to 100 ⁇ m at the center height.
  • the coating film is rolled with a roller having concave portions in a regular pattern on the surface. Thereby, the mixture layer 13 which has the convex part 15 by a regular pattern can be obtained.
  • FIG. 12 is a schematic view of a cross section of an electrode 2G in another modification of the present embodiment.
  • FIG. 13 is a partial schematic view of the surface of the electrode 2G.
  • Such a through-hole can be easily formed by enclosing a sufficient amount of bubbles in the surface layer coating material.
  • the diameter of the through hole is preferably 20 ⁇ m or less, for example.
  • lithium titanium composite oxide powder and optional components such as a binder and a conductive material are put into a dispersion medium and mixed by a dispersing machine such as a planetary mixer.
  • a sufficient amount of air is included in the surface layer paint.
  • a surface layer coating material containing bubbles is applied to the surface of the mixture layer 13 and left for a while, the bubbles burst, and through holes are formed at positions corresponding to at least a part thereof.
  • the ratio of the area where the main part of the mixture layer 13 is exposed to the area of the main part corresponding part of the surface layer 14 is preferably 60% or less, and preferably 1 to 10%. More preferred.
  • Example 1 In this example, a negative electrode having the same structure as that shown in FIG. 2 was produced, and a non-aqueous secondary battery similar to that shown in FIG. 1 was produced using this negative electrode.
  • ⁇ Mixture paint 2.5 parts by mass of a dispersion of styrene-butadiene copolymer rubber particles (binder) (solid content 40% by weight) with respect to 100 parts by mass of artificial graphite (first active material) (1 mass in terms of solid content) Part), 1 part by mass of carboxymethylcellulose (CMC) (thickener) and an appropriate amount of water were mixed and stirred with a double-arm kneader to prepare a negative electrode mixture paint.
  • binder solid content 40% by weight
  • a negative electrode mixture paint is applied to both surfaces of a strip-like negative electrode current collector made of a copper foil having a thickness of 10 ⁇ m, and then dried.
  • a surface layer paint is applied to the surface of the coating film of the negative electrode mixture paint. It applied so that a surface layer might be 20 mass parts to 100 mass parts of mixture layers, and it dried. Then, it rolled so that the total thickness of a negative electrode collector and a coating film might be set to 200 micrometers, and the negative electrode was produced.
  • both end portions (the first end portion and the second end portion) along the short direction of the negative electrode mixture layer was made thinner toward the respective end portions.
  • the surface layer was applied so as to have a uniform thickness so that the surfaces of both ends of the negative electrode mixture layer were exposed and the entire main part of the mixture layer was shielded.
  • the length X of the exposed end portion that is thinner toward the end portion was set to 500 ⁇ m by adjusting the discharge pressure from the die coater of the mixture paint. That is, the length X was set larger than the thickness (Z) 90 ⁇ m of the mixture layer. Furthermore, the width (Y) of the exposed end portion was set to 700 ⁇ m by adjusting the application start position of the surface layer paint.
  • the negative electrode lead was connected to the portion where the negative electrode current collector of the negative electrode was exposed, and then a protective tape was applied so as to cover the negative electrode lead.
  • the positive electrode lead was connected to the portion where the positive electrode current collector of the positive electrode was exposed, and then a protective tape was applied so as to cover the positive electrode lead.
  • the positive electrode and the negative electrode were wound through a polyethylene microporous film (porous insulating layer) having a thickness of 20 ⁇ m to constitute an electrode group.
  • the electrode group was inserted into the cylindrical battery case together with the insulating plate, and the negative electrode lead led out from the lower part of the electrode group was connected to the bottom of the battery case. Moreover, the positive electrode lead led out from the upper part of the electrode group was connected to the sealing plate. Thereafter, 5.5 g of a nonaqueous electrolyte was added and the electrode group was impregnated under reduced pressure, and then the opening of the battery case was sealed with a sealing plate to complete a lithium ion secondary battery.
  • the nonaqueous electrolyte is obtained by dissolving LiPF 6 at a concentration of 1 mol / L in a mixed solvent having a volume ratio of EC / DMC / MEC of 80/5/15 (same composition as the standard nonaqueous electrolyte).
  • a mixed solvent having a volume ratio of EC / DMC / MEC of 80/5/15 (same composition as the standard nonaqueous electrolyte).
  • 3 parts by mass of VC was further dissolved per 100 parts by mass of the mixed solvent.
  • Example 2 The surface layer is formed so that the main part of the negative electrode mixture layer and the second end corresponding to the inner peripheral side of the electrode group are completely covered with the surface layer, and only the first end corresponding to the outer peripheral side of the electrode group Was not covered with a surface layer, and a negative electrode was produced in the same manner as in Example 1. Further, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode was used.
  • Example 3 A surface layer is formed so that the main part of the negative electrode mixture layer and the first end corresponding to the outer peripheral side of the electrode group are completely covered with the surface layer, and the second end corresponding to the inner peripheral side of the electrode group is provided.
  • a negative electrode was produced in the same manner as in Example 1 except that it was not covered with the surface layer. Further, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode was used.
  • Example 1 a negative electrode 2C having a structure as shown in FIG. 6 was produced, and a non-aqueous secondary battery similar to that shown in FIG. 1 was produced using this.
  • the negative electrode mixture layer 13 and the surface layer 14 were formed in substantially the same manner as in Example 1, using the same negative electrode mixture coating material and surface layer coating material as in Example 1.
  • both ends are placed on the surface layer 14 by shifting the discharge timing of the surface layer paint from the die coater. Covered completely.
  • the obtained negative electrode has basically the same structure as the negative electrode of Example 1, except that the structure of the surface layers at both ends is different.
  • a lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained negative electrode was used.
  • the battery capacity was measured at the following capacity.
  • Discharge Discharged to a final discharge voltage of 3 V at a constant current of 2000 mA. The evaluation results are shown in Table 1.
  • the injection time was the shortest. This is related to the fact that the nonaqueous electrolyte is more likely to permeate the negative electrode mixture layer than the surface layer, and that the intrusion passage of the nonaqueous electrolyte can be secured by exposing the end of the negative electrode mixture layer. To do. Further, the shorter the liquid injection time, the better the nonaqueous electrolyte retention of the mixture layer and the higher the battery capacity.
  • Comparative Example 1 when both end portions along the short direction are covered with the surface layer, about 4 times the liquid injection time is required as compared with the case where both end portions are exposed. Decreased. Furthermore, the battery capacity also decreased.
  • the thickness of the end portion of the mixture layer is made smaller than that of the main portion, and the end portion is exposed from the surface layer, thereby improving the impregnation property of the nonaqueous electrolyte into the main portion of the mixture layer. It can be understood that the battery capacity is increased and the productivity is greatly improved.
  • Example 5 (Preparation of negative electrode)
  • a negative electrode having the same cross-sectional structure as shown in FIG. 7 was produced, and a non-aqueous secondary battery similar to that shown in FIG. 1 was produced using this negative electrode.
  • the negative electrode mixture paint and the surface layer paint similar to those in Example 1 were used, and the negative electrode mixture layer and the surface layer were formed in substantially the same manner as in Example 1 except for the following points. Got.
  • the viscosity ratio between the surface layer coating material and the mixture coating material was adjusted to be 1: 0.01 to 0.05.
  • the surface layer coating material was apply
  • the main part of the negative electrode mixture layer was not exposed from the surface layer, and the surface layer completely covered the main part as shown in FIG.
  • Example 6 A negative electrode was produced in the same manner as in Example 5 except that the viscosity ratio of the surface layer coating material to the mixture coating material was adjusted to be 1: 0.2 to 1.0.
  • the main part of the negative electrode mixture layer was not exposed from the surface layer, and the surface layer completely covered the main part as shown in FIG.
  • the thickness of the negative electrode mixture layer per side was 84 ⁇ m
  • the thickness of the surface layer 13 was 10 ⁇ m
  • the maximum height roughness Rmax of the interface between the negative electrode mixture layer and the surface layer was 25 ⁇ m.
  • a lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained negative electrode was used.
  • Example 7 The viscosity ratio between the surface layer paint and the mixture paint is adjusted to be 1: 0.05 to 0.2, the negative electrode mixture layer thickness per side is 91 ⁇ m, the surface layer thickness is 3 ⁇ m, and the negative electrode mixture A negative electrode was produced in the same manner as in Example 5 except that the maximum height roughness Rmax at the interface between the agent layer and the surface layer was 15 ⁇ m.
  • the main part of the negative electrode mixture layer was not exposed from the surface layer, and the surface layer completely covered the main part as shown in FIG.
  • a lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained negative electrode was used.
  • Example 8 A negative electrode was produced in the same manner as in Example 7, except that the thickness of the negative electrode mixture layer per side was 74 ⁇ m and the thickness of the surface layer was 20 ⁇ m. In the obtained negative electrode, the main part of the negative electrode mixture layer was not exposed from the surface layer, and the surface layer completely covered the main part as shown in FIG. Next, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained negative electrode was used.
  • Example 9 A negative electrode was produced in the same manner as in Example 6 except that the thickness of the negative electrode mixture layer per side was 91 ⁇ m and the thickness of the surface layer was 3 ⁇ m. In the obtained negative electrode, the negative electrode mixture layer was not exposed from the surface layer, and the surface layer completely covered the main part as shown in FIG. Next, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained negative electrode was used.
  • the thickness of the negative electrode mixture layer For the batteries of Examples 5 to 9, the thickness of the negative electrode mixture layer, the thickness of the surface layer, the maximum height roughness Rmax of the interface between the negative electrode mixture layer and the surface layer, the presence or absence of exposure of the negative electrode mixture layer, and the internal The evaluation results of the short circuit test are shown in Table 2.
  • ⁇ Maximum roughness Rmax> The cross section of the negative electrode was observed with an electron microscope, and the distance in the thickness direction between the interface farthest from the current collector and the interface closest to the current collector among the interface between the mixture layer and the surface layer was measured.
  • the thickness of the surface layer is preferably 3 to 20 ⁇ m, and the maximum height roughness of the interface is preferably 3 to 25 ⁇ m.
  • a surface layer was formed on the surface of the negative electrode mixture layer, but a surface layer may be formed on the surface of the positive electrode mixture layer, and in that case, a similar effect can be obtained. .
  • Example 10 (Preparation of negative electrode)
  • a negative electrode having a structure as shown in FIGS. 8 and 9 was produced, and a non-aqueous secondary battery similar to that shown in FIG. 1 was produced using the negative electrode.
  • the negative electrode mixture paint and the surface layer paint similar to those in Example 1 were used, and the negative electrode mixture layer and the surface layer were formed in substantially the same manner as in Example 1 except for the following points. Got. That is, in this example, a part of the mixture layer was exposed from the surface layer.
  • the surface roughness of the mixture layer was increased by increasing the flow rate when the surface layer coating was applied to the coating film of the mixture coating before drying. Then, a negative electrode having a total thickness of the negative electrode mixture layer and the surface layer per side of 94 ⁇ m and a maximum height roughness Rmax of 30 ⁇ m at the interface between the negative electrode mixture layer and the surface layer was prepared.
  • a part of the negative electrode mixture layer was exposed from the surface layer. The degree of exposure was 10%.
  • the distribution of exposure per square centimeter of the area where the surface layer was applied (main part of the mixture layer) was taken, there was a variation of 0.01 to 20%.
  • a lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained negative electrode was used.
  • Example 11 In this example, a negative electrode having a structure as shown in FIGS. 10 and 11 was produced, and a non-aqueous secondary battery similar to that shown in FIG. 1 was produced using this negative electrode. Specifically, the negative electrode mixture paint and the surface layer paint similar to those in Example 1 were used, and the negative electrode mixture layer and the surface layer were formed in substantially the same manner as in Example 1 except for the following points. Got.
  • a protrusion was provided in the mixture layer, and then a surface layer coating was applied to form a surface layer.
  • the negative electrode mixture paint was applied to the surface of the current collector, the coating film was dried, and then the coating film was rolled with a roller in which elliptical hemispherical recesses having a depth of 10 ⁇ m were formed at intervals of 500 ⁇ m. .
  • a negative electrode mixture layer having an elliptical hemispherical protrusion having a height of 10 ⁇ m was formed. Thereafter, a surface layer coating was applied to the surface of the negative electrode mixture layer and dried.
  • the coating film was rolled with a roller having no recess as described above, and a negative electrode having a total thickness of 94 ⁇ m of the negative electrode mixture layer and the surface layer per side was produced.
  • a part of the negative electrode mixture layer was exposed from the surface layer. The degree of exposure was 0.1%.
  • a lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained negative electrode was used.
  • Example 12 A negative electrode was produced in the same manner as in Example 11 except that a roller in which ellipsoidal hemispherical recesses having a depth of 10 ⁇ m were formed at intervals of 27 ⁇ m was used as a roller for rolling the coating film of the negative electrode mixture paint. When the surface layer of the obtained negative electrode was observed, a part of the negative electrode mixture layer was exposed from the surface layer. The degree of exposure was 60%. Next, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained negative electrode was used.
  • Example 13 In this example, a negative electrode having a structure as shown in FIGS. 12 and 13 was produced, and a non-aqueous secondary battery similar to that shown in FIG. 1 was produced using the negative electrode. Specifically, the negative electrode mixture paint and the surface layer paint similar to those in Example 1 were used, and the negative electrode mixture layer and the surface layer were formed in substantially the same manner as in Example 1 except for the following points. Got.
  • a sufficient amount of bubbles were included in the surface layer coating material, and the bubbles were ruptured, whereby a plurality of through holes were scattered in the surface layer.
  • the air was encapsulated in the coating material with a rotating disk type disperser after stirring with a double-arm kneader.
  • the negative electrode mixture paint was applied to the current collector, dried, and after rolling, the surface layer paint was applied to the surface of the negative electrode mixture layer. Then, the coating film of the surface layer coating material was dried. At that time, bubbles contained in the surface layer coating burst during drying, and a large number of minute through holes having a diameter of about 20 ⁇ m or less were formed.
  • the thickness of the negative electrode mixture layer per side was 84 ⁇ m, and the thickness of the surface layer was 10 ⁇ m.
  • the degree of exposure of the negative electrode mixture layer from the surface layer was 1%.
  • Example 14 In this example, the surface roughness of the mixture layer was reduced. And the negative electrode mixture layer thickness per one side was 79 micrometers, the thickness of the surface layer was 15 micrometers, and the negative electrode whose maximum height roughness Rmax of the interface of a negative electrode mixture layer and a surface layer was 20 micrometers was produced. When the surface layer of the obtained negative electrode was observed, the negative electrode mixture layer was not exposed from the surface layer (exposure degree 0%). Next, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained negative electrode was used.
  • Table 3 shows the results of the evaluation of the degree of exposure of the negative electrode mixture layer, the non-aqueous electrolyte injection property, and the charge / discharge cycle characteristics of the batteries of Examples 10 to 14.
  • Examples 10 to 14 in which the negative electrode mixture layer was exposed from the main part of the surface layer were more than Examples 14 in which the main part of the negative electrode mixture layer was not exposed from the surface layer.
  • the injection time is significantly shortened. This indicates that in Example 14, the surface layer covering the negative electrode mixture layer prevents the negative electrode mixture layer from being impregnated with the nonaqueous electrolyte.
  • the nonaqueous secondary battery of the present invention is useful as a power source for various electronic devices, communication devices, and mobile objects. For example, it is useful as a power source for a multifunctional portable device or a power source for an EV (electric vehicle) or HEV (hybrid vehicle).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

An electrode plate for a non-aqueous secondary battery. Said electrode plate is provided with a rectangular collector and a mixture layer that is formed on the surface of the collector and contains a first active material. The mixture layer has: a first edge section that runs along one edge of the collector; a second edge section on the opposite side from the first edge section; a third edge section that runs along an edge of the collector perpendicular to the aforementioned one edge; a fourth edge section on the opposite side from the third edge section; and a main section consisting of the area that is not part of the first through fourth edge sections. At least one prescribed edge section selected from the group consisting of the first through fourth edge sections is thinner than the main section of the mixture layer. The surface of the mixture layer is covered by a surface layer that is less impregnable to a non-aqueous electrolyte than the mixture layer is such that at least part of the surface of the aforementioned prescribed edge section is exposed and the surface of the main section is masked.

Description

非水系二次電池用電極板およびこれを用いた非水系二次電池Non-aqueous secondary battery electrode plate and non-aqueous secondary battery using the same
 本発明は、リチウムイオン電池に代表される非水系二次電池用電極板およびこれを用いた非水系二次電池に関する。 The present invention relates to an electrode plate for a non-aqueous secondary battery represented by a lithium ion battery and a non-aqueous secondary battery using the same.
 近年、電気自動車用電源として、リチウムイオン二次電池などの非水系二次電池の利用が広がりつつある。代表的なリチウムイオン二次電池は、負極活物質にリチウムの吸蔵および放出が可能な炭素材料等を用い、正極活物質にLiCoO2等のリチウム含有複合酸化物を正極活物質として用いている。これにより、高電圧で高容量の二次電池を実現している。しかし、近年の電気自動車用電源の需要増加に伴い、更なる高容量、長寿命、安全性の改善が求められている。 In recent years, the use of non-aqueous secondary batteries such as lithium ion secondary batteries has been expanding as power sources for electric vehicles. A typical lithium ion secondary battery uses a carbon material that can store and release lithium as a negative electrode active material, and a lithium-containing composite oxide such as LiCoO 2 as a positive electrode active material. As a result, a high voltage and high capacity secondary battery is realized. However, with the recent increase in demand for power sources for electric vehicles, further improvements in capacity, long life, and safety are required.
 上記の要求に応えるために、正極および負極の様々な改良が検討されている。その一つが、集電体の表面に、活物質を含む合剤層となる塗料を塗布した後、組成の異なる塗料を表面層として塗布する方法である。この際、塗布される表面層の特性により、長寿命化や安全性の改善が可能となる(特許文献1、2参照)。 In order to meet the above requirements, various improvements of the positive electrode and the negative electrode have been studied. One of them is a method in which a coating material having a mixture layer containing an active material is applied to the surface of a current collector, and then a coating material having a different composition is applied as a surface layer. At this time, it is possible to extend the life and improve the safety depending on the characteristics of the applied surface layer (see Patent Documents 1 and 2).
 一方、集電体に活物質を含む塗料を塗布する際には、塗膜の表面張力により、合剤層の端部が盛り上がる傾向がある。したがって、正極と負極の合剤層の端部が重なると、セパレータが圧迫され、内部短絡の原因となる。そこで、端部の盛り上がりの位置を規制することにより、内部短絡を防止する方法が検討されている(特許文献3参照)。 On the other hand, when applying a paint containing an active material to the current collector, the end of the mixture layer tends to rise due to the surface tension of the coating film. Therefore, when the end portions of the mixture layer of the positive electrode and the negative electrode are overlapped, the separator is pressed and causes an internal short circuit. Then, the method of preventing an internal short circuit is considered by restrict | limiting the position of the swelling of an edge part (refer patent document 3).
特開2005-183179号公報JP 2005-183179 A 特開2010-97720号公報JP 2010-97720 A 特開2010-262773号公報JP 2010-262773 A
 一般的な非水系二次電池の製造プロセスは、正極と負極とこれらの間に介在する多孔質絶縁層とを含む電極群を構成する工程と、電極群を電池ケースに収容する工程と、非水電解質を電池ケースに注液して電極群に含浸させる工程とを含む。ここで、非水電解質を電極群に含浸させる工程では、電極合剤層の端部とセパレータとの間の隙間が、非水電解質の主要な移動通路となる。 A general non-aqueous secondary battery manufacturing process includes a step of forming an electrode group including a positive electrode, a negative electrode, and a porous insulating layer interposed therebetween, a step of housing the electrode group in a battery case, Injecting a water electrolyte into the battery case and impregnating the electrode group. Here, in the step of impregnating the electrode group with the non-aqueous electrolyte, the gap between the end portion of the electrode mixture layer and the separator becomes a main movement path of the non-aqueous electrolyte.
 正極と負極の合剤層の端部が重ならないように端部の盛り上がりの位置を規制する場合には、非水電解質の移動通路は、ある程度確保される。しかし、端部の盛り上がりの位置を規制したとしても、盛り上った端部では、正極と負極との距離が近くなっているため、十分な通路が確保されているとは言い難い。また、端部の盛り上がりの位置を規制するプロセスは煩雑であり、電池の生産性を低下させる原因ともなる。 When the position of the bulge of the end is restricted so that the ends of the mixture layer of the positive electrode and the negative electrode do not overlap, the movement path of the nonaqueous electrolyte is secured to some extent. However, even if the rising position of the end portion is regulated, it is difficult to say that a sufficient path is secured at the raised end portion because the distance between the positive electrode and the negative electrode is close. Further, the process of regulating the position of the bulge at the end is cumbersome and causes a decrease in battery productivity.
 上記に鑑み、本発明の一局面は、矩形の集電体と、前記集電体の表面に形成された第1活物質を含む合剤層と、を具備し、前記合剤層は、前記集電体の一端部に沿う第1端部と、前記第1端部の反対側の第2端部と、前記集電体の前記一端部に垂直な他端部に沿う第3端部と、前記第3端部の反対側の第4端部と、前記第1から第4端部以外の主要部と、を有し、前記第1から第4端部よりなる群から選択される少なくとも1つの所定端部の厚みが、前記合剤層の主要部の厚みよりも小さく、前記合剤層の表面が、前記所定端部の表面の少なくとも一部が露出し、かつ前記主要部の表面の少なくとも一部が遮蔽されるように、非水電解質に対する含浸性が前記合剤層よりも小さい表面層により覆われている、非水系二次電池用電極板に関する。 In view of the above, one aspect of the present invention includes a rectangular current collector and a mixture layer including a first active material formed on a surface of the current collector, and the mixture layer includes A first end along one end of the current collector, a second end opposite to the first end, a third end along the other end perpendicular to the one end of the current collector, And a fourth end opposite to the third end, and a main part other than the first to fourth ends, and at least selected from the group consisting of the first to fourth ends The thickness of one predetermined end is smaller than the thickness of the main portion of the mixture layer, the surface of the mixture layer is exposed at least part of the surface of the predetermined end, and the surface of the main portion The electrode plate for a non-aqueous secondary battery is covered with a surface layer having a smaller impregnation property with respect to the non-aqueous electrolyte than the mixture layer so that at least a part of the electrode plate is shielded. .
 本発明の別の一局面は、電極群、非水電解質および前記電極群を前記非水電解質とともに収容する外装体を具備し、前記電極群は、正極と、負極と、前記正極と前記負極との間に介在する多孔質絶縁層とを具備し、前記正極と前記負極とが、前記多孔質絶縁層を介して積層または捲回されており、前記正極および前記負極の少なくとも一方が、上記の非水系二次電池用電極板である、非水系二次電池に関する。 Another aspect of the present invention includes an electrode group, a nonaqueous electrolyte, and an exterior body that houses the electrode group together with the nonaqueous electrolyte. The electrode group includes a positive electrode, a negative electrode, the positive electrode, and the negative electrode. The positive electrode and the negative electrode are laminated or wound via the porous insulating layer, and at least one of the positive electrode and the negative electrode is the above-described porous insulating layer. The present invention relates to a non-aqueous secondary battery which is an electrode plate for a non-aqueous secondary battery.
 本発明によれば、合剤層の所定端部の厚みが、合剤層の主要部の厚みよりも小さくなっており、かつ所定端部の少なくとも一部が表面層から露出しているため、非水電解質による合剤層の含浸性が高く、電池の生産性を向上させることができる。また、合剤層の主要部が表面層により覆われていることにより、一旦、合剤層に含浸された非水電解質は、合剤層から放出されにくくなり、合剤層による保液性が向上する。よって、電池容量の向上にも有利である。 According to the present invention, the thickness of the predetermined end portion of the mixture layer is smaller than the thickness of the main portion of the mixture layer, and at least a part of the predetermined end portion is exposed from the surface layer. The impregnation property of the mixture layer with the nonaqueous electrolyte is high, and the productivity of the battery can be improved. In addition, since the main part of the mixture layer is covered with the surface layer, the nonaqueous electrolyte once impregnated in the mixture layer is less likely to be released from the mixture layer, and the liquid retention by the mixture layer is reduced. improves. Therefore, it is also advantageous for improving the battery capacity.
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。 While the novel features of the invention are set forth in the appended claims, the invention will be further described by reference to the following detailed description, taken in conjunction with the other objects and features of the invention, both in terms of construction and content. It will be well understood.
本発明の第1実施形態における非水系二次電池の一部切欠斜視図である。1 is a partially cutaway perspective view of a nonaqueous secondary battery in a first embodiment of the present invention. 本発明の第1実施形態における非水系二次電池用電極板の断面の模式図である。It is a schematic diagram of the cross section of the electrode plate for non-aqueous secondary batteries in 1st Embodiment of this invention. 同電極板の正面の模式図である。It is a schematic diagram of the front of the electrode plate. 本発明の第2実施形態における非水系二次電池用電極板の断面の模式図である。It is a schematic diagram of the cross section of the electrode plate for non-aqueous secondary batteries in 2nd Embodiment of this invention. 本発明の第3実施形態における非水系二次電池用電極板の正面の模式図である。It is a schematic diagram of the front of the electrode plate for non-aqueous secondary batteries in 3rd Embodiment of this invention. 比較例1の非水系二次電池用電極板の断面の模式図である。6 is a schematic view of a cross section of a nonaqueous secondary battery electrode plate of Comparative Example 1. FIG. 本発明の第1参考形態における非水系二次電池用電極板の断面の模式図である。It is a schematic diagram of the cross section of the electrode plate for non-aqueous secondary batteries in the 1st reference form of this invention. 本発明の第2参考形態における非水系二次電池用電極板の断面の模式図である。It is a schematic diagram of the cross section of the electrode plate for non-aqueous secondary batteries in the 2nd reference form of this invention. 同電極板の表面の部分模式図である。It is a partial schematic diagram of the surface of the same electrode plate. 第2参考形態の変形例における非水系二次電池用電極板の断面の模式図である。It is a schematic diagram of the cross section of the electrode plate for non-aqueous secondary batteries in the modification of 2nd reference form. 同電極板の表面の部分模式図である。It is a partial schematic diagram of the surface of the same electrode plate. 第2参考形態の別の変形例における非水系二次電池用電極板の断面の模式図である。It is a schematic diagram of the cross section of the electrode plate for non-aqueous secondary batteries in another modification of the second reference embodiment. 同電極板の表面の部分模式図である。It is a partial schematic diagram of the surface of the same electrode plate.
 本発明の非水系二次電池用電極板は、矩形の集電体と、集電体の表面に形成された第1活物質を含む合剤層とを具備する。合剤層は、集電体の一端部に沿う第1端部と、第1端部の反対側の第2端部と、集電体の前記一端部に垂直な他端部に沿う第3端部と、第3端部の反対側の第4端部と、第1から第4端部以外の主要部と、を有する。すなわち、主要部は、矩形の合剤層の四辺に沿う端部を除いた部分である。 The electrode plate for a non-aqueous secondary battery of the present invention comprises a rectangular current collector and a mixture layer containing a first active material formed on the surface of the current collector. The mixture layer includes a first end along one end of the current collector, a second end opposite to the first end, and a third end along the other end perpendicular to the one end of the current collector. An end portion, a fourth end portion opposite to the third end portion, and a main portion other than the first to fourth end portions. That is, the main portion is a portion excluding the end portions along the four sides of the rectangular mixture layer.
 矩形とは、細長い帯状の長方形でもよい。また、矩形とは、完全な四角形だけを意味するものではなく、四角形に近い形状を含む。 The rectangle may be a long and narrow strip rectangle. Further, the rectangle does not mean only a perfect rectangle but includes a shape close to a rectangle.
 合剤層は、例えば、第1活物質を、任意成分とともに液状の分散媒と混合して、合剤塗料を調製し、その塗料を集電体の表面に塗布し、乾燥させることにより得ることができる。任意成分としては、結着剤、導電剤、増粘剤などが挙げられる。 The mixture layer is obtained, for example, by mixing the first active material with a liquid dispersion medium together with optional components to prepare a mixture paint, applying the paint to the surface of the current collector, and drying the mixture. Can do. Examples of optional components include a binder, a conductive agent, and a thickener.
 なお、上記の各端部は、その最端部から20mm以下(例えば10mm以下)の幅の部分をいう。最端部は、集電体に合剤塗料を塗り始めた位置または塗り終わった位置に対応する。 Each end mentioned above refers to a portion having a width of 20 mm or less (for example, 10 mm or less) from the outermost end. The extreme end corresponds to the position at which the mixture paint is applied to the current collector or the position at which the application is completed.
 ここで、合剤層の所定端部の厚みは、合剤層の主要部の厚みよりも小さくなっている。ただし、所定端部とは、第1から第4端部よりなる群から選択される少なくとも1つの端部である。すなわち、所定端部は、第1から第4端部のいずれか1つであってもよく、第1から第4端部の全てであってもよく、第1端部と第2端部の組であってもよく、第3端部と第4端部の組であってもよく、その他の組であってもよい。 Here, the thickness of the predetermined end portion of the mixture layer is smaller than the thickness of the main portion of the mixture layer. However, the predetermined end is at least one end selected from the group consisting of the first to fourth ends. That is, the predetermined end may be any one of the first to fourth ends, or may be all of the first to fourth ends, and the first end and the second end. It may be a set, a set of the third end and the fourth end, or another set.
 合剤層の表面は、合剤層の所定端部の表面の少なくとも一部が露出し、かつ合剤層の主要部の表面の少なくとも一部が遮蔽されるように、非水電解質に対する含浸性が合剤層よりも小さい表面層により覆われている。このような表面層は、電池の長寿命化、安全性の改善などを目的として設けられる層である。そのような目的を達成するための表面層は、例えば、セラミックス粒子と結着剤とを含む。このような表面層は、その組成により、合剤層よりも、非水電解質に対する含浸性が小さくなる場合がある。 The surface of the mixture layer is impregnated with a non-aqueous electrolyte so that at least a part of the surface of a predetermined end of the mixture layer is exposed and at least a part of the surface of the main part of the mixture layer is shielded. Is covered with a surface layer smaller than the mixture layer. Such a surface layer is a layer provided for the purpose of extending the life of the battery and improving safety. The surface layer for achieving such an object includes, for example, ceramic particles and a binder. Such a surface layer may be less impregnated into the non-aqueous electrolyte than the mixture layer depending on the composition.
 これに対し、上記構成によれば、合剤層の所定端部の厚みが主要部の厚みよりも小さく、かつその少なくとも一部が表面層で遮蔽されずに露出していることから、合剤層への非水電解質の含浸性が確保され、かつ合剤層による非水電解質の保液性が高められる。よって、非水系二次電池の生産性を向上させることができる。また、所定端部が盛り上がっていないため、所定端部の位置を規制する必要もない。 On the other hand, according to the above configuration, since the thickness of the predetermined end portion of the mixture layer is smaller than the thickness of the main portion, and at least a part of the mixture layer is exposed without being shielded by the surface layer, the mixture The impregnation property of the nonaqueous electrolyte into the layer is ensured, and the liquid retention property of the nonaqueous electrolyte by the mixture layer is enhanced. Therefore, the productivity of the nonaqueous secondary battery can be improved. Further, since the predetermined end is not raised, it is not necessary to regulate the position of the predetermined end.
 非水電解質に対する含浸性とは、本発明の電極板が用いられる非水系二次電池に含まれる非水電解質に対する含浸性である。ただし、非水電解質の種類によって、合剤層と表面層の含浸性の序列が入れ替わることは想定されないため、標準非水電解質に対する含浸性を指標とすればよい。標準非水電解質としては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とメチルエチルカーボネート(MEC)との体積比がEC/DMC/MEC=80:5:15の混合溶媒にLiPF6を1mol/Lの濃度で溶解した溶液を用いることができる。 The impregnation property with respect to the nonaqueous electrolyte is impregnation property with respect to the nonaqueous electrolyte contained in the nonaqueous secondary battery in which the electrode plate of the present invention is used. However, since it is not assumed that the order of impregnation between the mixture layer and the surface layer is changed depending on the type of the nonaqueous electrolyte, the impregnation with respect to the standard nonaqueous electrolyte may be used as an index. As a standard non-aqueous electrolyte, 1 mol / liter of LiPF 6 was added to a mixed solvent having a volume ratio of ethylene carbonate (EC), dimethyl carbonate (DMC) and methyl ethyl carbonate (MEC) of EC / DMC / MEC = 80: 5: 15. A solution dissolved at a concentration of L can be used.
 含浸性の程度は、例えば、標準非水電解質を、表面層を有さない合剤層に滴下した場合と、表面層を有する合剤層に滴下した場合とで、非水電解質が合剤層または表面層に浸み込む速度により判定することができる。 The degree of impregnation is, for example, when the nonaqueous electrolyte is dropped into the mixture layer having no surface layer and when the nonaqueous electrolyte is dropped into the mixture layer having the surface layer. Alternatively, it can be determined by the speed of penetration into the surface layer.
 表面層が、セラミックス粒子と結着剤とを含む場合、セラミックス粒子としては、例えば、第1活物質よりもリチウムとの反応性が高い第2活物質が用いられる。このような表面層は、リチウムイオン受け入れ性に優れているため、保液性の向上効果に加え、非水系二次電池を長期間使用する場合には、リチウムの析出の抑制や長寿命化の効果が得られる。 When the surface layer includes ceramic particles and a binder, for example, a second active material having a higher reactivity with lithium than the first active material is used as the ceramic particles. Since such a surface layer has excellent lithium ion acceptability, in addition to the effect of improving liquid retention, when a non-aqueous secondary battery is used for a long period of time, it suppresses lithium precipitation and extends the life. An effect is obtained.
 なお、第1活物質および第2活物質は、いずれも、電気化学的にリチウムと反応し得る材料であり、例えば、リチウムイオンを可逆的に吸蔵および放出可能な材料である。 Note that each of the first active material and the second active material is a material that can electrochemically react with lithium, for example, a material capable of reversibly occluding and releasing lithium ions.
 表面層は、例えば、セラミックス粒子を、任意成分とともに液状の分散媒と混合して、表面層塗料を調製し、その塗料を合剤層の表面に塗布し、乾燥させることにより得ることができる。任意成分としては、結着剤、導電剤、増粘剤などが挙げられる。 The surface layer can be obtained, for example, by mixing ceramic particles with a liquid dispersion medium together with an optional component to prepare a surface layer coating, applying the coating to the surface of the mixture layer, and drying. Examples of optional components include a binder, a conductive agent, and a thickener.
 表面層が、セラミックス粒子と結着剤とを含む場合、セラミックス粒子として、アルミナ、マグネシア、シリカ、チタニアなどを用いてもよい。このような表面層は、合剤層に比べて絶縁性に優れているため、保液性の向上効果に加え、非水系二次電池に内部短絡が発生した場合などには、短絡部の拡大を防止する機能を有する。従って、安全性に優れた非水系二次電池を得ることができる。 When the surface layer contains ceramic particles and a binder, alumina, magnesia, silica, titania or the like may be used as the ceramic particles. Since such a surface layer is superior to the mixture layer in terms of insulation, in addition to the effect of improving liquid retention, the expansion of the short-circuited part occurs when an internal short circuit occurs in a non-aqueous secondary battery. It has the function to prevent. Therefore, a non-aqueous secondary battery excellent in safety can be obtained.
 所定端部の厚みは、所定端部の最端部に向かうにつれて小さくなっていることが好ましい。これにより、電極群内で非水電解質の移動経路を確保しやすくなるとともに、表面層から露出する所定端部の面積を大きくすることができ、合剤層による非水電解質の含浸を促す効果が大きくなる。 It is preferable that the thickness of the predetermined end portion becomes smaller toward the endmost portion of the predetermined end portion. As a result, it is easy to secure a movement path of the nonaqueous electrolyte in the electrode group, the area of the predetermined end exposed from the surface layer can be increased, and the effect of promoting the impregnation of the nonaqueous electrolyte by the mixture layer is achieved. growing.
 合剤層による非水電解質の含浸を促す効果を最も大きくする観点からは、第1から第4端部が、いずれも、少なくとも部分的に、表面層から露出していることが好ましい。ただし、非水電解質の移動方向によって、第1端部と第2端部とだけを露出させれば十分に大きな効果が得られる場合や、第3端部と第4端部とだけを露出させれば十分に大きな効果が得られる場合もある。 From the viewpoint of maximizing the effect of promoting the impregnation of the nonaqueous electrolyte by the mixture layer, it is preferable that the first to fourth end portions are at least partially exposed from the surface layer. However, if only the first end and the second end are exposed depending on the moving direction of the nonaqueous electrolyte, a sufficiently large effect can be obtained, or only the third end and the fourth end are exposed. In some cases, a sufficiently large effect may be obtained.
 合剤層の主要部と表面層との界面における、最大高さ粗さRmaxは、3~25μmであることが好ましい。また、表面層の厚みは、3~20μmであることが好ましい。これにより、合剤層と表面層との密着強度を高めることができ、優れた充放電サイクル特性を確保することが可能となる。また、合剤層の主要部が表面層から露出することが抑制されるため、内部短絡が極めて発生しにくくなる。 The maximum height roughness Rmax at the interface between the main part of the mixture layer and the surface layer is preferably 3 to 25 μm. The thickness of the surface layer is preferably 3 to 20 μm. Thereby, the adhesion strength between the mixture layer and the surface layer can be increased, and excellent charge / discharge cycle characteristics can be ensured. Moreover, since it is suppressed that the principal part of a mixture layer is exposed from a surface layer, an internal short circuit becomes very difficult to generate | occur | produce.
 ここで、最大高さ粗さRmaxは、粗さ曲線からその平均線の方向に基準長さだけを抜き取り、この抜取り部分の山頂線と谷底線との間隔を粗さ曲線の縦倍率の方向に測定し、この値をマイクロメートル(μm)で表したものをいう。 Here, the maximum height roughness Rmax is obtained by extracting only the reference length from the roughness curve in the direction of the average line, and setting the interval between the peak line and the valley line of the extracted part in the direction of the vertical magnification of the roughness curve. Measured and the value expressed in micrometers (μm).
 上記のように、内部短絡を抑制する効果を高める観点からは、合剤層の主要部は表面層から露出していないことが望ましい。ただし、本発明によれば、主要部の露出の有無に関わらず、表面層の存在により、内部短絡を抑制する十分な効果を得ることが可能である。むしろ、生産性の向上の観点からは、合剤層の主要部の一部が、表面層から露出していることが望ましい場合がある。具体的には、非水電解質が合剤層に含浸されるときのスピードは、合剤層の主要部が露出している方が速くなる。 As described above, it is desirable that the main part of the mixture layer is not exposed from the surface layer from the viewpoint of enhancing the effect of suppressing the internal short circuit. However, according to the present invention, it is possible to obtain a sufficient effect of suppressing the internal short circuit due to the presence of the surface layer regardless of whether or not the main part is exposed. Rather, from the viewpoint of improving productivity, it may be desirable that a part of the main part of the mixture layer is exposed from the surface layer. Specifically, the speed at which the nonaqueous electrolyte is impregnated in the mixture layer becomes faster when the main part of the mixture layer is exposed.
 合剤層の主要部の一部を表面層から露出させるには、例えば、表面層に、複数の貫通孔を点在させればよい。このような貫通孔は、表面層を形成するための塗料に、十分な量の気泡を内包させておき、塗膜の状態で気泡を破裂させることにより、容易に形成することができる。あるいは、例えばRmaxが25μmを超えるように、合剤層に凹凸を形成することにより、表面層から合剤層の凸部を露出させてもよい。 In order to expose a part of the main part of the mixture layer from the surface layer, for example, a plurality of through holes may be scattered in the surface layer. Such a through-hole can be easily formed by enclosing a sufficient amount of bubbles in the coating material for forming the surface layer and rupturing the bubbles in the state of the coating film. Or you may expose the convex part of a mixture layer from a surface layer by forming an unevenness | corrugation in a mixture layer so that Rmax may exceed 25 micrometers, for example.
 合剤層の主要部の面積に対する、合剤層の主要部が露出する面積の割合(露出度)は、60%以下とすることが好ましく、1~10%とすることがより好ましい。露出度を上記範囲とすることで、内部短絡を抑制する高い効果を維持しつつ、電池の製造時には、非水電解質が合剤層に含浸されるときのスピードを、より速めることができる。 The ratio of the area where the main part of the mixture layer is exposed to the area of the main part of the mixture layer (exposure degree) is preferably 60% or less, and more preferably 1 to 10%. By setting the degree of exposure within the above range, the speed at which the nonaqueous electrolyte is impregnated in the mixture layer can be further increased during the production of the battery while maintaining the high effect of suppressing the internal short circuit.
 本発明の電極板の好ましい一形態としては、第1活物質が、リチウムイオンを可逆的に吸蔵および放出可能な炭素材料であり、第2活物質が、リチウムイオンを可逆的に吸蔵および放出可能なリチウムチタン複合酸化物である場合が挙げられる。このような電極板は、リチウムイオン二次電池用負極として有用である。 As a preferred embodiment of the electrode plate of the present invention, the first active material is a carbon material capable of reversibly occluding and releasing lithium ions, and the second active material is capable of reversibly occluding and releasing lithium ions. The case where it is a lithium titanium complex oxide is mentioned. Such an electrode plate is useful as a negative electrode for a lithium ion secondary battery.
 本発明の非水系二次電池は、電極群、非水電解質および電極群を非水電解質とともに収容する外装体を具備する。電極群は、正極と、負極と、これらの間に介在する多孔質絶縁層とを具備する。正極と負極とは、多孔質絶縁層を介して積層または捲回されている。ここで、正極および負極の少なくとも一方は、上記の非水系二次電池用電極板である。 The non-aqueous secondary battery of the present invention includes an electrode group, a non-aqueous electrolyte, and an exterior body that houses the electrode group together with the non-aqueous electrolyte. The electrode group includes a positive electrode, a negative electrode, and a porous insulating layer interposed therebetween. The positive electrode and the negative electrode are laminated or wound through a porous insulating layer. Here, at least one of the positive electrode and the negative electrode is the electrode plate for a non-aqueous secondary battery.
 第1活物質と第2活物質との組み合わせは、特に限定されない。第1活物質および第2活物質としては、ニッケル系複合酸化物、コバルト系複合酸化物、コバルト酸ナノ粒子、コバルト系酸窒化物、マンガン系複合酸化物、クロム系複合酸化物、リン酸鉄系複合酸化物、バナジウム系複合酸化物、炭素材料(黒鉛、ハードカーボンなど)、チタン系複合酸化物、錫系材料、珪素系材料、金属リチウムなどを用いることができる。 The combination of the first active material and the second active material is not particularly limited. As the first active material and the second active material, nickel-based composite oxide, cobalt-based composite oxide, cobalt acid nanoparticles, cobalt-based oxynitride, manganese-based composite oxide, chromium-based composite oxide, iron phosphate It is possible to use a system composite oxide, a vanadium system composite oxide, a carbon material (graphite, hard carbon, etc.), a titanium system composite oxide, a tin system material, a silicon system material, or metallic lithium.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
(第1実施形態)
 図1は、非水系二次電池の一例である円筒形リチウムイオン二次電池11の一部を切欠した斜視図である。
(First embodiment)
FIG. 1 is a perspective view in which a part of a cylindrical lithium ion secondary battery 11 which is an example of a non-aqueous secondary battery is cut away.
 円筒形リチウムイオン二次電池11は、正極1と、負極2とを、多孔質絶縁層であるセパレータ3を介して渦巻状に捲回して構成された電極群4を具備する。電極群4は、外装体である有底円筒形の電池ケース5の内部に、絶縁板6により電池ケース5と絶縁された状態で収容されている。一方、電極群4の下部から導出された負極リード(図示せず)は、電池ケース5の底部に接続されている。電極群4の上部より導出された正極リード8は、正極端子9aを有する封口板9に接続されている。電極群4を電池ケース5の内部に収容した後、電池ケース5に所定量の非水電解質が注液される。これにより、電極群4の隙間、合剤層やセパレータが有する空隙に非水電解質が含浸される。電池ケース5の開口は、ガスケット10を周縁に取り付けた封口板9により封口されている。電池ケース5の開口端部は、内方向に折り曲げられ、封口板9の周縁部(ガスケット10)に加締められている。 The cylindrical lithium ion secondary battery 11 includes an electrode group 4 configured by winding a positive electrode 1 and a negative electrode 2 in a spiral shape through a separator 3 that is a porous insulating layer. The electrode group 4 is accommodated in a state of being insulated from the battery case 5 by an insulating plate 6 inside a bottomed cylindrical battery case 5 as an exterior body. On the other hand, a negative electrode lead (not shown) led out from the lower part of the electrode group 4 is connected to the bottom of the battery case 5. The positive electrode lead 8 led out from the upper part of the electrode group 4 is connected to a sealing plate 9 having a positive electrode terminal 9a. After the electrode group 4 is accommodated in the battery case 5, a predetermined amount of nonaqueous electrolyte is injected into the battery case 5. Thereby, the nonaqueous electrolyte is impregnated in the gaps of the electrode group 4 and the gaps of the mixture layer and the separator. The opening of the battery case 5 is sealed by a sealing plate 9 having a gasket 10 attached to the periphery. The open end of the battery case 5 is bent inward and is crimped to the peripheral edge (gasket 10) of the sealing plate 9.
 電極群4と電池ケース5との間および電極群4の捲回軸付近には、非水電解質を電極群内に導入するための隙間が存在する。 There are gaps between the electrode group 4 and the battery case 5 and in the vicinity of the winding axis of the electrode group 4 for introducing the nonaqueous electrolyte into the electrode group.
 図2は、本実施形態における負極2の断面の模式図である。更に、図3は、本実施形態における負極2の正面の模式図である。 FIG. 2 is a schematic diagram of a cross section of the negative electrode 2 in the present embodiment. Furthermore, FIG. 3 is a schematic diagram of the front surface of the negative electrode 2 in the present embodiment.
 負極2は、帯状の矩形の負極集電体12と、その表面に形成された負極合剤層13とを具備する。負極合剤層13は、集電体12の短手方向に沿う第1端部13aと、第1端部13aの反対側の第2端部13bと、集電体12の長手方向に沿う第3端部13cと、第3端部13cの反対側の第4端部13dとを具備する矩形である。合剤層13の第1から第4端部以外の部分は、主要部13Aである。負極2は、合剤層13の第1端部13a側が外周側になるように捲回される。第1端部13aの近傍では、負極集電体12に負極リード7が接合されている。 The negative electrode 2 includes a strip-shaped rectangular negative electrode current collector 12 and a negative electrode mixture layer 13 formed on the surface thereof. The negative electrode mixture layer 13 includes a first end 13 a along the short direction of the current collector 12, a second end 13 b opposite to the first end 13 a, and a first end along the longitudinal direction of the current collector 12. It is a rectangle having a three end portion 13c and a fourth end portion 13d opposite to the third end portion 13c. The portion other than the first to fourth end portions of the mixture layer 13 is a main portion 13A. The negative electrode 2 is wound so that the first end portion 13a side of the mixture layer 13 is on the outer peripheral side. In the vicinity of the first end portion 13a, the negative electrode lead 7 is bonded to the negative electrode current collector 12.
 ここで、第1端部13aおよび第2端部13bは、合剤層の主要部13Aよりも厚みの小さい所定端部である。第1端部13aおよび第2端部13bの厚みは、各端部の最端部に向かうにつれて薄くなっている。合剤層13の表面は、第1端部13aおよび第2端部13bの表面が露出し、主要部13Aの表面が遮蔽されるように、表面層14で覆われている。表面層14の厚みは均一であり、負極合剤層13の主要部の全面が表面層14で覆われている。 Here, the first end portion 13a and the second end portion 13b are predetermined end portions having a thickness smaller than that of the main portion 13A of the mixture layer. The thickness of the 1st end part 13a and the 2nd end part 13b is thin as it goes to the endmost part of each end part. The surface of the mixture layer 13 is covered with the surface layer 14 so that the surfaces of the first end portion 13a and the second end portion 13b are exposed and the surface of the main portion 13A is shielded. The thickness of the surface layer 14 is uniform, and the entire main part of the negative electrode mixture layer 13 is covered with the surface layer 14.
 図2に示すように、負極合剤層13の端部のうち、最端部に向って薄くなっている部分の長さXは、負極合剤層13の厚みZより大きくなっている。すなわち1<X/Zの関係が満たされている。このように最端部に向って薄くなっている部分の長さXを設定することで、表面層から露出する端部の面積を効果的に大きくすることができ、非水電解質の合剤層13への含浸のスピードを大きくする効果が高められる。なお、上記効果を高めるには、2<X/Zの関係が満たされることが更に好ましい。 As shown in FIG. 2, the length X of the end portion of the negative electrode mixture layer 13 that is thinner toward the outermost portion is larger than the thickness Z of the negative electrode mixture layer 13. That is, the relationship 1 <X / Z is satisfied. Thus, by setting the length X of the portion that is thinner toward the end, the area of the end exposed from the surface layer can be effectively increased, and the nonaqueous electrolyte mixture layer The effect of increasing the speed of impregnation into 13 is enhanced. In order to enhance the above effect, it is more preferable that the relationship 2 <X / Z is satisfied.
 ここで、負極合剤層13の端部とは、負極合剤層の最端部、すなわち合剤塗料を負極集電体12に塗り始めた位置または塗り終わった位置から20mm以下(例えば10mm以下)の幅の部分である。 Here, the end portion of the negative electrode mixture layer 13 is 20 mm or less (for example, 10 mm or less) from the end of the negative electrode mixture layer, that is, the position where the mixture paint is applied to the negative electrode current collector 12 or the position where the application is finished. ) Width part.
 また、露出する端部の幅Yは、最端部に向って薄くなっている部分の長さXよりも大きくなるように設定されている。すなわち1<Y/Xの関係が満たされている。このようにすることで、電極群内で非水電解質の移動経路を、より確保しやすくなるとともに、表面層から露出する所定端部の面積を、より大きくすることができる。なお、上記効果を高めるには、1.2<Y/Xの関係が満たされることが更に好ましい。 Further, the width Y of the exposed end portion is set to be larger than the length X of the portion that is thinner toward the end portion. That is, the relationship 1 <Y / X is satisfied. By doing so, it becomes easier to secure the movement path of the nonaqueous electrolyte in the electrode group, and the area of the predetermined end exposed from the surface layer can be further increased. In order to enhance the above effect, it is more preferable that the relationship 1.2 <Y / X is satisfied.
 負極合剤層13は、第1活物質として、例えば、リチウムイオンを可逆的に吸蔵および放出可能な炭素材料や珪素系材料を含んでいる。炭素材料としては、黒鉛(各種天然黒鉛、人造黒鉛)、ハードカーボン、ソフトカーボンなどが挙げられる。珪素系材料としては、珪素酸化物(SiOx、ただし0.1≦x≦1.8)、珪素合金(Ti-Si合金など)などが挙げられる。また、負極合剤層13は、ポリフッ化ビニリデン(PVdF)などのフッ素樹脂、スチレン-ブタジエン共重合体(SBR)などのゴム粒子、カルボキシメチルセルロース(CMC)などのセルロース樹脂を結着材として含み得る。リチウムイオン受入れ性を向上させる観点からは、SBRとCMCを併用することが好ましい。更に、負極合剤層13は、導電材として、カーボンブラック、カーボンナノチューブ、VGCFなどを含み得る。カーボンブラックとしては、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどを用いることができる。 The negative electrode mixture layer 13 includes, for example, a carbon material or a silicon-based material capable of reversibly occluding and releasing lithium ions as the first active material. Examples of the carbon material include graphite (various natural graphite and artificial graphite), hard carbon, and soft carbon. Examples of the silicon-based material include silicon oxide (SiOx, where 0.1 ≦ x ≦ 1.8), silicon alloy (such as Ti—Si alloy), and the like. Further, the negative electrode mixture layer 13 may contain a fluorine resin such as polyvinylidene fluoride (PVdF), rubber particles such as a styrene-butadiene copolymer (SBR), and a cellulose resin such as carboxymethyl cellulose (CMC) as a binder. . From the viewpoint of improving the lithium ion acceptability, it is preferable to use SBR and CMC in combination. Further, the negative electrode mixture layer 13 can include carbon black, carbon nanotube, VGCF, and the like as a conductive material. As carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and the like can be used.
 表面層14は、第2活物質として、例えば、リチウムイオンを可逆的に吸蔵および放出可能なリチウムチタン複合酸化物を含んでいる。リチウムチタン複合酸化物としては、例えば、スピネル構造を有するLi4Ti512およびその変性体が好ましいが、特に限定されない。Li4Ti512の変性体としては、Li4Ti512のTiおよび/またはLiの一部が他元素で置換された材料である。他元素としては、例えば、Ni、Co、Mn、Fe、Al、MgおよびCrよりなる群から選択される少なくとも1種が挙げられる。Tiおよび/またはLiと置換される元素の割合は、TiサイトおよびLiサイトの合計の20原子%以下であることが好ましい。 The surface layer 14 includes, for example, a lithium titanium composite oxide capable of reversibly occluding and releasing lithium ions as the second active material. As the lithium titanium composite oxide, for example, Li 4 Ti 5 O 12 having a spinel structure and a modified product thereof are preferable, but not particularly limited. The modified products of Li 4 Ti 5 O 12, a material part of the Ti and / or Li of the Li 4 Ti 5 O 12 is replaced with another element. Examples of the other element include at least one selected from the group consisting of Ni, Co, Mn, Fe, Al, Mg, and Cr. The ratio of elements substituted for Ti and / or Li is preferably 20 atomic% or less of the total of Ti sites and Li sites.
 表面層14も、上記のような結着剤を含み得る。第2活物質の平均粒径を、第1活物質の平均粒径よりも小さくし、かつ第2活物質の比表面積を第1活物質の比表面積よりも大きくすることで、表面層14と、負極合剤層13や負極集電体12との接触面積が大きくなり、これらの間での結着性が高くなる。 The surface layer 14 may also contain a binder as described above. By making the average particle size of the second active material smaller than the average particle size of the first active material and making the specific surface area of the second active material larger than the specific surface area of the first active material, In addition, the contact area between the negative electrode mixture layer 13 and the negative electrode current collector 12 is increased, and the binding property between them is increased.
 ここで、第1活物質の平均粒径D1は、2~50μmであることが好ましい。また、第2活物質の平均粒径D2(D1>D2)は、0.5~5μmであることが好ましい。D1/D2の比は、4~10であることが好ましい。なお、D1およびD2は、体積基準粒度分布における累積体積50%相当のメディアン径である。 Here, the average particle diameter D1 of the first active material is preferably 2 to 50 μm. The average particle diameter D2 (D1> D2) of the second active material is preferably 0.5 to 5 μm. The ratio of D1 / D2 is preferably 4 to 10. D1 and D2 are median diameters corresponding to a cumulative volume of 50% in the volume-based particle size distribution.
 合剤層13は、上記のように、第1活物質を、任意成分とともに液状の分散媒と混合して、合剤塗料を調製し、その塗料を集電体の表面に塗布し、乾燥させることにより得ることができる。合剤層の厚みは、例えば、30~150μmである。負極集電体には、例えば、厚み5~25μmの銅箔、銅合金箔が用いられる。乾燥後の塗膜は圧延してもよい。あるいは、合剤塗料の塗膜を乾燥させず、以下の表面層14の形成工程に移行してもよい。 As described above, the mixture layer 13 is prepared by mixing the first active material together with an optional component with a liquid dispersion medium to prepare a mixture paint, applying the paint onto the surface of the current collector, and drying the mixture. Can be obtained. The thickness of the mixture layer is, for example, 30 to 150 μm. For the negative electrode current collector, for example, a copper foil or copper alloy foil having a thickness of 5 to 25 μm is used. The coated film after drying may be rolled. Or you may transfer to the formation process of the following surface layers 14, without drying the coating film of mixture paint.
 表面層14は、例えば、第2活物質もしくはセラミックス粒子を、任意成分とともに液状の分散媒と混合して、表面層塗料を調製し、その塗料を合剤層の表面に塗布し、乾燥させることにより得ることができる。その後、合剤層13とともに表面層14を圧延してもよい。 The surface layer 14 is prepared, for example, by mixing the second active material or ceramic particles together with an optional component with a liquid dispersion medium to prepare a surface layer coating material, applying the coating material to the surface of the mixture layer, and drying the coating material. Can be obtained. Thereafter, the surface layer 14 may be rolled together with the mixture layer 13.
 合剤塗料および表面層塗料の調製は、プラネタリーミキサー等の分散機により、材料をN-メチル-2-ピロリドン(NMP)などの分散媒に分散させることにより行われる。各塗料の粘度は、集電体12または合剤層13への塗布に最適となるように調整される。各塗料の塗布は、例えばダイコーターで行えばよい。 Preparation of the mixture paint and the surface layer paint is carried out by dispersing the material in a dispersion medium such as N-methyl-2-pyrrolidone (NMP) using a dispersing machine such as a planetary mixer. The viscosity of each paint is adjusted so as to be optimal for application to the current collector 12 or the mixture layer 13. Application of each paint may be performed by a die coater, for example.
 合剤層13と表面層14との界面の最大高さ粗さRmaxは、例えば3~25μm、更には5~20μmに設定される。最大高さ粗さRmaxは、合剤層13と表面層14との界面のうち、集電体12から最も離れた界面と、集電体12に最も近い界面との厚み方向の距離に相当する。最大高さ粗さRmaxを上記範囲とすることにより、合剤層13と表面層14の接着におけるアンカー効果が大きくなるとともに、合剤層13が表面層14から露出することが抑制されるため、保液性を確保することがより容易になるとともに、内部短絡が極めて発生しにくくなる。この場合、表面層14の厚みを3~20μm、更には5~15μmに設定することで、合剤層13と表面層14との密着強度を、更に高めることができるとともに、電池容量の確保が容易となる。 The maximum height roughness Rmax of the interface between the mixture layer 13 and the surface layer 14 is set to, for example, 3 to 25 μm, and further 5 to 20 μm. The maximum height roughness Rmax corresponds to the distance in the thickness direction between the interface farthest from the current collector 12 and the interface closest to the current collector 12 among the interface between the mixture layer 13 and the surface layer 14. . By setting the maximum height roughness Rmax in the above range, the anchor effect in adhesion between the mixture layer 13 and the surface layer 14 is increased, and the mixture layer 13 is suppressed from being exposed from the surface layer 14. It becomes easier to secure the liquid retaining property, and an internal short circuit is very unlikely to occur. In this case, by setting the thickness of the surface layer 14 to 3 to 20 μm, further 5 to 15 μm, the adhesion strength between the mixture layer 13 and the surface layer 14 can be further increased, and the battery capacity can be secured. It becomes easy.
 一方、表面層14を介して合剤層13の一部が露出するように、合剤層13と表面層14の構造や、これらの界面の最大高さ粗さRmaxを設定してもよい。これにより、合剤層13への非水電解質の含浸性を、更に向上させることができる。ただし、表面層14の主要部の面積に対する、合剤層13の主要部が露出する面積の割合(露出度)は、60%以下とすることが好ましく、1~10%とすることがより好ましい。 On the other hand, the structure of the mixture layer 13 and the surface layer 14 and the maximum height roughness Rmax of these interfaces may be set so that a part of the mixture layer 13 is exposed through the surface layer 14. Thereby, the impregnation property of the nonaqueous electrolyte into the mixture layer 13 can be further improved. However, the ratio of the area where the main part of the mixture layer 13 is exposed to the area of the main part of the surface layer 14 (exposure degree) is preferably 60% or less, more preferably 1 to 10%. .
 例えば、合剤層13の表面に外方への突出部を設け、突出部を表面層14に貫通させることにより、合剤層13の一部を露出させることができる。この場合、突出部を設けることにより、合剤層13と表面層14との界面の最大高さ粗さRmaxを、25μmより大きく設定することが好ましく、Rmaxを30~60μmとすることがより好ましい。非水電解質の含浸性を十分に高める観点から、突出部の直径は、その中心高さにおいて、20~100μmであることが好ましい。 For example, a part of the mixture layer 13 can be exposed by providing an outward projecting portion on the surface of the mixture layer 13 and passing the projecting portion through the surface layer 14. In this case, it is preferable that the maximum height roughness Rmax of the interface between the mixture layer 13 and the surface layer 14 is set to be larger than 25 μm, and more preferably Rmax is set to 30 to 60 μm by providing the protruding portion. . From the viewpoint of sufficiently increasing the impregnation property of the nonaqueous electrolyte, the diameter of the protrusion is preferably 20 to 100 μm at the center height.
 表面層14に複数の貫通孔を点在させることにより、合剤層13の一部を露出させてもよい。貫通孔は、表面層塗料に、十分な量の気泡を内包させることにより、容易に形成することができる。貫通孔の直径は、例えば20μm以下であればよいが、非水電解質の含浸性を十分に高める観点から、例えば20~100μmであってもよい。 A part of the mixture layer 13 may be exposed by interspersing a plurality of through holes in the surface layer 14. The through-hole can be easily formed by enclosing a sufficient amount of bubbles in the surface layer paint. The diameter of the through hole may be, for example, 20 μm or less, but may be, for example, 20-100 μm from the viewpoint of sufficiently enhancing the impregnation property of the nonaqueous electrolyte.
 正極1は、負極2と同様の形状を有し、帯状の矩形の正極集電体と、その表面に形成された正極合剤層とを具備する。正極合剤層は、集電体の短手方向に沿う第1端部と、第1端部の反対側の第2端部と、集電体の長手方向に沿う第3端部と、第3端部の反対側の第4端部とを具備する矩形である。正極集電体には正極リード8が接合されている。 The positive electrode 1 has the same shape as the negative electrode 2 and includes a strip-shaped rectangular positive electrode current collector and a positive electrode mixture layer formed on the surface thereof. The positive electrode mixture layer includes a first end along the short side direction of the current collector, a second end opposite to the first end, a third end along the longitudinal direction of the current collector, A rectangular shape having a fourth end opposite to the three ends. A positive electrode lead 8 is joined to the positive electrode current collector.
 正極集電体としては、例えば、厚み5μm~30 μmのアルミニウム箔、アルミニウム合金箔、ニッケル箔、ニッケル合金箔を用いることができる。正極集電体の表面に塗布する正極の合剤塗料は、例えば、正極活物質、導電材および結着材を、分散媒とともにプラネタリーミキサー等の分散機により混合することにより調製される。合剤塗料は、例えばダイコーターを用いて正極集電体に塗布する。その後、塗膜を乾燥し、次に圧延することで正極1が得られる。 As the positive electrode current collector, for example, an aluminum foil, an aluminum alloy foil, a nickel foil, or a nickel alloy foil having a thickness of 5 μm to 30 μm can be used. The positive electrode mixture paint applied to the surface of the positive electrode current collector is prepared, for example, by mixing a positive electrode active material, a conductive material, and a binder together with a dispersion medium using a disperser such as a planetary mixer. The mixture paint is applied to the positive electrode current collector using, for example, a die coater. Then, the positive electrode 1 is obtained by drying and then rolling the coating film.
 正極合剤層は、正極活物質として、例えば、ニッケル系複合酸化物、コバルト系複合酸化物、マンガン系複合酸化物、コバルト酸ナノ粒子、コバルト系酸窒化物、クロム系複合酸化物、リン酸鉄系複合酸化物、バナジウム系複合酸化物などを含む。ニッケル系複合酸化物としては、ニッケル酸リチウムやニッケル酸リチウムのニッケルを他元素に置換した材料が挙げられる。コバルト系複合酸化物としては、例えばコバルト酸リチウムやコバルト酸リチウムにアルミニウムやマグネシウムを固溶させた材料が挙げられる。マンガン系複合酸化物としては、スピネル構造を有するマンガン酸リチウムが挙げられる。 The positive electrode mixture layer is, for example, a nickel composite oxide, a cobalt composite oxide, a manganese composite oxide, a cobalt acid nanoparticle, a cobalt oxynitride, a chromium composite oxide, or phosphoric acid as a positive electrode active material. Includes iron-based composite oxides, vanadium-based composite oxides, and the like. Examples of the nickel-based composite oxide include lithium nickelate and materials obtained by substituting nickel of lithium nickelate with other elements. Examples of the cobalt-based composite oxide include a material in which aluminum or magnesium is dissolved in lithium cobaltate or lithium cobaltate. Examples of the manganese-based composite oxide include lithium manganate having a spinel structure.
 正極合剤層は、任意成分として、結着剤や導電材を含み得る。また、結着材としては、ポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデンの変性体、ポリテトラフルオロエチレン(PTFE)、アクリレート単位を含むゴム粒子などを用いることができる。導電材としては、既に述べたカーボンブラックや各種黒鉛を用いることができる。 The positive electrode mixture layer can contain a binder and a conductive material as optional components. As the binder, polyvinylidene fluoride (PVdF), a modified polyvinylidene fluoride, polytetrafluoroethylene (PTFE), rubber particles containing an acrylate unit, or the like can be used. As the conductive material, the carbon black and various graphites already described can be used.
 なお、上記の負極活物質、正極活物質、負極結着材、正極結着材、負極導電材、正極導電材は、いずれも1種を単独で用いてもよく、複数種を組み合わせて用いてもよい。 The negative electrode active material, the positive electrode active material, the negative electrode binder, the positive electrode binder, the negative electrode conductive material, and the positive electrode conductive material may be used singly or in combination. Also good.
 非水電解質は、非水溶媒およびこれに溶解させた電解質塩を含む。電解質塩としては例えば、LiPF6およびLiBF4のような各種リチウム化合物を用いることができる。また、非水溶媒としては、例えば、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)などを用いることができる。また、正極または負極の表面に皮膜を形成させたり、過充電時の安定性を確保したりするために、ビニレンカーボネート(VC)やシクロヘキシルベンゼン(CHB)などの添加剤を用いてもよい。電解質塩および非水溶媒は、いずれも1種を単独で用いてもよく、複数種を組み合わせて用いてもよい。 The non-aqueous electrolyte includes a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent. As the electrolyte salt, for example, various lithium compounds such as LiPF 6 and LiBF 4 can be used. As the non-aqueous solvent, for example, ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC) and the like can be used. In addition, an additive such as vinylene carbonate (VC) or cyclohexylbenzene (CHB) may be used in order to form a film on the surface of the positive electrode or the negative electrode or to ensure stability during overcharge. Any one of the electrolyte salt and the non-aqueous solvent may be used alone, or a plurality of them may be used in combination.
 多孔質絶縁層であるセパレータ3は、非水系二次電池のセパレータとして使用可能なものを特に限定なく用いることができる。例えば、ポリエチレン、ポリプロピレンなどのオレフィン系樹脂で形成された微多孔質フィルムを単独で、または改良して用いるのが一般的である。セパレータの厚みは、例えば10~25μmである。 As the separator 3 that is a porous insulating layer, a separator that can be used as a separator for a non-aqueous secondary battery can be used without particular limitation. For example, a microporous film formed of an olefin resin such as polyethylene or polypropylene is generally used alone or in an improved manner. The thickness of the separator is, for example, 10 to 25 μm.
 以上のような構成を有する非水系二次電池では、電極群4と電池ケース5との間および電極群4の中心部分(捲回軸近傍)には隙間が存在する。そして、このような隙間から、非水電解質が電極群4の内部に浸透しやすい。隙間に侵入した非水系電解質は、負極合剤層13の電極群4の外周側端部(第1端部13a)および内周側端部(第2端部13b)、すなわち露出部分を介して、負極合剤層13の主要部へと含浸される。 In the non-aqueous secondary battery having the above-described configuration, there are gaps between the electrode group 4 and the battery case 5 and in the central portion (near the winding axis) of the electrode group 4. The nonaqueous electrolyte easily penetrates into the electrode group 4 from such a gap. The nonaqueous electrolyte that has entered the gap passes through the outer peripheral side end portion (first end portion 13a) and the inner peripheral side end portion (second end portion 13b) of the electrode group 4 of the negative electrode mixture layer 13, that is, through the exposed portion. The main part of the negative electrode mixture layer 13 is impregnated.
 ここで、負極合剤層13の電極群4の外周側端部および内周側端部は、負極合剤層13の主要部の厚みよりも小さくなっており、かつ表面層14で覆われていないため、当該外周側端部および内周側端部とセパレータとの間に形成される非水電解質の通路は広くなっている。よって、負極合剤層13の主要部への非水電解質の含侵が顕著に促進される。更に、非水系二次電池の生産性を向上させることができる。 Here, the outer peripheral side end and inner peripheral side end of the electrode group 4 of the negative electrode mixture layer 13 are smaller than the thickness of the main part of the negative electrode mixture layer 13 and are covered with the surface layer 14. Therefore, the non-aqueous electrolyte passage formed between the outer peripheral end and the inner peripheral end and the separator is wide. Therefore, the impregnation of the nonaqueous electrolyte into the main part of the negative electrode mixture layer 13 is significantly promoted. Furthermore, the productivity of the non-aqueous secondary battery can be improved.
 また、負極合剤層13の主要部に含侵された非水電解質は、非水系二次電池の充放電に伴い、負極合剤層13の表面を介して負極合剤層13の外部へ移動しようとする。ところが、負極合剤層13の端部以外の主要部の表面は、負極合剤層13よりも非水電解質に対する含侵性の小さい表面層14で覆われている。よって、負極合剤層13の内部に一旦含浸された非水電解質は、容易には、表面層14を通過して外部に移動せず、負極合剤層13の内に保有され続ける。よって、電極の液枯れを防止できる。 Further, the nonaqueous electrolyte impregnated in the main part of the negative electrode mixture layer 13 moves to the outside of the negative electrode mixture layer 13 through the surface of the negative electrode mixture layer 13 along with charge / discharge of the nonaqueous secondary battery. try to. However, the surface of the main part other than the end portion of the negative electrode mixture layer 13 is covered with a surface layer 14 that is less invasive to the nonaqueous electrolyte than the negative electrode mixture layer 13. Therefore, the non-aqueous electrolyte once impregnated in the negative electrode mixture layer 13 does not easily pass through the surface layer 14 and is kept in the negative electrode mixture layer 13. Therefore, it is possible to prevent electrode drainage.
(第2実施形態)
 図4は、本実施形態における負極2Aの断面の模式図である。負極2Aは、合剤層および表面層の端部の詳細が異なる点以外、第1実施形態の負極2とほぼ同様の構造を有するため、共通の構成要素には同じ符号を用いて説明する。
(Second Embodiment)
FIG. 4 is a schematic diagram of a cross section of the negative electrode 2A in the present embodiment. Since the negative electrode 2A has substantially the same structure as the negative electrode 2 of the first embodiment except that the details of the end portions of the mixture layer and the surface layer are different, common constituent elements will be described using the same reference numerals.
 負極2Aは、帯状の矩形の負極集電体12と、その表面に形成された負極合剤層13とを具備する。ここで、第1端部13aおよび第2端部13bは、合剤層の主要部13Aよりも厚みの小さい所定端部であり、第1端部13aおよび第2端部13bの厚みは、各端部の最端部に向かうにつれて薄くなっている。合剤層13の表面は、第1端部13aおよび第2端部13bの表面が露出し、主要部13Aの表面が遮蔽されるように、表面層14で覆われている。表面層14の厚みは均一であり、負極合剤層13の主要部の全面が表面層14で覆われている。 The negative electrode 2A includes a strip-shaped rectangular negative electrode current collector 12 and a negative electrode mixture layer 13 formed on the surface thereof. Here, the first end portion 13a and the second end portion 13b are predetermined end portions having a thickness smaller than the main portion 13A of the mixture layer, and the thicknesses of the first end portion 13a and the second end portion 13b are as follows. It becomes thinner toward the extreme end of the end. The surface of the mixture layer 13 is covered with the surface layer 14 so that the surfaces of the first end portion 13a and the second end portion 13b are exposed and the surface of the main portion 13A is shielded. The thickness of the surface layer 14 is uniform, and the entire main part of the negative electrode mixture layer 13 is covered with the surface layer 14.
 第1実施形態の負極2と同様に、負極合剤層13の端部のうち、最端部に向って薄くなっている部分の長さXは、負極合剤層13の厚みZより大きくなっている。すなわち1<X/Zの関係が満たされている。ここでも、2<X/Zの関係が満たされることが更に好ましい。 Similarly to the negative electrode 2 of the first embodiment, the length X of the end portion of the negative electrode mixture layer 13 that is thinner toward the outermost portion is larger than the thickness Z of the negative electrode mixture layer 13. ing. That is, the relationship 1 <X / Z is satisfied. Here, it is more preferable that the relationship of 2 <X / Z is satisfied.
 一方、露出する端部の幅Yは、最端部に向って薄くなっている部分の長さXよりも小さくなるように設定されている。すなわち1<X/Yの関係が満たされている。このようにすることでも、表面層から露出する端部の面積を大きくすることができ、非水電解質の合剤層13への含浸のスピードを大きくする効果を十分に得ることが可能である。 On the other hand, the width Y of the exposed end portion is set to be smaller than the length X of the portion that is thinner toward the end portion. That is, the relationship 1 <X / Y is satisfied. Also by doing this, the area of the end exposed from the surface layer can be increased, and the effect of increasing the impregnation speed of the nonaqueous electrolyte into the mixture layer 13 can be sufficiently obtained.
(第3実施形態)
 図5は、本実施形態における負極2Bの正面の模式図である。負極2Bは、合剤層および表面層の塗布領域が異なる点以外、第1実施形態の負極2とほぼ同様の構造を有するため、共通の構成要素には同じ符号を用いて説明する。
(Third embodiment)
FIG. 5 is a schematic front view of the negative electrode 2B in the present embodiment. The negative electrode 2B has substantially the same structure as that of the negative electrode 2 of the first embodiment except that the mixture layer and the surface layer have different application areas, and therefore, common constituent elements will be described using the same reference numerals.
 負極2Bは、帯状の矩形の負極集電体12と、その表面に形成された負極合剤層13とを具備する。ただし、負極合剤層13は、集電体12の長手方向に沿う一端部を露出させるように、負極集電体に形成されている。このような負極の場合、負極集電体12の短手方向に沿う端部ではなく、長手方向に沿う端部の厚みを、厚みの小さい所定端部とすることができる。すなわち、第3端部13cおよび第4端部13dの少なくとも一方を、合剤層の主要部よりも厚みの小さい所定端部とすることができる。 The negative electrode 2B includes a strip-shaped rectangular negative electrode current collector 12 and a negative electrode mixture layer 13 formed on the surface thereof. However, the negative electrode mixture layer 13 is formed on the negative electrode current collector so that one end portion along the longitudinal direction of the current collector 12 is exposed. In the case of such a negative electrode, the thickness of the end portion along the longitudinal direction instead of the end portion along the short direction of the negative electrode current collector 12 can be a predetermined end portion having a small thickness. That is, at least one of the third end portion 13c and the fourth end portion 13d can be a predetermined end portion having a thickness smaller than the main portion of the mixture layer.
 負極2Bでは、第3端部13cの厚みが、各端部の最端部に向かうにつれて小さくなっている。そして、合剤層13の表面は、第3端部13cの表面が露出し、主要部13Aの表面が遮蔽されるように、表面層14で覆われている。 In the negative electrode 2B, the thickness of the third end portion 13c becomes smaller toward the end of each end. The surface of the mixture layer 13 is covered with the surface layer 14 so that the surface of the third end portion 13c is exposed and the surface of the main portion 13A is shielded.
 上記のような構成を有する負極2Bにおいては、集電体12の長手方向に沿う長い露出部のほとんどが、電極群の端面に配置される。従って、非水電解質に対する合剤層の含浸性が顕著に向上し、電池の生産性が大きく向上する。 In the negative electrode 2B having the above-described configuration, most of the long exposed portion along the longitudinal direction of the current collector 12 is disposed on the end face of the electrode group. Therefore, the impregnation property of the mixture layer with respect to the nonaqueous electrolyte is remarkably improved, and the productivity of the battery is greatly improved.
 なお、上記第1~第3実施形態では、負極合剤層13の第1端部および第2端部の両方の厚みを主要部の厚みよりも小さくし、かつ当該端部を表面層から露出させる場合について説明したが、第1端部および第2端部の一方のみの厚みを主要部の厚みよりも小さくし、かつ当該端部を表面層から露出させてもよい。また、上記第4実施形態では、第3端部および第4端部の両方の厚みを主要部の厚みよりも小さくし、かつ当該端部を表面層から露出させてもよい。 In the first to third embodiments, the thickness of both the first end and the second end of the negative electrode mixture layer 13 is made smaller than the thickness of the main portion, and the end is exposed from the surface layer. However, the thickness of only one of the first end and the second end may be made smaller than that of the main portion, and the end may be exposed from the surface layer. Moreover, in the said 4th Embodiment, the thickness of both a 3rd edge part and a 4th edge part may be made smaller than the thickness of a principal part, and the said edge part may be exposed from a surface layer.
 また、上記第1~第4実施形態では、正極1と負極2とを渦巻状に捲回した電極群4を具備する場合について説明したが、正極1と負極2とをセパレータ3を介して積層するだけの電極群を形成する場合でも、同様の効果が得られる。 In the first to fourth embodiments, the case where the electrode group 4 in which the positive electrode 1 and the negative electrode 2 are wound in a spiral shape is described. However, the positive electrode 1 and the negative electrode 2 are stacked via the separator 3. The same effect can be obtained even when an electrode group is formed.
 また、上記第1~第4実施形態では、負極合剤層13の表面に表面層14を形成する場合について説明したが、表面層を形成する場所は、正極合剤層の表面であってもよい。更に、正極合剤層と負極合剤層の両方の表面に、それぞれ表面層を形成してもよい。 In the first to fourth embodiments, the case where the surface layer 14 is formed on the surface of the negative electrode mixture layer 13 has been described. However, the surface layer may be formed on the surface of the positive electrode mixture layer. Good. Furthermore, you may form a surface layer in the surface of both the positive mix layer and the negative mix layer, respectively.
 表面層塗料は、合剤塗料の塗布後、直ちに塗布してもよい。その場合、合剤層塗料の塗膜と表面層塗料の塗膜とを同時に乾燥させ、その後、圧延することにより、合剤層と表面層とが形成される。また、合剤層塗料の塗膜を乾燥後、圧延して合剤層を形成した後、表面層塗料を合剤層の表面に塗布してもよい。また、合剤層塗料の塗膜を乾燥させた後、合剤層と表面層との界面の最大高さ粗さRmaxを調整する目的で、合剤層塗料の塗膜に凹凸を形成する加工を施し、その後、表面層塗料を塗布してもよい。 The surface layer paint may be applied immediately after the mixture paint is applied. In that case, the mixture layer coating and the surface layer coating are simultaneously dried and then rolled to form the mixture layer and the surface layer. Moreover, after drying the coating film of a mixture layer coating material and rolling and forming a mixture layer, you may apply | coat a surface layer coating material on the surface of a mixture layer. Moreover, after drying the coating film of the mixture layer coating, a process for forming irregularities on the coating film of the mixture layer coating for the purpose of adjusting the maximum height roughness Rmax of the interface between the mixture layer and the surface layer After that, the surface layer paint may be applied.
(第1参考形態)
 次に、本発明の第1参考形態について、図7を参照しながら説明する。図7は、本参考形態における電極2Dの断面の模式図である。ここでも、第1実施形態と対応する構成要素には同じ符号を用いて説明する。
(First reference form)
Next, a first reference embodiment of the present invention will be described with reference to FIG. FIG. 7 is a schematic diagram of a cross section of the electrode 2D in the present embodiment. Here, the same reference numerals are used for the components corresponding to those in the first embodiment.
 電極2Dは、帯状の矩形の集電体12と、その表面に形成された合剤層13とを具備する。合剤層13は、第1実施形態の負極2と同様に、集電体の短手方向に沿う第1端部と、第1端部の反対側の第2端部と、集電体12の長手方向に沿う第3端部と、第3端部の反対側の第4端部とを具備する矩形である。合剤層13の第1から第4端部以外の部分は、主要部である。 The electrode 2D includes a strip-shaped rectangular current collector 12 and a mixture layer 13 formed on the surface thereof. Similarly to the negative electrode 2 of the first embodiment, the mixture layer 13 includes a first end along the short direction of the current collector, a second end opposite to the first end, and the current collector 12. It is the rectangle which comprises the 3rd end part along the longitudinal direction, and the 4th end part on the opposite side of the 3rd end part. Portions other than the first to fourth end portions of the mixture layer 13 are main portions.
 ただし、第1実施形態の負極2とは異なり、電極2Dの第1端部および第2端部における合剤層の厚みは特に限定されない。また、第1端部および第2端部の表面は、表面層14から露出している必要はない。表面層14は、合剤層13の少なくとも主要部を覆っていればよい。表面層13は、負極合剤層の表面に形成してもよく、正極合剤層の表面に形成してもよい。 However, unlike the negative electrode 2 of the first embodiment, the thickness of the mixture layer at the first end and the second end of the electrode 2D is not particularly limited. Further, the surfaces of the first end and the second end need not be exposed from the surface layer 14. The surface layer 14 only needs to cover at least the main part of the mixture layer 13. The surface layer 13 may be formed on the surface of the negative electrode mixture layer, or may be formed on the surface of the positive electrode mixture layer.
 合剤層13と表面層14との界面の最大高さ粗さRmaxは、例えば3~25μm、更には5~20μmに設定される。最大高さ粗さRmaxを上記範囲とすることにより、合剤層13と表面層14の接着におけるアンカー効果が大きくなるとともに、合剤層13が表面層14から露出することが抑制されるため、合剤層の保液性が向上するとともに、内部短絡が極めて発生しにくくなる。この場合、表面層14の厚みを3~20μm、更には5~15μmに設定することで、合剤層13と表面層14との密着強度を、更に高めることができるとともに、電池容量の確保が容易となる。 The maximum height roughness Rmax of the interface between the mixture layer 13 and the surface layer 14 is set to, for example, 3 to 25 μm, and further 5 to 20 μm. By setting the maximum height roughness Rmax in the above range, the anchor effect in adhesion between the mixture layer 13 and the surface layer 14 is increased, and the mixture layer 13 is suppressed from being exposed from the surface layer 14. While the liquid retention property of a mixture layer improves, an internal short circuit becomes very difficult to generate | occur | produce. In this case, by setting the thickness of the surface layer 14 to 3 to 20 μm, further 5 to 15 μm, the adhesion strength between the mixture layer 13 and the surface layer 14 can be further increased, and the battery capacity can be secured. It becomes easy.
 表面層14を形成するための表面層塗料は、リチウムチタン複合酸化物のような第2活物質を含んでもよく、アルミナ、マグネシア、シリカ、チタニアなどを含んでもよい。これらのセラミックス粉末は、1種を単独で用いてもよく、複数種を組み合わせて用いてもよい。表面層塗料は、第1実施形態と同様に、上記のセラミックス粉末と、任意成分である結着材、導電材、増粘剤などとを、分散媒とともに分散機により混合することにより調製される。 The surface layer coating for forming the surface layer 14 may contain a second active material such as lithium titanium composite oxide, and may contain alumina, magnesia, silica, titania and the like. These ceramic powders may be used alone or in combination of two or more. Similar to the first embodiment, the surface layer coating is prepared by mixing the ceramic powder and optional binders, conductive materials, thickeners, and the like together with a dispersion medium using a disperser. .
(第2参考形態)
 次に、本発明の第2参考形態について、図8を参照しながら説明する。図8は、本参考形態における電極2Eの断面の模式図である。図9は、同電極2Eの表面の部分模式図である。ここでも、第1実施形態と対応する構成要素には同じ符号を用いて説明する。
(Second reference form)
Next, a second reference embodiment of the present invention will be described with reference to FIG. FIG. 8 is a schematic diagram of a cross section of the electrode 2E in the present embodiment. FIG. 9 is a partial schematic view of the surface of the electrode 2E. Here, the same reference numerals are used for the components corresponding to those in the first embodiment.
 電極2Eは、帯状の矩形の集電体12と、その表面に形成された合剤層13とを具備する。合剤層13は、第1実施形態の負極2Eと同様に、集電体の短手方向に沿う第1端部と、第1端部の反対側の第2端部と、集電体12の長手方向に沿う第3端部と、第3端部の反対側の第4端部とを具備する矩形である。合剤層13の第1から第4端部以外の部分は、主要部である。 The electrode 2E includes a strip-shaped rectangular current collector 12 and a mixture layer 13 formed on the surface thereof. Similarly to the negative electrode 2E of the first embodiment, the mixture layer 13 includes a first end along the short direction of the current collector, a second end opposite to the first end, and the current collector 12. It is the rectangle which comprises the 3rd end part along the longitudinal direction, and the 4th end part on the opposite side of the 3rd end part. Portions other than the first to fourth end portions of the mixture layer 13 are main portions.
 ただし、第1実施形態の負極2とは異なり、電極2Eの第1端部および第2端部における合剤層の厚みは特に限定されない。また、第1端部および第2端部の表面は、表面層14から露出している必要はない。表面層14は、合剤層13の少なくとも主要部を覆っていればよい。表面層13は、負極合剤層の表面に形成してもよく、正極合剤層の表面に形成してもよい。 However, unlike the negative electrode 2 of the first embodiment, the thickness of the mixture layer at the first end and the second end of the electrode 2E is not particularly limited. Further, the surfaces of the first end and the second end need not be exposed from the surface layer 14. The surface layer 14 only needs to cover at least the main part of the mixture layer 13. The surface layer 13 may be formed on the surface of the negative electrode mixture layer, or may be formed on the surface of the positive electrode mixture layer.
 電極2Eでは、表面層14を介して合剤層13の一部が、例えば島状に露出している。これにより、合剤層への非水電解質の含浸性が更に向上する。 In the electrode 2E, a part of the mixture layer 13 is exposed, for example, in an island shape through the surface layer. Thereby, the impregnation property of the nonaqueous electrolyte in the mixture layer is further improved.
 上記のように、合剤層13を部分的に露出させる方法としては、例えば、以下の方法がある。 As described above, examples of the method for partially exposing the mixture layer 13 include the following methods.
 第1の方法では、合剤層13と表面層14との界面の最大高さ粗さRmaxを、例えば25μmより大きく設定し、好ましくは、Rmaxを30~60μmに設定する。これにより、合剤層13の表面における凹凸が大きくなり、凸部の一部が表面層14を貫通する。この場合、表面層塗料は、合剤塗料の塗布後、直ちに塗布してもよい。その場合、合剤層塗料の塗膜と表面層塗料の塗膜とを同時に乾燥させ、その後、圧延することにより、合剤層と表面層とが形成される。また、合剤層塗料の塗膜を乾燥後、圧延して合剤層を形成した後、表面層塗料を合剤層の表面に塗布してもよい。 In the first method, the maximum height roughness Rmax of the interface between the mixture layer 13 and the surface layer 14 is set to be larger than 25 μm, for example, and preferably Rmax is set to 30 to 60 μm. Thereby, the unevenness | corrugation in the surface of the mixture layer 13 becomes large, and a part of convex part penetrates the surface layer 14. In this case, the surface layer paint may be applied immediately after the mixture paint is applied. In that case, the mixture layer coating and the surface layer coating are simultaneously dried and then rolled to form the mixture layer and the surface layer. Moreover, after drying the coating film of a mixture layer coating material and rolling and forming a mixture layer, you may apply | coat a surface layer coating material on the surface of a mixture layer.
 第2の方法では、図10、11に示すように、合剤層13の表面に、意図的に外方への突出部15を設ける。図10は、本参考形態の変形例における電極2Fの断面の模式図である。図11は、同電極2Fの表面の部分模式図である。このような突出部15を表面層14に貫通させることにより、合剤層13の一部を露出させることができる。突出部の直径は、その中心高さにおいて、20~100μmであることが好ましい。上記のような突出部15を設ける場合、合剤層塗料の塗膜を乾燥させた後、合剤層塗料の塗膜に凹凸を形成する加工を施し、その後、表面層塗料を塗布すればよい。塗膜に凹凸を形成する加工としては、例えば、表面に規則的パターンで凹部を有するローラで塗膜を圧延する。これにより、規則的パターンで凸部15を有する合剤層13を得ることができる。 In the second method, as shown in FIGS. 10 and 11, an outward projecting portion 15 is intentionally provided on the surface of the mixture layer 13. FIG. 10 is a schematic diagram of a cross section of the electrode 2F in a modification of the present embodiment. FIG. 11 is a partial schematic view of the surface of the electrode 2F. A part of the mixture layer 13 can be exposed by allowing the protruding portion 15 to penetrate the surface layer 14. The diameter of the protrusion is preferably 20 to 100 μm at the center height. When providing the protrusion 15 as described above, after the coating film of the mixture layer coating is dried, the coating film of the mixture layer coating is processed to form irregularities, and then the surface layer coating is applied. . As a process for forming irregularities on the coating film, for example, the coating film is rolled with a roller having concave portions in a regular pattern on the surface. Thereby, the mixture layer 13 which has the convex part 15 by a regular pattern can be obtained.
 第3の方法では、図12、13に示すように、表面層14に複数の貫通孔を点在させることにより、合剤層13の一部を露出させる。図12は、本参考形態の別の変形例における電極2Gの断面の模式図である。図13は、同電極2Gの表面の部分模式図である。このような貫通孔は、表面層塗料に、十分な量の気泡を内包させることにより、容易に形成することができる。この場合、貫通孔の直径は、例えば20μm以下であることが好ましい。例えば、リチウムチタン複合酸化物の粉末と、任意成分である結着材、導電材などとを分散媒に投入し、プラネタリーミキサー等の分散機により混合する。その際、例えば、回転円盤式分散機を用いることにより、表面層塗料には十分な量の大気が内包される。このように、気泡を内包する表面層塗料を合剤層13の表面に塗布し、暫く放置すると、気泡が破裂し、その少なくとも一部に対応する箇所には貫通孔が形成される。 In the third method, as shown in FIGS. 12 and 13, a part of the mixture layer 13 is exposed by interspersing a plurality of through holes in the surface layer 14. FIG. 12 is a schematic view of a cross section of an electrode 2G in another modification of the present embodiment. FIG. 13 is a partial schematic view of the surface of the electrode 2G. Such a through-hole can be easily formed by enclosing a sufficient amount of bubbles in the surface layer coating material. In this case, the diameter of the through hole is preferably 20 μm or less, for example. For example, lithium titanium composite oxide powder and optional components such as a binder and a conductive material are put into a dispersion medium and mixed by a dispersing machine such as a planetary mixer. At that time, for example, by using a rotating disk type disperser, a sufficient amount of air is included in the surface layer paint. As described above, when a surface layer coating material containing bubbles is applied to the surface of the mixture layer 13 and left for a while, the bubbles burst, and through holes are formed at positions corresponding to at least a part thereof.
 なお、表面層14の主要部対応部の面積に対する、合剤層13の主要部が露出する面積の割合(露出度)は、60%以下とすることが好ましく、1~10%とすることがより好ましい。露出度を上記範囲とすることで、保液性を向上させる効果や、内部短絡を抑制する高い効果を維持しつつ、電池の製造時には、非水電解質が合剤層に含浸されるときのスピードを十分に速めることができる。 The ratio of the area where the main part of the mixture layer 13 is exposed to the area of the main part corresponding part of the surface layer 14 (exposure degree) is preferably 60% or less, and preferably 1 to 10%. More preferred. By making the exposure level within the above range, the speed at which the non-aqueous electrolyte is impregnated into the mixture layer during battery production while maintaining the effect of improving liquid retention and the high effect of suppressing internal short circuit Can be speeded up sufficiently.
 次に、実施例に基づいて、本発明をより具体的に説明する。 Next, the present invention will be described more specifically based on examples.
《実施例1》
 本実施例では、図2に示したのと同じ構造の負極を作製し、これを用いて図1に示したのと同様の非水系二次電池を作製した。
Example 1
In this example, a negative electrode having the same structure as that shown in FIG. 2 was produced, and a non-aqueous secondary battery similar to that shown in FIG. 1 was produced using this negative electrode.
(負極の作製)
<合剤塗料>
 人造黒鉛(第1活物質)100質量部に対し、スチレン-ブタジエン共重合体ゴム粒子(結着材)の分散液(固形分40重量%)を2.5質量部(固形分換算では1質量部)、カルボキシメチルセルロース(CMC)(増粘剤)を1質量部、および適量の水を配合し、双腕式練合機で攪拌し、負極合剤塗料を調製した。
(Preparation of negative electrode)
<Mixture paint>
2.5 parts by mass of a dispersion of styrene-butadiene copolymer rubber particles (binder) (solid content 40% by weight) with respect to 100 parts by mass of artificial graphite (first active material) (1 mass in terms of solid content) Part), 1 part by mass of carboxymethylcellulose (CMC) (thickener) and an appropriate amount of water were mixed and stirred with a double-arm kneader to prepare a negative electrode mixture paint.
<表面層塗料>
 一方、リチウムチタン複合酸化物(第2活物質、Li4Ti512)100質量部に対し、上記と同じスチレン-ブタジエン共重合体ゴム粒子の分散液(固形分40重量%)を2.5質量部、CMCを1質量部、アセチレンブラック(導電材)を3.0質量部、および適量の水を配合し、双腕式練合機で攪拌し、表面層塗料を調製した。
<Surface layer paint>
On the other hand, with respect to 100 parts by mass of lithium-titanium composite oxide (second active material, Li 4 Ti 5 O 12 ), the same dispersion of styrene-butadiene copolymer rubber particles (solid content 40% by weight) as above was added. 5 parts by mass, 1 part by mass of CMC, 3.0 parts by mass of acetylene black (conductive material), and an appropriate amount of water were blended and stirred with a double-arm kneader to prepare a surface layer paint.
 まず、厚み10μmの銅箔からなる帯状の負極集電体の両面に、負極合剤塗料を塗布し、乾燥し、次に、負極合剤塗料の塗膜の表面に、表面層塗料を、負極合剤層100質量部に対して表面層が20質量部となるように塗布し、乾燥した。その後、負極集電体と塗膜との総厚が200μmとなるように圧延し、負極を作製した。 First, a negative electrode mixture paint is applied to both surfaces of a strip-like negative electrode current collector made of a copper foil having a thickness of 10 μm, and then dried. Next, a surface layer paint is applied to the surface of the coating film of the negative electrode mixture paint. It applied so that a surface layer might be 20 mass parts to 100 mass parts of mixture layers, and it dried. Then, it rolled so that the total thickness of a negative electrode collector and a coating film might be set to 200 micrometers, and the negative electrode was produced.
 ただし、負極合剤層の短手方向に沿う両端部(第1端部および第2端部)の厚みは、それぞれの最端部に向かうにつれて薄くなるようにした。また、負極合剤層の両端部の表面が露出し、合剤層の主要部の全面が遮蔽されるように、表面層を均一な厚さとなるように塗布した。 However, the thickness of both end portions (the first end portion and the second end portion) along the short direction of the negative electrode mixture layer was made thinner toward the respective end portions. Further, the surface layer was applied so as to have a uniform thickness so that the surfaces of both ends of the negative electrode mixture layer were exposed and the entire main part of the mixture layer was shielded.
 露出する端部のうち、最端部に向って薄くなっている部分の長さXは、合剤塗料のダイコーターからの吐出圧力を調整して、500μmになるように設定した。すなわち、長さXは、合剤層の厚み(Z)90μmよりも大きく設定した。さらに、露出する端部の幅(Y)は、表面層塗料の、塗り始め位置を調整して、700μmとした。 The length X of the exposed end portion that is thinner toward the end portion was set to 500 μm by adjusting the discharge pressure from the die coater of the mixture paint. That is, the length X was set larger than the thickness (Z) 90 μm of the mixture layer. Furthermore, the width (Y) of the exposed end portion was set to 700 μm by adjusting the application start position of the surface layer paint.
 負極の負極集電体が露出した部分に負極リードを接続し、次に、負極リードを被覆するように保護テープを貼り付けた。 The negative electrode lead was connected to the portion where the negative electrode current collector of the negative electrode was exposed, and then a protective tape was applied so as to cover the negative electrode lead.
(正極の作製)
 コバルト酸リチウム(正極活物質)100質量部に対し、アセチレンブラック(導電材)を2質量部、ポリフッ化ビニリデン(結着材)を2質量部、および適量のN-メチル-2-ピロリドンを配合し、双腕式練合機で攪拌し、正極合剤塗料を調製した。この塗料を厚み15μmのアルミニウム箔からなる正極集電体の両面に塗布し、乾燥し、総厚が170μmとなるように圧延して、正極を得た。
(Preparation of positive electrode)
2 parts by mass of acetylene black (conductive material), 2 parts by mass of polyvinylidene fluoride (binder), and an appropriate amount of N-methyl-2-pyrrolidone per 100 parts by mass of lithium cobalt oxide (positive electrode active material) The mixture was stirred with a double arm kneader to prepare a positive electrode mixture paint. This paint was applied to both surfaces of a positive electrode current collector made of an aluminum foil having a thickness of 15 μm, dried, and rolled to a total thickness of 170 μm to obtain a positive electrode.
 正極の正極集電体が露出した部分に正極リードを接続し、次に、正極リードを被覆するように保護テープを貼り付けた。 The positive electrode lead was connected to the portion where the positive electrode current collector of the positive electrode was exposed, and then a protective tape was applied so as to cover the positive electrode lead.
(リチウムイオン二次電池の作製)
 正極と負極とを、厚み20μmのポリエチレン製微多孔質フィルム(多孔質絶縁層)を介して捲回し、電極群を構成した。電極群を絶縁板とともに円筒型の電池ケース内に挿入し、電極群の下部より導出した負極リードを電池ケースの底部に接続した。また、電極群の上部より導出した正極リードを封口板に接続した。その後、非水電解質を5.5g添加し、減圧下で電極群に含浸させてから、電池ケースの開口を封口板で封口し、リチウムイオン二次電池を完成させた。非水電解質は、EC/DMC/MECの体積比80/5/15の混合溶媒にLiPF6を1mol/Lの濃度で溶解したもの(標準非水電解質と同じ組成)である。非水電解質には、更に、混合溶媒100質量部あたり、3質量部のVCを溶解させた。
(Production of lithium ion secondary battery)
The positive electrode and the negative electrode were wound through a polyethylene microporous film (porous insulating layer) having a thickness of 20 μm to constitute an electrode group. The electrode group was inserted into the cylindrical battery case together with the insulating plate, and the negative electrode lead led out from the lower part of the electrode group was connected to the bottom of the battery case. Moreover, the positive electrode lead led out from the upper part of the electrode group was connected to the sealing plate. Thereafter, 5.5 g of a nonaqueous electrolyte was added and the electrode group was impregnated under reduced pressure, and then the opening of the battery case was sealed with a sealing plate to complete a lithium ion secondary battery. The nonaqueous electrolyte is obtained by dissolving LiPF 6 at a concentration of 1 mol / L in a mixed solvent having a volume ratio of EC / DMC / MEC of 80/5/15 (same composition as the standard nonaqueous electrolyte). In the nonaqueous electrolyte, 3 parts by mass of VC was further dissolved per 100 parts by mass of the mixed solvent.
《実施例2》
 負極合剤層の主要部と電極群の内周側に対応する第2端部が表面層で完全に覆われるように表面層を形成し、電極群の外周側に対応する第1端部だけを表面層で覆わなかったこと以外、実施例1と同様に、負極を作製した。また、その負極を用いたこと以外、実施例1と同様に、リチウムイオン二次電池を作製した。
Example 2
The surface layer is formed so that the main part of the negative electrode mixture layer and the second end corresponding to the inner peripheral side of the electrode group are completely covered with the surface layer, and only the first end corresponding to the outer peripheral side of the electrode group Was not covered with a surface layer, and a negative electrode was produced in the same manner as in Example 1. Further, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode was used.
《実施例3》
 負極合剤層の主要部と電極群の外周側に対応する第1端部が表面層で完全に覆われるように表面層を形成し、電極群の内周側に対応する第2端部を表面層で覆わなかったこと以外、実施例1と同様に、負極を作製した。また、その負極を用いたこと以外、実施例1と同様に、リチウムイオン二次電池を作製した。
Example 3
A surface layer is formed so that the main part of the negative electrode mixture layer and the first end corresponding to the outer peripheral side of the electrode group are completely covered with the surface layer, and the second end corresponding to the inner peripheral side of the electrode group is provided. A negative electrode was produced in the same manner as in Example 1 except that it was not covered with the surface layer. Further, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode was used.
《実施例4》
 本実施例では、図4に示したのと同じ構造の負極を作製し、これを用いて図1に示したのと同様の非水系二次電池を作製した。具体的には、X=500、Y=200としたこと以外、実施例1と同様に、負極を作製した。また、その負極を用いたこと以外、実施例1と同様に、リチウムイオン二次電池を作製した。
Example 4
In this example, a negative electrode having the same structure as that shown in FIG. 4 was produced, and a non-aqueous secondary battery similar to that shown in FIG. 1 was produced using this negative electrode. Specifically, a negative electrode was produced in the same manner as in Example 1 except that X = 500 and Y = 200. Further, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode was used.
(比較例1)
 本実施例では、図6に示すような構造の負極2Cを作製し、これを用いて図1に示したのと同様の非水系二次電池を作製した。具体的には、実施例1と同様の負極合剤塗料と表面層塗料を用い、実施例1とほぼ同様の方法で、負極合剤層13と表面層14とを形成した。ただし、表面層塗料の塗膜の始端部および終端部では、表面層塗料のダイコーターからの吐出タイミングをずらすことで、両端部(第1端部13aおよび第2端部13b)を表面層14で完全に覆った。得られた負極は、両端部の表面層の構造が異なること以外、実施例1の負極と基本的に同じ構造を有する。次に、得られた負極を用いたこと以外、実施例1と同様に、リチウムイオン二次電池を作製した。
(Comparative Example 1)
In this example, a negative electrode 2C having a structure as shown in FIG. 6 was produced, and a non-aqueous secondary battery similar to that shown in FIG. 1 was produced using this. Specifically, the negative electrode mixture layer 13 and the surface layer 14 were formed in substantially the same manner as in Example 1, using the same negative electrode mixture coating material and surface layer coating material as in Example 1. However, at the start and end portions of the coating film of the surface layer paint, both ends (the first end portion 13a and the second end portion 13b) are placed on the surface layer 14 by shifting the discharge timing of the surface layer paint from the die coater. Covered completely. The obtained negative electrode has basically the same structure as the negative electrode of Example 1, except that the structure of the surface layers at both ends is different. Next, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained negative electrode was used.
[評価]
<注液時間>
 実施例1~4および比較例1のリチウムイオン二次電池について、減圧下で、電極群に非水電解質を含浸させる際に、減圧状態に達してから、電極群に非水電解質が完全に吸収されるまでの時間を、注液時間として測定した。
[Evaluation]
<Injection time>
For the lithium ion secondary batteries of Examples 1 to 4 and Comparative Example 1, when the electrode group was impregnated with the nonaqueous electrolyte under reduced pressure, the nonaqueous electrolyte was completely absorbed by the electrode group after reaching the reduced pressure state. The time until it was measured was measured as the injection time.
<電池容量>
 以下の容量で、電池容量を測定した。
(i)まず、完成後の電池について、慣らし充放電を2回行い、その後、45℃環境で7日間保存した。
(ii)次に、以下の条件で充放電を行い、放電容量を測定した。
 充電:定電流1400mAで充電終止電圧4.2Vまで充電を行い、引き続き、充電電流が100mAに低下するまで4.2Vで定電圧充電を行った。
 放電:定電流2000mAで放電終止電圧3Vまで放電した。
 評価結果を表1に示す。
<Battery capacity>
The battery capacity was measured at the following capacity.
(I) First, the battery after completion was conditioned and discharged twice, and then stored in a 45 ° C. environment for 7 days.
(Ii) Next, charging / discharging was performed under the following conditions, and the discharge capacity was measured.
Charging: Charging was performed at a constant current of 1400 mA up to a charging end voltage of 4.2 V, and then, constant voltage charging was performed at 4.2 V until the charging current decreased to 100 mA.
Discharge: Discharged to a final discharge voltage of 3 V at a constant current of 2000 mA.
The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、負極合剤層13の短手方向に沿う両端部を表面層から露出させた場合には、注液時間が最も短くなることが分かった。これには、表面層よりも負極合剤層の方に非水電解質が浸み込み易いこと、負極合剤層の端部を露出させることで非水電解質の侵入通路を確保できたことが関連する。更に、注液時間が短縮されるほど、合剤層による非水電解質の保液性が良好となり、電池容量が高くなった。 As shown in Table 1, it was found that when both end portions along the short direction of the negative electrode mixture layer 13 were exposed from the surface layer, the injection time was the shortest. This is related to the fact that the nonaqueous electrolyte is more likely to permeate the negative electrode mixture layer than the surface layer, and that the intrusion passage of the nonaqueous electrolyte can be secured by exposing the end of the negative electrode mixture layer. To do. Further, the shorter the liquid injection time, the better the nonaqueous electrolyte retention of the mixture layer and the higher the battery capacity.
 一方、比較例1が示すように、短手方向に沿う両端部を表面層で覆った場合には、両端部を露出させた場合に比べ、約4倍の注液時間が必要であり、生産性が低下した。更に、電池容量も低下した。 On the other hand, as shown in Comparative Example 1, when both end portions along the short direction are covered with the surface layer, about 4 times the liquid injection time is required as compared with the case where both end portions are exposed. Decreased. Furthermore, the battery capacity also decreased.
 以上より、合剤層の端部の厚さを主要部よりも小さくするとともに、当該端部を表面層から露出させることにより、合剤層の主要部への非水電解質の含浸性が向上し、電池容量が高くなり、生産性も大幅に向上することが理解できる。 As described above, the thickness of the end portion of the mixture layer is made smaller than that of the main portion, and the end portion is exposed from the surface layer, thereby improving the impregnation property of the nonaqueous electrolyte into the main portion of the mixture layer. It can be understood that the battery capacity is increased and the productivity is greatly improved.
 なお、実施例1~4においては、負極合剤層に表面層を設ける場合について説明したが、正極合剤層に表面層を設ける場合でも、正極合剤層の端部の厚さを主要部の厚さよりも小さくするとともに、当該端部を表面層から露出させることで、類似の効果を得ることができる。 In Examples 1 to 4, the case where the surface layer is provided on the negative electrode mixture layer has been described. However, even when the surface layer is provided on the positive electrode mixture layer, the thickness of the end portion of the positive electrode mixture layer is the main part. A similar effect can be obtained by making the thickness smaller than the thickness of the surface layer and exposing the end from the surface layer.
《実施例5》
(負極の作製)
 本実施例では、図7に示したのと同じ断面構造の負極を作製し、これを用いて図1に示したのと同様の非水系二次電池を作製した。具体的には、実施例1と同様の負極合剤塗料と表面層塗料を用い、以下の点以外、実施例1とほぼ同様の方法で、負極合剤層と表面層とを形成し、負極を得た。
Example 5
(Preparation of negative electrode)
In this example, a negative electrode having the same cross-sectional structure as shown in FIG. 7 was produced, and a non-aqueous secondary battery similar to that shown in FIG. 1 was produced using this negative electrode. Specifically, the negative electrode mixture paint and the surface layer paint similar to those in Example 1 were used, and the negative electrode mixture layer and the surface layer were formed in substantially the same manner as in Example 1 except for the following points. Got.
 本実施例では、表面層塗料と合剤塗料との粘度比を、1:0.01~0.05となるように調整した。また、上述の合剤塗料を塗布した後、乾燥させずに表面層塗料を合剤塗料の塗膜の表面に塗布し、2層の塗膜を同時に乾燥させた。その後、塗膜と集電体とを圧延して、片面あたりの負極合剤層の厚みが84μm、表面層13の厚みが10μm、負極合剤層と表面層との界面の最大高さ粗さRmaxが3μmの負極を作製した。 In this example, the viscosity ratio between the surface layer coating material and the mixture coating material was adjusted to be 1: 0.01 to 0.05. Moreover, after apply | coating the above-mentioned mixture coating material, the surface layer coating material was apply | coated to the surface of the coating film of mixture coating material, without making it dry, and the two-layer coating film was dried simultaneously. Thereafter, the coating film and the current collector are rolled, and the thickness of the negative electrode mixture layer per side is 84 μm, the thickness of the surface layer 13 is 10 μm, and the maximum height roughness of the interface between the negative electrode mixture layer and the surface layer A negative electrode having an Rmax of 3 μm was produced.
 得られた負極では、負極合剤層の主要部が表面層から露出することがなく、図7に示すように、表面層が主要部を完全に覆っていた。 In the obtained negative electrode, the main part of the negative electrode mixture layer was not exposed from the surface layer, and the surface layer completely covered the main part as shown in FIG.
(正極の作製)
 コバルト酸リチウム(正極活物質)100質量部に対し、アセチレンブラック(導電材)を1質量部、ポリフッ化ビニリデン(結着材)を1質量部、および適量のNMPを配合し、双腕式練合機で攪拌し、正極合剤塗料を調製した。この塗料を厚み15μmのアルミニウム箔からなる正極集電体の両面に塗布し、乾燥し、片面あたりの合剤層の厚みが74μmとなるように圧延して、正極を得た。
(Preparation of positive electrode)
Mixing 1 part by weight of acetylene black (conductive material), 1 part by weight of polyvinylidene fluoride (binder), and an appropriate amount of NMP with respect to 100 parts by weight of lithium cobalt oxide (positive electrode active material) The mixture was stirred with a combination machine to prepare a positive electrode mixture paint. This paint was applied to both sides of a positive electrode current collector made of an aluminum foil having a thickness of 15 μm, dried, and rolled so that the thickness of the mixture layer per side was 74 μm, thereby obtaining a positive electrode.
(リチウムイオン二次電池の作製)
 本実施例で作製した上記の負極と正極を用いたこと以外、実施例1と同様に、図1に示したのと同様の電池を作製した。
(Production of lithium ion secondary battery)
A battery similar to that shown in FIG. 1 was produced in the same manner as in Example 1 except that the above-described negative electrode and positive electrode produced in this example were used.
(実施例6)
 表面層塗料と合剤塗料との粘度比を、1:0.2~1.0となるように調整したこと以外、実施例5と同様に負極を作製した。得られた負極においては、負極合剤層の主要部が表面層から露出することがなく、図7に示すように、表面層が主要部を完全に覆っていた。また、片面あたりの負極合剤層の厚みは84μm、表面層13の厚みは10μm、負極合剤層と表面層との界面の最大高さ粗さRmaxは25μmであった。次に、得られた負極を用いたこと以外、実施例1と同様に、リチウムイオン二次電池を作製した。
(Example 6)
A negative electrode was produced in the same manner as in Example 5 except that the viscosity ratio of the surface layer coating material to the mixture coating material was adjusted to be 1: 0.2 to 1.0. In the obtained negative electrode, the main part of the negative electrode mixture layer was not exposed from the surface layer, and the surface layer completely covered the main part as shown in FIG. The thickness of the negative electrode mixture layer per side was 84 μm, the thickness of the surface layer 13 was 10 μm, and the maximum height roughness Rmax of the interface between the negative electrode mixture layer and the surface layer was 25 μm. Next, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained negative electrode was used.
(実施例7)
 表面層塗料と合剤塗料との粘度比を、1:0.05~0.2となるように調整し、片面あたりの負極合剤層の厚みを91μm、表面層の厚みを3μm、負極合剤層と表面層との界面の最大高さ粗さRmaxを15μmとしたこと以外、実施例5と同様に負極を作製した。得られた負極においては、負極合剤層の主要部が表面層から露出することがなく、図7に示すように、表面層が主要部を完全に覆っていた。次に、得られた負極を用いたこと以外、実施例1と同様に、リチウムイオン二次電池を作製した。
(Example 7)
The viscosity ratio between the surface layer paint and the mixture paint is adjusted to be 1: 0.05 to 0.2, the negative electrode mixture layer thickness per side is 91 μm, the surface layer thickness is 3 μm, and the negative electrode mixture A negative electrode was produced in the same manner as in Example 5 except that the maximum height roughness Rmax at the interface between the agent layer and the surface layer was 15 μm. In the obtained negative electrode, the main part of the negative electrode mixture layer was not exposed from the surface layer, and the surface layer completely covered the main part as shown in FIG. Next, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained negative electrode was used.
(実施例8)
 片面あたりの負極合剤層の厚みを74μm、表面層の厚みを20μmとしたこと以外、実施例7と同様に負極を作製した。得られた負極においては、負極合剤層の主要部が表面層から露出することがなく、図7に示すように、表面層が主要部を完全に覆っていた。次に、得られた負極を用いたこと以外、実施例1と同様に、リチウムイオン二次電池を作製した。
(Example 8)
A negative electrode was produced in the same manner as in Example 7, except that the thickness of the negative electrode mixture layer per side was 74 μm and the thickness of the surface layer was 20 μm. In the obtained negative electrode, the main part of the negative electrode mixture layer was not exposed from the surface layer, and the surface layer completely covered the main part as shown in FIG. Next, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained negative electrode was used.
(実施例9)
 片面あたりの負極合剤層の厚みを91μm、表面層の厚みを3μmとしたこと以外、実施例6と同様に負極を作製した。得られた負極においては、負極合剤層が表面層から露出することがなく、図7に示すように、表面層が主要部を完全に覆っていた。次に、得られた負極を用いたこと以外、実施例1と同様に、リチウムイオン二次電池を作製した。
Example 9
A negative electrode was produced in the same manner as in Example 6 except that the thickness of the negative electrode mixture layer per side was 91 μm and the thickness of the surface layer was 3 μm. In the obtained negative electrode, the negative electrode mixture layer was not exposed from the surface layer, and the surface layer completely covered the main part as shown in FIG. Next, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained negative electrode was used.
 実施例5~9の電池について、負極合剤層の厚み、表面層の厚み、負極合剤層と表面層との界面の最大高さ粗さRmax、負極合剤層の露出の有無、および内部短絡試験の評価結果を表2に示す。 For the batteries of Examples 5 to 9, the thickness of the negative electrode mixture layer, the thickness of the surface layer, the maximum height roughness Rmax of the interface between the negative electrode mixture layer and the surface layer, the presence or absence of exposure of the negative electrode mixture layer, and the internal The evaluation results of the short circuit test are shown in Table 2.
[評価]
<合剤層の露出の有無>
 負極の表面および断面を電子顕微鏡で観察し、表面層から負極合剤層の活物質が露出しているかどうかを確認した。
[Evaluation]
<Presence or absence of exposure of mixture layer>
The surface and cross section of the negative electrode were observed with an electron microscope, and it was confirmed whether or not the active material of the negative electrode mixture layer was exposed from the surface layer.
<最大高さ粗さRmax>
 負極の断面を電子顕微鏡で観察し、合剤層と表面層との界面のうち、集電体から最も離れた界面と、集電体に最も近い界面との厚み方向の距離を測定した。
<Maximum roughness Rmax>
The cross section of the negative electrode was observed with an electron microscope, and the distance in the thickness direction between the interface farthest from the current collector and the interface closest to the current collector among the interface between the mixture layer and the surface layer was measured.
<内部短絡試験>
 各実施例について、それぞれ5セルずつ電池を準備した。そして、各電池を充電後、電池ケース内から電極群を取り出した。次に、任意の大きさの金属片を、電極群の最外周に位置する正極とセパレータとの間に介在させた。そして、金属片を介在させた電極群を電池ケース内に、再度、収容した。次に、電池の側面を所定の圧力で押圧した。そして、各実施例において、5セルのうち短絡したセル数(短絡セル数/5)を確認した。
<Internal short circuit test>
For each example, 5 cells of each battery were prepared. And after charging each battery, the electrode group was taken out from the battery case. Next, a metal piece having an arbitrary size was interposed between the positive electrode located on the outermost periphery of the electrode group and the separator. And the electrode group which interposed the metal piece was again accommodated in the battery case. Next, the side surface of the battery was pressed with a predetermined pressure. And in each Example, the number of cells short-circuited among the five cells (number of short-circuited cells / 5) was confirmed.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、実施例5~9においては、内部短絡試験における不良がないことから、安全性と充放電サイクル特性に優れていると考えられる。以上より、表面層の厚みは3~20μmが好ましく、界面の最大高さ粗さは3~25μmが好ましいことがわかる。 As is apparent from Table 2, in Examples 5 to 9, since there is no defect in the internal short circuit test, it is considered that the safety and charge / discharge cycle characteristics are excellent. From the above, it can be seen that the thickness of the surface layer is preferably 3 to 20 μm, and the maximum height roughness of the interface is preferably 3 to 25 μm.
 なお、実施例5~9では、負極合剤層の表面に表面層を形成したが、正極合剤層の表面に表面層を形成してもよく、その場合、類似の効果を得ることができる。 In Examples 5 to 9, a surface layer was formed on the surface of the negative electrode mixture layer, but a surface layer may be formed on the surface of the positive electrode mixture layer, and in that case, a similar effect can be obtained. .
《実施例10》
(負極の作製)
 本参考例では、図8、9に示したような構造の負極を作製し、これを用いて図1に示したのと同様の非水系二次電池を作製した。具体的には、実施例1と同様の負極合剤塗料と表面層塗料を用い、以下の点以外、実施例1とほぼ同様の方法で、負極合剤層と表面層とを形成し、負極を得た。すなわち、本実施例では、表面層から合剤層の一部を露出させた。
Example 10
(Preparation of negative electrode)
In this reference example, a negative electrode having a structure as shown in FIGS. 8 and 9 was produced, and a non-aqueous secondary battery similar to that shown in FIG. 1 was produced using the negative electrode. Specifically, the negative electrode mixture paint and the surface layer paint similar to those in Example 1 were used, and the negative electrode mixture layer and the surface layer were formed in substantially the same manner as in Example 1 except for the following points. Got. That is, in this example, a part of the mixture layer was exposed from the surface layer.
 本実施例では、乾燥前の合剤塗料の塗膜に表面層塗料を塗布する際の流速を大きくすることにより、合剤層の表面粗さを大きくした。そして、片面あたりの負極合剤層と表面層との合計厚みが94μm、負極合剤層と表面層との界面の最大高さ粗さRmaxが30μmの負極を作製した。得られた負極の表面層を観察したところ、負極合剤層の一部が表面層から露出していた。また、その露出度は10%であった。なお、表面層を塗布した領域(合剤層の主要部)の1平方センチメートルあたりの露出度の分布を取ると、0.01~20%のばらつきがあった。次に、得られた負極を用いたこと以外、実施例1と同様に、リチウムイオン二次電池を作製した。 In this example, the surface roughness of the mixture layer was increased by increasing the flow rate when the surface layer coating was applied to the coating film of the mixture coating before drying. Then, a negative electrode having a total thickness of the negative electrode mixture layer and the surface layer per side of 94 μm and a maximum height roughness Rmax of 30 μm at the interface between the negative electrode mixture layer and the surface layer was prepared. When the surface layer of the obtained negative electrode was observed, a part of the negative electrode mixture layer was exposed from the surface layer. The degree of exposure was 10%. When the distribution of exposure per square centimeter of the area where the surface layer was applied (main part of the mixture layer) was taken, there was a variation of 0.01 to 20%. Next, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained negative electrode was used.
《実施例11》
 本実施例では、図10、11に示したような構造の負極を作製し、これを用いて図1に示したのと同様の非水系二次電池を作製した。具体的には、実施例1と同様の負極合剤塗料と表面層塗料を用い、以下の点以外、実施例1とほぼ同様の方法で、負極合剤層と表面層とを形成し、負極を得た。
Example 11
In this example, a negative electrode having a structure as shown in FIGS. 10 and 11 was produced, and a non-aqueous secondary battery similar to that shown in FIG. 1 was produced using this negative electrode. Specifically, the negative electrode mixture paint and the surface layer paint similar to those in Example 1 were used, and the negative electrode mixture layer and the surface layer were formed in substantially the same manner as in Example 1 except for the following points. Got.
 本実施例では、負極合剤層を形成した後、合剤層に突出部を設け、その後、表面層塗料を塗布して表面層を形成した。具体的には、集電体の表面に負極合剤塗料を塗布し、塗膜を乾燥させた後、深さ10μmの楕円半球状の凹部が500μm間隔で形成されたローラで塗膜を圧延した。これにより、高さ10μmの楕円半球状の突出部を有する負極合剤層を形成した。その後、表面層塗料を負極合剤層の表面に塗布し、乾燥させた。その後、上記のような凹部を有さないローラで塗膜を圧延し、片面あたりの負極合剤層と表面層との合計厚みが94μmの負極を作製した。得られた負極の表面層を観察したところ、負極合剤層の一部が表面層から露出していた。また、その露出度は0.1%であった。次に、得られた負極を用いたこと以外、実施例1と同様に、リチウムイオン二次電池を作製した。 In this example, after forming the negative electrode mixture layer, a protrusion was provided in the mixture layer, and then a surface layer coating was applied to form a surface layer. Specifically, the negative electrode mixture paint was applied to the surface of the current collector, the coating film was dried, and then the coating film was rolled with a roller in which elliptical hemispherical recesses having a depth of 10 μm were formed at intervals of 500 μm. . Thus, a negative electrode mixture layer having an elliptical hemispherical protrusion having a height of 10 μm was formed. Thereafter, a surface layer coating was applied to the surface of the negative electrode mixture layer and dried. Thereafter, the coating film was rolled with a roller having no recess as described above, and a negative electrode having a total thickness of 94 μm of the negative electrode mixture layer and the surface layer per side was produced. When the surface layer of the obtained negative electrode was observed, a part of the negative electrode mixture layer was exposed from the surface layer. The degree of exposure was 0.1%. Next, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained negative electrode was used.
《実施例12》
 負極合剤塗料の塗膜を圧延するローラとして、深さ10μmの楕円半球状の凹部が27μm間隔で形成されたローラを用いたこと以外、実施例11と同様に、負極を作製した。得られた負極の表面層を観察したところ、負極合剤層の一部が表面層から露出していた。また、その露出度は60%であった。次に、得られた負極を用いたこと以外、実施例1と同様に、リチウムイオン二次電池を作製した。
Example 12
A negative electrode was produced in the same manner as in Example 11 except that a roller in which ellipsoidal hemispherical recesses having a depth of 10 μm were formed at intervals of 27 μm was used as a roller for rolling the coating film of the negative electrode mixture paint. When the surface layer of the obtained negative electrode was observed, a part of the negative electrode mixture layer was exposed from the surface layer. The degree of exposure was 60%. Next, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained negative electrode was used.
《実施例13》
 本実施例では、図12、13に示したような構造の負極を作製し、これを用いて図1に示したのと同様の非水系二次電池を作製した。具体的には、実施例1と同様の負極合剤塗料と表面層塗料を用い、以下の点以外、実施例1とほぼ同様の方法で、負極合剤層と表面層とを形成し、負極を得た。
Example 13
In this example, a negative electrode having a structure as shown in FIGS. 12 and 13 was produced, and a non-aqueous secondary battery similar to that shown in FIG. 1 was produced using the negative electrode. Specifically, the negative electrode mixture paint and the surface layer paint similar to those in Example 1 were used, and the negative electrode mixture layer and the surface layer were formed in substantially the same manner as in Example 1 except for the following points. Got.
 本実施例では、表面層塗料に十分な量の気泡を内包させ、気泡を破裂させることにより、表面層に複数の貫通孔を点在させた。具体的には、表面層塗料の調製において、双腕式練合機での攪拌後、回転円盤式分散機で塗料に大気を内包させた。 In this example, a sufficient amount of bubbles were included in the surface layer coating material, and the bubbles were ruptured, whereby a plurality of through holes were scattered in the surface layer. Specifically, in the preparation of the surface layer coating material, the air was encapsulated in the coating material with a rotating disk type disperser after stirring with a double-arm kneader.
 集電体に負極合剤塗料を塗布し、乾燥し、圧延後、表面層塗料を負極合剤層の表面に塗布した。その後、表面層塗料の塗膜を乾燥させた。その際、乾燥の途中で表面層塗料に内包されていた気泡が破裂し、直径約20μm以下の微小な貫通孔が多数形成された。片面あたりの負極合剤層厚みは84μm、表面層の厚みは10μmであった。表面層からの負極合剤層の露出度は1%であった。 The negative electrode mixture paint was applied to the current collector, dried, and after rolling, the surface layer paint was applied to the surface of the negative electrode mixture layer. Then, the coating film of the surface layer coating material was dried. At that time, bubbles contained in the surface layer coating burst during drying, and a large number of minute through holes having a diameter of about 20 μm or less were formed. The thickness of the negative electrode mixture layer per side was 84 μm, and the thickness of the surface layer was 10 μm. The degree of exposure of the negative electrode mixture layer from the surface layer was 1%.
《実施例14》
 本実施例では、合剤層の表面粗さを小さくした。そして、片面あたりの負極合剤層厚みは79μm、表面層の厚みは15μm、負極合剤層と表面層との界面の最大高さ粗さRmaxが20μmの負極を作製した。得られた負極の表面層を観察したところ、負極合剤層は表面層から露出していなかった(露出度0%)。次に、得られた負極を用いたこと以外、実施例1と同様に、リチウムイオン二次電池を作製した。
Example 14
In this example, the surface roughness of the mixture layer was reduced. And the negative electrode mixture layer thickness per one side was 79 micrometers, the thickness of the surface layer was 15 micrometers, and the negative electrode whose maximum height roughness Rmax of the interface of a negative electrode mixture layer and a surface layer was 20 micrometers was produced. When the surface layer of the obtained negative electrode was observed, the negative electrode mixture layer was not exposed from the surface layer (exposure degree 0%). Next, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained negative electrode was used.
 実施例10~14の電池について、負極合剤層の露出度、非水電解質の注液性の評価、および充放電サイクル特性の評価の結果を表3に示す。 Table 3 shows the results of the evaluation of the degree of exposure of the negative electrode mixture layer, the non-aqueous electrolyte injection property, and the charge / discharge cycle characteristics of the batteries of Examples 10 to 14.
[評価]
<露出度>
 負極の表面および断面を電子顕微鏡で観察し、表面の画像処理により決定した。
[Evaluation]
<Exposure>
The surface and cross section of the negative electrode were observed with an electron microscope and determined by surface image processing.
<非水電解質の注液性>
 実施例10~14の電池を作製する際、実施例1~4とは相違する条件で、5.5gの非水電解質を減圧下で電極群に含浸させるのに要した時間を測定した。
<Injectability of non-aqueous electrolyte>
When manufacturing the batteries of Examples 10 to 14, the time required to impregnate the electrode group with 5.5 g of nonaqueous electrolyte under the conditions different from those of Examples 1 to 4 was measured.
<充放電サイクル特性>
(i)まず、完成後の電池について、慣らし充放電を2回行い、その後、45℃環境で7日間保存した。
(ii)次に、以下の充放電サイクルを500回繰り返した。
 充電:定電流1400mAで充電終止電圧4.2Vまで充電を行い、引き続き、充電電流が100mAに低下するまで4.2Vで定電圧充電を行った。
 放電:定電流2000mAで放電終止電圧3Vまで放電した。
 上記の充電と放電の組み合わせを1サイクルとする。
(iii)1サイクル目の放電容量に対する500サイクル目の放電容量の割合を、500サイクル後の容量維持率として求めた。
<Charge / discharge cycle characteristics>
(I) First, the battery after completion was conditioned and discharged twice, and then stored in a 45 ° C. environment for 7 days.
(Ii) Next, the following charge / discharge cycle was repeated 500 times.
Charging: Charging was performed at a constant current of 1400 mA up to a charging end voltage of 4.2 V, and then, constant voltage charging was performed at 4.2 V until the charging current decreased to 100 mA.
Discharge: Discharged to a final discharge voltage of 3 V at a constant current of 2000 mA.
A combination of the above charging and discharging is defined as one cycle.
(Iii) The ratio of the discharge capacity at the 500th cycle to the discharge capacity at the first cycle was determined as the capacity retention rate after 500 cycles.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、表面層の主要部から負極合剤層が露出している実施例10~14では、表面層から負極合剤層の主要部が露出していない実施例14よりも、注液時間が大幅に短くなっている。これは、実施例14では、負極合剤層を覆う表面層により、負極合剤層への非水電解質の含浸が妨げられていることを示している。実施例10~13では、負極合剤層の露出部分から非水電解質の含浸が促進されるため、注液時間が短くなったと推察される。また、表面層からの負極合剤層の露出度が0.1~60%の範囲では、容量維持率も良好であった。 As is clear from Table 3, Examples 10 to 14 in which the negative electrode mixture layer was exposed from the main part of the surface layer were more than Examples 14 in which the main part of the negative electrode mixture layer was not exposed from the surface layer. The injection time is significantly shortened. This indicates that in Example 14, the surface layer covering the negative electrode mixture layer prevents the negative electrode mixture layer from being impregnated with the nonaqueous electrolyte. In Examples 10 to 13, since the impregnation of the non-aqueous electrolyte is promoted from the exposed portion of the negative electrode mixture layer, it is presumed that the injection time was shortened. Further, when the degree of exposure of the negative electrode mixture layer from the surface layer was in the range of 0.1 to 60%, the capacity retention rate was also good.
 以上より、表面層から負極合剤層の主要部を部分的に露出させることで、非水電解質に対する合剤層の良好な含浸性と、優れた充放電サイクル特性との両立に有利となることがわかる。 From the above, by partially exposing the main part of the negative electrode mixture layer from the surface layer, it is advantageous to achieve both good impregnation of the mixture layer with respect to the nonaqueous electrolyte and excellent charge / discharge cycle characteristics. I understand.
 本発明に係る非水系二次電池用電極板を用いることで、電極群による非水電解質の含浸のスピードが速くなり、非水系二次電池の生産性が向上する。また、電極合剤層の保液性が向上しているため、電池容量の向上にも有利である。本発明の非水系二次電池は、様々な電子機器、通信機器、移動体の電源として有用である。例えば、多機能化されたポータブル機器用電源やEV(電気自動車)またはHEV(ハイブリッド自動車)用電源として有用である。 By using the electrode plate for a non-aqueous secondary battery according to the present invention, the impregnation speed of the non-aqueous electrolyte by the electrode group is increased, and the productivity of the non-aqueous secondary battery is improved. Moreover, since the liquid retention property of the electrode mixture layer is improved, it is advantageous for improving the battery capacity. The nonaqueous secondary battery of the present invention is useful as a power source for various electronic devices, communication devices, and mobile objects. For example, it is useful as a power source for a multifunctional portable device or a power source for an EV (electric vehicle) or HEV (hybrid vehicle).
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。 Although the present invention has been described in terms of the presently preferred embodiments, such disclosure should not be construed as limiting. Various changes and modifications will no doubt become apparent to those skilled in the art to which the present invention pertains after reading the above disclosure. Accordingly, the appended claims should be construed to include all variations and modifications without departing from the true spirit and scope of this invention.
 1:正極、2:負極、3:多孔質絶縁層、4電極群、5:電池ケース、6:絶縁板、7:負極リード、8:正極リード、9:封口板、10:ガスケット、11:リチウムイオン二次電池、12:負極集電体、13:負極合剤層、14:表面層、15:突出部 1: positive electrode, 2: negative electrode, 3: porous insulating layer, 4 electrode group, 5: battery case, 6: insulating plate, 7: negative electrode lead, 8: positive electrode lead, 9: sealing plate, 10: gasket, 11: Lithium ion secondary battery, 12: negative electrode current collector, 13: negative electrode mixture layer, 14: surface layer, 15: protrusion

Claims (12)

  1.  矩形の集電体と、前記集電体の表面に形成された第1活物質を含む合剤層と、を具備し、
     前記合剤層は、前記集電体の一端部に沿う第1端部と、前記第1端部の反対側の第2端部と、前記集電体の前記一端部に垂直な他端部に沿う第3端部と、前記第3端部の反対側の第4端部と、前記第1から第4端部以外の主要部と、を有し、
     前記第1から第4端部よりなる群から選択される少なくとも1つの所定端部の厚みが、前記合剤層の主要部の厚みよりも小さく、
     前記合剤層の表面が、前記所定端部の表面の少なくとも一部が露出し、かつ前記主要部の表面の少なくとも一部が遮蔽されるように、非水電解質に対する含浸性が前記合剤層よりも小さい表面層により覆われている、非水系二次電池用電極板。
    A rectangular current collector, and a mixture layer containing a first active material formed on the surface of the current collector,
    The mixture layer includes a first end along one end of the current collector, a second end opposite to the first end, and the other end perpendicular to the one end of the current collector. A third end along the fourth end, a fourth end opposite to the third end, and a main part other than the first to fourth ends,
    The thickness of at least one predetermined end selected from the group consisting of the first to fourth ends is smaller than the thickness of the main part of the mixture layer,
    The mixture layer has an impregnation property with respect to the nonaqueous electrolyte so that at least a part of the surface of the predetermined end portion is exposed and at least a part of the surface of the main part is shielded. An electrode plate for a non-aqueous secondary battery that is covered with a smaller surface layer.
  2.  前記表面層が、セラミックス粒子と結着剤とを含む、請求項1記載の非水系二次電池用電極板。 The electrode plate for a non-aqueous secondary battery according to claim 1, wherein the surface layer includes ceramic particles and a binder.
  3.  前記セラミックス粒子が、前記第1活物質よりもリチウムとの反応性が高い第2活物質である、請求項2記載の非水系二次電池用電極板。 The electrode plate for a non-aqueous secondary battery according to claim 2, wherein the ceramic particles are a second active material having a higher reactivity with lithium than the first active material.
  4.  前記所定端部の厚みが、前記所定端部の最端部に向かうにつれて小さくなっている、請求項1~3のいずれか1項記載の非水系二次電池用電極板。 The electrode plate for a non-aqueous secondary battery according to any one of claims 1 to 3, wherein a thickness of the predetermined end portion becomes smaller toward the outermost end portion of the predetermined end portion.
  5.  前記第1から第4端部が、いずれも、少なくとも部分的に、前記表面層から露出している、請求項1~4のいずれか1項記載の非水系二次電池用電極板。 The electrode plate for a non-aqueous secondary battery according to any one of claims 1 to 4, wherein each of the first to fourth end portions is at least partially exposed from the surface layer.
  6.  前記合剤層の主要部と、前記表面層と、の界面における、最大高さ粗さRmaxが、3~25μmである、請求項1~5のいずれか1項記載の非水系二次電池用電極板。 6. The non-aqueous secondary battery according to claim 1, wherein the maximum height roughness Rmax at the interface between the main part of the mixture layer and the surface layer is 3 to 25 μm. Electrode plate.
  7.  前記表面層の厚みが、3~20μmである、請求項1~6のいずれか1項記載の非水系二次電池用電極板。 The electrode plate for a non-aqueous secondary battery according to any one of claims 1 to 6, wherein the thickness of the surface layer is 3 to 20 µm.
  8.  前記合剤層の主要部の一部が、前記表面層から露出している、請求項1~7のいずれか1項記載の非水系二次電池用電極板。 The electrode plate for a non-aqueous secondary battery according to any one of claims 1 to 7, wherein a part of a main part of the mixture layer is exposed from the surface layer.
  9.  前記表面層には、複数の貫通孔が点在しており、前記貫通孔から前記合剤層の主要部の一部が露出している、請求項8記載の非水系二次電池用電極板。 The electrode plate for a non-aqueous secondary battery according to claim 8, wherein the surface layer is dotted with a plurality of through holes, and a part of a main part of the mixture layer is exposed from the through holes. .
  10.  前記主要部の面積に対する、前記主要部が露出する面積の割合が、60%以下である、請求項8または9記載の非水系二次電池用電極板。 The electrode plate for a non-aqueous secondary battery according to claim 8 or 9, wherein a ratio of an area where the main part is exposed to an area of the main part is 60% or less.
  11.  前記第1活物質が、リチウムイオンを可逆的に吸蔵および放出可能な炭素材料であり、
     前記第2活物質が、リチウムイオンを可逆的に吸蔵および放出可能なリチウムチタン複合酸化物である、請求項3~10のいずれか1項記載の非水系二次電池用電極板。
    The first active material is a carbon material capable of reversibly occluding and releasing lithium ions;
    The electrode plate for a nonaqueous secondary battery according to any one of claims 3 to 10, wherein the second active material is a lithium titanium composite oxide capable of reversibly occluding and releasing lithium ions.
  12.  電極群、非水電解質および前記電極群を前記非水電解質とともに収容する外装体を具備し、
     前記電極群は、正極と、負極と、前記正極と前記負極との間に介在する多孔質絶縁層とを具備し、
     前記正極と前記負極とが、前記多孔質絶縁層を介して積層または捲回されており、
     前記正極および前記負極の少なくとも一方が、請求項1~11のいずれか1項記載の非水系二次電池用電極板である、非水系二次電池。
    An electrode group, a non-aqueous electrolyte, and an exterior body that houses the electrode group together with the non-aqueous electrolyte,
    The electrode group includes a positive electrode, a negative electrode, and a porous insulating layer interposed between the positive electrode and the negative electrode,
    The positive electrode and the negative electrode are laminated or wound through the porous insulating layer,
    A nonaqueous secondary battery, wherein at least one of the positive electrode and the negative electrode is the electrode plate for a nonaqueous secondary battery according to any one of claims 1 to 11.
PCT/JP2012/005440 2011-08-30 2012-08-29 Electrode plate for non-aqueous secondary battery and non-aqueous secondary battery using same WO2013031211A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-187209 2011-08-30
JP2011-187199 2011-08-30
JP2011187199A JP2014211945A (en) 2011-08-30 2011-08-30 Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP2011187209A JP2014211946A (en) 2011-08-30 2011-08-30 Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP2011-188425 2011-08-31
JP2011188425A JP2014211947A (en) 2011-08-31 2011-08-31 Electrode plate for secondary battery and secondary battery using the same

Publications (1)

Publication Number Publication Date
WO2013031211A1 true WO2013031211A1 (en) 2013-03-07

Family

ID=47755739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005440 WO2013031211A1 (en) 2011-08-30 2012-08-29 Electrode plate for non-aqueous secondary battery and non-aqueous secondary battery using same

Country Status (1)

Country Link
WO (1) WO2013031211A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062264A1 (en) * 2016-09-29 2018-04-05 日本電気株式会社 Electrode and secondary cell
CN108140903A (en) * 2016-01-27 2018-06-08 日立汽车系统株式会社 Secondary cell and its manufacturing method
CN115000350A (en) * 2021-03-01 2022-09-02 泰星能源解决方案有限公司 Method for manufacturing electrode for secondary battery and electrode
JP7507401B2 (en) 2020-09-17 2024-06-28 パナソニックIpマネジメント株式会社 Electrode, battery, and method for manufacturing electrode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174779A (en) * 2003-12-12 2005-06-30 Matsushita Electric Ind Co Ltd Lithium ion secondary cell
JP2006092815A (en) * 2004-09-22 2006-04-06 Hitachi Ltd Energy device
JP2007179864A (en) * 2005-12-28 2007-07-12 Hitachi Maxell Ltd Negative electrode for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery
JP2008277156A (en) * 2007-04-27 2008-11-13 Mitsui Mining & Smelting Co Ltd Negative electrode for nonaqueous electrolyte secondary battery
JP2009038016A (en) * 2007-07-09 2009-02-19 Panasonic Corp Electrode plate for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174779A (en) * 2003-12-12 2005-06-30 Matsushita Electric Ind Co Ltd Lithium ion secondary cell
JP2006092815A (en) * 2004-09-22 2006-04-06 Hitachi Ltd Energy device
JP2007179864A (en) * 2005-12-28 2007-07-12 Hitachi Maxell Ltd Negative electrode for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery
JP2008277156A (en) * 2007-04-27 2008-11-13 Mitsui Mining & Smelting Co Ltd Negative electrode for nonaqueous electrolyte secondary battery
JP2009038016A (en) * 2007-07-09 2009-02-19 Panasonic Corp Electrode plate for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108140903B (en) * 2016-01-27 2021-11-12 日本汽车能源株式会社 Secondary battery and method for manufacturing same
CN108140903A (en) * 2016-01-27 2018-06-08 日立汽车系统株式会社 Secondary cell and its manufacturing method
JPWO2017130821A1 (en) * 2016-01-27 2018-08-16 日立オートモティブシステムズ株式会社 Secondary battery and manufacturing method thereof
US20180351211A1 (en) * 2016-01-27 2018-12-06 Hitachi Automotive Systems, Ltd. Secondary battery and manufacturing method thereof
US11189861B2 (en) 2016-01-27 2021-11-30 Vehicle Energy Japan Inc. Secondary battery and manufacturing method thereof
EP3413390A4 (en) * 2016-01-27 2019-08-07 Hitachi Automotive Systems, Ltd. Secondary battery and manufacturing method thereof
WO2018062264A1 (en) * 2016-09-29 2018-04-05 日本電気株式会社 Electrode and secondary cell
JPWO2018062264A1 (en) * 2016-09-29 2019-07-11 日本電気株式会社 Electrode and secondary battery
US11469408B2 (en) 2016-09-29 2022-10-11 Nec Corporation Electrode and secondary battery
JP7507401B2 (en) 2020-09-17 2024-06-28 パナソニックIpマネジメント株式会社 Electrode, battery, and method for manufacturing electrode
JP2022133086A (en) * 2021-03-01 2022-09-13 プライムプラネットエナジー&ソリューションズ株式会社 Method for producing electrode for secondary battery, and electrode
CN115000350A (en) * 2021-03-01 2022-09-02 泰星能源解决方案有限公司 Method for manufacturing electrode for secondary battery and electrode
JP7334202B2 (en) 2021-03-01 2023-08-28 プライムプラネットエナジー&ソリューションズ株式会社 METHOD FOR MANUFACTURING ELECTRODE FOR SECONDARY BATTERY AND SAME ELECTRODE
CN115000350B (en) * 2021-03-01 2023-11-03 泰星能源解决方案有限公司 Method for manufacturing electrode for secondary battery and electrode

Similar Documents

Publication Publication Date Title
JP5472759B2 (en) Lithium secondary battery
JP5311157B2 (en) Lithium secondary battery
JP5218873B2 (en) Lithium secondary battery and manufacturing method thereof
US20180294514A1 (en) Lithium ion secondary battery and method for manufacturing the same
JP6995738B2 (en) Positive electrode for lithium-ion secondary battery and lithium-ion secondary battery
JP2008084832A (en) Nonaqueous electrolyte secondary battery
JP2014179240A (en) Positive electrode and battery
JP2016058247A (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
JP2018092707A (en) Method for manufacturing positive electrode plate, method for manufacturing nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6609946B2 (en) Lithium ion secondary battery electrode, method for producing the same, and lithium ion secondary battery
JP5888512B2 (en) Non-aqueous electrolyte secondary battery positive electrode, manufacturing method thereof, and non-aqueous electrolyte secondary battery
JP2013246900A (en) Secondary battery
JP4836185B2 (en) Non-aqueous electrolyte secondary battery
JP2014211945A (en) Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
EP3151311B1 (en) Lithium ion secondary battery
JP7163305B2 (en) non-aqueous electrolyte battery
JP6394987B2 (en) Non-aqueous electrolyte secondary battery
JP5633751B2 (en) Secondary battery
WO2013031211A1 (en) Electrode plate for non-aqueous secondary battery and non-aqueous secondary battery using same
WO2013031213A1 (en) Electrode plate for non-aqueous secondary battery and non-aqueous secondary battery using same
JP2007172879A (en) Battery and its manufacturing method
KR20210010402A (en) Non-aqueous electrolyte secondary battery
WO2012001814A1 (en) Lithium secondary battery
JP7270833B2 (en) High nickel electrode sheet and manufacturing method thereof
JP6493766B2 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP