JP2016058247A - Electrode for lithium ion secondary battery and lithium ion secondary battery - Google Patents

Electrode for lithium ion secondary battery and lithium ion secondary battery Download PDF

Info

Publication number
JP2016058247A
JP2016058247A JP2014184010A JP2014184010A JP2016058247A JP 2016058247 A JP2016058247 A JP 2016058247A JP 2014184010 A JP2014184010 A JP 2014184010A JP 2014184010 A JP2014184010 A JP 2014184010A JP 2016058247 A JP2016058247 A JP 2016058247A
Authority
JP
Japan
Prior art keywords
active material
lithium ion
electrode
ion secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014184010A
Other languages
Japanese (ja)
Inventor
晴菜 倉田
Haruna Kurata
晴菜 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2014184010A priority Critical patent/JP2016058247A/en
Publication of JP2016058247A publication Critical patent/JP2016058247A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an electrode for a lithium ion secondary battery of high output characteristics, by ensuring the electron conductivity and lithium ion conductivity sufficiently in an active material layer, in the electrode for a lithium ion secondary battery requiring a high output, and to provide a lithium ion secondary battery.SOLUTION: In the electrode 10 for a lithium ion secondary battery where an active material layer 5, containing a granular active material 4, a binder and a conductive aid, is laminated on the surface of a collector 1, the active material layer 5 has a low porosity area (density of active material is high) 3 and a high porosity area (density of active material is low) 2 in the surface direction of the collector 1, where the layer thickness of the high porosity area 2 is in a range of 1-10 times of the average grain size of the granular active material, and the difference of density of the low porosity area and high porosity area is in a range of 0.2-0.7 g/cm.SELECTED DRAWING: Figure 2

Description

本発明は、リチウムイオン二次電池用電極に関するものであり、特に出力特性を向上させうるリチウムイオン二次電池用電極及びそれを用いたリチウムイオン二次電池に関するものである。   The present invention relates to an electrode for a lithium ion secondary battery, and more particularly to an electrode for a lithium ion secondary battery that can improve output characteristics and a lithium ion secondary battery using the same.

ノート型パーソナルコンピュータや携帯電話といったモバイル機器の電源としてすでに多く採用されているリチウムイオン二次電池は、近年、ハイブリッド車(xEV)や電気自動車(EV)等に搭載されるなど新たな分野で注目が集まっている。特に近年ハイブリッド車は種類が増加して市場が成長しており、それぞれの特徴に応じてリチウムイオン二次電池にも様々な性能が要求されている。例えば、μHEV用電池はコスト競争力の他に回生エネルギーを効率よく回収するため高速充放電性能つまりは高出力密度が特に重要視されている。   Lithium ion secondary batteries, which are already widely used as power sources for mobile devices such as notebook personal computers and mobile phones, have recently attracted attention in new fields such as being mounted on hybrid vehicles (xEV) and electric vehicles (EV). Gathered. In particular, in recent years, the number of hybrid vehicles has increased and the market has grown, and various performances are also required for lithium ion secondary batteries according to their characteristics. For example, in addition to cost competitiveness, a μHEV battery is particularly important for high-speed charge / discharge performance, that is, high output density in order to efficiently recover regenerative energy.

リチウムイオン二次電池は、通常、リチウムイオンを可逆に吸蔵、放出できるリチウム含有金属酸化物を含む正極活物質層を集電体上に形成した正極と、炭素やシリコン材料を含む負極活物質層を集電体に形成した負極とが、絶縁体であるセパレータを介して対向して金属缶やラミネートパックなどの電池用外装材に収納される構成を有しており、そこに数種類のカーボネート系混合有機溶媒に六フッ化リン酸リチウム(LiPF)などのリチウム塩を溶解した非水電解液を添加、含浸させて作製されている。 A lithium ion secondary battery is generally composed of a positive electrode in which a positive electrode active material layer containing a lithium-containing metal oxide capable of reversibly occluding and releasing lithium ions is formed on a current collector, and a negative electrode active material layer containing carbon or a silicon material And a negative electrode formed on a current collector facing each other through a separator which is an insulator, and stored in a battery case such as a metal can or a laminate pack, and there are several types of carbonates It is prepared by adding and impregnating a mixed organic solvent with a nonaqueous electrolytic solution in which a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) is dissolved.

電池用外装材への電極、セパレータの収納方法は外装材の形状により異なるが、例えばラミネートパックではある規格に打ち抜いた電極とセパレータを交互にスタックする方法、缶形状の外装材では電極とセパレータを交互に重ねて捲回する方法などがある。   The method of housing the electrode and separator in the battery exterior material varies depending on the shape of the exterior material.For example, a laminate pack is a method of stacking electrodes and separators punched out to a certain standard. There are methods such as winding them alternately.

従来、リチウムイオン二次電池の電極を製造する際には、活物質やバインダー、導電助剤などを含む活物質スラリーを調製し、これを集電体の表面に均一に塗布することによって、活物質層が形成されている。   Conventionally, when manufacturing an electrode of a lithium ion secondary battery, an active material slurry containing an active material, a binder, a conductive assistant, and the like is prepared, and the active material slurry is uniformly applied to the surface of the current collector. A material layer is formed.

このような従来の手法で作製された電極を備える電池ではそれほど高くない出力で充放電を行う場合には、均一な組成を有する活物質層においても均一に充放電反応が進行しうる。しかしながら、車載用の電池に要求されるようなより高い出力での充放電反応に対しては、従来の手法で作製された均一な組成を有する活物質層では、集電体から活物質への電子伝導性と、電解液か活物質層へのリチウムイオンの伝導が両立せず、十分な充放電反応が進行しないという問題がある。   In a battery including an electrode manufactured by such a conventional technique, when charging / discharging is performed with an output not so high, the charging / discharging reaction can proceed uniformly even in an active material layer having a uniform composition. However, for a charge / discharge reaction at a higher output as required for an in-vehicle battery, an active material layer having a uniform composition produced by a conventional method can be used to convert the current from the current collector to the active material. There is a problem that the electron conductivity and the conduction of lithium ions to the electrolytic solution or the active material layer are not compatible, and a sufficient charge / discharge reaction does not proceed.

以上の観点から、一般に活物質層の膜厚が薄い方が高出力でも十分な充放電反応を進行させることができる。しかしながら、電池パック内に収納されたリチウムイオン二次電池用電極では電解液は主に電極端部から含浸されていくため、電池容量を大きくするために大面積化した電極では膜厚を薄くするだけでは、集電体から活物質への電子伝導性と、電解液か活物質層へのリチウムイオンの伝導が両立しない。   From the above viewpoints, a charge / discharge reaction can proceed sufficiently even when the active material layer having a thinner film thickness has a higher output. However, in the electrode for a lithium ion secondary battery housed in the battery pack, the electrolyte solution is mainly impregnated from the end of the electrode, so the electrode thickness is reduced in order to increase the battery capacity. As such, the electronic conductivity from the current collector to the active material and the conduction of lithium ions to the electrolyte or active material layer are not compatible.

集電体から活物質への電子伝導性を向上させるためには、活物質層を高密度化し、集電体と活物質、導電助剤の接点を増加させることが有効だが、活物質層の空孔体積が減少すると電解液が活物質層へ含浸しにくくなる。一方、空孔体積を十分に確保すると活物質層の電子伝導性が悪化するだけでなく、集電体への密着性が低下してサイクル特性が低下する他、電極が厚くなり電池としてのエネルギー密度が低下する。   In order to improve the electron conductivity from the current collector to the active material, it is effective to increase the density of the active material layer and increase the number of contacts between the current collector, the active material, and the conductive additive. When the pore volume is reduced, it becomes difficult for the electrolytic solution to impregnate the active material layer. On the other hand, if the hole volume is sufficiently secured, not only the electron conductivity of the active material layer is deteriorated, but also the adhesiveness to the current collector is lowered and the cycle characteristics are lowered. Density decreases.

そのため、例えば特許文献1のように、炭素質材料で成形した負極において、厚み方向に気孔率分布を持たせ、内部の高嵩密度部分でエネルギー密度を確保し、外部の低嵩密度部分で電解液浸透性を確保することができる。   Therefore, as in Patent Document 1, for example, in a negative electrode formed of a carbonaceous material, a porosity distribution is provided in the thickness direction, an energy density is secured in an internal high bulk density portion, and electrolysis is performed in an external low bulk density portion. Liquid permeability can be ensured.

また、特許文献2では活物質合剤がそれぞれ集電体に塗着された正負極板を備えた非水電解液二次電池において、前記正負極板の少なくとも一方は、前記活物質合剤の密度が面方向一側から他側へ向けてほぼ一定割合で変化する密度変化部分を有しており、高密度の部分で活物質割合が大きくなりエネルギー密度を向上させることができると共に、低密度の部分で非水電解液の含浸する空隙が確保され入出力特性を向上させることができる。   Further, in Patent Document 2, in a non-aqueous electrolyte secondary battery including a positive and negative electrode plate in which an active material mixture is applied to a current collector, at least one of the positive and negative electrode plates is the active material mixture. It has a density change part where the density changes from one side of the surface direction to the other side at a substantially constant rate, and the active material ratio increases in the high density part, so that the energy density can be improved and the low density. In this part, a gap impregnated with the non-aqueous electrolyte is secured, and the input / output characteristics can be improved.

特開平8−138650号公報JP-A-8-138650 特開2009−259502JP2009-259502A

しかしながら、特許文献1では、気孔率分布は厚み方向にのみ備えられていることから電極面内方向の電解液の含浸については検討されておらず、出力特性の確保が十分ではない。また、特許文献2においては、捲回された電極の巻き内・巻き外での電解液の含浸性については検討されているが、電極の短辺方向の電解液含浸性については検討されておらず、出力特性の確保が十分ではない。   However, in Patent Document 1, since the porosity distribution is provided only in the thickness direction, the impregnation with the electrolytic solution in the electrode in-plane direction is not studied, and the output characteristics are not sufficiently ensured. In Patent Document 2, the impregnation property of the electrolyte solution inside and outside the wound electrode is examined, but the electrolyte solution impregnation property in the short side direction of the electrode is not studied. Therefore, ensuring the output characteristics is not sufficient.

そこで本発明は、高出力が要求されるリチウムイオン二次電池用電極において、活物質層中の電子伝導性とリチウムイオン伝導性を十分に確保し、出力特性の高いリチウムイオン二次電池用電極及びリチウムイオン二次電池を提供することを目的としている。   Accordingly, the present invention provides an electrode for a lithium ion secondary battery that has sufficient output and lithium ion conductivity in an active material layer for a lithium ion secondary battery electrode that requires a high output. And it aims at providing a lithium ion secondary battery.

本発明者は鋭意検討を行なった結果、活物質層の面方向において、空隙率の異なる部分を形成することによって、電極面方向の電子伝導性とリチウムイオン伝導性がそれぞれ向上し、上記課題を解決することができることを見出し、本発明を完成するに至った。   As a result of intensive studies, the inventor has formed portions with different porosity in the surface direction of the active material layer, thereby improving the electron conductivity and lithium ion conductivity in the electrode surface direction, respectively. The inventors have found that the problem can be solved and have completed the present invention.

本発明の請求項1に係る発明は、集電体の表面に、粒状活物質、バインダー及び導電助剤を含む活物質層が積層されたリチウムイオン二次電池用電極であって、
前記活物質層は、
前記集電体の面方向に低空隙率領域(活物質の密度が高い領域)と高空隙率領域(活物質の密度が低い領域)とを有し、
前記高空隙率領域の層厚が前記粒状活物質の平均粒径の1〜10倍の範囲で、
且つ、前記低空隙率領域と前記高空隙率領域との密度の差が0.2〜0.7g/cmの範囲であることを特徴とするリチウムイオン二次電池用電極である。
The invention according to claim 1 of the present invention is an electrode for a lithium ion secondary battery in which an active material layer containing a granular active material, a binder and a conductive additive is laminated on the surface of a current collector,
The active material layer is
Having a low porosity region (region where the density of the active material is high) and a high porosity region (region where the density of the active material is low) in the surface direction of the current collector,
In the range where the layer thickness of the high porosity region is 1 to 10 times the average particle size of the granular active material,
In addition, the lithium ion secondary battery electrode is characterized in that a difference in density between the low porosity region and the high porosity region is in a range of 0.2 to 0.7 g / cm 3 .

また、請求項2の発明は、前記高空隙率領域が前記集電体の面方向の端部から中心部まで連続して形成されていることを特徴とする請求項1に記載のリチウムイオン二次電池用電極である。   The invention of claim 2 is characterized in that the high porosity region is formed continuously from the end in the surface direction of the current collector to the center. It is an electrode for a secondary battery.

また、請求項3の発明は、前記活物質層の最表面を占める前記高空隙率領域の面積は前記低空隙率領域の面積より小さいことを特徴とする請求項1または2に記載のリチウムイオン二次電池用電極である。   The invention according to claim 3 is the lithium ion according to claim 1 or 2, wherein the area of the high porosity region occupying the outermost surface of the active material layer is smaller than the area of the low porosity region. It is an electrode for a secondary battery.

また、請求項4の発明は、前記集電体の厚み方向に対して、面積率の異なる前記低空隙率領域と前記高空隙率領域からなる活物質層が多層に積層されてなることを特徴とする請求項1〜3のいずれかに記載のリチウムイオン二次電池用電極である。   Further, the invention of claim 4 is characterized in that an active material layer composed of the low porosity region and the high porosity region having different area ratios in a thickness direction of the current collector is laminated in multiple layers. It is an electrode for lithium ion secondary batteries in any one of Claims 1-3.

また、請求項5の発明は、前記高空隙率領域の左右上下に隣接する前記低空隙率領域同士の間隔が1mm以下であることを特徴とする請求項1〜4のいずれかに記載のリチウムイオン二次電池用電極である。   The invention according to claim 5 is the lithium according to any one of claims 1 to 4, wherein an interval between the low porosity regions adjacent to the left and right and up and down of the high porosity region is 1 mm or less. It is an electrode for an ion secondary battery.

また、請求項6の発明は、前記粒状活物質の平均粒径が15μm以下であることを特徴とする請求項1〜5のいずれかに記載のリチウムイオン二次電池用電極である。   The invention according to claim 6 is the electrode for a lithium ion secondary battery according to any one of claims 1 to 5, wherein the granular active material has an average particle size of 15 μm or less.

また、請求項7の発明は、請求項1〜6のいずれかに記載のリチウムイオン二次電池用電極を用いたことを特徴とするリチウムイオン二次電池である。   A seventh aspect of the present invention is a lithium ion secondary battery using the lithium ion secondary battery electrode according to any one of the first to sixth aspects.

また、請求項8の発明は、前記リチウムイオン二次電池用電極が捲回され、且つ、電極面中央から捲回方向と垂直の電極端部へ向けて連続した高空隙率領域を有していることを特徴とする請求項7に記載のリチウムイオン二次電池である。   The invention of claim 8 is characterized in that the electrode for a lithium ion secondary battery is wound and has a high porosity region continuous from the center of the electrode surface toward the electrode end perpendicular to the winding direction. The lithium ion secondary battery according to claim 7, wherein:

本発明の請求項1によれば、前記活物質層の高空隙率領域の層厚を前記粒状活物質の平均粒径(D50)の1〜10倍の範囲とすることにより、優れた電子伝導性と出力特性が得られる。前記層厚が10倍を超えると、集電体から活物質までの距離が遠くなり、前述の効果が得にくくなる。なお、本発明でいう平均粒径(D50)とはメジアン径であり、粉体をある粒子径から二つに分けたときに、大きい側と小さい側とが等量となる径を意味する。   According to claim 1 of the present invention, by setting the layer thickness of the high porosity region of the active material layer to a range of 1 to 10 times the average particle size (D50) of the granular active material, excellent electron conduction is achieved. Characteristics and output characteristics. When the layer thickness exceeds 10 times, the distance from the current collector to the active material is increased, and the above-described effects are hardly obtained. In addition, the average particle diameter (D50) as used in the field of this invention is a median diameter, and when a powder is divided into two from a certain particle diameter, it means the diameter from which a larger side becomes equal to a smaller side.

また、前記集電体の面方向に低空隙率領域と高空隙率領域とを形成することにより、低空隙率領域(活物質の密度が高い領域)では集電体と活物資との接点が増大させることができ、また、高空隙率領域(活物質の密度が低い領域)では電解液の浸入を向上させることができる。これらの双方の効果により、電子及びリチウムイオンの伝導性を向上させ、高い出力特性を得ることができる。   Further, by forming a low porosity region and a high porosity region in the surface direction of the current collector, in the low porosity region (region where the density of the active material is high), there is no contact between the current collector and the active material. In addition, in the high porosity region (region where the density of the active material is low), the penetration of the electrolytic solution can be improved. By both of these effects, the conductivity of electrons and lithium ions can be improved and high output characteristics can be obtained.

また、前記低空隙率領域(活物質の密度が高い領域)の密度が高過ぎると電解液の浸入が阻害され充放電反応が進行しない領域ができる可能性があり、前記高空隙率領域(活物質の密度が低い領域)の密度が低すぎると密着性が不足してサイクル特性が低下する可能性がある。発明者等は鋭意研究の結果、前記低空隙率領域と前記高空隙率領域との密度の差を0.2〜0.7g/cmの範囲とすることにより、サイクル特性が低下することなく最適な充放電反応を行うことが出来ることを見出した。 In addition, if the density of the low porosity region (region where the density of the active material is high) is too high, there may be a region where the infiltration of the electrolyte is inhibited and the charge / discharge reaction does not proceed. If the density of the region where the density of the substance is low) is too low, the adhesion may be insufficient and the cycle characteristics may deteriorate. As a result of intensive studies, the inventors have made the difference in density between the low porosity region and the high porosity region within the range of 0.2 to 0.7 g / cm 3 , so that the cycle characteristics do not deteriorate. It has been found that an optimal charge / discharge reaction can be performed.

本発明の請求項2によれば、前記高空隙率領域を前記集電体の面方向の端部から中心部まで連続して形成することで、電極端部から中心部への電解液の浸入がより容易となり、電極中心部でも十分な電子及びリチウムイオンの伝導性が得られ、安定した出力特性を得ることができる。   According to claim 2 of the present invention, the high porosity region is continuously formed from the end in the surface direction of the current collector to the center, so that the electrolyte enters the center from the electrode end. Thus, sufficient electron and lithium ion conductivity can be obtained even at the center of the electrode, and stable output characteristics can be obtained.

また、請求項3によれば、前記活物質層の最表面を占める前記高空隙率領域の面積を前記低空隙率領域の面積より小さくすることで、集電体に対する前記活物質層全体の密着性を高いレベルで保持することができ、サイクル特性の低下を防ぐことができる。   In addition, according to claim 3, by making the area of the high porosity region occupying the outermost surface of the active material layer smaller than the area of the low porosity region, the entire active material layer adheres to the current collector. Therefore, the cycle characteristics can be kept at a high level, and the deterioration of the cycle characteristics can be prevented.

本発明の請求項4によれば、前記集電体の厚み方向に対して、面積率の異なる前記低空隙率領域と前記高空隙率領域からなる活物質層が多層に積層することで、前記活物質層の
外側から内側への電解液の浸入がより容易となり、電極中心部でも十分な電子及びリチウムイオンの伝導性が得られ、安定した出力特性を得ることができる。
According to claim 4 of the present invention, the active material layer composed of the low porosity region and the high porosity region having different area ratios in a thickness direction of the current collector is laminated in multiple layers, It becomes easier for the electrolytic solution to enter from the outside to the inside of the active material layer, and sufficient electron and lithium ion conductivity is obtained even at the center of the electrode, so that stable output characteristics can be obtained.

また、請求項5によれば、前記高空隙率領域の左右上下に隣接する前記低空隙率領域同士の間隔を1mm以下とすることで、集電体に対する前記活物質層全体の密着性を高いレベルで保持することができ、サイクル特性の低下を防ぐことができる。   Further, according to claim 5, by setting the interval between the low porosity regions adjacent to the left and right and up and down of the high porosity region to 1 mm or less, the adhesion of the entire active material layer to the current collector is high. The level can be maintained, and the deterioration of cycle characteristics can be prevented.

また、請求項6によれば、前記粒状活物質の平均粒径(D50)を15μm以下とすることで、前記活物質層の層厚を薄くしてもスジムラ等の欠陥のない安定した前記活物質層を形成することができる。   In addition, according to claim 6, by setting the average particle size (D50) of the granular active material to 15 μm or less, the stable active material having no defects such as stripes even when the active material layer is thinned. A material layer can be formed.

上記で説明したように、本発明によれば電子伝導性とリチウムイオン伝導性を十分に確保した、出力特性の高いリチウムイオン二次電池用電極、及びそれを用いたリチウムイオン二次電池を提供することができる。   As described above, according to the present invention, an electrode for a lithium ion secondary battery with high output characteristics and sufficient electron conductivity and lithium ion conductivity, and a lithium ion secondary battery using the same are provided. can do.

本発明の一例を示す二次電池用電極10の概略図1。1 is a schematic diagram 1 of an electrode 10 for a secondary battery showing an example of the present invention. (a)本発明の一例を示す二次電池用電極10の断面模式図。 (b)上記の平面模式図。(A) The cross-sectional schematic diagram of the electrode 10 for secondary batteries which shows an example of this invention. (B) A schematic plan view of the above. 本発明の一例を示す二次電池用電極10の概略図2。Schematic 2 of the electrode 10 for secondary batteries which shows an example of this invention. 本発明の一例を示す二次電池用電極10の概略図3。Schematic 3 of the electrode 10 for secondary batteries which shows an example of this invention. 本発明を適用した円筒型リチウムイオン二次電池20の断面模式図。The cross-sectional schematic diagram of the cylindrical lithium ion secondary battery 20 to which this invention is applied. 本発明を適用した二次電池の放電容量維持率。The discharge capacity maintenance rate of the secondary battery to which the present invention is applied.

以下に、本発明の実施の形態に係るリチウムイオン二次電池用電極について説明する。なお、本発明の実施の形態は、以下に記載する実施の形態に限定されうるものではなく、当業者の知識に基づいて設計の変更などの変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の実施の形態の範囲に含まれうるものである。   Below, the electrode for lithium ion secondary batteries which concerns on embodiment of this invention is demonstrated. The embodiments of the present invention are not limited to the embodiments described below, and modifications such as design changes can be added based on the knowledge of those skilled in the art. Embodiments to which is added can also be included in the scope of the embodiments of the present invention.

図1は、本発明の一例を示すリチウムイオン二次電池用電極10の概略図1である。集電体1上に形成されたリチウムイオン二次電池用電極の活物質層5は、活物質4とバインダー、および導電助剤などを含む組成物から形成され、低空隙率領域(活物質の密度が高い領域、以下、高密部と記す)3と高空隙率領域(活物質の密度が低い領域、以下、低密部と記す)2とで構成されている。   FIG. 1 is a schematic view 1 of an electrode 10 for a lithium ion secondary battery showing an example of the present invention. The active material layer 5 of the electrode for a lithium ion secondary battery formed on the current collector 1 is formed of a composition containing the active material 4, a binder, and a conductive additive, and has a low porosity region (active material layer). A region having a high density (hereinafter referred to as a high density portion) 3 and a high porosity region (a region having a low active material density, hereinafter referred to as a low density portion) 2 are configured.

前記低密部2の密度としては1.0〜2.8g/cm程度が好ましく、前記高密部3の密度としては1.5〜3.5g/cm程度が好ましい。それぞれの密度の最適値は活物質材料によって異なり、すなわち正極か負極かによっても異なる。 Wherein it is preferably about 1.0~2.8g / cm 3 as the density of the less dense portion 2, preferably about 1.5~3.5g / cm 3 as the density of the dense portion 3. The optimum value of each density differs depending on the active material, that is, whether it is a positive electrode or a negative electrode.

前記低密部2の密度が低すぎると密着性が低下して、サイクル特性が低下する場合がある。また、前記高密部3の密度が高過ぎると、電解液の含浸が阻害されてしまい充放電反応が進行しない領域ができてしまう。一方で、両者の密度の差が少なすぎると、発明の効果を十分に得ることができなくなる。発明者等は鋭意研究の末、その差が0.2〜0.7g/cmの範囲であることが望ましいという結果を得た。 If the density of the low-density portion 2 is too low, the adhesion may be deteriorated and cycle characteristics may be deteriorated. On the other hand, if the density of the high-density portion 3 is too high, impregnation with the electrolytic solution is hindered, and a region where the charge / discharge reaction does not proceed is formed. On the other hand, if the difference in density between the two is too small, the effects of the invention cannot be obtained sufficiently. As a result of intensive studies, the inventors have obtained a result that the difference is preferably in the range of 0.2 to 0.7 g / cm 3 .

活物質層5の構成について、詳細に説明する。図2(a)は、本発明の一例を示す二次電池用電極10の断面模式図である。活物質層5の膜厚は活物質4の平均粒径(D50)の10倍以下である。10倍より大きい場合には、集電体1から活物質層5の表面近傍の活物質までの距離が遠くなり、十分な電子伝導性が確保されず、出力特性が低下する場合
がある。
The configuration of the active material layer 5 will be described in detail. Fig.2 (a) is a cross-sectional schematic diagram of the electrode 10 for secondary batteries which shows an example of this invention. The film thickness of the active material layer 5 is 10 times or less the average particle diameter (D50) of the active material 4. If it is larger than 10 times, the distance from the current collector 1 to the active material in the vicinity of the surface of the active material layer 5 becomes long, and sufficient electron conductivity may not be ensured, and the output characteristics may deteriorate.

図2(b)は、本発明の一例を示す二次電池用電極10の平面模式図である。活物質層5は低密部2と高密部3から構成されており、活物質層5の面方向の端部から中心まで低密部2が連続して形成されていれば、低密部2の形状は特に限定されることはない。例えば、図1に示すように一方の端部から他方の端部まで連続した低密部2が形成されていてもよく、また図3および図4に示した概略図のように低密部が形成されてもよい。低密部2が面方向の端部から中心まで連続して形成されていない場合には、電解液の含浸が不足して、電極中心部で十分なリチウムイオン伝導性が確保されず、出力特性が低下する場合がある。   FIG. 2B is a schematic plan view of the secondary battery electrode 10 showing an example of the present invention. The active material layer 5 is composed of a low-density portion 2 and a high-density portion 3, and if the low-density portion 2 is continuously formed from the end in the surface direction of the active material layer 5 to the center, the low-density portion 2 is formed. The shape of is not particularly limited. For example, as shown in FIG. 1, a low-density portion 2 that is continuous from one end to the other end may be formed, and the low-density portion may be formed as shown in the schematic diagrams of FIGS. 3 and 4. It may be formed. If the low-density part 2 is not continuously formed from the end in the plane direction to the center, the impregnation with the electrolyte is insufficient, and sufficient lithium ion conductivity is not ensured at the center of the electrode. May decrease.

活物質層5を構成する低密部2の面積は特に限定されず、高密部3の面積と比較して小さければよい。高密部3の面積よりも低密部2の面積が同等以上の場合には、活物質層5全体の密着性が低下してサイクル特性が低下する場合や、活物質層5全体の電子伝導性が低下して出力特性が低下する場合がある。   The area of the low density portion 2 constituting the active material layer 5 is not particularly limited as long as it is smaller than the area of the high density portion 3. When the area of the low-density portion 2 is equal to or greater than the area of the high-density portion 3, the adhesiveness of the active material layer 5 as a whole decreases and the cycle characteristics deteriorate, or the electronic conductivity of the active material layer 5 as a whole May decrease and output characteristics may deteriorate.

活物質層5を構成する低密部2を挟んで隣接する高密部3の間隔は1mm以下であることが望ましく、密着性および電子伝導性の確保し十分な出力特性得ることを考慮すると、より好ましくは膜厚の10倍以下が好ましい。   It is desirable that the interval between the high-density portions 3 adjacent to each other with the low-density portion 2 constituting the active material layer 5 is 1 mm or less, and in consideration of securing sufficient adhesion and electronic conductivity and obtaining sufficient output characteristics, Preferably it is 10 times or less of the film thickness.

本発明の活物質層5は、活物質4とバインダー、および導電助剤などの混合物に溶媒を加えたスラリーを集電体1に塗布乾燥させた後に、部分的にプレスしてプレス部分を高密部3とすることにより形成することができる。上記溶媒は上記バインダー樹脂を溶解可能であれば、特に限定されず、N−メチルピロリドン、N,N−ジメチルホルムアミドなどの有機溶剤や水が挙げられる。   In the active material layer 5 of the present invention, a slurry obtained by adding a solvent to a mixture of the active material 4, a binder, a conductive additive, and the like is applied to the current collector 1 and dried, and then partially pressed to make the pressed portion highly dense. It can be formed by using the portion 3. The solvent is not particularly limited as long as it can dissolve the binder resin, and examples thereof include organic solvents such as N-methylpyrrolidone and N, N-dimethylformamide, and water.

集電体1としては、二次電池用の集電体材料として従来用いられている材料を適宜採用すればよい。例えば、アルミニウム、ニッケル、銅、鉄、ステンレス鋼(SUS)、チタン等が挙げられ、集電体にかかる電池作動電位や電子伝導性を考慮して選択することが好ましい。こうした集電体1の一般的な厚さは、8〜30μm程度である。   As the current collector 1, a material conventionally used as a current collector material for a secondary battery may be appropriately employed. For example, aluminum, nickel, copper, iron, stainless steel (SUS), titanium and the like can be mentioned, and it is preferable to select in consideration of battery operating potential and electronic conductivity applied to the current collector. The general thickness of the current collector 1 is about 8 to 30 μm.

活物質4として正極活物質を用いる場合は、リチウムの吸蔵放出が可能なものであればよく、公知のリチウムイオン二次電池用の正極活物質を用いることができる。例えば、リチウムマンガン酸化物、リチウムニッケル酸化物、リチウムコバルト酸化物、リチウム鉄酸化物およびリチウムニッケルマンガン酸化物、リチウムニッケルコバルト酸化物、リチウムニッケルマンガンコバルト酸化物、リチウム遷移金属リン酸化合物等を用いることができる。なお、正極活物質として、上記活物質を複数混合させて用いてもよい。   When a positive electrode active material is used as the active material 4, any material that can occlude and release lithium can be used, and known positive electrode active materials for lithium ion secondary batteries can be used. For example, lithium manganese oxide, lithium nickel oxide, lithium cobalt oxide, lithium iron oxide and lithium nickel manganese oxide, lithium nickel cobalt oxide, lithium nickel manganese cobalt oxide, lithium transition metal phosphate compound, etc. are used. be able to. Note that a plurality of the above active materials may be mixed and used as the positive electrode active material.

活物質4として負極活物質を用いる場合は、リチウムの吸蔵放出が可能なものであればよく、公知のリチウムイオン二次電池用の負極活物質を用いることができる。例えば、黒鉛系炭素材料、ハードカーボン、ソフトカーボン、活性炭などのカーボン材料、リチウムチタン酸化物などのリチウム金属酸化物、シリコン、スズなどのLi合金金属等を用いることができる。なお、負極活物質として、上記活物質を複数混合させて用いてもよい。   When a negative electrode active material is used as the active material 4, any material that can occlude and release lithium can be used, and a known negative electrode active material for a lithium ion secondary battery can be used. For example, carbon materials such as graphite-based carbon materials, hard carbon, soft carbon, activated carbon, lithium metal oxides such as lithium titanium oxide, Li alloy metals such as silicon and tin can be used. Note that a plurality of the above active materials may be mixed and used as the negative electrode active material.

活物質4の平均粒径(D50)は15μm以下が望ましい。15μm以上であると、活物質層5の膜厚を薄くした場合にスジや粒子詰まりなどの欠陥がなく活物質層5を塗布形成することが困難になり、充放電性能が低下する場合がある。一方で、スジや粒子詰まりを避けるために膜厚を厚くした場合には、集電体1から活物質層5の表面近傍の活物質までの距離が遠くなり、十分な電子伝導性が確保されず、出力特性が低下する場合がある。   The average particle diameter (D50) of the active material 4 is desirably 15 μm or less. When the thickness is 15 μm or more, when the thickness of the active material layer 5 is reduced, it is difficult to apply and form the active material layer 5 without defects such as streaks and particle clogging, and the charge / discharge performance may deteriorate. . On the other hand, when the film thickness is increased to avoid streaks and particle clogging, the distance from the current collector 1 to the active material near the surface of the active material layer 5 is increased, and sufficient electron conductivity is ensured. In some cases, the output characteristics may deteriorate.

本発明のリチウムイオン二次電池用電極は、導電助剤を含有していてもよい。導電助剤としては、カーボンブラックや天然黒鉛、人造黒鉛、さらには、酸化チタンや酸化ルテニウムなどの金属酸化物、金属ファイバーなどが使用できる。なかでもストラクチャー構造を呈するカーボンブラックが好ましく、特にその一種であるファーネスブラックやケッチェンブラック、アセチレンブラック(AB)が好ましく用いられる。尚、カーボンブラックとその他の導電助剤、例えば、気相成長炭素繊維(VGCF)との混合系も好ましく用いられる。   The electrode for a lithium ion secondary battery of the present invention may contain a conductive additive. As the conductive aid, carbon black, natural graphite, artificial graphite, metal oxides such as titanium oxide and ruthenium oxide, metal fibers, and the like can be used. Among these, carbon black having a structure structure is preferable, and furnace black, ketjen black, and acetylene black (AB), which are one of them, are particularly preferable. A mixed system of carbon black and other conductive assistants such as vapor grown carbon fiber (VGCF) is also preferably used.

上記導電助剤の含有量は活物質重量に対して、1重量%以上90重量%未満であることが好ましい。1重量%未満であると、導電性が不足して電極抵抗が増加する場合があり、90重量%以上であると、活物質量が不足してリチウム吸蔵容量が低下してしまうことがある。   The content of the conductive assistant is preferably 1% by weight or more and less than 90% by weight with respect to the weight of the active material. If it is less than 1% by weight, conductivity may be insufficient and electrode resistance may increase. If it is 90% by weight or more, the amount of active material may be insufficient and the lithium storage capacity may decrease.

本発明のリチウムイオン二次電池用電極は、バインダーを含有していてもよい。バインダーとしては、活物質と導電助剤との混合物を集電体へ密着できれば特に限定されず、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素含有バインダーや合成ゴム系バインダー等が挙げられる。   The electrode for a lithium ion secondary battery of the present invention may contain a binder. The binder is not particularly limited as long as the mixture of the active material and the conductive additive can be adhered to the current collector, and examples thereof include fluorine-containing binders such as polyvinylidene fluoride and polytetrafluoroethylene, and synthetic rubber binders.

本発明のリチウムイオン二次電池用電極に含まれるバインダーは、全活物質重量に対し、3重量%以上40重量%以下であることが望ましい。3重量%より少ない場合、十分な結着をすることができず、40重量%より大きい場合には、電極体積あたりの容量が大きく低下する。より好ましくは3重量%以上25重量%以下である。   The binder contained in the electrode for a lithium ion secondary battery of the present invention is desirably 3% by weight or more and 40% by weight or less based on the total weight of the active material. When the amount is less than 3% by weight, sufficient binding cannot be achieved, and when the amount is more than 40% by weight, the capacity per electrode volume is greatly reduced. More preferably, it is 3 to 25% by weight.

図5は本発明を適用した円筒型リチウムイオン二次電池20の断面模式図である。図5を参照して、本発明の実施の形態に係るリチウムイオン二次電池について説明する。   FIG. 5 is a schematic cross-sectional view of a cylindrical lithium ion secondary battery 20 to which the present invention is applied. With reference to FIG. 5, the lithium ion secondary battery which concerns on embodiment of this invention is demonstrated.

本発明を適用した円筒型リチウムイオン二次電池20は、電池容器としてニッケルメッキを施された鉄製の有底円筒状電池缶11を有している。電池缶11には、帯状に形成された正極10a、負極10b、およびセパレータ12が断面渦巻状に捲回されて収容されている。   A cylindrical lithium ion secondary battery 20 to which the present invention is applied has a bottomed cylindrical battery can 11 made of iron and plated with nickel as a battery container. In the battery can 11, a positive electrode 10 a, a negative electrode 10 b, and a separator 12 formed in a band shape are wound and accommodated in a spiral cross section.

セパレータ12は、対向配置された正極10aと負極10bとの間に配置されており、セパレータ12によって正極10aと負極10bは電気的に絶縁されている。セパレータ12としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン製の微孔膜、芳香族ポリアミド樹脂製の微孔膜、不織布、無機セラミック粉末を含む多孔質の樹脂コート等を用いることができる。   The separator 12 is disposed between the positive electrode 10a and the negative electrode 10b arranged to face each other, and the positive electrode 10a and the negative electrode 10b are electrically insulated by the separator 12. As the separator 12, for example, a microporous film made of polyolefin such as polyethylene or polypropylene, a microporous film made of aromatic polyamide resin, a nonwoven fabric, a porous resin coat containing inorganic ceramic powder, or the like can be used.

正極10a、負極10bおよびセパレータ12の捲回群の上側には、一端を正極集電体1aに固定されたリボン状のアルミニウム製正極タブ端子13が導出されている。正極タブ端子13の他端は、電池缶11の上部に配置され正極外部端子となる円盤状の上蓋14の下面に超音波溶接で接合されている。一方、捲回群の下側には、一端を負極集電体1bに固定されたリボン状のニッケル製負極タブ端子15が導出されている。負極タブ端子13の他端は、電池缶11の内底面に抵抗溶接で接合されている。すなわち、正極タブ端子13および負極タブ端子15は、それぞれ捲回群の両端面から互いに反対側に導出されている。また、図示はされていないが捲回群の上下両側には樹脂製の絶縁板がそれぞれ配されているほか、捲回群の外周面全周にも絶縁被覆が施されている。   Above the wound group of the positive electrode 10a, the negative electrode 10b, and the separator 12, a ribbon-shaped aluminum positive electrode tab terminal 13 having one end fixed to the positive electrode current collector 1a is led out. The other end of the positive electrode tab terminal 13 is ultrasonically welded to the lower surface of a disk-shaped upper lid 14 that is disposed on the upper portion of the battery can 11 and serves as a positive electrode external terminal. On the other hand, a ribbon-like nickel negative electrode tab terminal 15 with one end fixed to the negative electrode current collector 1b is led out below the winding group. The other end of the negative electrode tab terminal 13 is joined to the inner bottom surface of the battery can 11 by resistance welding. That is, the positive electrode tab terminal 13 and the negative electrode tab terminal 15 are led out to the opposite sides from both end surfaces of the wound group, respectively. Although not shown, resin insulating plates are arranged on both the upper and lower sides of the wound group, respectively, and an insulating coating is also applied to the entire outer peripheral surface of the wound group.

電池缶11の上部にはグルービングが施されている。上蓋14は、グルービング部分に嵌合するように設計されたガスケット16を介して電池缶11の上部にカシメ固定されている。このため、リチウムイオン二次電池20の内部は密封されている。ガスケット16
は、短絡防止や電解液の漏出を防止するための部材であり、ポリプロピレン等の絶縁性の材質を用いることができる。
Grooving is applied to the upper part of the battery can 11. The upper lid 14 is caulked and fixed to the upper portion of the battery can 11 via a gasket 16 designed to fit into the grooving portion. For this reason, the inside of the lithium ion secondary battery 20 is sealed. Gasket 16
Is a member for preventing a short circuit and preventing leakage of the electrolytic solution, and an insulating material such as polypropylene can be used.

また、電池缶11内には、溶媒と電解質から構成された非水電解液が充填されている。本発明のリチウムイオン二次電池に用いる電解液の溶媒には、ジメチルカーボネート、ジエチルカーボネートなどの低粘度の鎖状炭酸エステルと、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの高誘電率の環状炭酸エステル、γ‐ブチロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、メチルアセテート、メチルプロピオネート、ビニレンカーボネート、ジメチルホルムアミド、スルホランおよびこれらの混合溶媒等を挙げることができる。 In addition, the battery can 11 is filled with a non-aqueous electrolyte composed of a solvent and an electrolyte. Examples of the solvent for the electrolyte used in the lithium ion secondary battery of the present invention include low-viscosity chain carbonates such as dimethyl carbonate and diethyl carbonate, and cyclic carbonates having a high dielectric constant such as ethylene carbonate, propylene carbonate, and butylene carbonate. Γ-butyrolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, methyl acetate, methyl propionate, vinylene carbonate, dimethylformamide, sulfolane, and mixed solvents thereof. it can.

電解液に含まれる電解質は特に制限がなく、LiClO、LiBF、LiAsF、LiPF、LiCFSO、LiN(CFSO、LiI、LiAlCl等およびそれらの混合物等が挙げられる。好ましくはLiBF、LiPF、のうちの1種または2種以上を混合したリチウム塩がよい。 The electrolyte contained in the electrolytic solution is not particularly limited, and examples thereof include LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiI, LiAlCl 4, and mixtures thereof. It is done. A lithium salt obtained by mixing one or more of LiBF 4 and LiPF 6 is preferable.

以下に、本発明に係るリチウムイオン二次電池用電極およびその製造方法について、具体的な実施例および比較例を挙げて説明する。なお、本発明は下記実施例によって制限されるものではない。   Hereinafter, the electrode for a lithium ion secondary battery and the manufacturing method thereof according to the present invention will be described with reference to specific examples and comparative examples. In addition, this invention is not restrict | limited by the following Example.

(実施例1)
<正極の作製>
正極活物質として平均粒径(D50)が12μmのリチウムマンガン酸化物、導電助剤としてアセチレンブラック、バインダーとしてポリフッ化ビニリデン(PVdF)をそれぞれ88:7:5の比率で混合してプラネタリーミキサーで混練し、溶媒としてN−メチル−2−ピロリドンを適量添加して粘度調整を施して、リチウムイオン二次電池用正極スラリーを得た。
(Example 1)
<Preparation of positive electrode>
Lithium manganese oxide having an average particle diameter (D50) of 12 μm as the positive electrode active material, acetylene black as the conductive auxiliary agent, and polyvinylidene fluoride (PVdF) as the binder were mixed in a ratio of 88: 7: 5, respectively, using a planetary mixer. After kneading, an appropriate amount of N-methyl-2-pyrrolidone as a solvent was added to adjust the viscosity to obtain a positive electrode slurry for a lithium ion secondary battery.

正極集電体としてはアルミニウム箔(20μm厚)を使用し、その上に上記で調整した正極スラリーを乾燥後塗膜が50μmとなるようにダイコータにて塗布し、乾燥させて塗膜を得た。次に、前記正極塗膜上に石英製モールドを設置してロールプレスし、正極を完成させた。前記モールドは幅100μm深さ30μmの溝が電極の長辺方向に200μm間隔で形成された形状を使用した。得られた正極について電子顕微鏡で膜厚を確認した結果、低密部の膜厚は33μmであり、高密部の膜厚は28μmであった。   As the positive electrode current collector, an aluminum foil (20 μm thickness) was used, and the positive electrode slurry prepared above was applied thereon with a die coater so that the coating film became 50 μm after drying, and dried to obtain a coating film. . Next, a quartz mold was placed on the positive electrode coating film and roll-pressed to complete the positive electrode. The mold used had a shape in which grooves having a width of 100 μm and a depth of 30 μm were formed at intervals of 200 μm in the long side direction of the electrode. As a result of confirming the film thickness of the obtained positive electrode with an electron microscope, the film thickness of the low-density part was 33 μm, and the film thickness of the high-density part was 28 μm.

<負極の作製>
次に、負極活物質として天然黒鉛、導電助剤としてアセチレンブラック、バインダーとしてスチレンブタジエンゴム、増粘材としてカルボキシメチルセルロースをそれぞれ90:8:1:1の比率で混合してディスパーで混練し、溶媒として純水を適量添加して粘度調整を施して、リチウムイオン二次電池用負極スラリーを得た。
<Production of negative electrode>
Next, natural graphite as a negative electrode active material, acetylene black as a conductive additive, styrene butadiene rubber as a binder, and carboxymethyl cellulose as a thickener are mixed in a ratio of 90: 8: 1: 1, kneaded with a disper, As described above, an appropriate amount of pure water was added to adjust the viscosity to obtain a negative electrode slurry for a lithium ion secondary battery.

得られた負極スラリーを負極集電体へダイコータにて塗布し、乾燥させて塗膜を得た。負極集電体としては銅箔(10μm厚)を使用した。負極活物質層は正極活物質層の容量と比較して、1.1倍になるように目付け量を調整して塗布した。   The obtained negative electrode slurry was applied to the negative electrode current collector with a die coater and dried to obtain a coating film. A copper foil (10 μm thick) was used as the negative electrode current collector. The negative electrode active material layer was applied with the basis weight adjusted to 1.1 times the capacity of the positive electrode active material layer.

<セルの作製>
得られた正極と負極とを、セパレータ(型番2200、セルガード製)を介して対向させて捲回し、タブ付けして電池缶へ封入し、その後下記電解液を注入してリチウムイオン
二次電池を作製した。なお、電解液としてエチレンカーボネート(EC)とジエチルカーボネート(DMC)の3:7(体積比)の混合溶液に、LiPF6を1Mとなるように加え、さらにビニレンカーボネート(VC)を2重量%添加したものを使用した。
<Production of cell>
The obtained positive electrode and negative electrode are wound with a separator (model number 2200, manufactured by Celgard) facing each other, tabbed, sealed in a battery can, and then injected with the following electrolyte solution to obtain a lithium ion secondary battery. Produced. In addition, LiPF6 was added so that it might become 1M to the mixed solution of ethylene carbonate (EC) and diethyl carbonate (DMC) 3: 7 (volume ratio) as electrolyte solution, and also 2 weight% of vinylene carbonate (VC) was added. I used something.

(実施例2)
モールドとして、幅100μm深さ30μmの溝が電極の短辺方向の中心当たる位置に1本に存在し、中心の溝から電極の短辺方向の端部に当たる位置までの長さを有する幅100μm深さ30μmの溝が、200μm間隔で形成された形状のモールドを使用して正極を作製した以外は実施例1と同様にして、リチウムイオン二次電池を作製した。なお、低密部の膜厚は33μmであり、高密部の膜厚は28μmであった。
(Example 2)
As a mold, a groove having a width of 100 μm and a depth of 30 μm exists in one position corresponding to the center in the short side direction of the electrode, and has a length from the center groove to a position corresponding to the end portion in the short side direction of the electrode. A lithium ion secondary battery was produced in the same manner as in Example 1 except that a positive electrode was produced using a mold having a shape in which grooves having a thickness of 30 μm were formed at intervals of 200 μm. The film thickness of the low density portion was 33 μm, and the film thickness of the high density portion was 28 μm.

(実施例3)
モールドとして、幅500μm深さ30μmの溝が1000μm間隔で形成された形状のモールドを使用して正極を作製した以外は実施例1と同様にして、リチウムイオン二次電池を作製した。なお、低密部の膜厚は33μmであり、高密部の膜厚は28μmであった。
(Example 3)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that a positive electrode was produced using a mold having a shape in which grooves having a width of 500 μm and a depth of 30 μm were formed at intervals of 1000 μm. The film thickness of the low density portion was 33 μm, and the film thickness of the high density portion was 28 μm.

(実施例4)
モールドとして、幅100μm深さ30μmの溝が電極の短辺方向に200μm間隔で形成された形状のモールドを使用して正極を作製した以外は実施例1と同様にして、リチウムイオン二次電池を作製した。なお、低密部の膜厚は33μmであり、高密部の膜厚は28μmであった。
Example 4
A lithium ion secondary battery was fabricated in the same manner as in Example 1 except that a positive electrode was produced using a mold having a shape in which grooves having a width of 100 μm and a depth of 30 μm were formed at intervals of 200 μm in the short side direction of the electrode. Produced. The film thickness of the low density portion was 33 μm, and the film thickness of the high density portion was 28 μm.

(比較例1)
モールドを使用せずにプレスして正極を作製した以外は実施例1と同様にしてリチウムイオン二次電池を作製した。なお、活物質層の膜厚は28μmであった。
(Comparative Example 1)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that the positive electrode was produced by pressing without using a mold. The active material layer had a thickness of 28 μm.

(比較例2)
正極スラリーを乾燥後塗膜が150μmとなるように塗布して正極を作製した以外は実施例1と同様にしてリチウムイオン二次電池を作製した。なお、低密部の膜厚は105μmであり、高密部の膜厚は85μmであった。
(Comparative Example 2)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that the positive electrode slurry was dried and then applied so that the coating film became 150 μm to produce a positive electrode. The film thickness of the low density portion was 105 μm, and the film thickness of the high density portion was 85 μm.

<評価>
各実施例および比較例で作製したリチウムイオン二次電池に対して、放電レート試験を行った。充放電は、3.0V〜4.2Vで行なった。初めに初期放電容量評価として0.2Cでの定電流充放電を1回行い、続いて1C、5C、10C,20Cで放電レート試験を行った。放電レート試験時の充電はすべて0.2Cで行った。各電池について、0.2Cを100%としたときの放電レートごとの放電容量維持率を、図6に示す。
<Evaluation>
The discharge rate test was done with respect to the lithium ion secondary battery produced by each Example and the comparative example. Charging / discharging was performed at 3.0V to 4.2V. First, as an initial discharge capacity evaluation, a constant current charge / discharge at 0.2 C was performed once, and then a discharge rate test was performed at 1 C, 5 C, 10 C, and 20 C. All charging during the discharge rate test was performed at 0.2C. FIG. 6 shows the discharge capacity maintenance rate for each discharge rate when 0.2 C is 100% for each battery.

<比較結果>
1Cにおいては、実施例1〜4および比較例1〜2で大きな差は見られないが、2C以上の高出力条件では実施例1〜4は比較例1および比較例2よりも放電容量維持率が良好であることがわかった。よって、低密部と高密部を有する実施例1〜4は、面内での空隙率が均一な比較例1よりも電解液が含浸しやすくリチウムイオン伝導性が確保されていると考えられる。一方、比較例2は実施例1〜4と同様に低密部と高密部を有するが、膜厚が厚いため、厚み方向で電解液が浸透しにくく十分なリチウムイオン伝導性が確保できなかったと考えられる。以上より本発明の効果が確認できた。
<Comparison result>
In 1C, a big difference is not seen by Examples 1-4 and Comparative Examples 1-2, but Examples 1-4 are discharge capacity maintenance factors rather than Comparative Example 1 and Comparative Example 2 on the high output conditions of 2C or more. Was found to be good. Therefore, it is thought that Examples 1-4 which have a low-density part and a high-density part are easy to impregnate electrolyte solution compared with the comparative example 1 with a uniform in-plane porosity, and lithium ion conductivity is ensured. On the other hand, Comparative Example 2 has a low-density part and a high-density part as in Examples 1 to 4, but because the film thickness is thick, the electrolyte solution hardly penetrates in the thickness direction and sufficient lithium ion conductivity could not be ensured. Conceivable. From the above, the effect of the present invention was confirmed.

本発明によれば、活物質層の膜厚が活物質粒径(D50)の10倍以下である電極にお
いて、活物質層の面方向で比較的空隙率が高い低密部と比較的空隙率が小さい高密部とを有し、活物質層の面方向の端部から中心部まで低密部が連続して形成されていることによって、電極面方向の電子伝導性とリチウムイオン伝導性を十分に確保でき、高出力特性が向上するという効果を奏するので、産業上の利用価値が高い。したがって、本発明のリチウムイオン二次電池用負極は高耐久性が要求される電気自動車の駆動用蓄電池や各種エネルギーの蓄電設備、家庭用蓄電設備などの蓄電池として好適に活用することができる。
According to the present invention, in an electrode in which the film thickness of the active material layer is 10 times or less of the active material particle size (D50), a low-density portion with a relatively high porosity and a relatively low porosity in the surface direction of the active material layer. Has a small and high-density part, and the low-density part is continuously formed from the edge in the surface direction of the active material layer to the center part, so that the electron conductivity and lithium ion conductivity in the electrode surface direction are sufficient. Therefore, there is an effect that the high output characteristics are improved, and the industrial utility value is high. Therefore, the negative electrode for a lithium ion secondary battery of the present invention can be suitably used as a storage battery for a drive battery of an electric vehicle, a power storage facility for various energy, a home power storage facility, etc. that require high durability.

1・・・・集電体
1a・・・正極集電体
1b・・・負極集電体
2・・・・高空隙率領域(活物質の密度の低い領域、低密部)
3・・・・低空隙率領域(活物質の密度の高い領域、高密部)
4・・・・活物質
5・・・・活物資層
10・・・リチウムイオン二次電池用電極
10a・・正極
10b・・負極
11・・・電池缶
12・・・セパレータ
13・・・正極タブ端子
14・・・上蓋
15・・・負極タブ端子
16・・・ガスケット
20・・・リチウムイオン二次電池
DESCRIPTION OF SYMBOLS 1 .... Current collector 1a ... Positive electrode current collector 1b ... Negative electrode current collector 2 .... High porosity region (region with low density of active material, low density portion)
3. Low porosity area (active material high density area, high density area)
4 ... Active material 5 ... Active material layer 10 ... Electrode for lithium ion secondary battery 10a ... Positive electrode 10b ... Negative electrode 11 ... Battery can 12 ... Separator 13 ... Positive electrode Tab terminal 14 ... Upper lid 15 ... Negative electrode tab terminal 16 ... Gasket 20 ... Lithium ion secondary battery

Claims (8)

集電体の表面に、粒状活物質、バインダー及び導電助剤を含む活物質層が積層されたリチウムイオン二次電池用電極であって、
前記活物質層は、
前記集電体の面方向に低空隙率領域と高空隙率領域とを有し、
前記高空隙率領域の層厚が前記粒状活物質の平均粒径の1〜10倍の範囲で、
且つ、前記低空隙率領域と前記高空隙率領域との密度の差が0.2〜0.7g/cmの範囲であることを特徴とするリチウムイオン二次電池用電極。
An electrode for a lithium ion secondary battery in which an active material layer containing a granular active material, a binder, and a conductive additive is laminated on the surface of a current collector,
The active material layer is
Having a low porosity region and a high porosity region in the surface direction of the current collector,
In the range where the layer thickness of the high porosity region is 1 to 10 times the average particle size of the granular active material,
And the difference in the density of the said low-porosity area | region and the said high-porosity area | region is the range of 0.2-0.7 g / cm < 3 >, The electrode for lithium ion secondary batteries characterized by the above-mentioned.
前記高空隙率領域が前記集電体の面方向の端部から中心部まで連続して形成されていることを特徴とする請求項1に記載のリチウムイオン二次電池用電極。   2. The electrode for a lithium ion secondary battery according to claim 1, wherein the high porosity region is continuously formed from an end portion in a plane direction of the current collector to a central portion. 前記活物質層の最表面を占める前記高空隙率領域の面積は前記低空隙率領域の面積より小さいことを特徴とする請求項1または2に記載のリチウムイオン二次電池用電極。   The electrode for a lithium ion secondary battery according to claim 1 or 2, wherein an area of the high porosity region occupying the outermost surface of the active material layer is smaller than an area of the low porosity region. 前記集電体の厚み方向に対して、面積率の異なる前記低空隙率領域と前記高空隙率領域からなる活物質層が多層に積層されてなることを特徴とする請求項1〜3のいずれかに記載のリチウムイオン二次電池用電極。   The active material layer which consists of the said low-porosity area | region from which the area ratio differs, and the said high porosity area | region with respect to the thickness direction of the said electrical power collector is laminated | stacked in multiple layers, The any one of Claims 1-3 characterized by the above-mentioned. An electrode for a lithium ion secondary battery according to claim 1. 前記高空隙率領域の左右上下に隣接する前記低空隙率領域同士の間隔が1mm以下であることを特徴とする請求項1〜4のいずれかに記載のリチウムイオン二次電池用電極。   The electrode for a lithium ion secondary battery according to any one of claims 1 to 4, wherein an interval between the low porosity regions adjacent to the left and right and up and down of the high porosity region is 1 mm or less. 前記粒状活物質の平均粒径が15μm以下であることを特徴とする請求項1〜5のいずれかに記載のリチウムイオン二次電池用電極。   6. The electrode for a lithium ion secondary battery according to claim 1, wherein the granular active material has an average particle size of 15 [mu] m or less. 請求項1〜6のいずれかに記載のリチウムイオン二次電池用電極を用いたことを特徴とするリチウムイオン二次電池。   A lithium ion secondary battery using the electrode for a lithium ion secondary battery according to claim 1. 前記リチウムイオン二次電池用電極が捲回され、且つ、電極面中央から捲回方向と垂直の電極端部へ向けて連続した高空隙率領域を有していることを特徴とする請求項7に記載のリチウムイオン二次電池。   The electrode for a lithium ion secondary battery is wound, and has a high porosity region continuous from the center of the electrode surface toward the electrode end perpendicular to the winding direction. The lithium ion secondary battery described in 1.
JP2014184010A 2014-09-10 2014-09-10 Electrode for lithium ion secondary battery and lithium ion secondary battery Pending JP2016058247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014184010A JP2016058247A (en) 2014-09-10 2014-09-10 Electrode for lithium ion secondary battery and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014184010A JP2016058247A (en) 2014-09-10 2014-09-10 Electrode for lithium ion secondary battery and lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2016058247A true JP2016058247A (en) 2016-04-21

Family

ID=55758807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014184010A Pending JP2016058247A (en) 2014-09-10 2014-09-10 Electrode for lithium ion secondary battery and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2016058247A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180241043A1 (en) * 2017-02-23 2018-08-23 Panasonic Intellectual Property Management Co., Lt Lithium-ion secondary battery and method of manufacture thereof
JPWO2017217319A1 (en) * 2016-06-13 2018-12-06 株式会社村田製作所 Lithium ion secondary battery
JP2019507460A (en) * 2016-07-04 2019-03-14 エルジー・ケム・リミテッド A negative electrode and a secondary battery including the negative electrode
CN109509867A (en) * 2018-12-29 2019-03-22 长虹三杰新能源有限公司 A kind of electrodes of lithium-ion batteries
WO2019193882A1 (en) * 2018-04-06 2019-10-10 パナソニックIpマネジメント株式会社 Electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN113196518A (en) * 2018-11-13 2021-07-30 日本汽车能源株式会社 Lithium ion secondary battery and method for manufacturing same
CN114300652A (en) * 2022-01-06 2022-04-08 中化国际(控股)股份有限公司 Electrode pole piece, preparation method and application thereof
JP2022539769A (en) * 2019-06-28 2022-09-13 寧徳時代新能源科技股▲分▼有限公司 Electrode sheet, electrochemical device and its device
WO2023079974A1 (en) * 2021-11-05 2023-05-11 株式会社村田製作所 Secondary battery electrode and method for manufacturing the secondary battery electrode
WO2024067363A1 (en) * 2022-09-28 2024-04-04 宁德时代新能源科技股份有限公司 Negative electrode sheet and preparation method therefor, secondary battery, battery pack and electrical device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08138650A (en) * 1994-11-01 1996-05-31 Dainippon Ink & Chem Inc Carbonaceous electrode plate for non-aqueous electrolyte secondary battery and secondary battery
JP2013051209A (en) * 2012-11-06 2013-03-14 Nissan Motor Co Ltd Electrode for battery
JP2013251213A (en) * 2012-06-04 2013-12-12 Hitachi Ltd Negative electrode for lithium ion secondary battery, lithium ion secondary battery with negative electrode for lithium ion secondary battery, and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08138650A (en) * 1994-11-01 1996-05-31 Dainippon Ink & Chem Inc Carbonaceous electrode plate for non-aqueous electrolyte secondary battery and secondary battery
JP2013251213A (en) * 2012-06-04 2013-12-12 Hitachi Ltd Negative electrode for lithium ion secondary battery, lithium ion secondary battery with negative electrode for lithium ion secondary battery, and manufacturing method thereof
JP2013051209A (en) * 2012-11-06 2013-03-14 Nissan Motor Co Ltd Electrode for battery

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017217319A1 (en) * 2016-06-13 2018-12-06 株式会社村田製作所 Lithium ion secondary battery
JP2019507460A (en) * 2016-07-04 2019-03-14 エルジー・ケム・リミテッド A negative electrode and a secondary battery including the negative electrode
US11043692B2 (en) 2016-07-04 2021-06-22 Lg Chem, Ltd. Negative electrode and secondary battery including the same
US10847803B2 (en) * 2017-02-23 2020-11-24 Panasonic Intellectual Property Management Co., Ltd. Lithium-ion secondary battery and method of manufacture thereof
JP2018137187A (en) * 2017-02-23 2018-08-30 パナソニックIpマネジメント株式会社 Lithium ion secondary battery and method for manufacturing the same
CN108511787A (en) * 2017-02-23 2018-09-07 松下知识产权经营株式会社 Lithium rechargeable battery and its manufacturing method
US20180241043A1 (en) * 2017-02-23 2018-08-23 Panasonic Intellectual Property Management Co., Lt Lithium-ion secondary battery and method of manufacture thereof
CN108511787B (en) * 2017-02-23 2022-07-26 松下知识产权经营株式会社 Lithium ion secondary battery and method for manufacturing same
WO2019193882A1 (en) * 2018-04-06 2019-10-10 パナソニックIpマネジメント株式会社 Electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US20210013482A1 (en) * 2018-04-06 2021-01-14 Panasonic Intellectual Property Management Co., Ltd. Electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JPWO2019193882A1 (en) * 2018-04-06 2021-04-08 パナソニックIpマネジメント株式会社 Electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN111971820A (en) * 2018-04-06 2020-11-20 松下知识产权经营株式会社 Electrode plate for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP7454795B2 (en) 2018-04-06 2024-03-25 パナソニックIpマネジメント株式会社 Electrode plates for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
CN113196518A (en) * 2018-11-13 2021-07-30 日本汽车能源株式会社 Lithium ion secondary battery and method for manufacturing same
CN113196518B (en) * 2018-11-13 2023-08-01 日本汽车能源株式会社 Lithium ion secondary battery and method for manufacturing same
CN109509867A (en) * 2018-12-29 2019-03-22 长虹三杰新能源有限公司 A kind of electrodes of lithium-ion batteries
JP2022539769A (en) * 2019-06-28 2022-09-13 寧徳時代新能源科技股▲分▼有限公司 Electrode sheet, electrochemical device and its device
JP7430737B2 (en) 2019-06-28 2024-02-13 寧徳時代新能源科技股▲分▼有限公司 Electrode sheets, electrochemical devices and their devices
WO2023079974A1 (en) * 2021-11-05 2023-05-11 株式会社村田製作所 Secondary battery electrode and method for manufacturing the secondary battery electrode
CN114300652A (en) * 2022-01-06 2022-04-08 中化国际(控股)股份有限公司 Electrode pole piece, preparation method and application thereof
WO2024067363A1 (en) * 2022-09-28 2024-04-04 宁德时代新能源科技股份有限公司 Negative electrode sheet and preparation method therefor, secondary battery, battery pack and electrical device

Similar Documents

Publication Publication Date Title
US10749179B2 (en) Graphite-based negative electrode active material, negative electrode, and lithium ion secondary battery
JP2016058247A (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
JPWO2016035289A1 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US20180294514A1 (en) Lithium ion secondary battery and method for manufacturing the same
JP2014199714A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US9673446B2 (en) Lithium ion secondary battery containing a negative electrode material layer containing Si and O as constituent elements
KR20150070971A (en) Lithium ion secondary battery
JP2014179240A (en) Positive electrode and battery
JP6609946B2 (en) Lithium ion secondary battery electrode, method for producing the same, and lithium ion secondary battery
US10840508B2 (en) Lithium ion secondary battery
JP2019140054A (en) Positive electrode and non-aqueous electrolyte secondary battery
JP2015037008A (en) Electrode active material layer for nonaqueous electrolyte secondary battery, and method for manufacturing the same
CN113097446A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2012181978A (en) Nonaqueous electrolyte battery
JP2015056311A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP2014165038A (en) Electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
US11349125B2 (en) Spacer included electrodes structure and its application for high energy density and fast chargeable lithium ion batteries
WO2018135253A1 (en) Positive electrode active substance, positive electrode, and lithium ion secondary cell
US20190067729A1 (en) Lithium ion electrochemical devices having excess electrolyte capacity to improve lifetime
JP6709991B2 (en) Lithium ion secondary battery
CN113097447A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2012113870A (en) Electrode for secondary battery, secondary battery, and manufacturing method of electrode for secondary battery
JP2010027386A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery including the same
EP3358652B1 (en) Positive electrode for lithium-ion secondary cell, and lithium-ion secondary cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181030