JP2014211946A - Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same - Google Patents

Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same Download PDF

Info

Publication number
JP2014211946A
JP2014211946A JP2011187209A JP2011187209A JP2014211946A JP 2014211946 A JP2014211946 A JP 2014211946A JP 2011187209 A JP2011187209 A JP 2011187209A JP 2011187209 A JP2011187209 A JP 2011187209A JP 2014211946 A JP2014211946 A JP 2014211946A
Authority
JP
Japan
Prior art keywords
mixture layer
negative electrode
electrode plate
secondary battery
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011187209A
Other languages
Japanese (ja)
Inventor
元貴 衣川
Motoki Kinugawa
元貴 衣川
智文 柳
Tomofumi Yanagi
智文 柳
渡邉 耕三
Kozo Watanabe
耕三 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011187209A priority Critical patent/JP2014211946A/en
Priority to PCT/JP2012/005440 priority patent/WO2013031211A1/en
Publication of JP2014211946A publication Critical patent/JP2014211946A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous secondary battery securing a liquid-injection passage to a mixture layer 13, improving impregnation properties of a nonaqueous electrolyte into the mixture layer 13 and liquid-retaining properties, and capable of achieving high capacity and improvement in productivity.SOLUTION: There is provided a nonaqueous secondary battery in which a liquid-injection passage to a mixture layer 13 is secured, an impregnation properties of a nonaqueous electrolyte into the mixture layer 13 and liquid-retaining properties are improved, and also battery capacity and productivity can be improved by making the thickness of an end of the mixture layer 13 thinner than that of a part other than the end of the mixture layer 13, and covering a surface of the mixture layer 13 with a surface layer 14 having lower impregnation properties than the mixture layer 13 so that at least a part of the end of the mixture layer 13 is exposed.

Description

本発明は、リチウムイオン電池に代表される非水系二次電池用電極板およびこれを用いた非水系二次電池に関するものである。   The present invention relates to an electrode plate for a non-aqueous secondary battery represented by a lithium ion battery and a non-aqueous secondary battery using the same.

近年、電気自動車用の電源として利用が広がりつつあるリチウムイオン二次電池は、負極板にリチウムの吸蔵・放出が可能な炭素質材料等を用い、正極板にLiCoO等の遷移金属とリチウム含有複合酸化物を正極活物質として用いており、これによって、高電位で高放電容量の二次電池を実現しているが、近年の電気自動車用電源の需要増加に伴ってさらなる高容量化、長寿命化、高安全性が望まれている。 In recent years, lithium ion secondary batteries, which are increasingly used as power sources for electric vehicles, use a carbonaceous material capable of occluding and releasing lithium in the negative electrode plate, and contain a transition metal such as LiCoO 2 and lithium in the positive electrode plate The composite oxide is used as the positive electrode active material, and as a result, a secondary battery with a high potential and a high discharge capacity is realized. Life expectancy and high safety are desired.

ここで、高容量化、長寿命化、高安全性電池を実現するための電極板としては、正極板および負極板ともに各々の構成材料を塗料化した電極合剤塗料を集電体の上に塗布する方法が用いられており、さらには合剤層を複数層塗布する方法も提案されている。   Here, as an electrode plate for realizing a high capacity, long life, and high safety battery, an electrode mixture paint made by coating each constituent material on both the positive electrode plate and the negative electrode plate is placed on the current collector. The method of apply | coating is used, Furthermore, the method of apply | coating multiple layers of mixture layers is also proposed.

この際、複数層塗布する表面層の材料特性によって、一層の長寿命化、高安全性が可能となる。   At this time, a longer life and higher safety can be achieved depending on the material properties of the surface layer to be applied.

一方で、上記のように集電体に合剤層を塗布する際に、合剤層の端部がペーストの表面張力により盛上りが形成されるため、盛り上がり端部の位置を規定することで、内部短絡を防止する方法が提案されている。(例えば、特許文献1参照)。   On the other hand, when the mixture layer is applied to the current collector as described above, the end portion of the mixture layer is swelled by the surface tension of the paste. A method for preventing an internal short circuit has been proposed. (For example, refer to Patent Document 1).

特開2010−262773号公報JP 2010-262773 A

しかしながら、上述した特許文献1に示される従来技術では、盛り上がった合剤層の端部とセパレータとの間に形成される電解液の注液路は、合剤層の端部の盛上りによって狭くなり、合剤層の中央部への電解液の含侵性を阻害するという課題を有していた。また、盛り上がった合剤層の端部の位置を規定しなければならず、非水系二次電池の生産性が低下するという課題も有していた。   However, in the conventional technique shown in Patent Document 1 described above, the electrolyte injection path formed between the end of the raised mixture layer and the separator is narrowed by the rise of the end of the mixture layer. Therefore, there was a problem of inhibiting the impregnation of the electrolytic solution into the central portion of the mixture layer. In addition, the position of the end portion of the raised mixture layer has to be defined, which has a problem that the productivity of the non-aqueous secondary battery is lowered.

本発明は前記従来の課題を解決するもので、合剤層の端部の厚みを前記合剤層の端部以外の厚みよりも薄くし、かつ、少なくとも前記合剤層の端部の一部を露出するように、前記合剤層の表面を、前記合剤層よりも含侵性の低い表面層で覆ったことで、合剤層への注液路を確保し、合剤層への非水電解液の含浸性と保液性を向上させるとともに、電池容量や生産性を向上できる非水系二次電池を提供することを目的としている。   The present invention solves the above-mentioned conventional problems, and makes the thickness of the end portion of the mixture layer thinner than the thickness other than the end portion of the mixture layer, and at least a part of the end portion of the mixture layer The surface of the mixture layer is covered with a surface layer having a lower impregnation property than the mixture layer so as to expose the mixture layer, and a liquid injection path to the mixture layer is secured. An object of the present invention is to provide a non-aqueous secondary battery that can improve the impregnation property and liquid retention property of a non-aqueous electrolyte and improve battery capacity and productivity.

上記目的を達成するために本発明の非水系二次電池用電極板およびこれを用いた非水系二次電池は、集電体の表面に活物質を含む合剤層を形成した電池用電極板において、前記合剤層の端部の厚みを前記合剤層の端部以外の厚みよりも薄くし、かつ、少なくとも前記合剤層の端部の一部を露出するように、前記合剤層の表面を、前記合剤層よりも含侵性の低い表面層で覆ったことを特徴とする。   In order to achieve the above object, an electrode plate for a non-aqueous secondary battery and a non-aqueous secondary battery using the same according to the present invention are obtained by forming a mixture layer containing an active material on the surface of a current collector. The mixture layer is formed so that the end portion of the mixture layer is thinner than the end portion of the mixture layer and at least a part of the end portion of the mixture layer is exposed. The surface is covered with a surface layer having a lower impregnation property than the mixture layer.

本発明によれば、合剤層への非水電解液の含浸性と保液性を向上させるとともに、電池容量と生産性を向上できる。   ADVANTAGE OF THE INVENTION According to this invention, while improving the impregnation property and liquid retention property of the non-aqueous electrolyte to a mixture layer, battery capacity and productivity can be improved.

本発明の実施の形態1における非水系二次電池の一部切欠斜視図1 is a partially cutaway perspective view of a nonaqueous secondary battery according to Embodiment 1 of the present invention. 本発明の実施の形態1における非水系二次電池用電極板の断面の模式図Schematic diagram of a cross section of the electrode plate for a non-aqueous secondary battery in Embodiment 1 of the present invention. 本発明の実施の形態1における非水系二次電池用電極板の表面の模式図Schematic diagram of the surface of the electrode plate for a non-aqueous secondary battery in Embodiment 1 of the present invention 本発明の実施の形態2における非水系二次電池用電極板の断面の模式図Schematic diagram of a cross section of the electrode plate for a non-aqueous secondary battery in Embodiment 2 of the present invention. 本発明の他の実施の形態における非水系二次電池用電極板の表面の模式図The schematic diagram of the surface of the electrode plate for non-aqueous secondary batteries in other embodiment of this invention 比較例における非水系二次電池用電極板の断面の模式図Schematic diagram of cross section of electrode plate for non-aqueous secondary battery in comparative example

本発明の第1の発明は、集電体の表面に活物質を含む合剤層を形成した電池用電極板において、前記合剤層の端部の厚みを前記合剤層の端部以外の厚みよりも薄くし、かつ、少なくとも前記合剤層の端部の一部を露出するように、前記合剤層の表面を、前記合剤層よりも含侵性の低い表面層で覆ったことにより、合剤層への非水電解液の含浸性と保液性を良化させることができる。また、合剤層端部に盛り上がりがないため、合剤層の端部の位置を規定する必要がなく、非水系二次電池の生産性を向上することができる。   1st invention of this invention is the electrode plate for batteries which formed the mixture layer containing an active material on the surface of a collector, The thickness of the edge part of the said mixture layer is other than the edge part of the said mixture layer The surface of the mixture layer was covered with a surface layer having a lower impregnation property than the mixture layer so as to be thinner than the thickness and to expose at least a part of the end portion of the mixture layer. As a result, it is possible to improve the impregnation property and liquid retention property of the nonaqueous electrolytic solution into the mixture layer. In addition, since there is no rise at the end portion of the mixture layer, it is not necessary to define the position of the end portion of the mixture layer, and the productivity of the nonaqueous secondary battery can be improved.

本発明の第2の発明は、前記合剤層の端部の厚みを、前記合剤層の端部に向かうにつれて薄くすることにより、合剤層への非水電解液の含浸性と保液性を向上させるとともに、電池容量と生産性を向上できる。
本発明の第3の発明は、合剤層の電極板長手方向の両端部もしくは前記両端部のどちらか一方の端部を露出させることで、合剤層への非水電解液の含浸性と保液性を良化させるとともに、電池容量と生産性を向上できる。
According to a second aspect of the present invention, the thickness of the end portion of the mixture layer is reduced toward the end portion of the mixture layer, thereby impregnating the non-aqueous electrolyte into the mixture layer and retaining the liquid. Battery capacity and productivity can be improved.
According to a third aspect of the present invention, by exposing either one end of the mixture layer in the longitudinal direction of the electrode plate or the both ends, the impregnation property of the non-aqueous electrolyte into the mixture layer While improving liquid retention, battery capacity and productivity can be improved.

本発明の第4の発明は、合剤層の電極板幅方向の両端部もしくは前記両端部のどちらか一方の端部を露出させることで、合剤層への非水電解液の含浸性と保液性を良化させるとともに、電池容量と生産性を向上できる。   According to a fourth aspect of the present invention, the mixture layer is impregnated with the nonaqueous electrolyte solution by exposing either one of the both end portions of the mixture layer in the electrode plate width direction or the both end portions. While improving liquid retention, battery capacity and productivity can be improved.

本発明の第5の発明は、表面層に合剤層の活物質とは異なるリチウムニッケル酸複合酸化物などのニッケル系複合酸化物、リチウムコバルト酸複合酸化物などのコバルト系複合酸化物、コバルト酸ナノ粒子、コバルト酸窒化物、リチウムマンガン酸複合酸化物などのマンガン系複合酸化物、リチウムクロム酸複合酸化物などのクロム系複合酸化物、リチウムリン酸鉄複合酸化物などのリン酸鉄系複合酸化物、五酸化バナジウムなどのバナジウム系複合酸化物、グラファイト、ハードカーボン、リチウムチタン複合酸化物などのチタン系複合酸化物、酸化スズガラス、シリカ系合金組成材料、金属リチウムのいずれかを用いることによって、電極板表面でのリチウムの反応性を向上させるとともに非水電解液の含浸性と保液性を良化させ、高容量化と生産性にすぐれた電極板を得ることができる。   According to a fifth aspect of the present invention, the surface layer is different from the active material of the mixture layer in a nickel-based composite oxide such as a lithium nickel acid composite oxide, a cobalt-based composite oxide such as a lithium cobalt acid composite oxide, cobalt Manganese complex oxides such as acid nanoparticles, cobalt oxynitrides, lithium manganate complex oxides, chromium complex oxides such as lithium chromate complex oxides, iron phosphates such as lithium iron phosphate complex oxides Use one of complex oxides, vanadium-based complex oxides such as vanadium pentoxide, titanium-based complex oxides such as graphite, hard carbon, and lithium-titanium complex oxides, tin oxide glass, silica-based alloy composition materials, and metallic lithium. This improves the reactivity of lithium on the electrode plate surface and improves the impregnation and liquid retention of non-aqueous electrolyte. It is possible to obtain excellent electrode plate of the productivity.

本発明の第6の発明は、少なくともリチウム含有複合酸化物よりなる正極活物質と導電材および結着材を分散媒にて混練分散した正極合剤塗料を正極集電体の上に付着させて正極合剤層を形成した正極板と少なくともリチウムを保持しうる材料よりなる負極活物質を負極集電体の上に担持した負極板との間に多孔質絶縁体を介在させ積層または渦巻状に捲回して構成した電極群を非水系電解液とともに電池ケースに封入した非水系二次電池であって、電極板に第1〜5のいずれかの発明に記載の非水系二次電池用電極板を用いたことにより、合剤層への非水電解液の含浸性と保液性を良化させるとともに、電池容量と生産性を向上できる。   According to a sixth aspect of the present invention, a positive electrode mixture coating material obtained by kneading and dispersing at least a positive electrode active material comprising a lithium-containing composite oxide, a conductive material, and a binder with a dispersion medium is adhered onto a positive electrode current collector. A porous insulator is interposed between the positive electrode plate on which the positive electrode mixture layer is formed and the negative electrode plate on which a negative electrode active material made of a material capable of holding at least lithium is supported. A non-aqueous secondary battery in which an electrode group formed by winding is enclosed in a battery case together with a non-aqueous electrolyte, and the electrode plate is a non-aqueous secondary battery electrode according to any one of the first to fifth inventions By using the plate, it is possible to improve the impregnation property and liquid retention property of the non-aqueous electrolyte into the mixture layer, and improve the battery capacity and productivity.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
(実施の形態1)
図1は本発明における非水系二次電池の一例としての円筒形リチウムイオン二次電池11の一部切欠斜視図を示すものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
(Embodiment 1)
FIG. 1 is a partially cutaway perspective view of a cylindrical lithium ion secondary battery 11 as an example of a non-aqueous secondary battery in the present invention.

円筒形リチウムイオン二次電池11は、リチウム含有複合酸化物を正極活物質とする正極板1と、リチウムを保持しうる材料を負極活物質とする負極板2とを多孔質絶縁体3としてのセパレータを介して渦巻状に巻回して電極群4が作製される。   A cylindrical lithium ion secondary battery 11 includes a positive electrode plate 1 using a lithium-containing composite oxide as a positive electrode active material and a negative electrode plate 2 using a material capable of holding lithium as a negative electrode active material as a porous insulator 3. The electrode group 4 is produced by spirally winding the separator.

電極群4は、外装体である有底円筒形の電池ケース5の内部に絶縁板6により電池ケース5とは絶縁されて収容される一方で、電極群4の下部より導出した負極リード7が電池ケース5の底部に接続されるとともに、電極群4の上部より導出した正極リード8が封口板9に接続される。この渦巻状の電極群4を有底円筒形の電池ケース5の内部に収容し、次いでこの電池ケース5に所定量の非水溶媒からなる非水電解液を注液した後、電池ケース5の開口部にガスケット10を周縁に取り付けた封口板9を挿入し、電池ケース5の開口部を内方向に折り曲げて封口している。その際、電極群4と電池ケース5の間および電極群4の中心部分に隙間が形成されている。   The electrode group 4 is housed inside a bottomed cylindrical battery case 5 that is an exterior body, insulated from the battery case 5 by an insulating plate 6, while a negative electrode lead 7 led out from the lower part of the electrode group 4 is provided. The positive electrode lead 8 led out from the upper part of the electrode group 4 is connected to the sealing plate 9 while being connected to the bottom of the battery case 5. The spiral electrode group 4 is housed inside a bottomed cylindrical battery case 5, and then a non-aqueous electrolyte composed of a predetermined amount of a non-aqueous solvent is injected into the battery case 5. A sealing plate 9 with a gasket 10 attached to the periphery is inserted into the opening, and the opening of the battery case 5 is folded inward to seal it. At that time, a gap is formed between the electrode group 4 and the battery case 5 and in the central portion of the electrode group 4.

図2は本発明の一実施の形態における非水系二次電池用負極板2の断面の模式図を示すものである。さらに図3は本発明の一実施の形態における非水系二次電池用負極板2の表面の模式図を示すものである。
負極板2は、負極集電体12の表面に、負極合剤層13を形成してなる。この際、負極合剤層13の負極板長手方向の両端部の厚みは、負極合剤層13の端部に向かうにつれて薄くなるように構成され、図2に示すように、負極合剤層13の端部に向って薄くなる長さXは負極合剤層13の厚みZに対する比率が1以下になるように構成されている。ここで、負極合剤層13の端部とは、負極合剤層13を負極集電体12に塗り始めまたは塗り終わった位置から20mm以下の部分をいう。
FIG. 2 shows a schematic view of a cross section of the negative electrode plate 2 for a non-aqueous secondary battery in one embodiment of the present invention. FIG. 3 is a schematic view of the surface of the negative electrode plate 2 for a non-aqueous secondary battery in one embodiment of the present invention.
The negative electrode plate 2 is formed by forming a negative electrode mixture layer 13 on the surface of the negative electrode current collector 12. At this time, the thickness of both ends of the negative electrode mixture layer 13 in the longitudinal direction of the negative electrode plate is configured so as to become thinner toward the end of the negative electrode mixture layer 13, and as shown in FIG. The length X that becomes thinner toward the end of the negative electrode mixture layer 13 is configured such that the ratio to the thickness Z of the negative electrode mixture layer 13 is 1 or less. Here, the end portion of the negative electrode mixture layer 13 refers to a portion of 20 mm or less from the position at which the negative electrode mixture layer 13 starts to be applied to the negative electrode current collector 12 or has been applied.

そして、負極合剤層13の両端部を完全に露出するように、負極合剤層13の両端部を除く表面を、負極合剤層13よりも含侵性の低い表面層14で覆うように、表面層14の塗布開始位置YはXよりも大きくなるように構成されている。すなわち、負極合剤層13の端部表面を除く負極合剤層13の表面に、負極合剤層13よりも含侵性の低い表面層を塗布して、表面層14から負極合剤層13の表面を一部露出するように構成する。そして、負極合剤層13の外周側端部近傍の負極集電体12上に、負極リード7が接合されている。   Then, the surface excluding both ends of the negative electrode mixture layer 13 is covered with a surface layer 14 having a lower impregnation property than the negative electrode mixture layer 13 so that both ends of the negative electrode mixture layer 13 are completely exposed. The application start position Y of the surface layer 14 is configured to be larger than X. That is, a surface layer having a lower impregnation property than the negative electrode mixture layer 13 is applied to the surface of the negative electrode mixture layer 13 excluding the surface of the end portion of the negative electrode mixture layer 13. A part of the surface is exposed. The negative electrode lead 7 is bonded onto the negative electrode current collector 12 in the vicinity of the outer peripheral side end of the negative electrode mixture layer 13.

負極活物質としては各種天然黒鉛および人造黒鉛、シリサイドなどのシリコン系複合材料、および各種合金組成材料を用いることができる。   As the negative electrode active material, various natural graphites and artificial graphites, silicon-based composite materials such as silicide, and various alloy composition materials can be used.

負極用結着材としてはPVdFおよびその変性体をはじめ各種バインダーを用いることができるが、リチウムイオン受入れ性向上の観点から、スチレン−ブタジエン共重合体ゴム粒子(SBR)およびその変性体に、カルボキシメチルセルロース(CMC)をはじめとするセルロース系樹脂等を併用したり少量添加するのがより好ましいといえる。   Various binders such as PVdF and modified products thereof can be used as the binder for the negative electrode. From the viewpoint of improving lithium ion acceptability, styrene-butadiene copolymer rubber particles (SBR) and modified products thereof are added to carboxy. It can be said that it is more preferable to use a cellulose resin such as methylcellulose (CMC) or the like in combination or to add a small amount.

次に表面層14の活物質と導電剤および結着材を適切な分散媒中に入れ、プラネタリーミキサー等の分散機により混合分散して、負極合剤層13への塗布に最適な粘度に調整して混練を行い、表面層に塗布する塗料を作製した。   Next, the active material of the surface layer 14, the conductive agent, and the binder are put in an appropriate dispersion medium, and mixed and dispersed by a dispersing machine such as a planetary mixer to obtain an optimum viscosity for application to the negative electrode mixture layer 13. Adjustment was performed and kneading was performed to prepare a paint to be applied to the surface layer.

表面層14の活物質として、リチウムチタン複合酸化物などのチタン系複合酸化物およ
び各種合金組成材料を用いることができる。
一方、表面層結着材としては負極結着材と同様にPVdFおよびその変性体をはじめ各種バインダーを用いることができるが、リチウムイオン受入れ性向上の観点から、スチレン−ブタジエン共重合体ゴム粒子(SBR)およびその変性体に、カルボキシメチルセルロース(CMC)をはじめとするセルロース系樹脂等を併用したり少量添加するのがより好ましいといえる。
As the active material of the surface layer 14, titanium-based composite oxides such as lithium titanium composite oxide and various alloy composition materials can be used.
On the other hand, as the surface layer binder, PVdF and its various modified binders can be used in the same manner as the negative electrode binder. From the viewpoint of improving lithium ion acceptability, styrene-butadiene copolymer rubber particles ( It can be said that it is more preferable to use a cellulosic resin including carboxymethyl cellulose (CMC) or the like in combination with SBR) or a modified product thereof or to add a small amount thereof.

このときの導電材としては、例えばアセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラックやカーボンナノチューブ、VGCFなど各種グラファイトを単独、あるいは組み合わせて用いても良い。   As the conductive material at this time, for example, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and various graphites such as carbon nanotubes and VGCF may be used alone or in combination.

上記のように作製した負極合剤塗料と表面層塗料を銅箔の負極集電体12の上に負極合剤層13を塗布し、さらに負極合剤層13の表面にダイコーターにて表面層14を塗布乾燥後プレスにて所定厚みまで圧縮し、所定の負極板2を得ることができる。そして、群構成する際の電極群の外側の前記負極合剤層の端部近傍の集電体12上に、負極リード7を接合する。   The negative electrode mixture paint and the surface layer paint produced as described above were applied on the negative electrode current collector 12 made of copper foil, and the surface layer of the negative electrode mixture layer 13 was further coated with a die coater. 14 is applied and dried, and then compressed to a predetermined thickness by a press, whereby a predetermined negative electrode plate 2 can be obtained. And the negative electrode lead 7 is joined on the collector 12 near the edge part of the said negative mix layer outside the electrode group at the time of carrying out a group structure.

正極板1については、正極活物質として、例えばコバルト酸リチウムおよびその変性体(コバルト酸リチウムにアルミニウムやマグネシウムを固溶させたものなど)、ニッケル酸リチウムおよびその変性体(一部ニッケルをコバルト置換させたものなど)、マンガン酸リチウムおよびその変性体などの複合酸化物を挙げることができる。   For the positive electrode plate 1, as the positive electrode active material, for example, lithium cobaltate and modified products thereof (such as lithium cobaltate in which aluminum or magnesium is dissolved), lithium nickelate and modified products thereof (partially nickel is substituted with cobalt) And composite oxides such as lithium manganate and modified products thereof.

このときの導電材としては、例えばアセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック、各種グラファイトを単独、あるいは組み合わせて用いても良い。   As the conductive material at this time, for example, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black, and various graphites may be used alone or in combination.

また、正極用結着材としては、例えばポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデンの変性体、ポリテトラフルオロエチレン(PTFE)、アクリレート単位を有するゴム粒子結着材などを用いることができ、この際に反応性官能基を導入したアクリレートモノマー、またはアクリレートオリゴマーを結着材中に混入させることも可能である。   As the positive electrode binder, for example, polyvinylidene fluoride (PVdF), a modified polyvinylidene fluoride, polytetrafluoroethylene (PTFE), a rubber particle binder having an acrylate unit, and the like can be used. In this case, an acrylate monomer or an acrylate oligomer into which a reactive functional group is introduced may be mixed in the binder.

非水電解液については、電解質塩としてLiPFおよびLiBFなどの各種リチウム化合物を用いることができる。また溶媒としてエチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)を単独および組み合わせて用いることができる。また正負極板上に良好な皮膜を形成させたり、過充電時の安定性を保証するために、ビニレンカーボネート(VC)やシクロヘキシルベンゼン(CHB)およびその変性体を用いることも好ましい。
多孔質絶縁体3としてのセパレータについては、リチウムイオン二次電池の使用範囲に耐えうる組成であれば特に限定されないが、ポリエチレン・ポリプロピレンなどのオレフィン系樹脂の微多孔フィルムを、単一あるいは複合して用いるのが一般的でありまた態様として好ましい。この多孔質絶縁体3としてのセパレータの厚みは特に限定されないが、10〜25μmとすれば良い。
For the non-aqueous electrolyte, various lithium compounds such as LiPF 6 and LiBF 4 can be used as the electrolyte salt. Further, ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and methyl ethyl carbonate (MEC) can be used alone or in combination as a solvent. It is also preferable to use vinylene carbonate (VC), cyclohexylbenzene (CHB), and modified products thereof in order to form a good film on the positive and negative electrode plates and to ensure stability during overcharge.
The separator as the porous insulator 3 is not particularly limited as long as it has a composition that can withstand the range of use of the lithium ion secondary battery. However, a microporous film of an olefin-based resin such as polyethylene / polypropylene can be used alone or in combination. It is generally used as a preferred embodiment. The thickness of the separator as the porous insulator 3 is not particularly limited, but may be 10 to 25 μm.

以上のように構成された非水系二次電池について、以下、その動作、作用を説明する。非水系二次電池に注液された非水系電解液は、電極群4と電池ケース5の間および電極群4の中心部分に形成された隙間に注液されやすく、隙間に注液された非水系電解液は、負極合剤層13の電極群4の外周側端部および内周側端部の露出部分を介して、負極合剤層13の中央部へ含浸される。この際、負極合剤層13の電極群4の外周側端部および内周
側端部の厚みを、負極合剤層13の外周側端部および内周側端部以外の厚みよりも薄くし、負極合剤層13の電極群4の外周側端部および内周側端部は表面層14で覆っていないため、負極合剤層13の外周側端部および内周側端部とセパレータ3との間に形成される電解液の注液路を広く形成することができ、負極合剤層13の中央部への電解液の含侵を促進することができる。
About the non-aqueous secondary battery comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. The non-aqueous electrolyte injected into the non-aqueous secondary battery is easily injected into the gap formed between the electrode group 4 and the battery case 5 and in the central portion of the electrode group 4, and the non-aqueous electrolyte injected into the gap The aqueous electrolyte solution is impregnated into the central portion of the negative electrode mixture layer 13 through the exposed portions of the outer peripheral side end portion and the inner peripheral side end portion of the electrode group 4 of the negative electrode mixture layer 13. At this time, the thickness of the outer peripheral side end and the inner peripheral side end of the electrode group 4 of the negative electrode mixture layer 13 is made thinner than the thickness of the negative electrode mixture layer 13 other than the outer peripheral end and inner peripheral side end. Since the outer peripheral side end and inner peripheral side end of the electrode group 4 of the negative electrode mixture layer 13 are not covered with the surface layer 14, the outer peripheral side end and inner peripheral side end of the negative electrode mixture layer 13 and the separator 3. The electrolyte injection path formed between the two can be formed widely, and the impregnation of the electrolyte into the central portion of the negative electrode mixture layer 13 can be promoted.

また、負極合剤層13の中央部に含侵した非水系電解液は、負極合剤層13の表面を介して負極合剤層13の外部へ移動しようとするが、負極合剤層13の端部以外の負極合剤層13の表面は、負極合剤層13よりも含侵性の低い表面層14で覆われているため、一旦負極合剤層13内部に含浸された非水系電解液は容易に表面層14の外に物質移動せず、負極合剤層13内に保有されつづけて、液枯れを防止できる。   Further, the non-aqueous electrolyte solution impregnated in the central portion of the negative electrode mixture layer 13 tries to move to the outside of the negative electrode mixture layer 13 through the surface of the negative electrode mixture layer 13. Since the surface of the negative electrode mixture layer 13 other than the end portions is covered with a surface layer 14 that is less impregnated than the negative electrode mixture layer 13, the nonaqueous electrolytic solution once impregnated inside the negative electrode mixture layer 13. Does not easily move out of the surface layer 14 and can continue to be retained in the negative electrode mixture layer 13, thereby preventing liquid withering.

さらに、従来のような負極合剤層13の端部の盛り上がりはないため、生産性を向上できる。
(実施の形態2)
図4は本発明の第2の実施の形態における非水系二次電池用負極板2の断面の模式図である。負極板2は、負極集電体12の表面に、負極活物質を含む負極合剤層13を形成してなる。この際、実施の形態1と同様に、負極合剤層13の端部の厚みは、負極合剤層13の端部に向かうにつれて薄くなるように構成され、図4に示すように、負極合剤層13の端部に向って薄くなる長さXは負極合剤層13の厚みZに対する比率が1以下になるように構成されている。さらに、本実施の形態では、表面層14の塗布開始位置YはXよりも小さくなるように構成されている。すなわち、負極合剤層13の両端部表面の一部を除く合剤層13表面に、負極合剤層13よりも含侵性の低い表面層14を塗布して、表面層14から負極合剤層13表面の一部を露出するように構成する。以上のように構成された非水系二次電池用負極板は、実施の形態1と同様に、負極合剤層13への非水電解液の含浸性と保液性を向上させるとともに、電池容量と生産性を向上できる。
Furthermore, since there is no bulge of the edge part of the negative mix layer 13 like the past, productivity can be improved.
(Embodiment 2)
FIG. 4 is a schematic view of a cross section of the negative electrode plate 2 for a non-aqueous secondary battery according to the second embodiment of the present invention. The negative electrode plate 2 is formed by forming a negative electrode mixture layer 13 containing a negative electrode active material on the surface of a negative electrode current collector 12. At this time, as in the first embodiment, the thickness of the end portion of the negative electrode mixture layer 13 is configured to become thinner toward the end portion of the negative electrode mixture layer 13, and as shown in FIG. The length X that becomes thinner toward the end of the agent layer 13 is configured such that the ratio to the thickness Z of the negative electrode mixture layer 13 is 1 or less. Further, in the present embodiment, the application start position Y of the surface layer 14 is configured to be smaller than X. That is, a surface layer 14 having a lower impregnation property than the negative electrode mixture layer 13 is applied to the surface of the mixture layer 13 excluding a part of the surface of both end portions of the negative electrode mixture layer 13. A part of the surface of the layer 13 is exposed. The negative electrode plate for a non-aqueous secondary battery configured as described above improves the impregnation property and liquid retention property of the non-aqueous electrolyte solution into the negative electrode mixture layer 13 as in the first embodiment, and has a battery capacity. And improve productivity.

さらに、負極板長手方向の負極合剤層13の両端部の厚みは、両端部以外の部分よりも薄くなるように構成したが、図5で示すように、負極板2の幅方向の負極合剤層13の両端部の厚みを、両端部以外の部分よりも薄くなるように構成してもよい。この際、負極合剤層13を塗布した部分と、負極合剤層13を塗布していない部分を設け、負極集電体12の幅方向で負極合剤層13を塗布していない部分に負極リード7を接合してもよい。   Furthermore, although the thickness of the both ends of the negative electrode mixture layer 13 in the longitudinal direction of the negative electrode plate is configured to be thinner than the portions other than the both ends, the negative electrode mixture in the width direction of the negative electrode plate 2 as shown in FIG. You may comprise so that the thickness of the both ends of the agent layer 13 may become thinner than parts other than both ends. At this time, a portion where the negative electrode mixture layer 13 is applied and a portion where the negative electrode mixture layer 13 is not applied are provided, and the negative electrode mixture layer 13 is not applied in the width direction of the negative electrode current collector 12. The lead 7 may be joined.

本実施の形態では、正極板1と負極板2との間に多孔質絶縁体3を介在させ渦巻状に捲回して電極群4を形成したが、積層して電極群4を形成してもよい。   In the present embodiment, the electrode group 4 is formed by interposing the porous insulator 3 between the positive electrode plate 1 and the negative electrode plate 2 and winding it in a spiral shape. Good.

また、本実施の形態では、負極合剤層13の上に表面層14が形成されている例を示したが、表面層を形成するのは正負極いずれでもよい。   Further, in the present embodiment, the example in which the surface layer 14 is formed on the negative electrode mixture layer 13 is shown, but the positive and negative electrodes may be formed to form the surface layer.

以下、本発明における非水系二次電池用電極板2およびこれを用いた非水系二次電池の一実施の形態を示す。
(実施例1)
図2に示したものと同じ構造の負極板を用いた非水系二次電池11を作製した実施例1について説明する。
Hereinafter, an embodiment of a nonaqueous secondary battery electrode plate 2 and a nonaqueous secondary battery using the same according to the present invention will be described.
Example 1
Example 1 in which a nonaqueous secondary battery 11 using a negative electrode plate having the same structure as that shown in FIG. 2 was produced will be described.

まず、負極活物質として人造黒鉛を100重量部、結着材としてスチレン−ブタジエン共重合体ゴム粒子分散体(固形分40重量%)を負極活物質100重量部に対して2.5重量部(結着材の固形分換算で1重量部)、増粘剤としてカルボキシメチルセルロースを負極活物質100重量部に対して1重量部、および適量の水とともに双腕式練合機にて攪拌し、負極合剤塗料を作製した。さらに、表面層14の活物質としてリチウムチタン複合
酸化物を100重量部、結着材としてスチレン−ブタジエン共重合体ゴム粒子分散体(固形分40重量%)を表面層の活物質100重量部に対して2.5重量部(結着材の固形分換算で1重量部)、増粘剤としてカルボキシメチルセルロースを表面層14の活物質100重量部に対して1重量部、導電材としてアセチレンブラックを、表面層活物質100重量部に対して3.0重量部、および適量の水とともに双腕式練合機にて攪拌し、表面層塗料を作製した。これらの塗料をはじめに10μm厚の銅箔からなる負極集電体12に負極合剤塗料を塗布乾燥し、次いで負極合剤塗料の表層部に表面層塗料を負極合剤層100重量部に対して20重量部となるように塗布乾燥し、表面層厚み20μm、合剤層厚み180μm、総厚が200μmとなるようにプレスし、負極板2を作製した。
このとき、負極板長手方向の負極合剤層13の両端部の厚みは、負極合剤層13の端部に向かうにつれて薄くなるように構成するとともに、負極合剤層13の両端部表面を除く負極合剤層13の表面に、負極合剤層13よりも含侵性の低い表面層14を塗布して構成する。負極板長手方向の負極合剤層13の両端部の厚みは、負極合剤層13の端部に向って薄くなる長さXは塗布圧力の調整で500μmになるように設定し、合剤層厚み180μmとの比率が1以下になるように構成した。さらに、表面層14の塗布開始位置を700μmとすることで、負極合剤層13の両端部が露出するように塗布し、負極板2を得た。
First, 100 parts by weight of artificial graphite as a negative electrode active material, and 2.5 parts by weight of styrene-butadiene copolymer rubber particle dispersion (solid content 40% by weight) as a binder with respect to 100 parts by weight of the negative electrode active material ( 1 part by weight in terms of solid content of the binder), 1 part by weight of carboxymethyl cellulose as a thickener with respect to 100 parts by weight of the negative electrode active material, and an appropriate amount of water, and agitation in a double arm kneader. A mixture paint was prepared. Further, 100 parts by weight of lithium titanium composite oxide as the active material of the surface layer 14 and 100 parts by weight of the active material of the surface layer of styrene-butadiene copolymer rubber particle dispersion (solid content 40% by weight) as the binder. 2.5 parts by weight (1 part by weight in terms of solid content of the binder), carboxymethyl cellulose as a thickener, 1 part by weight with respect to 100 parts by weight of the active material of the surface layer 14, and acetylene black as a conductive material The mixture was stirred with a double-arm kneader together with 3.0 parts by weight of water and 100 parts by weight of the surface layer active material to prepare a surface layer paint. First, a negative electrode mixture paint is applied to and dried on a negative electrode current collector 12 made of a copper foil having a thickness of 10 μm, and then the surface layer paint is applied to the surface layer portion of the negative electrode mixture paint with respect to 100 parts by weight of the negative electrode mixture layer. It was coated and dried to 20 parts by weight, and pressed so that the surface layer thickness was 20 μm, the mixture layer thickness was 180 μm, and the total thickness was 200 μm, and the negative electrode plate 2 was produced.
At this time, the thickness of both end portions of the negative electrode mixture layer 13 in the longitudinal direction of the negative electrode plate is configured to become thinner toward the end portion of the negative electrode mixture layer 13, and the surface of both end portions of the negative electrode mixture layer 13 is excluded. A surface layer 14 having a lower impregnation property than the negative electrode mixture layer 13 is applied to the surface of the negative electrode mixture layer 13. The thickness of both ends of the negative electrode mixture layer 13 in the longitudinal direction of the negative electrode plate is set so that the length X that becomes thinner toward the end of the negative electrode mixture layer 13 becomes 500 μm by adjusting the coating pressure. The ratio with respect to the thickness of 180 μm was set to 1 or less. Furthermore, the application | coating start position of the surface layer 14 was 700 micrometers, and it apply | coated so that the both ends of the negative mix layer 13 might be exposed, and the negative electrode plate 2 was obtained.

一方、正極活物質としてコバルト酸リチウムを100重量部、導電材としてアセチレンブラックを正極活物質100重量部に対して2重量部、結着材としてポリフッ化ビニリデンを正極活物質100重量部に対して2重量部とを適量のN−メチル−2−ピロリドンと共に双腕式練合機にて攪拌し混練することで、正極合剤塗料を作製した。この塗料を15μm厚のアルミニウム箔からなる正極集電体に塗布乾燥し、総厚が170μmとなるようにプレスした。   Meanwhile, 100 parts by weight of lithium cobaltate as a positive electrode active material, 2 parts by weight of acetylene black as a conductive material with respect to 100 parts by weight of the positive electrode active material, and polyvinylidene fluoride as a binder with respect to 100 parts by weight of the positive electrode active material. A positive electrode mixture paint was prepared by stirring and kneading 2 parts by weight with an appropriate amount of N-methyl-2-pyrrolidone in a double-arm kneader. This paint was applied to a positive electrode current collector made of an aluminum foil having a thickness of 15 μm, dried, and pressed to a total thickness of 170 μm.

さらに、図1に示すように、これらの正極板1および負極板2を20μm厚のポリエチレン微多孔フィルムを多孔質絶縁体3としてのセパレータとして巻回し電極群4を構成し、所定の長さで切断して電池ケース5の内に挿入し、EC・DMC・MEC混合溶媒にLiPF6を1MとVCを3重量部溶解させた非水電解液を、5.5g添加して封口し作製した円筒形リチウムイオン二次電池11を実施例1とした。
(実施例2)
実施例1との違いは、電極群4内周側の負極合剤層の一端部が表層部に設けた表面層で完全に覆われるように塗布し、電極群4外周側の負極合剤層13端部が表面層14で覆われていない負極板2を得たことである。
実施例1と同様の方法で負極合剤塗料と表面層塗料を作製し、合剤塗料を10μm厚の銅箔からなる負極集電体12に塗布乾燥して形成する負極合剤層100重量部に対して表面層塗料を20重量部となるように塗布乾燥し、表面層厚み20μm、合剤層厚み180μm、総厚が200μmとなるようにプレスし、負極板2を作製した。
Further, as shown in FIG. 1, the positive electrode plate 1 and the negative electrode plate 2 are wound using a polyethylene microporous film having a thickness of 20 μm as a separator as a porous insulator 3 to form an electrode group 4, which has a predetermined length. Cut and inserted into the battery case 5 and sealed by adding 5.5 g of non-aqueous electrolyte in which 1 part of LiPF6 and 3 parts by weight of VC are dissolved in an EC / DMC / MEC mixed solvent. The lithium ion secondary battery 11 was taken as Example 1.
(Example 2)
The difference from Example 1 is that one end of the negative electrode mixture layer on the inner peripheral side of the electrode group 4 is applied so that it is completely covered with the surface layer provided on the surface layer part, and the negative electrode mixture layer on the outer peripheral side of the electrode group 4 That is, the negative electrode plate 2 whose 13 end portions are not covered with the surface layer 14 is obtained.
100 parts by weight of a negative electrode mixture layer formed by preparing a negative electrode mixture paint and a surface layer paint in the same manner as in Example 1, and applying and drying the mixture paint onto a negative electrode current collector 12 made of a copper foil having a thickness of 10 μm. Then, the surface layer coating was applied and dried so as to be 20 parts by weight, and pressed so that the surface layer thickness was 20 μm, the mixture layer thickness was 180 μm, and the total thickness was 200 μm.

一方、実施例1と同様の正極板1を作製し、これらの正極板1および負極板2を実施例1と同様の方法で作製した円筒形リチウムイオン二次電池11を実施例2とした。
このとき、負極合剤層13が表面層14で完全に覆われている一端部は電極群4を構成する際に、内周側になるように構成し、所定の長さで切断して電池ケース5の内に挿入し、非水電解液を、5.5g添加して封口し作製した円筒形リチウムイオン二次電池11を実施例2とした。
(実施例3)
実施例1との違いは、電極群4外周側の負極合剤層13の一端部が表層部に設けた表面層で完全に覆われるように塗布し、電極群4内周側の負極合剤層13の端部が表面層14で覆われていない負極板2を得たことである。
実施例1と同様の方法で負極合剤塗料と表面層塗料を作製し、合剤塗料を10μm厚の銅箔からなる負極集電体12に塗布乾燥して形成する負極合剤層100重量部に対して表面
層塗料を20重量部となるように塗布乾燥し、表面層厚み20μm、合剤層厚み180μm、総厚が200μmとなるようにプレスし、負極板2を作製した。
On the other hand, a positive electrode plate 1 similar to that in Example 1 was produced, and a cylindrical lithium ion secondary battery 11 in which these positive electrode plate 1 and negative electrode plate 2 were produced in the same manner as in Example 1 was used as Example 2.
At this time, the one end part where the negative electrode mixture layer 13 is completely covered with the surface layer 14 is formed so as to be on the inner peripheral side when the electrode group 4 is formed, and the battery is cut by a predetermined length. The cylindrical lithium ion secondary battery 11 inserted into the case 5 and sealed by adding 5.5 g of a non-aqueous electrolyte was used as Example 2.
Example 3
The difference from Example 1 is that one end portion of the negative electrode mixture layer 13 on the outer peripheral side of the electrode group 4 is applied so as to be completely covered with the surface layer provided on the surface layer portion, and the negative electrode mixture on the inner peripheral side of the electrode group 4 That is, the negative electrode plate 2 in which the end portion of the layer 13 is not covered with the surface layer 14 is obtained.
100 parts by weight of a negative electrode mixture layer formed by preparing a negative electrode mixture paint and a surface layer paint in the same manner as in Example 1, and applying and drying the mixture paint onto a negative electrode current collector 12 made of a copper foil having a thickness of 10 μm. Then, the surface layer coating was applied and dried so as to be 20 parts by weight, and pressed so that the surface layer thickness was 20 μm, the mixture layer thickness was 180 μm, and the total thickness was 200 μm.

一方、実施例1と同様の正極板1を作製し、これらの正極板1および負極板2を実施例1と同様の方法で作製した円筒形リチウムイオン二次電池11を実施例2とした。
このとき、負極合剤層13が表面層14で完全に覆われている一端部は電極群4を構成する際に、外周側になるように構成し、所定の長さで切断して電池ケース5の内に挿入し、非水電解液を、5.5g添加して封口し作製した円筒形リチウムイオン二次電池11を実施例3とした。
(実施例4)
図4に示したものと同じ構造の負極板2を用いた非水系二次電池を作製した。実施例1と同様の方法で負極合剤塗料と表面層塗料を作製し、負極合剤塗料を10μm厚の銅箔からなる負極集電体12に形成する負極合剤層100重量部に対して表面層塗料を20重量部となるように乾燥前に同時タイミングでこれらの塗料を塗布し、その後乾燥させた後、表面層厚み20μm、合剤層厚み180μm、総厚が200μmとなるようにプレスし、負極板2を作成した。
On the other hand, a positive electrode plate 1 similar to that in Example 1 was produced, and a cylindrical lithium ion secondary battery 11 in which these positive electrode plate 1 and negative electrode plate 2 were produced in the same manner as in Example 1 was used as Example 2.
At this time, one end of the negative electrode mixture layer 13 that is completely covered with the surface layer 14 is configured to be on the outer peripheral side when the electrode group 4 is formed, and is cut to a predetermined length to form a battery case. Example 3 was a cylindrical lithium ion secondary battery 11 that was inserted into 5 and sealed by adding 5.5 g of a non-aqueous electrolyte.
Example 4
A non-aqueous secondary battery using the negative electrode plate 2 having the same structure as that shown in FIG. 4 was produced. A negative electrode mixture paint and a surface layer paint are produced in the same manner as in Example 1, and the negative electrode mixture paint is formed on the negative electrode current collector 12 made of a copper foil having a thickness of 10 μm. These paints are applied at the same time before drying so that the surface layer paint is 20 parts by weight, and then dried, then pressed so that the surface layer thickness is 20 μm, the mixture layer thickness is 180 μm, and the total thickness is 200 μm. Then, the negative electrode plate 2 was prepared.

このとき、負極板2の負極合剤層13の端部に向って薄くなる長さXは塗布圧力の調整で500μmになるように設定し、負極合剤層13の厚み180μmとの比率が1以下になるように構成した。さらに、表面層14の塗布開始位置を200μmとすることで、負極合剤層13の両端部の一部が露出するように塗布し、負極板2を得た。   At this time, the length X of the negative electrode plate 2 that decreases toward the end of the negative electrode mixture layer 13 is set to 500 μm by adjusting the coating pressure, and the ratio of the negative electrode mixture layer 13 to the thickness of 180 μm is 1. It comprised so that it might become the following. Furthermore, the application | coating start position of the surface layer 14 was 200 micrometers, and it apply | coated so that a part of both ends of the negative mix layer 13 might be exposed, and the negative electrode plate 2 was obtained.

一方、実施例1と同様の正極板1を作製し、これらの正極板1および負極板2を実施例1と同様の方法で作製した円筒形リチウムイオン二次電池11を実施例4とした。
(比較例1)
図6は比較例における非水系二次電池用負極板2の断面の模式図であり、表面層14を負極集電体12の上に塗布乾燥させて形成される。このとき、図2と同様に表面層14が負極合剤層13の表層部に形成されるが、図6は表面層14を塗布する際のタイミングをずらすことで負極合剤層13の両端部を表面層14で完全に覆っている状態を示している。
On the other hand, a positive electrode plate 1 similar to that in Example 1 was produced, and a cylindrical lithium ion secondary battery 11 in which these positive electrode plate 1 and negative electrode plate 2 were produced in the same manner as in Example 1 was used as Example 4.
(Comparative Example 1)
FIG. 6 is a schematic view of a cross section of the negative electrode plate 2 for a non-aqueous secondary battery in a comparative example, which is formed by applying and drying the surface layer 14 on the negative electrode current collector 12. At this time, the surface layer 14 is formed on the surface layer portion of the negative electrode mixture layer 13 as in FIG. 2, but FIG. 6 shows both end portions of the negative electrode mixture layer 13 by shifting the timing when the surface layer 14 is applied. Is completely covered with the surface layer 14.

実施例1と同様の方法で負極合剤塗料と表面層塗料を作製し、この塗料を10μm厚の銅箔からなる負極集電体12に塗布乾燥し、総厚が200μmとなるようにプレスし、図6に示すように、負極合剤層13の両端部を表面層14で完全に覆った負極板2を得た。   A negative electrode mixture paint and a surface layer paint were prepared in the same manner as in Example 1. The paint was applied to a negative electrode current collector 12 made of 10 μm thick copper foil, and pressed to a total thickness of 200 μm. As shown in FIG. 6, the negative electrode plate 2 in which both end portions of the negative electrode mixture layer 13 were completely covered with the surface layer 14 was obtained.

一方、実施例1と同様の正極板1を作製し、これらの正極板1および負極板2を実施例1と同様の方法で作製した円筒形リチウムイオン二次電池11を比較例1とした。   On the other hand, a positive electrode plate 1 similar to that in Example 1 was produced, and a cylindrical lithium ion secondary battery 11 in which these positive electrode plate 1 and negative electrode plate 2 were produced in the same manner as in Example 1 was used as Comparative Example 1.

ここで、実施例1〜4および比較例1における非水二次電池の注液性の評価方法は、図1に示したように、正極板1および負極板2を20μm厚のポリエチレン微多孔フィルムを多孔質絶縁体3としてのセパレータとして巻回し電極群4を構成し、所定の長さで切断して電池ケース5の内に挿入し、EC・DMC・MEC混合溶媒にLiPF6を1MとVCを3重量部溶解させた非水電解液(図示せず)を総量で5.5gを分割添加した後に加圧して電極群4に非水電解液が含浸するまでの時間を注液時間として評価した。そして、上記の条件で作成された円筒形リチウムイオン二次電池11について、電池容量評価を行った。   Here, as shown in FIG. 1, the evaluation method of the liquid injection property of the non-aqueous secondary battery in Examples 1 to 4 and Comparative Example 1 was obtained by forming the positive electrode plate 1 and the negative electrode plate 2 into a 20 μm thick polyethylene microporous film Is wound as a separator as a porous insulator 3 to form an electrode group 4, cut to a predetermined length and inserted into the battery case 5, and 1M and VC of LiPF6 are mixed in an EC / DMC / MEC mixed solvent. The time until the electrode group 4 was impregnated with the nonaqueous electrolytic solution was evaluated as the injection time after 5.5 g in total of 3 parts by weight of the dissolved nonaqueous electrolytic solution (not shown) were divided and added. . And the battery capacity evaluation was performed about the cylindrical lithium ion secondary battery 11 created on said conditions.

以上の項目について評価した内容を(表1)に示す。   The contents evaluated for the above items are shown in (Table 1).

(表1)に示したように、負極合剤層13の両端部を表面層14から露出させる場合に注液時間が最も短くなることが分かった。これは、表面層14よりも負極合剤層13の注液性が高く、負極合剤層13の端部を露出させることで非水電解液の注液路を確保でき、負極板2の内部への非水電解液の含浸性が向上したことで非水電解液の注液時間が短縮されたものと推定できる。さらに含浸性が促進されたことに加えて非水電解液の保液性も良好なため、電池容量も高くなった。   As shown in Table 1, it was found that the liquid injection time was the shortest when both end portions of the negative electrode mixture layer 13 were exposed from the surface layer 14. This is because the liquid injection property of the negative electrode mixture layer 13 is higher than that of the surface layer 14, and the end of the negative electrode mixture layer 13 is exposed, so that a nonaqueous electrolyte injection path can be secured. It can be presumed that the time for injecting the non-aqueous electrolyte solution was shortened by improving the impregnation property of the non-aqueous electrolyte solution. Furthermore, since the impregnation property was promoted and the nonaqueous electrolyte solution had good liquid retention, the battery capacity was also increased.

一方で、比較例1で示されるように、端部を表面層14で覆う場合、実施例に比べ約4倍の注液時間がかかり生産性は低下し、さらに電池容量も低下した。   On the other hand, as shown in Comparative Example 1, when the end portion was covered with the surface layer 14, the liquid injection time was about four times that of the Example, the productivity was lowered, and the battery capacity was also lowered.

以上、負極合剤層13の端部を表面層14から露出させることによって、負極板2の内部への非水電解液の含浸性、すなわち注液性が良化し向上することで電池容量も高く、生産性も大幅に向上する。
なお、実施例1〜4においては、負極板2の負極合剤層13の端部を表面層14から露出させることで非水電解液の含浸性や保液性を向上させたが、この方法に限定されるものではなく、例えば、正極板1の正極合剤層に表面層を設け、正極合剤層の端部を露出させることで含浸性や保液性を向上させることで同様の効果を得ることができる。
As described above, by exposing the end portion of the negative electrode mixture layer 13 from the surface layer 14, the impregnation property of the nonaqueous electrolytic solution into the negative electrode plate 2, that is, the liquid injection property is improved and improved, thereby increasing the battery capacity. , Productivity is also greatly improved.
In Examples 1 to 4, the end of the negative electrode mixture layer 13 of the negative electrode plate 2 was exposed from the surface layer 14 to improve the impregnation property and liquid retention of the nonaqueous electrolytic solution. For example, the same effect can be obtained by providing a surface layer on the positive electrode mixture layer of the positive electrode plate 1 and exposing the end portion of the positive electrode mixture layer to improve the impregnation property and liquid retention. Can be obtained.

本発明に係る非水系二次電池用電極板は、電極合剤層における端部を表面層から露出させることで、従来の非水系二次電池より電極板の内部への非水電解液の含浸を促進し電極群の非水電解液の保液性と注液性が向上し、高容量化と生産性に優れているので、電子機器および通信機器の多機能化や電気自動車への応用に伴って高容量化や低コスト化が望まれているポータブル用電源やEV用電源等として有用である。   The electrode plate for a non-aqueous secondary battery according to the present invention is impregnated with a non-aqueous electrolyte into the electrode plate from a conventional non-aqueous secondary battery by exposing an end portion of the electrode mixture layer from the surface layer. The non-aqueous electrolyte solution retention and injection properties of the electrode group are improved, and the capacity and productivity are excellent, so it can be used for multifunctional electronic devices and communication devices and for applications in electric vehicles. Along with this, it is useful as a portable power supply, EV power supply, etc. for which high capacity and low cost are desired.

1 正極板
2 負極板
3 多孔質絶縁体
4 電極群
5 電池ケース
6 絶縁板
7 負極リード
8 正極リード
9 封口板
10 封口ガスケット
11 リチウムイオン二次電池
12 負極集電体
13 負極合剤層
14 表面層
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 3 Porous insulator 4 Electrode group 5 Battery case 6 Insulating plate 7 Negative electrode lead 8 Positive electrode lead 9 Sealing plate 10 Sealing gasket 11 Lithium ion secondary battery 12 Negative electrode collector 13 Negative electrode mixture layer 14 Surface layer

Claims (6)

集電体の表面に活物質を含む合剤層を形成した電池用電極板において、前記合剤層の端部の厚みを前記合剤層の端部以外の厚みよりも薄くし、かつ、少なくとも前記合剤層の端部の一部を露出するように、前記合剤層の表面を、前記合剤層よりも含侵性の低い表面層で覆ったことを特徴とする非水系二次電池用電極板。 In the battery electrode plate in which the mixture layer containing the active material is formed on the surface of the current collector, the thickness of the end portion of the mixture layer is made thinner than the thickness other than the end portion of the mixture layer, and at least A non-aqueous secondary battery characterized in that the surface of the mixture layer is covered with a surface layer having a lower impregnation property than the mixture layer so as to expose a part of the end portion of the mixture layer. Electrode plate. 前記合剤層の端部の厚みは、前記合剤層の端部に向かうにつれて薄くすることを特徴とした請求項1に記載の非水系二次電池用電極板。 2. The electrode plate for a non-aqueous secondary battery according to claim 1, wherein the thickness of the end portion of the mixture layer is reduced toward the end portion of the mixture layer. 前記合剤層の端部は、前記合剤層の電極板長手方向の両端部もしくは前記両端部のどちらか一方の端部であることを特徴にした請求項1または2に記載の非水系二次電池用電極板。 3. The non-aqueous system according to claim 1, wherein the end portion of the mixture layer is either one of both end portions of the mixture layer in the longitudinal direction of the electrode plate or the both end portions. Secondary battery electrode plate. 前記合剤層の端部は、前記合剤層の電極板幅方向の両端部もしくは前記両端部のどちらか一方の端部であることを特徴にした請求項1または2に記載の非水系二次電池用電極板。 3. The non-aqueous system according to claim 1, wherein the end portion of the mixture layer is either one of both end portions of the mixture layer in the electrode plate width direction or the both end portions. Secondary battery electrode plate. 前記表面層に前記合剤層の活物質とは異なるリチウムニッケル酸複合酸化物などのニッケル系複合酸化物、リチウムコバルト酸複合酸化物などのコバルト系複合酸化物、コバルト酸ナノ粒子、コバルト酸窒化物、リチウムマンガン酸複合酸化物などのマンガン系複合酸化物、リチウムクロム酸複合酸化物などのクロム系複合酸化物、リチウムリン酸鉄複合酸化物などのリン酸鉄系複合酸化物、五酸化バナジウムなどのバナジウム系複合酸化物、グラファイト、ハードカーボン、リチウムチタン複合酸化物などのチタン系複合酸化物、酸化スズガラス、シリカ系合金組成材料、金属リチウムのいずれかを用いた請求項1〜4に記載の非水系二次電池用電極板。 The surface layer is different from the active material of the mixture layer, such as a nickel-based composite oxide such as lithium nickel acid composite oxide, a cobalt-based composite oxide such as lithium cobalt acid composite oxide, cobalt acid nanoparticles, and cobalt oxynitride , Manganese complex oxides such as lithium manganate complex oxides, chromium complex oxides such as lithium chromate complex oxides, iron phosphate complex oxides such as lithium iron phosphate complex oxides, vanadium pentoxide 5. The use of any one of vanadium-based composite oxides such as graphite, hard carbon, lithium-based composite oxides such as lithium-titanium composite oxide, tin oxide glass, silica-based alloy composition material, and metallic lithium. Electrode plate for non-aqueous secondary battery. 少なくともリチウム含有複合酸化物よりなる正極活物質と導電材および結着材を分散媒にて混練分散した正極合剤塗料を正極集電体の上に付着させて正極合剤層を形成した正極板と少なくともリチウムを保持しうる材料よりなる負極活物質を負極集電体の上に担持した負極板との間に多孔質絶縁体を介在させ積層または渦巻状に捲回して構成した電極群を非水系電解液とともに外装体内に封入してなる非水系二次電池において、前記正極板および負極板に請求項1〜5のいずれか一つに記載の非水系二次電池用電極板を用いたことを特徴とする非水系二次電池。 A positive electrode plate having a positive electrode mixture layer formed by adhering a positive electrode mixture coating material obtained by kneading and dispersing a positive electrode active material comprising at least a lithium-containing composite oxide, a conductive material, and a binder in a dispersion medium onto a positive electrode current collector And a negative electrode active material made of a material capable of holding at least lithium, and a negative electrode plate carrying a negative electrode current collector on a negative electrode plate. In a non-aqueous secondary battery encapsulated in an outer package together with an aqueous electrolyte, the electrode plate for a non-aqueous secondary battery according to any one of claims 1 to 5 is used for the positive electrode plate and the negative electrode plate. A non-aqueous secondary battery.
JP2011187209A 2011-08-30 2011-08-30 Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same Withdrawn JP2014211946A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011187209A JP2014211946A (en) 2011-08-30 2011-08-30 Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
PCT/JP2012/005440 WO2013031211A1 (en) 2011-08-30 2012-08-29 Electrode plate for non-aqueous secondary battery and non-aqueous secondary battery using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011187209A JP2014211946A (en) 2011-08-30 2011-08-30 Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2014211946A true JP2014211946A (en) 2014-11-13

Family

ID=51931579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011187209A Withdrawn JP2014211946A (en) 2011-08-30 2011-08-30 Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2014211946A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016186209A1 (en) * 2015-05-20 2016-11-24 Necエナジーデバイス株式会社 Secondary battery electrode, secondary battery production method and production device
JP2017157515A (en) * 2016-03-04 2017-09-07 株式会社Gsユアサ Power storage element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016186209A1 (en) * 2015-05-20 2016-11-24 Necエナジーデバイス株式会社 Secondary battery electrode, secondary battery production method and production device
JPWO2016186209A1 (en) * 2015-05-20 2018-03-08 Necエナジーデバイス株式会社 Secondary battery electrode and secondary battery manufacturing method and manufacturing apparatus
JP2017157515A (en) * 2016-03-04 2017-09-07 株式会社Gsユアサ Power storage element

Similar Documents

Publication Publication Date Title
WO2015115051A1 (en) Nonaqueous-electrolyte secondary-battery negative electrode
JP2013149403A (en) Lithium ion secondary battery negative electrode, lithium ion secondary battery electrode using the same, and manufacturing method thereof
CA2908749A1 (en) Positive electrode mixture paste, positive electrode, nonaqueous electrolyte secondary battery, and manufacturing method of nonaqueous electrolyte secondary battery
JP6750196B2 (en) Non-aqueous lithium battery and method of using the same
JP5258499B2 (en) Non-aqueous secondary battery
JP2018092707A (en) Method for manufacturing positive electrode plate, method for manufacturing nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US20110236748A1 (en) Current collector for non-aqueous electrolyte secondary battery, electrode, non-aqueous electrolyte secondary battery, and method for producing the same
JP2014211945A (en) Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP2014211944A (en) Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP2007328977A (en) Electrode plate for non-aqueous secondary battery, its manufacturing method, and non-aqueous secondary battery
CN106663784B (en) Lithium ion secondary battery
WO2014128946A1 (en) Lithium-ion secondary cell negative electrode, lithium-ion secondary cell using lithium-ion secondary cell negative electrode, and method for manufacturing said electrode and said cell
JP2012033372A (en) Positive electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP2011192506A (en) Electrode plate for nonaqueous secondary battery, and nonaqueous secondary battery using the same
JP7064270B2 (en) Non-aqueous electrolyte secondary battery
JP2017152122A (en) Negative electrode active material for lithium ion secondary batteries, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2014211946A (en) Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
WO2013031213A1 (en) Electrode plate for non-aqueous secondary battery and non-aqueous secondary battery using same
JP2010165591A (en) Method of manufacturing battery
JP2009134916A (en) Electrode plate for nonaqueous secondary battery, and nonaqueous secondary battery using the same
WO2013031211A1 (en) Electrode plate for non-aqueous secondary battery and non-aqueous secondary battery using same
JP6493766B2 (en) Lithium ion secondary battery
JP2016122628A (en) Wound element for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2008243441A (en) Nonaqueous electrolyte secondary battery
JP2012094261A (en) Nonaqueous secondary battery anode plate and nonaqueous secondary battery using the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104