WO2014128946A1 - Lithium-ion secondary cell negative electrode, lithium-ion secondary cell using lithium-ion secondary cell negative electrode, and method for manufacturing said electrode and said cell - Google Patents

Lithium-ion secondary cell negative electrode, lithium-ion secondary cell using lithium-ion secondary cell negative electrode, and method for manufacturing said electrode and said cell Download PDF

Info

Publication number
WO2014128946A1
WO2014128946A1 PCT/JP2013/054653 JP2013054653W WO2014128946A1 WO 2014128946 A1 WO2014128946 A1 WO 2014128946A1 JP 2013054653 W JP2013054653 W JP 2013054653W WO 2014128946 A1 WO2014128946 A1 WO 2014128946A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
particle size
mixture layer
ion secondary
Prior art date
Application number
PCT/JP2013/054653
Other languages
French (fr)
Japanese (ja)
Inventor
孝明 鈴木
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to PCT/JP2013/054653 priority Critical patent/WO2014128946A1/en
Publication of WO2014128946A1 publication Critical patent/WO2014128946A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion secondary battery negative electrode, a lithium ion secondary battery using a lithium ion secondary battery negative electrode, and a method for producing the same.
  • Patent Document 1 discloses a structure in which a negative electrode active material layer is composed of a strip-shaped edge portion located at both ends in the width direction perpendicular to the longitudinal direction of the strip-shaped electrode, and a central portion located at the center of the edge portion. Thus, a technique is described in which the central portion is made lower in resistance than the end edge portion, thereby preventing metallic lithium from precipitating during charging and suppressing the decrease in battery capacity due to practical use.
  • active material particles having an average particle size smaller than that of the edge portion are arranged in a central region in the width direction orthogonal to the longitudinal direction of the strip electrode. Since particles having a small particle size have a large specific surface area, it is considered that the surface reaction on the particle surface increases. Therefore, when the ratio of the central region in which the particles are arranged increases in the electrode width direction, high high temperature holding characteristics may not be expected.
  • the present invention provides a lithium ion secondary battery negative electrode having excellent life characteristics such as high temperature storage characteristics and cycle characteristics, a lithium ion secondary battery using a lithium ion secondary battery negative electrode, and a method for producing the same. Objective.
  • a negative electrode mixture layer is provided on the surface of the negative electrode, and the negative electrode mixture is orthogonal to the winding direction of the negative electrode in a lithium ion secondary battery having negative electrode active material particles capable of occluding and releasing lithium ions.
  • Negative electrode active material contained in the negative electrode first mixture layer having a negative electrode first mixture layer at the center in the width direction and having negative electrode second mixture layers at both ends in the width direction of the negative electrode first mixture layer.
  • the material is a mixture of a negative electrode active material having a large particle size and a negative electrode active material having a small particle size, and the negative electrode active material contained in the negative electrode second mixture layer is a negative electrode active material having a large particle size or a small particle size. It is a lithium ion secondary battery which is a negative electrode active material.
  • the negative electrode active material having a large particle size has an average particle size of 15 ⁇ m or more and 45 ⁇ m or less
  • the negative electrode active material having a small particle size has an average particle size of 5 ⁇ m or more and less than 15 ⁇ m. is there.
  • a negative electrode active material slurry containing a negative electrode active material having a large particle size or a negative electrode active material having a small particle size is applied to the edge region on the negative electrode, dried, pressed and processed
  • a negative electrode mixture slurry containing a negative electrode active material having a large particle size and a negative electrode active material having a small particle size is applied, dried, and further pressed.
  • a negative electrode mixture slurry containing a negative electrode active material having a large particle size and a negative electrode active material having a small particle size is applied, dried, and further pressed.
  • region is employable.
  • a negative electrode for a lithium ion secondary battery having excellent life characteristics such as cycle characteristics and high-temperature storage characteristics a lithium ion secondary battery using a negative electrode for a lithium ion secondary battery, and a method for producing the same can be provided. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
  • the single-side longitudinal cross-sectional view which shows the whole structure of one Embodiment of the secondary battery with which the electrode for lithium ion secondary batteries which concerns on this invention is applied.
  • the figure which shows the basic composition of one Embodiment of the electrode for lithium ion secondary batteries which concerns on this invention.
  • FIG. 1 shows an overall configuration of an embodiment of a secondary battery to which an electrode for a lithium ion battery according to the present invention is applied.
  • the secondary battery 1100 includes a positive electrode 16 and a negative electrode 13 that reversibly occlude and release lithium ions, a separator 17 interposed between the positive electrode 16 and the negative electrode 13, and an organic solution in which an electrolyte containing lithium ions is dissolved.
  • the electrolytic solution 115 is generally configured.
  • the positive electrode 16 is generally composed of a positive electrode 14 and a positive electrode mixture layer 15 disposed on both surfaces thereof, and one end of a positive electrode lead 18 is welded to the positive electrode 14 in order to collect the positive electrode 16.
  • the negative electrode 13 is generally composed of the negative electrode 11 and the negative electrode mixture layer 12 disposed on both sides thereof, and one end of the negative electrode lead 19 is welded to the negative electrode 11 in order to collect the negative electrode 13. .
  • FIG. 2 shows a basic configuration of an embodiment of the negative electrode for a lithium ion secondary battery according to the present invention.
  • the negative electrode for a lithium ion secondary battery shown in FIG. 2 has an electrode mixture layer on one side of the electrode, but an electrode mixture layer can also be provided on both sides of the electrode as shown in FIG.
  • the negative electrode first mixture layer is provided in the center region in the width direction orthogonal to the winding direction of the electrode, and the negative electrode second mixture layer is formed at both ends of the negative electrode first mixture layer in the width direction.
  • the negative electrode first mixture layer includes a negative electrode active material having a large particle size and a negative electrode active material having a small particle size
  • the negative electrode second mixture layer includes the negative electrode active material having a large particle size or the negative electrode active material having a small particle size. Contains one of the active materials. With this configuration, it is possible to improve cycle characteristics and high temperature holding characteristics.
  • a negative electrode active material having a small particle size is considered effective for cycle life characteristics.
  • the shape of natural graphite particles that are usually pressed is deformed into an ellipse, for example.
  • the graphite particles expand and contract in the film thickness direction of the negative electrode mixture layer by charging and discharging.
  • An advantage of a small particle size is that the binding point can be increased.
  • the region near the center with respect to the width direction of the electrode is likely to be affected by a cycle life test in which charge and discharge are repeated and is likely to deteriorate.
  • it is possible to reduce the life deterioration of this region by disposing the first mixture layer in the central region and using the first mixture layer as a mixed layer of particles having different particle diameters.
  • a negative electrode active material having a small particle diameter effective for cycle characteristics and a particle diameter effective for high-temperature storage characteristics
  • a life characteristic as a battery can be improved by mixing a large negative electrode active material.
  • the median diameter (D 50 ) is smaller than the median diameter (D 50 ), and by mixing them, small particles are arranged in the gaps between the large particles. It is considered that the binding property is improved.
  • an anchor-like effect of particles having a large particle size can be expected, there is a possibility of increasing the binding force between the electrode and the active material.
  • the first negative electrode mixture layer 12A is disposed in a central region in the width direction orthogonal to the winding direction of the electrode considered to be easily affected by the cycle life test.
  • the surface of the negative electrode after the cycle life test is observed, deterioration near the center in the width direction perpendicular to the winding direction is observed.
  • it is possible to improve cycle life characteristics by arranging a mixture layer having active materials having different particle diameters in the above-described region.
  • the negative electrode first mixture layer is formed slightly thicker than the negative electrode second mixture layer, so that deterioration due to the cycle life test can be reduced.
  • graphite can be used for the two types of active materials contained in the first negative electrode mixture layer 12A.
  • graphite having a particle size of 45 ⁇ m or less is used, and the median diameter (D 50 ) is 5 ⁇ m or more and 15 ⁇ m or less for graphite having a small particle size, and is larger than 15 ⁇ m and 45 ⁇ m or less, preferably 15 ⁇ m for graphite having a large particle size.
  • a size larger than 35 ⁇ m is used.
  • the median diameter (D 50 ) is larger than 35 ⁇ m, influences such as a decrease in dispersibility in the coating slurry and a decrease in discharge capacity density can be considered.
  • the particle size is smaller than 5 ⁇ m, there may be a problem that a special manufacturing method is required for powder production, or that the difficulty of preparing a coating negative electrode mixture slurry is increased.
  • the negative electrode active material having a small particle diameter is 5 to 10 ⁇ m with respect to the median diameter (D 50 ) of 20 to 40 ⁇ m having a large particle size.
  • the median diameter (D 50 ) is preferably 5 to 8 ⁇ m.
  • the average particle size of the negative electrode active material having a large particle size is 1.5 times or more, preferably 2.5 times or more, more preferably 3.0 times or more than the average particle size of the negative electrode active material having a small particle size.
  • the negative electrode first mixture layer includes a negative electrode active material having a large particle size and a negative electrode active material having a small particle size
  • a negative electrode active material having a large particle size and a particle size are included in the production process of the negative electrode first mixture layer.
  • the process of mixing a small negative electrode active material of this, and manufacturing a slurry is included.
  • This step may be a step of simultaneously mixing a binder or the like and two types of negative electrode active materials, a step of mixing two types of negative electrode active materials in advance, and a mixture of two types of negative electrode active materials with a binder or the like.
  • the mixing process may be divided, and the order and timing of mixing are not particularly limited.
  • a negative electrode second mixture layer containing either one of a negative electrode active material having a large particle diameter or a negative electrode active material having a small particle diameter is disposed on both edges of the negative electrode first mixture layer.
  • the characteristics can be improved by using an active material having a median diameter (D 50 ) larger than 15 ⁇ m and not larger than 35 ⁇ m.
  • the use of an active material having a median diameter (D 50 ) of 5 ⁇ m or more and 15 ⁇ m or less can further improve the respective characteristics.
  • the electrolyte penetration into the electrode center can be considered.
  • a negative electrode second mixture layer of particles having a larger particle diameter or smaller particle diameter than the negative electrode first mixture layer at both ends of the negative electrode first mixture layer. Since the void ratio between the particles increases, it is considered that the electrolyte solution can be easily supplied to the negative electrode first mixture layer disposed near the center in the electrode width direction.
  • the ratio of the negative electrode first mixture layer in the central region to the electrode width is 30% or more including the center, desirably 30 to 80% or less. This is because if the proportion of the negative electrode first mixture layer is less than 30%, it is difficult to compensate for the area that is damaged in the cycle life test. Moreover, it is because possibility that the effect which arrange
  • a graphite-based material such as natural graphite is used for the negative electrode active material. Since natural graphite has higher crystallinity than artificial graphite, a high capacity close to the theoretical capacity can be obtained. In addition, it has been put into practical use with features such as low initial charge irreversible capacity and low price. On the other hand, it has problems such as insufficient cycle characteristics.
  • the negative electrode 13 having both high capacity, cycle characteristics, and high temperature holding characteristics by disposing the negative electrode first mixture layer 12A mixed with active materials having different particle sizes, such as one embodiment of the present invention. Is obtained. Further, by using the negative electrode 13 described above, it is possible to provide a lithium ion secondary battery having a high capacity and excellent cycle characteristics and high temperature holding characteristics. Natural graphite having various surface modifications may be used. Furthermore, crystalline artificial graphite or highly crystalline graphite close to natural graphite may be used as the graphite material.
  • the negative electrode active material used for the negative electrode first mixture layer 12A and the negative electrode first mixture layer 12B workability is improved by using the same type of negative electrode active material.
  • the same kind is desirable.
  • a method of simultaneously applying and drying the negative electrode first mixture layer 12 ⁇ / b> A and the second negative mixture layer 12 ⁇ / b> B on the negative electrode 11 using a die coater or the like having a necessary number of discharge ports is press-processed. Can be used. Further, the negative electrode first mixture layer and the negative electrode second mixture layer are separately applied and dried, that is, the negative electrode first mixture layer is applied and dried on the negative electrode 11, and then the negative electrode second mixture layer is formed. A method of applying, drying and pressing the mixture layer can also be employed.
  • coating a negative electrode 2nd mixture layer separately, and drying and press-processing after that can also be used.
  • a manufacturing method in which the negative electrode first mixture layer and the negative electrode second mixture layer are separately applied, dried, and pressed can be used. From the viewpoint of simplifying the production process, a production method in which the negative electrode first mixture layer and the negative electrode second mixture layer are simultaneously applied, dried and pressed is preferred.
  • the positive electrode active material used in the present invention LiCoO 2 , LiNiO 2 , LiMn 2 O 4 can be generally used.
  • each electrode mixture layer is not particularly limited, and is generally high, such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl pyridine, etc., which are generally used for preparing electrodes of lithium ion batteries. Any one or more of the molecular materials can be used. Further, an aqueous binder capable of using, as a diluent, water represented by any one or more of styrene-butadiene rubber (SBR), polyacrylate and the like may be used.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • polyvinyl pyridine polyvinyl pyridine
  • Any one or more of the molecular materials can be used.
  • an aqueous binder capable of using, as a diluent, water represented by any one or more of styrene-butadiene rubber (SBR), polyacrylate and the like may be used.
  • each electrode mixture layer has an optimum composition depending on the type of binder, but in the case of an aqueous binder represented by styrene-butadiene rubber (SBR), if the binder concentration is less than 0.8% by weight. In addition, the binding force between the active materials may be reduced, which may adversely affect the production of the electrode. If the binder concentration is more than 2.0% by weight, the resistance between the electrodes is increased, so that the binder concentration is less than 0.2%. The content is desirably 8 to 2.0% by weight. Further, when styrene-butadiene rubber (SBR) is used, carboxymethyl cellulose (CMC) is used in an amount equivalent to SBR as a viscosity modifier.
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • the separator used for this invention can use the separator currently used for the well-known lithium ion battery.
  • Examples thereof include microporous films made of polyolefin such as polyethylene and polypropylene, and nonwoven fabrics.
  • the thickness of the separator is preferably 30 ⁇ m or less, and more preferably 18 ⁇ m or less.
  • a negative electrode mixture layer 12 ⁇ / b> A and a negative electrode mixture layer 12 ⁇ / b> B were formed on the copper foil of the negative electrode 11.
  • Styrene-butadiene rubber (SBR) as a binder and carboxymethyl cellulose (CMC) as a viscosity modifier were used in an amount equivalent to SBR.
  • Graphite and binder were mixed at a mixing ratio of 98.0: 2.0, and water was added for viscosity adjustment to prepare two types of negative electrode mixture slurry.
  • this negative electrode mixture slurry is applied on the negative electrode 11 of a copper foil having a thickness of 10 ⁇ m, dried with hot air at 110 ° C., and then the negative electrode mixture layer 12 is formed on the back using the negative electrode mixture slurry. did.
  • the negative electrode first mixture layer 12A and the negative electrode second mixture layer were applied simultaneously.
  • the coating was performed using a coating apparatus provided with three discharge ports and two containers for storing slurry.
  • the negative electrode mixture layer 12 formed on both surfaces of the electrode was pressed by roll rolling to adjust the single-sided film thickness of the negative electrode mixture layer 12 to 55 ⁇ m, and the negative electrode mixture layer 12 was produced.
  • ⁇ Preparation of positive electrode> LiMn 1/3 Ni 1/3 Co 1/3 O 2 was used as the positive electrode active material.
  • Carbon black (CB1) and graphite (GF2) were dry mixed as the positive electrode active material and the electronic conductive material.
  • a mixture of the mixture and polyvinylidene fluoride (PVDF) as a binder and N-methylpyrrolidone (NMP) as a solvent were added and mixed to prepare a positive electrode mixture slurry.
  • PVDF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • a separator 17 was sandwiched between the positive electrode 16 and the negative electrode 13 manufactured by the manufacturing method, and a wound group was formed and inserted into the negative battery can 113. Then, one end of a nickel (Ni) negative electrode lead 19 was welded to the negative electrode 11 and the other end was welded to the battery can 113 in order to collect the negative electrode 13. In addition, one end of an aluminum (Al) positive electrode lead 18 is welded to the positive electrode 14 in order to collect current from the positive electrode 16, and the other end is subjected to current interruption welding, and further via a current interruption valve (not shown). The positive electrode battery lid 112 was electrically connected.
  • Ni nickel
  • Al aluminum
  • a rechargeable secondary battery 1100 was manufactured.
  • 110 is a positive electrode insulating material
  • 111 is a negative electrode insulating material
  • 114 is a gasket.
  • the wound type battery of this example was manufactured by the method described below.
  • ⁇ Production of negative electrode> A negative electrode mixture layer 12 ⁇ / b> A and a negative electrode mixture layer 12 ⁇ / b> B were formed on the copper foil of the negative electrode 11.
  • Natural graphite having a median diameter (D 50 ) 8 ⁇ m was used as the negative electrode active material of the negative electrode second mixture layer 12B.
  • SBR Styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • Graphite and binder were mixed at a mixing ratio of 97.6: 2.4, and water was added to adjust the viscosity to adjust the viscosity, thereby preparing two types of negative electrode mixture slurry.
  • each negative electrode mixture slurry was applied onto a copper foil negative electrode 11 having a thickness of 10 ⁇ m, dried with hot air at 110 ° C., and then the negative electrode mixture layer 12 was formed on the back using the negative electrode mixture slurry. did. Pressing by roll rolling was performed so that the single-sided film thickness of the negative electrode mixture layer 12 was adjusted to 50 ⁇ m.
  • the positive electrode 16 and the wound secondary battery 1100 were manufactured in the same manner as in Example 1.
  • the wound type battery of this example was manufactured by the method described below.
  • ⁇ Production of negative electrode> A negative electrode mixture layer 12 ⁇ / b> A and a negative electrode mixture layer 12 ⁇ / b> B were formed on the copper foil of the negative electrode 11.
  • Natural graphite having a median diameter (D 50 ) 8 ⁇ m was used as the negative electrode active material of the negative electrode second mixture layer 12B.
  • PVDF Polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • the positive electrode 16 and the wound secondary battery 1100 were manufactured in the same manner as in Example 1.
  • the negative electrode 13 was made to be the same as the manufacturing method of the negative electrode second layer 12B of Example 1.
  • the positive electrode 16 and the wound-type secondary battery 1100 were manufactured in the same manner as in Example 1.
  • the negative electrode 13 was made to be the same as the manufacturing method of the negative electrode second layer 12B of Example 1.
  • the positive electrode 16 and the wound-type secondary battery 1100 were manufactured in the same manner as in Example 1.
  • the negative electrode 13 was made to be the same as the manufacturing method of the negative electrode second layer 12B of Example 1.
  • the positive electrode 16 and the wound-type secondary battery 1100 were manufactured in the same manner as in Example 1.
  • the negative electrode 13 was made to be the same as the manufacturing method of the negative electrode second layer 12B of Example 1.
  • the positive electrode 16 and the wound-type secondary battery 1100 were manufactured in the same manner as in Example 1.
  • Cycle characteristics (life characteristics) of the wound lithium ion secondary batteries of Examples 1 to 3 and Comparative Examples 1 to 4 manufactured by the above manufacturing method were evaluated using a cycle test.
  • the cycle test conditions were as follows: the secondary battery was charged to 4.1 V with a charging current of 1 A (1 C), charged to a constant voltage of 4.2 V, stopped for 15 minutes, and then discharged with a discharging current of 1 A (1 C). The battery was discharged to 3.0 V and the operation was stopped for 15 minutes. This charging / discharging was performed 500 cycles, and the capacity change of the secondary battery before and after the cycle test was verified.
  • Table 1 shows the cycle test of the wound type lithium ion secondary batteries of Examples 1 to 3 and Comparative Examples 1 and 2 and the results of high temperature storage characteristics at 50 ° C.
  • the capacity retention ratios in the table are values when the discharge capacity before the cycle test of each wound battery is 100 and the capacity before storage at 50 ° C. is 100.
  • the capacity retention rate after the elapse of 500 cycles in the lithium ion secondary batteries of Examples 1 to 3 was 82 to 88%. Further, the capacity retention rate after the elapse of 500 cycles in the secondary batteries of Comparative Examples 1 and 2 was 57 to 70%.
  • the capacity retention rate of the storage characteristics at 50 ° C. in the lithium ion secondary batteries of Examples 1 to 3 was 85 to 93%. Further, the capacity retention ratio% of the storage characteristics at 50 ° C. in the secondary batteries of Comparative Examples 1 and 2 was 59 to 68%.
  • Comparative Example 3 In comparison between Examples 1 to 3 and the secondary batteries of Comparative Examples 3 and 4, since the negative electrode first mixture layer is an active material having one kind of particle size, Comparative Example 3 has high temperature storage characteristics. A decrease was seen. In Comparative Example 4, the cycle characteristics were lower than in the example. It was found that it is difficult to satisfy both cycle characteristics and storage characteristics with a single particle alone.
  • the negative electrode first mixture layer made of large and small negative electrode active materials having different particle diameters was formed in the central region in the width direction perpendicular to the electrode winding direction.
  • the capacity of the secondary battery after cycle is maintained by disposing a negative electrode second mixture layer made of an active material having a large particle size or a small particle size at both ends so as to be in contact with the negative electrode first mixture layer. It has been demonstrated that the rate has improved significantly. Further, regarding the high temperature storage characteristics at 50 ° C., the effect of reducing the specific surface area to reduce the reaction area could be achieved, and as a result, it was demonstrated that the capacity retention rate of the high temperature storage characteristics was greatly improved.
  • the present invention is not limited to the first to third embodiments described above, and includes various modifications.
  • the first to third embodiments described above are described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • Negative electrode 12 Negative electrode mixture layer 12A Negative electrode 1st mixture layer 12B Negative electrode 2nd mixture layer 13 Negative electrode 14 Positive electrode 15 Positive mix layer 16 Positive electrode 17 Separator 18 Positive electrode lead 19 Negative electrode lead 110 Positive electrode insulating material 111 Negative electrode insulating material 112 Positive battery cover 113 Battery can 114 Gasket 115 Electrolytic solution 1100 Secondary battery

Landscapes

  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

Provided are a lithium-ion secondary cell negative electrode having excellent service life characteristics such as cycle characteristics and high-temperature storage characteristics, a lithium-ion secondary cell in which the lithium-ion secondary cell negative electrode is used, and a method for manufacturing the electrode and cell. A lithium-ion secondary cell electrode including a negative electrode and a negative-electrode mixture layer formed on the negative electrode, wherein the lithium-ion secondary cell negative electrode is characterized in that the negative-electrode mixture layer is composed of a negative-electrode first mixture layer formed in the center in the electrode width direction, and a negative-electrode second mixture layer formed at both ends of the negative-electrode first mixture layer, the negative-electrode first mixture layer including a large-grain-size negative-electrode active substance, and a small-grain-size negative-electrode active substance, the negative-electrode second mixture layer comprising a large-grain-size negative-electrode active substance or a small-grain-size negative-electrode active substance, both negative-electrode active substances being a graphite-based material, and the average grain size of the small-grain-size negative-electrode active substance being smaller than the average grain size of the large-grain-size negative-electrode active substance.

Description

リチウムイオン二次電池負極、リチウムイオン二次電池負極を用いたリチウムイオン二次電池、および、それらの製造方法Lithium ion secondary battery negative electrode, lithium ion secondary battery negative electrode using lithium ion secondary battery negative electrode, and production method thereof
 本発明は、リチウムイオン二次電池負極、リチウムイオン二次電池負極を用いたリチウムイオン二次電池、および、それらの製造方法に関する。 The present invention relates to a lithium ion secondary battery negative electrode, a lithium ion secondary battery using a lithium ion secondary battery negative electrode, and a method for producing the same.
 近年、リチウムイオン二次電池に対する開発が盛んに進められている。特許文献1には、負極電極活物質層が、帯状電極の長手方向に直交する幅方向の両端部にそれぞれ位置する帯状端縁部と、前記端縁部の中央に位置する中央部からなる構造で、端縁部よりも中央部を低抵抗にすることで、充電時の金属リチウムが析出するのを防止し、実用に伴う電池容量の低下を抑制する技術が記載されている。 In recent years, development of lithium ion secondary batteries has been actively promoted. Patent Document 1 discloses a structure in which a negative electrode active material layer is composed of a strip-shaped edge portion located at both ends in the width direction perpendicular to the longitudinal direction of the strip-shaped electrode, and a central portion located at the center of the edge portion. Thus, a technique is described in which the central portion is made lower in resistance than the end edge portion, thereby preventing metallic lithium from precipitating during charging and suppressing the decrease in battery capacity due to practical use.
特開2011-70976号公報JP 2011-70976 A
 特許文献1では、帯状電極の長手方向に直交する幅方向の中央領域に、端縁部よりも平均粒径の小さい活物質粒子を配置している。粒径の小さな粒子は、比表面積が大きいことから、粒子表面の表面反応が大きくなることが考えられる。従って、前記粒子を配置した中央領域割合が、電極幅方向に対して多くなると、高い高温保持特性が望めない可能性がある。本発明は、高温保存特性およびサイクル特性などの寿命特性に優れたリチウムイオン二次電池負極、リチウムイオン二次電池負極を用いたリチウムイオン二次電池、および、それらの製造方法を提供することを目的とする。 In Patent Document 1, active material particles having an average particle size smaller than that of the edge portion are arranged in a central region in the width direction orthogonal to the longitudinal direction of the strip electrode. Since particles having a small particle size have a large specific surface area, it is considered that the surface reaction on the particle surface increases. Therefore, when the ratio of the central region in which the particles are arranged increases in the electrode width direction, high high temperature holding characteristics may not be expected. The present invention provides a lithium ion secondary battery negative electrode having excellent life characteristics such as high temperature storage characteristics and cycle characteristics, a lithium ion secondary battery using a lithium ion secondary battery negative electrode, and a method for producing the same. Objective.
 上記課題を解決するための本発明の特徴は以下の通りである。負極電極の表面に負極合剤層が設けられており、負極合剤は、リチウムイオンを吸蔵、放出可能な負極活物質の粒子を有するリチウムイオン二次電池において、負極電極の捲回方向に直交する幅方向の中央部に負極第一合剤層を有し、負極第一合剤層の幅方向の両端に負極第二合剤層を有し、負極第一合剤層に含まれる負極活物質は、粒径の大きな負極活物質と、粒径の小さな負極活物質の混合物であり、負極第二合剤層に含まれる負極活物質は、粒径の大きな負極活物質または粒径の小さな負極活物質であるリチウムイオン二次電池である。 The features of the present invention for solving the above-described problems are as follows. A negative electrode mixture layer is provided on the surface of the negative electrode, and the negative electrode mixture is orthogonal to the winding direction of the negative electrode in a lithium ion secondary battery having negative electrode active material particles capable of occluding and releasing lithium ions. Negative electrode active material contained in the negative electrode first mixture layer, having a negative electrode first mixture layer at the center in the width direction and having negative electrode second mixture layers at both ends in the width direction of the negative electrode first mixture layer. The material is a mixture of a negative electrode active material having a large particle size and a negative electrode active material having a small particle size, and the negative electrode active material contained in the negative electrode second mixture layer is a negative electrode active material having a large particle size or a small particle size. It is a lithium ion secondary battery which is a negative electrode active material.
 さらに、粒径の大きな負極活物質の平均粒径は、15μm以上45μm以下であり、前記粒径の小さな負極活物質の平均粒径は、5μm以上15μm未満であるリチウムイオン二次電池用負極である。 Further, the negative electrode active material having a large particle size has an average particle size of 15 μm or more and 45 μm or less, and the negative electrode active material having a small particle size has an average particle size of 5 μm or more and less than 15 μm. is there.
 製造方法として例えば、(1)負極電極上の端縁部領域に、粒径の大きな負極活物質または粒径の小さな負極活物質を含む負極合剤スラリーを塗布、乾燥し、プレス加工して端縁領域に負極合剤層を形成する工程と、(1)の工程後に、粒径の大きな負極活物質および粒径の小さな負極活物質を含む負極合剤スラリーを塗布、乾燥し、更にプレス加工して中央領域に負極合剤層が形成される工程を有するものを採用することができる。 As a manufacturing method, for example, (1) a negative electrode active material slurry containing a negative electrode active material having a large particle size or a negative electrode active material having a small particle size is applied to the edge region on the negative electrode, dried, pressed and processed After the step of forming a negative electrode mixture layer in the edge region and the step (1), a negative electrode mixture slurry containing a negative electrode active material having a large particle size and a negative electrode active material having a small particle size is applied, dried, and further pressed. And what has the process in which a negative mix layer is formed in a center area | region is employable.
 本発明によれば、サイクル特性および高温保存特性などの寿命特性に優れたリチウムイオン二次電池用負極、リチウムイオン二次電池用負極を用いたリチウムイオン二次電池、および、それらの製造方法を提供できる。上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。 According to the present invention, a negative electrode for a lithium ion secondary battery having excellent life characteristics such as cycle characteristics and high-temperature storage characteristics, a lithium ion secondary battery using a negative electrode for a lithium ion secondary battery, and a method for producing the same Can be provided. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
本発明に係るリチウムイオン二次電池用電極が適用される二次電池の一実施の形態の全体構成を示す片側縦断面図。The single-side longitudinal cross-sectional view which shows the whole structure of one Embodiment of the secondary battery with which the electrode for lithium ion secondary batteries which concerns on this invention is applied. 本発明に係るリチウムイオン二次電池用電極の一実施の形態の基本構成を示す図。The figure which shows the basic composition of one Embodiment of the electrode for lithium ion secondary batteries which concerns on this invention.
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible. In all the drawings for explaining the present invention, components having the same function are denoted by the same reference numerals, and repeated description thereof may be omitted.
 図1は、本発明に係るリチウムイオン電池用電極が適用される二次電池の一実施の形態の全体構成を示したものである。
FIG. 1 shows an overall configuration of an embodiment of a secondary battery to which an electrode for a lithium ion battery according to the present invention is applied.
 二次電池1100は、リチウムイオンを可逆的に吸蔵放出する正極16と負極13と、正極16及び負極13との間に介装配置されたセパレータ17と、リチウムイオンを含む電解質を溶解させた有機電解液115と、から大略構成されている。ここで、正極16は、正極電極14とその両面に配置された正極合剤層15とから大略構成され、正極16の集電をとるために正極リード18の一端は正極電極14に溶接されている。また、負極13は、負極電極11とその両面に配置された負極合剤層12とから大略構成され、負極13の集電をとるために負極リード19の一端は負極電極11に溶接されている。 The secondary battery 1100 includes a positive electrode 16 and a negative electrode 13 that reversibly occlude and release lithium ions, a separator 17 interposed between the positive electrode 16 and the negative electrode 13, and an organic solution in which an electrolyte containing lithium ions is dissolved. The electrolytic solution 115 is generally configured. Here, the positive electrode 16 is generally composed of a positive electrode 14 and a positive electrode mixture layer 15 disposed on both surfaces thereof, and one end of a positive electrode lead 18 is welded to the positive electrode 14 in order to collect the positive electrode 16. Yes. The negative electrode 13 is generally composed of the negative electrode 11 and the negative electrode mixture layer 12 disposed on both sides thereof, and one end of the negative electrode lead 19 is welded to the negative electrode 11 in order to collect the negative electrode 13. .
 次に、本発明に係るリチウムイオン二次電池用負極電極の実施の形態について、図2を参照して説明する。図2は、本発明に係るリチウムイオン二次電池用負極電極の一実施の形態の基本構成を示したものである。図2に示すリチウムイオン二次電池用負極電極は、電極の片面に電極合剤層を備えたものであるが、図1に示すように電極の両面に電極合剤層を設けることもできる。 Next, an embodiment of the negative electrode for a lithium ion secondary battery according to the present invention will be described with reference to FIG. FIG. 2 shows a basic configuration of an embodiment of the negative electrode for a lithium ion secondary battery according to the present invention. The negative electrode for a lithium ion secondary battery shown in FIG. 2 has an electrode mixture layer on one side of the electrode, but an electrode mixture layer can also be provided on both sides of the electrode as shown in FIG.
 原理について図2を用いて説明する。 The principle will be described with reference to FIG.
 本発明の一実施形態では、電極の捲回方向に直交する幅方向の中心領域に、負極第一合剤層を設け、負極第一合剤層の幅方向の両端に負極第二合剤層を設ける。負極第一合剤層は、粒径の大きな負極活物質および粒径の小さな負極活物質を含み、負極第二合剤層は、前記粒径の大きな負極活物質または前記粒径の小さな負極活物質のいずれか一方の活物質を含む。本構成により、サイクル特性および高温保持特性を向上させることが可能となる。 In one embodiment of the present invention, the negative electrode first mixture layer is provided in the center region in the width direction orthogonal to the winding direction of the electrode, and the negative electrode second mixture layer is formed at both ends of the negative electrode first mixture layer in the width direction. Is provided. The negative electrode first mixture layer includes a negative electrode active material having a large particle size and a negative electrode active material having a small particle size, and the negative electrode second mixture layer includes the negative electrode active material having a large particle size or the negative electrode active material having a small particle size. Contains one of the active materials. With this configuration, it is possible to improve cycle characteristics and high temperature holding characteristics.
 高温保持特性は、保存中の負極活物質表面の表面反応を低減することが重要であり、その対策の一つとして、比表面積を低くし反応面積を低減することが考えられる。比表面積を低くする方法として、比較的粒径の大きな負極活物質を配置することにより高温保持特性を向上させることが可能となる。 For high temperature retention characteristics, it is important to reduce the surface reaction on the surface of the negative electrode active material during storage. As one of the countermeasures, it is conceivable to lower the specific surface area and reduce the reaction area. As a method for reducing the specific surface area, it is possible to improve the high-temperature holding characteristics by disposing a negative electrode active material having a relatively large particle size.
 一方、サイクル寿命特性に対しては、粒径の小さな負極活物質が効果的と考えられる。通常プレス加工された天然黒鉛粒子の形状は、例えば楕円に変形する。その結果、黒鉛粒子は、充放電により負極合剤層の膜厚方向に膨張・収縮する。その時の黒鉛粒子の変位量を考えると、粒径の小さな粒子の方が変位量も小さいと考えられる。粒径が小さいメリットとして、結着点を増やすことができる等が挙げられる。前記の様なメリットのある粒径の小さい負極活物質を配置することでサイクル寿命特性の向上が可能となる。 On the other hand, a negative electrode active material having a small particle size is considered effective for cycle life characteristics. The shape of natural graphite particles that are usually pressed is deformed into an ellipse, for example. As a result, the graphite particles expand and contract in the film thickness direction of the negative electrode mixture layer by charging and discharging. Considering the amount of displacement of the graphite particles at that time, it is considered that the smaller the particle size, the smaller the amount of displacement. An advantage of a small particle size is that the binding point can be increased. By disposing a negative electrode active material with a small particle diameter having the above-mentioned merit, cycle life characteristics can be improved.
 そこで、本発明では、負極電極11上に前記粒径のことなる活物質を含む負極第一合剤層12Aを配置することにより、サイクル特性と高温保持特性の両立を図ることが可能となる。 Therefore, in the present invention, it is possible to achieve both cycle characteristics and high-temperature holding characteristics by disposing the negative electrode first mixture layer 12A containing the active material having a different particle diameter on the negative electrode 11.
 また、電池設計条件によっては、電極の幅方向に対する中心付近の領域が充放電を繰り返すサイクル寿命試験による影響を受け易く、劣化しやすいと考えられる。本発明では、中心領域に第一合剤層を配置し、前記第一合剤層を粒径の異なる粒子の混合層とすることでこの領域の寿命劣化を低減することができる。 Also, depending on the battery design conditions, the region near the center with respect to the width direction of the electrode is likely to be affected by a cycle life test in which charge and discharge are repeated and is likely to deteriorate. In the present invention, it is possible to reduce the life deterioration of this region by disposing the first mixture layer in the central region and using the first mixture layer as a mixed layer of particles having different particle diameters.
 負極第一合剤層を中位径(D50)の異なる二種類の粒子を混ぜることにより、サイクル特性に効果のある粒径の小さな負極活物質と、高温保存特性に効果のある粒径の大きな負極活物質とを混在させて、電池としての寿命特性を向上させることができる。また、電極との密着力を高める特徴が挙げられる。中位径(D50)中位径(D50)小のそれぞれ単体の場合よりも、それらを混ぜることで、粒径の大きな粒子の隙間に粒径の小さな粒子が配置され、活物質同士の結着性が向上すると考えられる。また、粒径の大きな粒子のアンカー(錨)的な効果が期待できることから、電極と活物質の結着力を高める可能性が考えられる。 By mixing two types of particles having different median diameters (D 50 ) in the first negative electrode mixture layer, a negative electrode active material having a small particle diameter effective for cycle characteristics and a particle diameter effective for high-temperature storage characteristics A life characteristic as a battery can be improved by mixing a large negative electrode active material. Moreover, the characteristic which raises the adhesive force with an electrode is mentioned. The median diameter (D 50 ) is smaller than the median diameter (D 50 ), and by mixing them, small particles are arranged in the gaps between the large particles. It is considered that the binding property is improved. In addition, since an anchor-like effect of particles having a large particle size can be expected, there is a possibility of increasing the binding force between the electrode and the active material.
 さらに、粒径の異なる粒子を混在させることで、負極第一合剤層中の空隙サイズの均一化及び前記空隙数を増加させることが可能となる。その結果、電解液の浸透性がより高くなり、電解液の枯渇等を低減することが可能になると考えられる。粒径の異なる粒子を混在させた場合、粒径の差が大きいほど粒径分布は広範囲に及ぶ。 Furthermore, by mixing particles having different particle diameters, it becomes possible to make the void size uniform in the negative electrode first mixture layer and increase the number of voids. As a result, it is considered that the permeability of the electrolytic solution becomes higher and it is possible to reduce the depletion of the electrolytic solution. When particles having different particle sizes are mixed, the larger the difference in particle size, the wider the particle size distribution.
 更に、前記負極第一合剤層12Aを、サイクル寿命試験による影響を受け易いと考えられる電極の捲回方向に対して直交する幅方向の中央領域に配置することが好ましい。サイクル寿命試験後の負極電極表面を観察したところ、捲回方向に直交する幅方向の中心付近の劣化が見られる。本発明では、前記した領域に粒径の異なる活物質を有する合剤層を配置することで、サイクル寿命特性の向上を図ることが可能になる。 Furthermore, it is preferable that the first negative electrode mixture layer 12A is disposed in a central region in the width direction orthogonal to the winding direction of the electrode considered to be easily affected by the cycle life test. When the surface of the negative electrode after the cycle life test is observed, deterioration near the center in the width direction perpendicular to the winding direction is observed. In the present invention, it is possible to improve cycle life characteristics by arranging a mixture layer having active materials having different particle diameters in the above-described region.
 また、必要に応じて、負極第一合剤層の厚みを、負極第二合剤層よりも若干厚く形成することで、サイクル寿命試験による劣化を低減することが可能である。 Further, if necessary, the negative electrode first mixture layer is formed slightly thicker than the negative electrode second mixture layer, so that deterioration due to the cycle life test can be reduced.
 前記負極第一合剤層12Aに含まれる2種類の活物質は、市販されている黒鉛を用いることが可能である。中でも粒径45μm以下の黒鉛を用いることを特徴し、粒径の小さな黒鉛には中位径(D50)が5μm以上15μm以下、粒径の大きな黒鉛には15μmより大きく45μm以下、望ましくは15μmより大きく35μm以下のサイズを用いることを特徴とする。前記中位径(D50)が35μmより大きくなると、塗工用スラリー中への分散性低下や放電容量密度の低下などの影響が考えられる。また、粒径が5μmより小さくなると、粉末作製に特殊な製造方法が必要となる、あるいは塗布用負極合剤スラリー作製の難易度が高くなる等の問題が生じる可能性がある。 Commercially available graphite can be used for the two types of active materials contained in the first negative electrode mixture layer 12A. Among these, graphite having a particle size of 45 μm or less is used, and the median diameter (D 50 ) is 5 μm or more and 15 μm or less for graphite having a small particle size, and is larger than 15 μm and 45 μm or less, preferably 15 μm for graphite having a large particle size. A size larger than 35 μm is used. When the median diameter (D 50 ) is larger than 35 μm, influences such as a decrease in dispersibility in the coating slurry and a decrease in discharge capacity density can be considered. On the other hand, when the particle size is smaller than 5 μm, there may be a problem that a special manufacturing method is required for powder production, or that the difficulty of preparing a coating negative electrode mixture slurry is increased.
 粒径の大きな粒子と、粒径の小さな粒子とでは、その粒径の差が大きいほど効果が高い。粒径の差が大きいほど、粒径の大きな粒子の間に粒径の小さな粒子が入り込む構造となるため、活物質の体積密度を上げることができる。また、電池の充電放電に伴う粒径の大きな粒子の膨張収縮により、粒子間の接触が少なくなり導電性が低下することが考えられる。、粒径の小さな粒子が電子の橋渡しをするため、導電性の低下を防ぐことができる。このため、粒径の大きな負極活物質の中位径(D50)20~40μmに対して、粒径の小さな負極活物質は、5~10μmであることが好ましい。さらに、粒径が大きな粒子を密に充填した場合に生じる空間の体積を考慮すると、粒径が大きな負極活物質中位径(D50)30~40μmに対して、粒径が小さな負極活物質中位径(D50)を5~8μmとすることが好ましい。粒径の大きな負極活物質の平均粒径が、粒径の小さな負極活物質の平均粒径の1.5倍以上、望ましくは2.5倍以上、更に望ましくは3.0倍以上である。
The larger the particle size difference between the large particle size particle and the small particle size, the higher the effect. The larger the particle size difference is, the larger the particle size, the larger the particle size of the active material. Further, it is conceivable that the contact between the particles is reduced due to the expansion and contraction of the particles having a large particle size accompanying the charging and discharging of the battery, and the conductivity is lowered. Since particles having a small particle diameter serve as an electron bridge, a decrease in conductivity can be prevented. For this reason, it is preferable that the negative electrode active material having a small particle diameter is 5 to 10 μm with respect to the median diameter (D 50 ) of 20 to 40 μm having a large particle size. Furthermore, in consideration of the volume of the space generated when particles having a large particle diameter are densely packed, the negative electrode active material having a small particle diameter with respect to the medium diameter (D 50 ) of 30 to 40 μm having a large particle diameter. The median diameter (D 50 ) is preferably 5 to 8 μm. The average particle size of the negative electrode active material having a large particle size is 1.5 times or more, preferably 2.5 times or more, more preferably 3.0 times or more than the average particle size of the negative electrode active material having a small particle size.
 負極第一合剤層は、粒径が大きな負極活物質と粒径が小さな負極活物質を含むので、負極第一合剤層の製造工程には、粒径の大きな負極活物質と、粒径の小さな負極活物質とを混合しスラリーを製造する工程が含まれる。この工程としては、バインダ等と二種類の負極活物質とを同時に混合する工程でもよいし、あらかじめ二種類の負極活物質を混合させる工程と、二種類の負極活物質の混合物をバインダ等とを混ぜ合わせる工程に分けてもよく、混合の順番、タイミングは特に限定されるものではない。また、必要に応じて前記合剤層に導電材を加えても良い。
Since the negative electrode first mixture layer includes a negative electrode active material having a large particle size and a negative electrode active material having a small particle size, a negative electrode active material having a large particle size and a particle size are included in the production process of the negative electrode first mixture layer. The process of mixing a small negative electrode active material of this, and manufacturing a slurry is included. This step may be a step of simultaneously mixing a binder or the like and two types of negative electrode active materials, a step of mixing two types of negative electrode active materials in advance, and a mixture of two types of negative electrode active materials with a binder or the like. The mixing process may be divided, and the order and timing of mixing are not particularly limited. Moreover, you may add a electrically conductive material to the said mixture layer as needed.
 負極第一合剤層の両縁部には、粒径の大きな負極活物質または粒径の小さな負極活物質のいずれか一種類を含む負極第二合剤層を配置することを特徴とする。例えば、電池の仕様として高温保持特性を重視する場合は、中位径(D50)15μmより大きく35μm以下のサイズの活物質を用いることで特性向上が図れる。またサイクル寿命特性を重視する場合は中位径(D50)5μm以上15μm以下の活物質を用いることで、よりそれぞれの特性向上が可能となる。 A negative electrode second mixture layer containing either one of a negative electrode active material having a large particle diameter or a negative electrode active material having a small particle diameter is disposed on both edges of the negative electrode first mixture layer. For example, when emphasizing the high-temperature holding characteristics as the battery specifications, the characteristics can be improved by using an active material having a median diameter (D 50 ) larger than 15 μm and not larger than 35 μm. Further, when the cycle life characteristics are regarded as important, the use of an active material having a median diameter (D 50 ) of 5 μm or more and 15 μm or less can further improve the respective characteristics.
 また、負極第二合剤層を両縁部に配置する効果の一つとして、電極中心部への電解液浸透性が考えられる。例えば、負極第一合剤層の両端部に、負極第一合剤層のよりも電極密度の低い、粒径の大きな粒子あるいは粒径の小さな粒子の負極第二合剤層を配置することで、粒子間の空隙割合が大きくなることから、電極幅方向の中心付近に配置した負極第一合剤層へ電解液を供給しやすくなることが考えられる。 Also, as one of the effects of disposing the negative electrode second mixture layer on both edges, the electrolyte penetration into the electrode center can be considered. For example, by disposing a negative electrode second mixture layer of particles having a larger particle diameter or smaller particle diameter than the negative electrode first mixture layer at both ends of the negative electrode first mixture layer. Since the void ratio between the particles increases, it is considered that the electrolyte solution can be easily supplied to the negative electrode first mixture layer disposed near the center in the electrode width direction.
 電極幅に対する、中央領域の負極第一合剤層の占める割合は、中心を含めて30%以上、望ましくは30から80%以下であることが望ましい。負極第一合剤層の占める割合が30%より少なくなると、サイクル寿命試験でダメージを受ける領域を補うことが難しくなるからである。また、80%以上になると、前記した負極第二合剤層を配置する効果が減少する可能性が考えられるからである。

<負極活物質>
 本発明の一実施形態では、負極活物質に天然黒鉛などの黒鉛系材料を用いている。天然黒鉛は、人造黒鉛に比べて結晶性が高いため理論容量に近い高容量が得られる。また、初期充電不可逆容量が小さい、低価格などの特徴を持ち実用化されている。反面、サイクル特性が不十分などの課題も持ち合わせている。
The ratio of the negative electrode first mixture layer in the central region to the electrode width is 30% or more including the center, desirably 30 to 80% or less. This is because if the proportion of the negative electrode first mixture layer is less than 30%, it is difficult to compensate for the area that is damaged in the cycle life test. Moreover, it is because possibility that the effect which arrange | positions an above described negative electrode 2nd mixture layer will reduce will be considered when it becomes 80% or more.

<Negative electrode active material>
In one embodiment of the present invention, a graphite-based material such as natural graphite is used for the negative electrode active material. Since natural graphite has higher crystallinity than artificial graphite, a high capacity close to the theoretical capacity can be obtained. In addition, it has been put into practical use with features such as low initial charge irreversible capacity and low price. On the other hand, it has problems such as insufficient cycle characteristics.
 そこで、本発明の一実施形態のような大小の粒径の異なる活物質を混在した負極第一合剤層12Aを配置することで、高容量化とサイクル特性および高温保持特性を兼ね備えた負極13が得られる。また、上記に述べた負極13を用いることで、高容量でかつサイクル特性および高温保持特性に優れたリチウムイオン二次電池を提供できる。また、種々の表面改質を施した天然黒鉛を用いてもよい。更に、黒鉛系材料として天然黒鉛に近い結晶性の人造黒鉛や高結晶性黒鉛を用いてもよい。 Therefore, the negative electrode 13 having both high capacity, cycle characteristics, and high temperature holding characteristics by disposing the negative electrode first mixture layer 12A mixed with active materials having different particle sizes, such as one embodiment of the present invention. Is obtained. Further, by using the negative electrode 13 described above, it is possible to provide a lithium ion secondary battery having a high capacity and excellent cycle characteristics and high temperature holding characteristics. Natural graphite having various surface modifications may be used. Furthermore, crystalline artificial graphite or highly crystalline graphite close to natural graphite may be used as the graphite material.
 また、負極第一合剤層12Aおよび負極第一合剤層12Bに用いる負極活物質は、同一種類の負極活物質を用いることで、加工性が向上する。特に、1回のプレス加工で負極を作製する場合、同一種類の方が望ましい。また、電池特性の観点からも同一種類とすることが望ましい。 In addition, as the negative electrode active material used for the negative electrode first mixture layer 12A and the negative electrode first mixture layer 12B, workability is improved by using the same type of negative electrode active material. In particular, when producing a negative electrode by one press working, the same kind is desirable. Moreover, it is desirable to make it the same kind also from a viewpoint of battery characteristics.
 負極13の製造方法として、必要数の吐出口を備えたダイコータ等を用いて負極電極11上に負極第一合剤層12A負極第二合剤層12Bを同時に塗布・乾燥しプレス加工する方法を用いることができる。また、負極第一合剤層と負極第二合剤層の塗布、乾燥を別に行う方法、すなわち、負極電極11上に、負極第一合剤層を塗布・乾燥し形成し、次いで負極第二合剤層を塗布・乾燥およびプレス加工する方法も採用可能である。また、負極第一合剤層を塗布する工程と負極第二合剤層を塗布する工程を別で設け、その後乾燥しプレス加工する方法も用いることができる。さらに、負極第一合剤層と負極第二合剤層の塗布、乾燥、プレスをすべて別に行う製法を用いることもできる。製造工程の簡略化の観点からは、負極第一合剤層と負極第二合剤層の塗布、乾燥、プレスを同時に行う製法が好ましい。

<正極活物質>
 本発明に用いる正極活物質としては、LiCoO2、LiNiO2、LiMn24を一般に使用することができ、その他、LiMnO3、LiMn23、LiMnO2、Li4Mn512、LiMn2-xx2(ただし、M=Co、Ni、Fe、Cr、Zn、Taであって、x=0.01~0.2)、Li2Mn3MO8(ただし、M=Fe、Co、Ni、Cu、Zn)、Li1-xxMn24(ただし、A=Mg、B、Al、Fe、Co、Ni、Cr、Zn、Caであって、x=0.01~0.1)、LiNi1-xx2(ただし、M=Co、Fe、Gaであって、x=0.01~0.2)、LiFeO2、Fe2(SO4)3、LiCo1-xx2(ただし、M=Ni、Fe、Mnであって、x=0.01~0.2)、LiNi1-xx2(ただし、M=Mn、Fe、Co、Al、Ga、Ca、Mgであって、x=0.01~0.2)、Fe(MoO4)3、FeF3、LiFePO4、LiMnPO4などを使用することができる。

<バインダ>
 各電極合剤層に用いるバインダの種類としては、特に限定はなく、一般的にリチウムイオン電池の電極作製に用いられるポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリビニルピリジン等の高分子材料のいずれか一種以上を使用することができる。また、スチレン-ブタジエンゴム(SBR)、ポリアクリレートなどのいずれか一種以上に代表される水を希釈剤に用いることが可能な水系バインダを用いても良い。
As a manufacturing method of the negative electrode 13, a method of simultaneously applying and drying the negative electrode first mixture layer 12 </ b> A and the second negative mixture layer 12 </ b> B on the negative electrode 11 using a die coater or the like having a necessary number of discharge ports is press-processed. Can be used. Further, the negative electrode first mixture layer and the negative electrode second mixture layer are separately applied and dried, that is, the negative electrode first mixture layer is applied and dried on the negative electrode 11, and then the negative electrode second mixture layer is formed. A method of applying, drying and pressing the mixture layer can also be employed. Moreover, the process of apply | coating a negative electrode 1st mixture layer and the process of apply | coating a negative electrode 2nd mixture layer separately, and drying and press-processing after that can also be used. Furthermore, a manufacturing method in which the negative electrode first mixture layer and the negative electrode second mixture layer are separately applied, dried, and pressed can be used. From the viewpoint of simplifying the production process, a production method in which the negative electrode first mixture layer and the negative electrode second mixture layer are simultaneously applied, dried and pressed is preferred.

<Positive electrode active material>
As the positive electrode active material used in the present invention, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 can be generally used. In addition, LiMnO 3 , LiMn 2 O 3 , LiMnO 2 , Li 4 Mn 5 O 12 , LiMn 2 -x M x O 2 (where M = Co, Ni, Fe, Cr, Zn, Ta, where x = 0.01 to 0.2), Li 2 Mn 3 MO 8 (where M = Fe, Co, Ni, Cu, Zn), Li 1-x A x Mn 2 O 4 (where A = Mg, B, Al, Fe, Co, Ni, Cr, Zn, Ca, and x = 0.01) 0.1), LiNi 1-x M x O 2 (where M = Co, Fe, Ga and x = 0.01-0.2), LiFeO 2 , Fe 2 (SO 4 ) 3 , LiCo 1-x M x O 2 ( however, M = Ni, Fe, a Mn, x = 0.01 ~ 0.2) , LiNi 1-x M x O 2 However, M = Mn, Fe, Co , Al, Ga, Ca, a Mg, x = 0.01 ~ 0.2) , Fe (MoO 4) 3, FeF 3, using, for example, LiFePO 4, LiMnPO 4 can do.

<Binder>
The type of binder used in each electrode mixture layer is not particularly limited, and is generally high, such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl pyridine, etc., which are generally used for preparing electrodes of lithium ion batteries. Any one or more of the molecular materials can be used. Further, an aqueous binder capable of using, as a diluent, water represented by any one or more of styrene-butadiene rubber (SBR), polyacrylate and the like may be used.
 各電極合剤層に含まれるバインダは、バインダの種類によって最適な組成が異なるものの、スチレン-ブタジエンゴム(SBR)に代表される水系バインダの場合、仮にバインダ濃度が0.8重量%より小さいと、活物質同士の結着力が低下して電極の作製に悪影響が生じる可能性があり、バインダ濃度が2.0重量%より大きいと電極間の抵抗が増大してしまうため、バインダ濃度は0.8~2.0重量%であることが望ましい。さらに、スチレン-ブタジエンゴム(SBR)を用いる場合は、粘度調整剤としてカルボキシメチルセルロース(CMC)をSBRと等量分使用ことを特徴とする。

<セパレータ>
 本発明に用いるセパレータは、公知のリチウムイオン電池に使用されているセパレータを用いることができる。例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン製の微孔性フィルムや不織布などが挙げられる。尚、電池の高容量化の観点からは、セパレータの厚みは、30μm以下とすることが好ましく、18μm以下とすることがより好ましい。
The binder contained in each electrode mixture layer has an optimum composition depending on the type of binder, but in the case of an aqueous binder represented by styrene-butadiene rubber (SBR), if the binder concentration is less than 0.8% by weight. In addition, the binding force between the active materials may be reduced, which may adversely affect the production of the electrode. If the binder concentration is more than 2.0% by weight, the resistance between the electrodes is increased, so that the binder concentration is less than 0.2%. The content is desirably 8 to 2.0% by weight. Further, when styrene-butadiene rubber (SBR) is used, carboxymethyl cellulose (CMC) is used in an amount equivalent to SBR as a viscosity modifier.

<Separator>
The separator used for this invention can use the separator currently used for the well-known lithium ion battery. Examples thereof include microporous films made of polyolefin such as polyethylene and polypropylene, and nonwoven fabrics. From the viewpoint of increasing the capacity of the battery, the thickness of the separator is preferably 30 μm or less, and more preferably 18 μm or less.
<負極の作製>
 以下、図1及び図2を用いて説明する。
<Production of negative electrode>
Hereinafter, description will be made with reference to FIGS. 1 and 2.
 負極電極11の銅箔上に負極第一合剤層12Aおよび負極第二合剤層12Bを形成した。具体的には、負極第一合剤層の負極活物質として粒度分布測定法で計測した中位径(D50)=20μmの天然黒鉛と中位径(D50)=10μmの天然黒鉛、負極第二合剤層の負極活物質として中位径(D50)=20μmの天然黒鉛をそれぞれ用いた。バインダとしてスチレン-ブタジエンゴム(SBR)、粘度調整剤としてカルボキシメチルセルロース(CMC)をSBRと等量分使用した。黒鉛とバインダとを98.0:2.0の混合比で混合し、粘度調整用に水を加えて2種類の負極合剤スラリーを調整した。次いで、この負極合剤スラリーを、厚み10μmの銅箔の負極電極11上に塗布し、110℃で温風乾燥後、裏面にも先の負極合剤スラリーを用いて負極合剤層12を形成した。尚、本実施例では、負極第一合剤層12Aと負極第二合剤層を同時に塗工した。塗工には、吐出口を3個、スラリーを収納する容器を2個設けた塗工装置を用いて実施した。 A negative electrode mixture layer 12 </ b> A and a negative electrode mixture layer 12 </ b> B were formed on the copper foil of the negative electrode 11. Specifically, natural graphite having a median diameter (D 50 ) = 20 μm and natural graphite having a median diameter (D 50 ) = 10 μm as a negative electrode active material of the negative electrode first mixture layer, a negative electrode Natural graphite having a median diameter (D 50 ) = 20 μm was used as the negative electrode active material of the second mixture layer. Styrene-butadiene rubber (SBR) as a binder and carboxymethyl cellulose (CMC) as a viscosity modifier were used in an amount equivalent to SBR. Graphite and binder were mixed at a mixing ratio of 98.0: 2.0, and water was added for viscosity adjustment to prepare two types of negative electrode mixture slurry. Next, this negative electrode mixture slurry is applied on the negative electrode 11 of a copper foil having a thickness of 10 μm, dried with hot air at 110 ° C., and then the negative electrode mixture layer 12 is formed on the back using the negative electrode mixture slurry. did. In this example, the negative electrode first mixture layer 12A and the negative electrode second mixture layer were applied simultaneously. The coating was performed using a coating apparatus provided with three discharge ports and two containers for storing slurry.
 電極の両面に形成した負極合剤層12をロール圧延によるプレスを実施し、負極合剤層12の片面膜厚が55μmとなるように調整し、負極合剤層12を作製した。
 
<正極の作製>
 正極活物質としてLiMn1/3Ni1/3Co1/32を用いた。この正極活物質と電子導電性材料としてカーボンブラック(CB1)と黒鉛(GF2)とを乾式混合した。混合物とバインダとしてポリフッ化ビニリデン(PVDF)を、溶剤としてN-メチルピロリドン(NMP)とを加えて混合して正極合剤スラリーを調合した。尚、これらの乾燥時の固形分重量比がLiMn1/3Ni1/3Co1/32:CB1:GF2:PVDF=86:9:2:3となるように配合した。次いで、正極合剤スラリーを厚み15μmのアルミニウム箔からなる正極電極14の両面に塗布し、120℃で乾燥した後、ロール圧延によるプレス加工し正極16を作製した。

<捲回・組立て>
 本実施例のセパレータは、ポリエチレン製の微孔性フィルムを用いた。
The negative electrode mixture layer 12 formed on both surfaces of the electrode was pressed by roll rolling to adjust the single-sided film thickness of the negative electrode mixture layer 12 to 55 μm, and the negative electrode mixture layer 12 was produced.

<Preparation of positive electrode>
LiMn 1/3 Ni 1/3 Co 1/3 O 2 was used as the positive electrode active material. Carbon black (CB1) and graphite (GF2) were dry mixed as the positive electrode active material and the electronic conductive material. A mixture of the mixture and polyvinylidene fluoride (PVDF) as a binder and N-methylpyrrolidone (NMP) as a solvent were added and mixed to prepare a positive electrode mixture slurry. Incidentally, these solid weight ratio after drying of LiMn 1/3 Ni 1/3 Co 1/3 O 2 : CB1: GF2: PVDF = 86: 9: 2: was blended so that 3. Next, the positive electrode mixture slurry was applied to both surfaces of the positive electrode 14 made of an aluminum foil having a thickness of 15 μm, dried at 120 ° C., and then pressed by roll rolling to produce the positive electrode 16.

<Winding / Assembly>
For the separator of this example, a microporous film made of polyethylene was used.
 また、エチレンカーボネート(EC)、ビニレンカーボネート(VC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)を用意し、溶媒としてその容積組成比がEC:VC:DMC:EMC=19.8:0.2:40:40となるように混合したものを使用し、溶質となるリチウム塩としてLiPF6を用いて1M溶解して電解液115(有機電解液)を作製した。
Also, ethylene carbonate (EC), vinylene carbonate (VC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) are prepared, and the volume composition ratio thereof is EC: VC: DMC: EMC = 19.8: 0 as a solvent. .2: 40: 40 was used, and 1M was dissolved using LiPF6 as a solute lithium salt to prepare an electrolytic solution 115 (organic electrolytic solution).
 前記製造方法により製造した正極16と負極13との間にセパレータ17を挟み込み、捲回群を形成して負極電池缶113に挿入した。そして、負極13の集電をとるためにニッケル(Ni)製の負極リード19の一端を負極電極11に溶接すると共に、他端を電池缶113に溶接した。また、正極16の集電をとるためにアルミニウム(Al)製の正極リード18の一端を正極電極14に溶接すると共に、他端を電流遮断溶接し、さらに電流遮断弁(不図示)を介して正極電池蓋112と電気的に接続した。そして、電池缶113の内部に上記電解液115を注液し、正極16と負極13とセパレータ17とを電解液115に浸漬させ、かしめ機等によって電池缶113の開放口をかしめることで捲回型の二次電池1100を製造した。なお、図1において、110は正極絶縁材、111は負極絶縁材、114はガスケットである。
A separator 17 was sandwiched between the positive electrode 16 and the negative electrode 13 manufactured by the manufacturing method, and a wound group was formed and inserted into the negative battery can 113. Then, one end of a nickel (Ni) negative electrode lead 19 was welded to the negative electrode 11 and the other end was welded to the battery can 113 in order to collect the negative electrode 13. In addition, one end of an aluminum (Al) positive electrode lead 18 is welded to the positive electrode 14 in order to collect current from the positive electrode 16, and the other end is subjected to current interruption welding, and further via a current interruption valve (not shown). The positive electrode battery lid 112 was electrically connected. Then, the electrolytic solution 115 is poured into the battery can 113, the positive electrode 16, the negative electrode 13, and the separator 17 are immersed in the electrolytic solution 115, and the opening of the battery can 113 is caulked by a caulking machine or the like. A rechargeable secondary battery 1100 was manufactured. In FIG. 1, 110 is a positive electrode insulating material, 111 is a negative electrode insulating material, and 114 is a gasket.
 以下に示す方法で、本実施例の捲回型電池を作製した。
<負極の作製>
 負極電極11の銅箔上に負極第一合剤層12Aおよび負極第二合剤層12Bを形成した。具体的には、負極第一合剤層12Aの負極活物質として粒度分布測定法で計測した中位径(D50)=8μmの天然黒鉛および中位径(D50)=30μmの天然黒鉛を、負極第二合剤層12Bの負極活物質として中位径(D50)=8μmの天然黒鉛をそれぞれ用いた。バインダとしてスチレン-ブタジエンゴム(SBR)、粘度調整剤としてカルボキシメチルセルロース(CMC)をSBRと等量分使用した。黒鉛とバインダとを97.6:2.4の混合比で混合し、粘度調整用に水を加えて粘度を調整し2種類の負極合剤スラリーを作製した。次いで、それぞれの負極合剤スラリーを、厚み10μmの銅箔負極電極11上に塗布し、110℃で温風乾燥後、裏面にも先の負極合剤スラリーを用いて負極合剤層12を形成した。ロール圧延によるプレスを行い、負極合剤層12の片面膜厚が50μmとなるように調整した。
The wound type battery of this example was manufactured by the method described below.
<Production of negative electrode>
A negative electrode mixture layer 12 </ b> A and a negative electrode mixture layer 12 </ b> B were formed on the copper foil of the negative electrode 11. Specifically, natural graphite having a median diameter (D 50 ) = 8 μm and natural graphite having a median diameter (D 50 ) = 30 μm measured by a particle size distribution measurement method as a negative electrode active material of the negative electrode first mixture layer 12A. Natural graphite having a median diameter (D 50 ) = 8 μm was used as the negative electrode active material of the negative electrode second mixture layer 12B. Styrene-butadiene rubber (SBR) as a binder and carboxymethyl cellulose (CMC) as a viscosity modifier were used in an amount equivalent to SBR. Graphite and binder were mixed at a mixing ratio of 97.6: 2.4, and water was added to adjust the viscosity to adjust the viscosity, thereby preparing two types of negative electrode mixture slurry. Next, each negative electrode mixture slurry was applied onto a copper foil negative electrode 11 having a thickness of 10 μm, dried with hot air at 110 ° C., and then the negative electrode mixture layer 12 was formed on the back using the negative electrode mixture slurry. did. Pressing by roll rolling was performed so that the single-sided film thickness of the negative electrode mixture layer 12 was adjusted to 50 μm.
 なお、正極16及び捲回型の二次電池1100の作製は、実施例1と同様にした。
The positive electrode 16 and the wound secondary battery 1100 were manufactured in the same manner as in Example 1.
 以下に示す方法で、本実施例の捲回型電池を作製した。
<負極の作製>
 負極電極11の銅箔上に負極第一合剤層12Aおよび負極第二合剤層12Bを形成した。具体的には、負極第一合剤層12Aの負極活物質として粒度分布測定法で計測した中位径(D50)=8μmの天然黒鉛および中位径(D50)=30μmの天然黒鉛を、負極第二合剤層12Bの負極活物質として中位径(D50)=8μmの天然黒鉛をそれぞれ用いた。バインダとしてポリフッ化ビニリデン(PVDF)を、それぞれ乾燥時の固形分重量比が天然黒鉛:PVDF=95:5になる様に配合し、溶媒としてN-メチルピロリドン(NMP)を加えて負極合剤スラリーを作製した。次いで、それぞれの負極合剤スラリーを、厚み10μmの銅箔負極電極11上に塗布し、120℃で温風乾燥後、裏面にも先の負極合剤スラリーを用いて負極合剤層12を形成した。ロール圧延によるプレスを行い、負極合剤層12の片面膜厚が50μmとなるように調整した。
The wound type battery of this example was manufactured by the method described below.
<Production of negative electrode>
A negative electrode mixture layer 12 </ b> A and a negative electrode mixture layer 12 </ b> B were formed on the copper foil of the negative electrode 11. Specifically, natural graphite having a median diameter (D 50 ) = 8 μm and natural graphite having a median diameter (D 50 ) = 30 μm measured by a particle size distribution measurement method as a negative electrode active material of the negative electrode first mixture layer 12A. Natural graphite having a median diameter (D 50 ) = 8 μm was used as the negative electrode active material of the negative electrode second mixture layer 12B. Polyvinylidene fluoride (PVDF) as a binder is blended so that the solid content weight ratio upon drying is natural graphite: PVDF = 95: 5, and N-methylpyrrolidone (NMP) is added as a solvent, and a negative electrode mixture slurry Was made. Next, each negative electrode mixture slurry was applied onto a copper foil negative electrode 11 having a thickness of 10 μm, dried with warm air at 120 ° C., and then the negative electrode mixture layer 12 was formed on the back using the negative electrode mixture slurry. did. Pressing by roll rolling was performed so that the single-sided film thickness of the negative electrode mixture layer 12 was adjusted to 50 μm.
 なお、正極16及び捲回型の二次電池1100の作製は、実施例1と同様にした。
 
〔比較例1〕
 比較例1は、中位径(D50)=20μmの天然黒鉛を用いて、電極11の両面に負極第二合剤層12Bのみを単層塗工したものである。なお、負極13は、実施例1の負極第二層12Bの製造方法と同様にした。また正極16の作製及び捲回型の二次電池1100の作製も実施例1と同様の方法で行った。

〔比較例2〕
 比較例2は、中位径(D50)=8μmの天然黒鉛を用いて電極11の両面に負極第二合剤層12Bのみを単層塗工したものである。なお、負極13は、実施例1の負極第二層12Bの製造方法と同様にした。また正極16の作製及び捲回型の二次電池1100の作製も実施例1と同様の方法で行った。

〔比較例3〕
 比較例3は、負極第一合剤層に中位径(D50)=10μmの天然黒鉛を、負極第二合剤層に中位径(D50)=20μmの天然黒鉛を用いて電極11の両面に塗工したものである。なお、負極13は、実施例1の負極第二層12Bの製造方法と同様にした。また正極16の作製及び捲回型の二次電池1100の作製も実施例1と同様の方法で行った。

〔比較例4〕
 比較例4は、負極第一合剤層に中位径(D50)=30μmの天然黒鉛を、負極第二合剤層に中位径(D50)=8μmの天然黒鉛を用いて電極11の両面に塗工したものである。なお、負極13は、実施例1の負極第二層12Bの製造方法と同様にした。また正極16の作製及び捲回型の二次電池1100の作製も実施例1と同様の方法で行った。
The positive electrode 16 and the wound secondary battery 1100 were manufactured in the same manner as in Example 1.

[Comparative Example 1]
In Comparative Example 1, natural graphite having a median diameter (D 50 ) = 20 μm was used, and only the negative electrode second mixture layer 12B was applied to both surfaces of the electrode 11 as a single layer. In addition, the negative electrode 13 was made to be the same as the manufacturing method of the negative electrode second layer 12B of Example 1. The positive electrode 16 and the wound-type secondary battery 1100 were manufactured in the same manner as in Example 1.

[Comparative Example 2]
In Comparative Example 2, a single layer coating of only the negative electrode second mixture layer 12 </ b> B on both surfaces of the electrode 11 using natural graphite having a median diameter (D 50 ) = 8 μm. In addition, the negative electrode 13 was made to be the same as the manufacturing method of the negative electrode second layer 12B of Example 1. The positive electrode 16 and the wound-type secondary battery 1100 were manufactured in the same manner as in Example 1.

[Comparative Example 3]
Comparative Example 3 uses the natural graphite having a median diameter (D 50 ) = 10 μm for the negative electrode first mixture layer and the natural graphite having the median diameter (D 50 ) = 20 μm for the negative electrode second mixture layer. It was coated on both sides. In addition, the negative electrode 13 was made to be the same as the manufacturing method of the negative electrode second layer 12B of Example 1. The positive electrode 16 and the wound-type secondary battery 1100 were manufactured in the same manner as in Example 1.

[Comparative Example 4]
Comparative Example 4 uses a natural graphite having a median diameter (D 50 ) = 30 μm for the negative electrode first mixture layer and a natural graphite having a median diameter (D 50 ) = 8 μm for the negative electrode second mixture layer. It was coated on both sides. In addition, the negative electrode 13 was made to be the same as the manufacturing method of the negative electrode second layer 12B of Example 1. The positive electrode 16 and the wound-type secondary battery 1100 were manufactured in the same manner as in Example 1.
 上記製造方法によって製造した実施例1から3及び比較例1から4の捲回型リチウムイオン二次電池について、サイクル試験を用いてサイクル特性(寿命特性)を評価した。サイクル試験の条件としては、二次電池を充電電流1A(1C)で4.1Vまで充電し、定電圧で4.2Vまで充電して15分間運転を休止した後、放電電流1A(1C)で3.0Vまで放電し、15分間運転を休止した。この充放電を500サイクル行い、サイクル試験の前後における二次電池の容量変化を検証した。 Cycle characteristics (life characteristics) of the wound lithium ion secondary batteries of Examples 1 to 3 and Comparative Examples 1 to 4 manufactured by the above manufacturing method were evaluated using a cycle test. The cycle test conditions were as follows: the secondary battery was charged to 4.1 V with a charging current of 1 A (1 C), charged to a constant voltage of 4.2 V, stopped for 15 minutes, and then discharged with a discharging current of 1 A (1 C). The battery was discharged to 3.0 V and the operation was stopped for 15 minutes. This charging / discharging was performed 500 cycles, and the capacity change of the secondary battery before and after the cycle test was verified.
 表1は、実施例1から3及び比較例1から2の捲回型リチウムイオン二次電池のサイクル試験及び50℃での高温保存特性結果を示したものである。
Table 1 shows the cycle test of the wound type lithium ion secondary batteries of Examples 1 to 3 and Comparative Examples 1 and 2 and the results of high temperature storage characteristics at 50 ° C.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表中の容量維持率は、それぞれの捲回型電池のサイクル試験前の放電容量を100及び50℃保存前の容量を100とした場合の値である。 The capacity retention ratios in the table are values when the discharge capacity before the cycle test of each wound battery is 100 and the capacity before storage at 50 ° C. is 100.
 表1に示すように、上記サイクル試験の結果、実施例1から3のリチウムイオン二次電池における500サイクル経過後の容量維持率は82から88%であった。また比較例1から2の二次電池における500サイクル経過後の容量維持率は57から70%であった。 As shown in Table 1, as a result of the cycle test, the capacity retention rate after the elapse of 500 cycles in the lithium ion secondary batteries of Examples 1 to 3 was 82 to 88%. Further, the capacity retention rate after the elapse of 500 cycles in the secondary batteries of Comparative Examples 1 and 2 was 57 to 70%.
 また、実施例1から3のリチウムイオン二次電池における50℃保存特性の容量維持率は85から93%であった。また比較例1から2の二次電池における50℃保存特性の容量維持率%は59から68%であった。 Further, the capacity retention rate of the storage characteristics at 50 ° C. in the lithium ion secondary batteries of Examples 1 to 3 was 85 to 93%. Further, the capacity retention ratio% of the storage characteristics at 50 ° C. in the secondary batteries of Comparative Examples 1 and 2 was 59 to 68%.
 実施例1~3と、比較例3及び4の二次電池との比較では、負極第一合剤層が一種類の粒径の活物質類であることから、比較例3は高温保存特性の低下が見られた。比較例4ではサイクル特性において実施例よりも低下が見られた。単一粒子のみではサイクル特性と保存特性の両方を満足することは難しいことがわかった。 In comparison between Examples 1 to 3 and the secondary batteries of Comparative Examples 3 and 4, since the negative electrode first mixture layer is an active material having one kind of particle size, Comparative Example 3 has high temperature storage characteristics. A decrease was seen. In Comparative Example 4, the cycle characteristics were lower than in the example. It was found that it is difficult to satisfy both cycle characteristics and storage characteristics with a single particle alone.
 以上の結果から、実施例1から3のリチウムイオン二次電池においては、粒径の異なる大小の負極活物質からなる負極第一合剤層を電極捲回方向に直交する幅方向の中央領域に配置し、さらに前記負極第一合剤層に接するように粒径大または粒径小の活物質からなる負極第二合剤層を両端に配置することにより、二次電池のサイクル後の容量維持率が大幅に改善されたことが実証された。また、50℃での高温保存特性に関しても、比表面積を下げて反応面積を小さくする効果が達成でき、その結果、高温保存特性の容量維持率が大幅に改善されたことが実証された。 From the above results, in the lithium ion secondary batteries of Examples 1 to 3, the negative electrode first mixture layer made of large and small negative electrode active materials having different particle diameters was formed in the central region in the width direction perpendicular to the electrode winding direction. The capacity of the secondary battery after cycle is maintained by disposing a negative electrode second mixture layer made of an active material having a large particle size or a small particle size at both ends so as to be in contact with the negative electrode first mixture layer. It has been demonstrated that the rate has improved significantly. Further, regarding the high temperature storage characteristics at 50 ° C., the effect of reducing the specific surface area to reduce the reaction area could be achieved, and as a result, it was demonstrated that the capacity retention rate of the high temperature storage characteristics was greatly improved.
 なお、本発明は上記した実施例1~3に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例1~3は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。さらに各実施例1~6の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
The present invention is not limited to the first to third embodiments described above, and includes various modifications. For example, the first to third embodiments described above are described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Furthermore, it is possible to add, delete, and replace other configurations for some of the configurations of the first to sixth embodiments.
11 負極電極
12 負極合剤層
12A 負極第一合剤層
12B 負極第二合剤層
13 負極
14 正極電極
15 正極合剤層
16 正極
17 セパレータ
18 正極リード
19 負極リード
110 正極絶縁材
111 負極絶縁材
112 正極電池蓋
113 電池缶
114 ガスケット
115 電解液
1100 二次電池
DESCRIPTION OF SYMBOLS 11 Negative electrode 12 Negative electrode mixture layer 12A Negative electrode 1st mixture layer 12B Negative electrode 2nd mixture layer 13 Negative electrode 14 Positive electrode 15 Positive mix layer 16 Positive electrode 17 Separator 18 Positive electrode lead 19 Negative electrode lead 110 Positive electrode insulating material 111 Negative electrode insulating material 112 Positive battery cover 113 Battery can 114 Gasket 115 Electrolytic solution 1100 Secondary battery

Claims (13)

  1.  負極電極の表面に負極合剤層が設けられており、
     前記負極合剤は、リチウムイオンを吸蔵、放出可能な負極活物質の粒子を有するリチウムイオン二次電池において、
     前記負極電極は、前記負極電極の捲回方向に直交する幅方向の中央部に負極第一合剤層を有し、
     前記負極電極は、前記負極第一合剤層の幅方向の両端に負極第二合剤層を有し、
     前記負極第一合剤層に含まれる前記負極活物質は、粒径の大きな負極活物質と、粒径の小さな負極活物質の混合物であり、
     前記負極第二合剤層に含まれる前記負極活物質は、前記粒径の大きな負極活物質または前記粒径の小さな負極活物質であるリチウムイオン二次電池。
    A negative electrode mixture layer is provided on the surface of the negative electrode,
    The negative electrode mixture is a lithium ion secondary battery having negative electrode active material particles capable of occluding and releasing lithium ions.
    The negative electrode has a first negative electrode mixture layer at the center in the width direction perpendicular to the winding direction of the negative electrode,
    The negative electrode has a negative electrode mixture layer at both ends in the width direction of the negative electrode mixture layer,
    The negative electrode active material contained in the negative electrode first mixture layer is a mixture of a negative electrode active material having a large particle size and a negative electrode active material having a small particle size,
    The lithium ion secondary battery, wherein the negative electrode active material contained in the negative electrode second mixture layer is the negative electrode active material having a large particle size or the negative electrode active material having a small particle size.
  2.  請求項1において、
     前記粒径の大きな負極活物質の平均粒径は、15μm以上45μm以下であり、前記粒径の小さな負極活物質の平均粒径は、5μm以上15μm未満であるリチウムイオン二次電池用負極。
    In claim 1,
    The negative electrode for a lithium ion secondary battery, wherein the negative electrode active material having a large particle size has an average particle size of 15 μm or more and 45 μm or less, and the negative electrode active material having a small particle size has an average particle size of 5 μm or more and less than 15 μm.
  3.  請求項2において、
     前記粒径の大きな負極活物質の平均粒径は、20μm以上40μm以下であり、前記粒径の小さな負極活物質の平均粒径は、5μm以上10μm未満であるリチウムイオン二次電池用負極。
    In claim 2,
    The negative electrode for a lithium ion secondary battery, wherein the negative electrode active material having a large particle size has an average particle size of 20 μm or more and 40 μm or less, and the negative electrode active material having a small particle size has an average particle size of 5 μm or more and less than 10 μm.
  4.  請求項1ないし請求項3いずれかにおいて、
     前記負極第一合剤層の前記負極電極の捲回方向に直交する幅方向に占める割合は、前記負極第一合剤層と前記負極第二合層を合わせた幅の長さに対して、30%以上であるリチウムイオン二次電池。
    In any one of Claims 1 to 3,
    The proportion of the negative electrode first mixture layer in the width direction perpendicular to the winding direction of the negative electrode is relative to the total width of the negative electrode first mixture layer and the negative electrode second mixture layer. A lithium ion secondary battery that is 30% or more.
  5.  請求項4において、
     前記負極第一合剤層の前記負極電極の捲回方向に直交する幅方向に占める割合は、前記負極第一合剤層と前記負極第二合層を合わせた幅の長さに対して、30%以上80%以下であるリチウムイオン二次電池。
    In claim 4,
    The proportion of the negative electrode first mixture layer in the width direction perpendicular to the winding direction of the negative electrode is relative to the total width of the negative electrode first mixture layer and the negative electrode second mixture layer. A lithium ion secondary battery that is 30% to 80%.
  6.  請求項1ないし請求項6のいずれかにおいて、
     前記負極活物質は、黒鉛であるリチウムイオン二次電池。
    In any one of Claims 1 thru | or 6,
    The negative electrode active material is a lithium ion secondary battery that is graphite.
  7.  請求項1ないし請求項2のいずれかにおいて、
     前記負極第一合剤層の製造工程には、粒径の大きな負極活物質と、粒径の小さな負極活物質とを混合する工程が含まれるリチウムイオン二次電池。
    In any one of Claims 1 to 2,
    The lithium ion secondary battery includes a step of mixing a negative electrode active material having a large particle size and a negative electrode active material having a small particle size in the manufacturing process of the negative electrode first mixture layer.
  8.  請求項1ないし請求項7のいずれかにおいて、
     前記負極第一合剤層または前記負極第二合剤層は、バインダを有し、
     前記バインダは、水を希釈剤に用いることが可能なバインダであることを特徴とするリチウムイオン二次電池用負極。
    In any one of Claims 1 thru | or 7,
    The negative electrode first mixture layer or the negative electrode second mixture layer has a binder,
    The negative electrode for a lithium ion secondary battery, wherein the binder is a binder capable of using water as a diluent.
  9.  請求項8において、
     前記バインダは、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、ポリビニルピリジンのいずれか一種以上であるリチウムイオン二次電池用負極。
    In claim 8,
    The binder is a negative electrode for a lithium ion secondary battery, wherein the binder is at least one of polyvinylidene fluoride (PVDF), polytetrafluoroethylene, and polyvinylpyridine.
  10.  請求項1ないし請求項9のいずれかに記載のリチウムイオン二次電池用負極の製造方法であって、以下の(1)および(2)の工程を有するリチウムイオン二次電池用負極の製造方法。
    (1)前記負極電極上の端縁部領域に、前記粒径の大きな負極活物質または前記粒径の小さな負極活物質を含む負極合剤スラリーを塗布、乾燥し、プレス加工して前記端縁領域に負極合剤層を形成する工程。
    (2)前記(1)の工程後に、前記粒径の大きな負極活物質および前記粒径の小さな負極活物質を含む負極合剤スラリーを塗布、乾燥し、更にプレス加工して前記中央領域に負極合剤層が形成される工程。
    A method for producing a negative electrode for a lithium ion secondary battery according to any one of claims 1 to 9, comprising the following steps (1) and (2): .
    (1) The edge region on the negative electrode is coated with a negative electrode active material having a large particle diameter or a negative electrode mixture slurry containing a negative electrode active material having a small particle diameter, dried, and pressed to form the edge. Forming a negative electrode mixture layer in the region;
    (2) After the step (1), a negative electrode mixture slurry containing the negative electrode active material having a large particle size and the negative electrode active material having a small particle size is applied, dried, and further pressed to form a negative electrode in the central region. A step in which a mixture layer is formed.
  11.  請求項1ないし請求項9のいずれかに記載のリチウムイオン二次電池用負極の製造方法であって、
     前記負極電極の幅方向の中心領域に前記粒径の大きな負極活物質および前記粒径の小さな負極活物質を含む負極合剤スラリーを塗布し、その両端の領域に前記粒径の大きな負極活物質または前記粒径の小さな負極活物質のいずれかを含む負極合剤スラリーを塗布し、その後乾燥される工程を有するリチウムイオン二次電池用負極の製造方法。
    A method for producing a negative electrode for a lithium ion secondary battery according to any one of claims 1 to 9,
    A negative electrode mixture slurry containing the negative electrode active material having a large particle size and the negative electrode active material having a small particle size is applied to a central region in the width direction of the negative electrode, and the negative electrode active material having a large particle size is applied to both end regions. Or the manufacturing method of the negative electrode for lithium ion secondary batteries which has the process of apply | coating the negative mix slurry containing either of the said negative electrode active materials with a small particle size, and drying after that.
  12.  請求項1ないし請求項9のいずれかに記載のリチウムイオン二次電池用負極の製造方法であって、
     前記負極電極の幅方向の中心領域に前記粒径の大きな負極活物質および前記粒径の小さな負極活物質を含む負極合剤スラリーを塗布する工程と、その両端の領域に前記粒径の大きな負極活物質または前記粒径の小さな負極活物質のいずれかを含む負極合剤スラリーを塗布する工程を同時に行い、その後乾燥される工程を有するリチウムイオン二次電池用負極の製造方法。
    A method for producing a negative electrode for a lithium ion secondary battery according to any one of claims 1 to 9,
    A step of applying a negative electrode mixture slurry containing the negative electrode active material having a large particle size and the negative electrode active material having a small particle size to a central region in the width direction of the negative electrode, and a negative electrode having a large particle size in regions at both ends thereof The manufacturing method of the negative electrode for lithium ion secondary batteries which has the process of performing simultaneously the process of apply | coating the negative mix slurry containing either an active material or the said negative electrode active material with a small particle size, and drying after that.
  13.  請求項1ないし請求項9のいずれかにおいて、
     前記リチウムイオン二次電池は、正極と、
     前記正極と前記負極との間に介装配置されるセパレータと、
     前記正極と前記負極と前記セパレータを浸漬させる有機電解液と、
     を備えるリチウムイオン二次電池。
    In any one of Claims 1 thru | or 9,
    The lithium ion secondary battery includes a positive electrode,
    A separator interposed between the positive electrode and the negative electrode;
    An organic electrolyte that immerses the positive electrode, the negative electrode, and the separator;
    A lithium ion secondary battery comprising:
PCT/JP2013/054653 2013-02-25 2013-02-25 Lithium-ion secondary cell negative electrode, lithium-ion secondary cell using lithium-ion secondary cell negative electrode, and method for manufacturing said electrode and said cell WO2014128946A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/054653 WO2014128946A1 (en) 2013-02-25 2013-02-25 Lithium-ion secondary cell negative electrode, lithium-ion secondary cell using lithium-ion secondary cell negative electrode, and method for manufacturing said electrode and said cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/054653 WO2014128946A1 (en) 2013-02-25 2013-02-25 Lithium-ion secondary cell negative electrode, lithium-ion secondary cell using lithium-ion secondary cell negative electrode, and method for manufacturing said electrode and said cell

Publications (1)

Publication Number Publication Date
WO2014128946A1 true WO2014128946A1 (en) 2014-08-28

Family

ID=51390769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054653 WO2014128946A1 (en) 2013-02-25 2013-02-25 Lithium-ion secondary cell negative electrode, lithium-ion secondary cell using lithium-ion secondary cell negative electrode, and method for manufacturing said electrode and said cell

Country Status (1)

Country Link
WO (1) WO2014128946A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016177876A (en) * 2015-03-18 2016-10-06 凸版印刷株式会社 Lithium ion secondary battery electrode, manufacturing method thereof, and lithium ion secondary battery
CN107732153A (en) * 2017-10-10 2018-02-23 江西创迪科技有限公司 A kind of lithium ion battery two-layer compound iron phosphate lithium electrode
JP2020145093A (en) * 2019-03-07 2020-09-10 トヨタ自動車株式会社 Lithium ion secondary battery
CN113140693A (en) * 2021-04-19 2021-07-20 珠海冠宇电池股份有限公司 Negative plate, battery core and battery
CN114300652A (en) * 2022-01-06 2022-04-08 中化国际(控股)股份有限公司 Electrode pole piece, preparation method and application thereof
EP3993098A1 (en) * 2020-10-29 2022-05-04 SK Innovation Co., Ltd. Negative electrode for secondary battery, and secondary battery including same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004164911A (en) * 2002-11-11 2004-06-10 Toyota Motor Corp Electrode for storage element, its manufacturing method, and its manufacturing device
JP2008078109A (en) * 2006-08-25 2008-04-03 Toyota Motor Corp Electrode for electric storage device, and the electric storage device
JP2011070976A (en) * 2009-09-28 2011-04-07 Toyota Motor Corp Lithium ion secondary battery, vehicle, and battery loading equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004164911A (en) * 2002-11-11 2004-06-10 Toyota Motor Corp Electrode for storage element, its manufacturing method, and its manufacturing device
JP2008078109A (en) * 2006-08-25 2008-04-03 Toyota Motor Corp Electrode for electric storage device, and the electric storage device
JP2011070976A (en) * 2009-09-28 2011-04-07 Toyota Motor Corp Lithium ion secondary battery, vehicle, and battery loading equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016177876A (en) * 2015-03-18 2016-10-06 凸版印刷株式会社 Lithium ion secondary battery electrode, manufacturing method thereof, and lithium ion secondary battery
CN107732153A (en) * 2017-10-10 2018-02-23 江西创迪科技有限公司 A kind of lithium ion battery two-layer compound iron phosphate lithium electrode
JP2020145093A (en) * 2019-03-07 2020-09-10 トヨタ自動車株式会社 Lithium ion secondary battery
JP7096979B2 (en) 2019-03-07 2022-07-07 トヨタ自動車株式会社 Lithium ion secondary battery
EP3993098A1 (en) * 2020-10-29 2022-05-04 SK Innovation Co., Ltd. Negative electrode for secondary battery, and secondary battery including same
CN113140693A (en) * 2021-04-19 2021-07-20 珠海冠宇电池股份有限公司 Negative plate, battery core and battery
CN114300652A (en) * 2022-01-06 2022-04-08 中化国际(控股)股份有限公司 Electrode pole piece, preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2013149403A (en) Lithium ion secondary battery negative electrode, lithium ion secondary battery electrode using the same, and manufacturing method thereof
JP5472759B2 (en) Lithium secondary battery
US10714751B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
WO2018179817A1 (en) Negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
US20180294514A1 (en) Lithium ion secondary battery and method for manufacturing the same
WO2014128946A1 (en) Lithium-ion secondary cell negative electrode, lithium-ion secondary cell using lithium-ion secondary cell negative electrode, and method for manufacturing said electrode and said cell
JP2016058247A (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
JP2013069432A (en) Lithium ion secondary battery and manufacturing method therefor
JPWO2011052122A1 (en) Non-aqueous electrolyte secondary battery current collector, electrode, non-aqueous electrolyte secondary battery, and manufacturing method thereof
JP2007328977A (en) Electrode plate for non-aqueous secondary battery, its manufacturing method, and non-aqueous secondary battery
JP6609946B2 (en) Lithium ion secondary battery electrode, method for producing the same, and lithium ion secondary battery
JP6179404B2 (en) Manufacturing method of secondary battery
JP2014211945A (en) Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP2019175657A (en) Lithium ion secondary battery
JP2014211944A (en) Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP7409762B2 (en) Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
JP2015069969A (en) Positive electrode for lithium secondary battery, and lithium secondary battery
JP6229333B2 (en) Nonaqueous electrolyte secondary battery
JP6008188B2 (en) Non-aqueous electrolyte secondary battery
JP2005197073A (en) Positive electrode for lithium secondary battery
JP2018160379A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP7003775B2 (en) Lithium ion secondary battery
WO2012001814A1 (en) Lithium secondary battery
WO2015049775A1 (en) Positive electrode for lithium ion secondary batteries, lithium ion secondary battery using positive electrode for lithium ion secondary batteries, and method for producing positive electrode for lithium ion secondary batteries
JP5725356B2 (en) Method for manufacturing electrode for secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13875374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP