JPH02137373A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPH02137373A JPH02137373A JP29159188A JP29159188A JPH02137373A JP H02137373 A JPH02137373 A JP H02137373A JP 29159188 A JP29159188 A JP 29159188A JP 29159188 A JP29159188 A JP 29159188A JP H02137373 A JPH02137373 A JP H02137373A
- Authority
- JP
- Japan
- Prior art keywords
- source
- drain
- region
- silicon
- oxide film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 11
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 238000000034 method Methods 0.000 claims abstract description 18
- 239000012535 impurity Substances 0.000 claims abstract description 13
- 229910052785 arsenic Inorganic materials 0.000 claims abstract description 7
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims abstract description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052796 boron Inorganic materials 0.000 claims abstract description 6
- 238000005530 etching Methods 0.000 claims description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 239000011574 phosphorus Substances 0.000 claims description 3
- 239000010409 thin film Substances 0.000 claims description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 abstract description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 7
- 229910052710 silicon Inorganic materials 0.000 abstract description 7
- 239000010703 silicon Substances 0.000 abstract description 7
- 238000010438 heat treatment Methods 0.000 abstract description 6
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 6
- 239000002019 doping agent Substances 0.000 abstract description 4
- 229910021421 monocrystalline silicon Inorganic materials 0.000 abstract description 3
- 230000002269 spontaneous effect Effects 0.000 abstract 1
- 239000010408 film Substances 0.000 description 21
- 239000000758 substrate Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
Landscapes
- Thin Film Transistor (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は半導体装置の製造方法、特にソース・ドレイン
領域の形成方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for forming source/drain regions.
半導体装置、特にMOSトランジスタにおいては寸法の
微細化が進み、現在製品として約0.8.程度の4°法
の加工がなされているが、将来技術としては、 o、i
、以下のMOSトランジスタの製造技術を離党しておく
必要がある。Semiconductor devices, especially MOS transistors, have become smaller in size, and currently products are about 0.8mm in size. Processing using the 4° method has been carried out, but future technologies include o, i
, it is necessary to leave behind the following MOS transistor manufacturing technology.
MOS )−ランジスタのIfa細化に関して解決しな
ければならない課題は多いが、その中でもソース・ドレ
イン領域の形成は重要なものである。現在。There are many issues to be solved regarding the miniaturization of Ifa of MOS)-transistors, and among them, the formation of source/drain regions is an important one. the current.
ソース・ドレイン領域は、ゲート電極の形成後、イオン
注入によりセルファラインで作られている。The source/drain regions are formed by self-alignment by ion implantation after the formation of the gate electrode.
デバイスサイズが小さくなるにつれてイオン注入電圧を
低くすることで拡散層の深さはある程度浅くできるもの
の、これは大きな問題であり、さらにまた注入不純物原
子の横方向の広がりは注入エネルギー、注入原素及び基
板材料により定まり、微細化した際に大きな問題となる
。このことは例えばS、 Fu、rukawa eta
lにより、Jap、J、ApPl、Phys。Although the depth of the diffusion layer can be reduced to some extent by lowering the ion implantation voltage as the device size decreases, this is a major problem, and furthermore, the lateral spread of the implanted impurity atoms is affected by the implantation energy, the implantation element, and the This depends on the substrate material and becomes a big problem when miniaturized. For example, S, Fu, rukawa eta
Jap, J., ApPl, Phys.
Vol、LL、p131.(1972)に報告されてい
る。Vol, LL, p131. (1972).
前述のように、イオン注入により不純物を導入する場合
、その深さのみならず、横方向の広がりが課題となる。As mentioned above, when introducing impurities by ion implantation, issues arise not only in their depth but also in their lateral spread.
さらにまた、 SOI (Silicon−on −I
nsulator)構造基板を用いた場合には、注入原
子がシリコンと酸化膜界面にまで入り、下地酸化膜の酸
素がシリコン中に入り込むといった影響も考えられ、新
たな不純物の導入法の検討が必要である。Furthermore, SOI (Silicon-on-I)
In the case of using a substrate with an oxide film structure, the implanted atoms may enter the interface between the silicon and the oxide film, and oxygen from the underlying oxide film may enter the silicon, making it necessary to consider new methods of introducing impurities. be.
本発明の目的は従来のこのような問題点を解決し、高濃
度の不純物領域を制御性良く形成する方法を提供するこ
とにある。An object of the present invention is to solve these conventional problems and provide a method for forming a highly-concentrated impurity region with good controllability.
前記目的を達成するため、本発明に係る半導体装置の製
造方法においては、ゲート電極の形成後、ゲート電極を
マスクとしてソース・ドレインとなるべき半導体の領域
をエツチングする工程と、前工程においてエツチングし
たソース・ドレインとなるべき領域に、リン、ヒ素、ボ
ロンなどの不純物を含んだ半導体薄膜を形成する工程と
を含むものである。In order to achieve the above object, the method for manufacturing a semiconductor device according to the present invention includes a step of etching regions of the semiconductor to become sources and drains using the gate electrode as a mask after forming the gate electrode, and a step of etching regions of the semiconductor that are to become sources and drains in the previous step. This process includes the step of forming a semiconductor thin film containing impurities such as phosphorus, arsenic, and boron in regions that are to become sources and drains.
MOSトランジスタのソース・ドレインを形成する際の
ポイントとしては。Here are some points to keep in mind when forming the source and drain of a MOS transistor.
■ 不純物の拡散(特に横方向)
■ リーク電流(欠陥)
■ セルファライン
などが考えられる。■のポイントにおいては低温プロセ
スを用いることが重要であり、■のポイントにおいては
接合面の結晶性が重要であり、■のポイントは微細化に
対して必ず必要である。■ Diffusion of impurities (especially in the lateral direction) ■ Leakage current (defects) ■ Self-alignment, etc. can be considered. For the point (2), it is important to use a low temperature process, for the point (2), the crystallinity of the joint surface is important, and the point (2) is absolutely necessary for miniaturization.
これら各条件を満足する方法が必要である。それで本発
明においては、ゲート電極形成後、セルファラインでソ
ース・ドレインとなるべき領域をエツチングし、次にこ
のエツチングした領域に、リン、ヒ素、ボロンなどの不
純物を含んだ非晶質シリコンを埋積し、次に低温で熱処
理を行う。ソース及びドレイーンとなるべき領域は再結
晶化し、単結晶となり、かつ不純物も活性化する。しか
し、熱処理温度は500〜600℃と低いため、不純物
の拡散は無視できる程小さく、特に問題とならない。A method is needed that satisfies each of these conditions. Therefore, in the present invention, after forming the gate electrode, the regions that are to become the source and drain are etched using self-line, and then the etched regions are filled with amorphous silicon containing impurities such as phosphorus, arsenic, and boron. This is followed by heat treatment at low temperatures. The regions to become sources and drains are recrystallized to become single crystals, and impurities are also activated. However, since the heat treatment temperature is as low as 500 to 600[deg.] C., the diffusion of impurities is negligibly small and poses no particular problem.
一方、ゲート電極やフィールド部分は酸化膜で覆われて
いるため、非晶質シリコンは非晶質のまま、あるいは粒
径の小さい多結晶シリコンとなる。従って、熱処理後、
非晶質あるいは多結晶シリコンのみ選択的にエツチング
することにより、ソース・ドレインの領域に、単結晶膜
を形成できる0本方法を用いれば、先に述べた3つの条
件を満足する。On the other hand, since the gate electrode and field portions are covered with an oxide film, the amorphous silicon remains amorphous or becomes polycrystalline silicon with small grain size. Therefore, after heat treatment,
The three conditions mentioned above can be satisfied by using a method that can form a single crystal film in the source/drain region by selectively etching only amorphous or polycrystalline silicon.
以下、本発明の実施例を図により詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
第1図(a)〜(e)は本実施例で行った試料のプロセ
スフローの各工程における断面図、第2図は本実施例に
用いたSOI基板の作製時の断面構造図である。FIGS. 1(a) to (e) are cross-sectional views at each step of the sample process flow performed in this example, and FIG. 2 is a cross-sectional structural view during the fabrication of the SOI substrate used in this example.
まず、第2図に示すようにシリコン基板21上に酸化膜
22を1tm形成する。この酸化膜22の一部に窓22
aをあけシードを形成する。シードのサイズは1−であ
り、酸化膜22にシードの窓を開けた後、非晶質シリコ
ンを埋込み平坦化を行った0次に、O01〜0.5−厚
の非晶質シリコン23を埋積した後、cvn法を用い0
.44厚の酸化@24及び0.1埠厚の窒化膜25を埋
積した。SOI [の結晶化は線状電子ビームを用いて
溶融、再結晶により行った。アニールの条件は電圧15
kV、ビーム電流55■A、走査速度1.5m/sec
+基板温度1,000℃であり、−回の走査のアニール
幅は51mとした0本方法によりSOIを単結晶化した
後、このSOI領域にデバイスを形成した。第1図(a
)に示すように、0.1−0.5.厚のSOIm3上に
70nmのゲート酸化膜4を形成した後、ゲート電極6
のパターニングを行った。このとき、ゲート電極6のパ
ターニングの前に酸化膜7を約0.1p埋積し、これも
同時にパターニングした。First, as shown in FIG. 2, an oxide film 22 is formed on a silicon substrate 21 to a thickness of 1 tm. A window 22 is formed in a part of this oxide film 22.
Open a and form a seed. The size of the seed is 1-, and after opening a seed window in the oxide film 22, amorphous silicon is buried and planarized. After filling, use the CVN method to
.. An oxide film 24 with a thickness of 44 mm and a nitride film 25 with a thickness of 0.1 mm were buried. Crystallization of SOI was performed by melting and recrystallization using a linear electron beam. Annealing conditions are voltage 15
kV, beam current 55 A, scanning speed 1.5 m/sec
After SOI was single-crystalized by the 0-line method in which the +substrate temperature was 1,000° C. and the annealing width of − scanning was 51 m, a device was formed in this SOI region. Figure 1 (a
), 0.1-0.5. After forming a 70 nm thick gate oxide film 4 on the thick SOIm3, a gate electrode 6 is formed.
patterning was performed. At this time, before patterning the gate electrode 6, an oxide film 7 of about 0.1p was buried, and this was also patterned at the same time.
5はフィールド酸化膜である。5 is a field oxide film.
次に、第11i21(b)に示すようにゲート電極6の
側面に酸化膜を用いてサイドウオール8を形成した。Next, as shown in No. 11i21(b), a sidewall 8 was formed on the side surface of the gate electrode 6 using an oxide film.
この段階でソース・ドレイン領域のみが薄い酸化膜で覆
われ、他の領域は酸化膜により厚く覆われている。従っ
て、ゲート酸化膜70n■に対応する分のみ酸化膜を除
去することにより、ソース・ドレイン領域のみ、シリコ
ン面が露出する。次に、シリコンのみエツチングを行い
、第1図(c)に示すように5OIIII! 3のソー
ス・ドレインとなる領域のみ、エツチングする。At this stage, only the source/drain regions are covered with a thin oxide film, and the other regions are covered with a thick oxide film. Therefore, by removing the oxide film corresponding to the gate oxide film 70n, only the silicon surface of the source/drain region is exposed. Next, only silicon is etched, and as shown in FIG. 1(c), 5OIII! Only the regions that will become the source and drain of No. 3 are etched.
次に、表面のシリコンの露出面のクリーニングを行い、
かつ、自然酸化膜を除去し清浄なシリコン面を出しだ後
(すなわちSOIOsO4ツチングされた領域の側面に
対応する所の清浄化を行うことになる)、n型に対して
はヒ素を、またp型に対してはボロンをドープした非晶
質シリコン9を埋積する。このとき、清浄化及び非晶質
シリコンの埋積は、高真空中で行った。次に、同一真空
中で。Next, clean the exposed silicone surface,
After removing the natural oxide film and exposing a clean silicon surface (that is, cleaning the area corresponding to the side surface of the SOIOsO4-etched region), arsenic was added for n-type, and arsenic was added for p-type. The mold is filled with amorphous silicon 9 doped with boron. At this time, cleaning and amorphous silicon filling were performed in a high vacuum. Then in the same vacuum.
600°Cの熱処理を30分行った後、電気炉に移し、
600’ Cで8時間、窒素ガス中でアニールを行った
。After heat treatment at 600°C for 30 minutes, it was transferred to an electric furnace.
Annealing was performed at 600'C for 8 hours in nitrogen gas.
これにより第1図(e)に示したように、ソース・ドレ
インとなる領域に単結晶シリコン10が成長し。As a result, single crystal silicon 10 grows in the regions that will become the source and drain, as shown in FIG. 1(e).
他の領域は多結晶シリコンとなっており1選択的に多結
晶シリコンを除去した。また非晶質シリコン9中にはヒ
素やボロンなどの不純物がドープされており、単結晶シ
リコン10を形成すると同時に、その一部は活性化され
る。このとき、熱処理温度が600′″Cと低いため、
ドーパントは拡散しないため、チャネル領域中への横方
向法がりは特に問題とならず、ゲート長が0.1−程度
となっても、特に支障はない、この後、パッシベーショ
ン膜を埋積し、電極を付けてデバイスを形成した。The other regions were made of polycrystalline silicon, and the polycrystalline silicon was selectively removed. Further, the amorphous silicon 9 is doped with impurities such as arsenic and boron, and a part of it is activated at the same time as the single crystal silicon 10 is formed. At this time, since the heat treatment temperature is as low as 600'''C,
Since the dopant does not diffuse, lateral propagation into the channel region is not a particular problem, and there is no particular problem even if the gate length is about 0.1 -.After this, a passivation film is buried, Electrodes were attached to form the device.
また、本実施例ではSOIOsO4厚を0.1〜0.5
−と変化させて形成したが、SOI[3が薄(なってい
くと、ソース・ドレイン領域スタ抗が高くなり問題であ
るが、本方法のように、この領域を厚く積み上げること
で、その問題は解決でき効果的である。In addition, in this example, the SOIOsO4 thickness is 0.1 to 0.5.
However, as SOI [3 becomes thinner, the source/drain region stator resistance increases, which is a problem. is solvable and effective.
本発明によれば、ソース・ドレインを形成するにあたっ
て、この領域を一部除去した後、ドープされた非晶質シ
リコンを埋積し結晶化させるというプロセスを用いるこ
とにより、ソース・ドレインからのチャネル側へのドー
パントの拡散が抑制され、従ってチャネル長の小さいデ
バイスの形成が可能となる。さらに、ソース・ドレイン
領域は、付着させる非晶質シリコンの厚みを制御するこ
とで、その抵抗も下げられるため、本実施例において示
したように、SOI膜が薄くなったときでも。According to the present invention, when forming the source/drain, a process is used in which a portion of this region is removed, and then doped amorphous silicon is buried and crystallized, thereby forming a channel from the source/drain. Lateral diffusion of dopants is suppressed, thus allowing the formation of devices with small channel lengths. Furthermore, the resistance of the source/drain regions can be lowered by controlling the thickness of the amorphous silicon deposited, even when the SOI film becomes thinner, as shown in this example.
抵抗を上げずに使用できる効果を有する。It has the effect of being usable without increasing resistance.
第1図(り〜(e)は本発明におけるデバイス形成プロ
セスを示す断面図、第2図は本実施例に用いたSOI結
晶作製時の断面構造図である。FIGS. 1-(e) are cross-sectional views showing the device formation process in the present invention, and FIG. 2 is a cross-sectional structural view during fabrication of the SOI crystal used in this example.
Claims (1)
ソース・ドレインとなるべき半導体の領域をエッチング
する工程と、前工程においてエッチングしたソース・ド
レインとなるべき領域に、リン、ヒ素、ボロンなどの不
純物を含んだ半導体薄膜を形成する工程とを含むことを
特徴とする半導体装置の製造方法。(1) After forming the gate electrode, there is a step of etching the semiconductor region that will become the source/drain using the gate electrode as a mask, and a step of etching the region of the semiconductor that will become the source/drain that was etched in the previous step with phosphorus, arsenic, boron, etc. 1. A method of manufacturing a semiconductor device, the method comprising: forming a semiconductor thin film containing impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29159188A JPH02137373A (en) | 1988-11-18 | 1988-11-18 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29159188A JPH02137373A (en) | 1988-11-18 | 1988-11-18 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02137373A true JPH02137373A (en) | 1990-05-25 |
Family
ID=17770926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29159188A Pending JPH02137373A (en) | 1988-11-18 | 1988-11-18 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02137373A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009021568A (en) * | 2007-06-15 | 2009-01-29 | Semiconductor Energy Lab Co Ltd | Method for manufacturing semiconductor device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6381859A (en) * | 1986-09-25 | 1988-04-12 | Fujitsu Ltd | Manufacture of mis field-effect transistor |
-
1988
- 1988-11-18 JP JP29159188A patent/JPH02137373A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6381859A (en) * | 1986-09-25 | 1988-04-12 | Fujitsu Ltd | Manufacture of mis field-effect transistor |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009021568A (en) * | 2007-06-15 | 2009-01-29 | Semiconductor Energy Lab Co Ltd | Method for manufacturing semiconductor device |
JP2014099640A (en) * | 2007-06-15 | 2014-05-29 | Semiconductor Energy Lab Co Ltd | Semiconductor device manufacturing method |
KR101476624B1 (en) * | 2007-06-15 | 2014-12-26 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Method for manufacturing semiconductor device |
US8969147B2 (en) | 2007-06-15 | 2015-03-03 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4463492A (en) | Method of forming a semiconductor device on insulating substrate by selective amorphosization followed by simultaneous activation and reconversion to single crystal state | |
EP0227085B1 (en) | A method of manufacturing igfets having minimal junction depth using epitaxial recrystallization | |
JPH08236640A (en) | Formation process of different-thickness gate oxide on semiconductor substrate | |
JPS6246989B2 (en) | ||
JP2003282885A (en) | Semiconductor device and its fabricating method | |
JPH05109737A (en) | Manufacture of thin film transistor | |
KR100522275B1 (en) | SiGe/SOI CMOS AND METHOD OF MAKING THE SAME | |
WO2003023866A1 (en) | Thin film semiconductor device and method for fabricating the same | |
JPS61119079A (en) | Manufacture of thin film transistor | |
JPH02137373A (en) | Manufacture of semiconductor device | |
US20050112830A1 (en) | Ultra shallow junction formation | |
EP0762490A2 (en) | Method of manufacturing a LDD-MOSFET | |
JP2718074B2 (en) | Method of forming thin film semiconductor layer | |
JP3138841B2 (en) | Method for manufacturing MIS field-effect semiconductor device | |
JPH01235276A (en) | Thin film semiconductor device | |
JP2811763B2 (en) | Method for manufacturing insulated gate field effect transistor | |
JP2718757B2 (en) | MOS type semiconductor device and method of manufacturing the same | |
JP2565192B2 (en) | Method for manufacturing semiconductor device | |
JP2770324B2 (en) | Method for manufacturing thin film transistor | |
JPH03297148A (en) | Manufacture of semiconductor device | |
KR0167667B1 (en) | Method of fabricating semiconductor | |
KR100268862B1 (en) | Fabricating method for semiconductor device | |
JPH02187035A (en) | Manufacture of semiconductor device | |
JPS63117459A (en) | Manufacture of insulated gate field effect transistor | |
JPH0442833B2 (en) |