JPH02133524A - Production of thin-gaged grain oriented electrical steel sheet having excellent magnetic characteristics - Google Patents

Production of thin-gaged grain oriented electrical steel sheet having excellent magnetic characteristics

Info

Publication number
JPH02133524A
JPH02133524A JP28609188A JP28609188A JPH02133524A JP H02133524 A JPH02133524 A JP H02133524A JP 28609188 A JP28609188 A JP 28609188A JP 28609188 A JP28609188 A JP 28609188A JP H02133524 A JPH02133524 A JP H02133524A
Authority
JP
Japan
Prior art keywords
annealing
electrical steel
steel sheet
rolling
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28609188A
Other languages
Japanese (ja)
Inventor
Hitoshi Yokouchi
仁 横内
Yasunari Yoshitomi
吉富 康成
Makoto Fujino
真 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28609188A priority Critical patent/JPH02133524A/en
Publication of JPH02133524A publication Critical patent/JPH02133524A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To produce the thin-gaged grain oriented electrical steel sheet of a low iron loss and high magnetic flux density by subjecting the electrical steel sheet successively to coiling, water cooling, preliminary cold rolling, and inhibitor precipitation annealing at specific temps. after hot rolling in the process for producing the grain oriented electrical steel sheet consisting of a specific compsn. CONSTITUTION:The electrical steel slab consisting, by weight %, 0.02 to 0.10% C, 2.0 to 4.0% Si, 0.02 to 0.10% Mn, 0.01 to 0.04% S, 0.010 to 0.065% sol Al, 0.0030 to 0.0100% N, and the balance iron and unavoidable impurities is subjected to the hot rolling and the inhibitor precipitation annealing. The steel sheet is then made into 0.15 to 0.23mm final sheet thickness by >=1 passes of the cold rolling including the high-draft final rolling of 80% over to 95% draft and is subjected to decarburization annealing. An annealing and separating agent is applied thereon and the sheet is subjected to the finish annealing. The steel sheet is coiled at 200 to 400 deg.C after the hot rolling and the coil is cooled with water within about 15 minutes and is subjected to the preliminary cold rolling to about 20 to 50% then to the inhibitor precipitation annealing in this production process. The thin-gaged grain oriented electrical steel sheet of the low iron loss and the high magnetic flux density is obtd. in this way.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁気特性のイ■れた薄手方向性電磁た1板の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a thin oriented electromagnetic plate with improved magnetic properties.

(従来の技術) 方向性電磁鋼板はトランス等の電気機器の鉄心材料とし
て用いられ、磁気特性としての励磁特性と鉄損特性が良
好でなければならない。
(Prior Art) Grain-oriented electrical steel sheets are used as core materials for electrical equipment such as transformers, and must have good magnetic excitation properties and iron loss properties.

この鋼板はインヒビター、例えば、IVN、  MnS
This steel plate contains inhibitors, such as IVN, MnS
.

MnSe、 CuS、 BN等を活用して、仕上焼鈍で
二次再結晶を生じせしめ、圧延面に(110)面、圧延
方向に<001>軸をもったゴス組織と称される結晶粒
を発達させることにより得られている。良好な磁気特性
を得るには磁化容易軸の<001>軸を圧延方向に高度
に揃えることが重要である。
Utilizing MnSe, CuS, BN, etc., secondary recrystallization is caused by final annealing to develop crystal grains called a Goss structure with (110) planes on the rolled surface and <001> axis in the rolling direction. It is obtained by letting In order to obtain good magnetic properties, it is important to align the <001> axis of easy magnetization to a high degree in the rolling direction.

また、板厚、結晶粒の大きさ、固有抵抗、表面被膜、鋼
板の純度なども磁気特性、なかでも鉄損特性に大きな影
響を及ぼす。
In addition, the plate thickness, grain size, resistivity, surface coating, purity of the steel plate, etc. have a large effect on the magnetic properties, especially the iron loss properties.

方向性は、/VN、  MnSをインヒビターとして利
用し、最終冷間圧延を高圧下とすることを特徴とする方
法により大幅に向上し、それに伴って鉄損特性も著しく
向上してきた。
The directionality has been significantly improved by a method characterized by using /VN and MnS as inhibitors and subjecting the final cold rolling to a high reduction, and the iron loss properties have also been improved accordingly.

ところで、昨今の省エネルギーの要請に対応するため、
方向性電磁鋼板はさらに鉄損を低下させる検討がなされ
ている。鉄損は周知のように渦流損とヒステリシス損の
和であるが、鉄損の大半を占める渦流損を減らすため、
板厚が薄い方向性電磁鋼板の開発検討が行われ、一部実
用化されている。
By the way, in order to meet the recent demands for energy conservation,
Studies are being conducted to further reduce iron loss in grain-oriented electrical steel sheets. As is well known, iron loss is the sum of eddy current loss and hysteresis loss, but in order to reduce eddy current loss, which accounts for the majority of iron loss,
Development studies have been conducted on thin grain-oriented electrical steel sheets, and some of them have been put into practical use.

前記AIN、  MnSをインヒビターとする方向性電
磁鋼板の製造は高磁束密度化に極めて有効であるが、板
厚が薄くなると二次再結晶の発現が不安定化する問題が
みられる。
The production of grain-oriented electrical steel sheets using the above-mentioned AIN and MnS as inhibitors is extremely effective in increasing the magnetic flux density, but as the sheet thickness becomes thinner, there is a problem that secondary recrystallization becomes unstable.

この対策として、熱延板焼鈍を2段階の加熱温度で加熱
後、急速冷却して、インヒビターをより微細に分散析出
させ、また冷間圧延では少なくとも2回以上150〜3
00°Cで30秒加熱して圧延を行ないゴス組織を生じ
ゃすい冷延組織とする方法が提案されている(特開昭6
0−59044号公報)。
As a countermeasure against this, hot-rolled sheet annealing is heated at two heating temperatures and then rapidly cooled to more finely disperse and precipitate the inhibitor.
A method has been proposed in which rolling is performed by heating at 00°C for 30 seconds to transform the Goss structure into a loose cold-rolled structure (Japanese Patent Laid-Open No. 6
0-59044).

また、インヒビターの析出焼鈍前に熱延板を15〜40
%の圧下率で予備冷延を行なって線状細粒の発生を防ぎ
、鉄損特性を向上させることが特開昭59−12672
2号公報に提案されている。
In addition, before the inhibitor precipitation annealing, the hot rolled sheet was
It is disclosed in Japanese Patent Application Laid-Open No. 59-12672 that preliminary cold rolling is performed at a rolling reduction of 1.5% to prevent the generation of linear fine grains and improve iron loss characteristics.
This is proposed in Publication No. 2.

またインヒビター析出焼鈍の冷却速度を特定するととも
に、圧下率80%超〜95%の弾圧下最終冷延を含む2
回以上の冷間圧延をパス間時効して行なって、固溶C,
Nまたは微細炭化物、窒化物により、冷延染台組織に影
響を与え、その後の中間焼鈍での再結晶挙動を変え(1
10)方位粒を増加させ、(100)方位粒を減じる整
粒化を行なう。これにより二次再結晶を安定化させるこ
とが特開昭62〜202024号公報に提案されている
In addition, the cooling rate of inhibitor precipitation annealing was specified, and 2
By cold rolling more than once and aging between passes, solid solution C,
N or fine carbides and nitrides affect the cold rolling bed structure and change the recrystallization behavior in the subsequent intermediate annealing (1
10) Perform grain size adjustment to increase oriented grains and decrease (100) oriented grains. It has been proposed in JP-A-62-202024 that this stabilizes secondary recrystallization.

これらにより、二次再結晶の発現が改善され、鉄損の低
い高磁束密度薄手方向性電磁鋼板が得られるようになっ
ている。
As a result, the occurrence of secondary recrystallization is improved, and a thin grain-oriented electrical steel sheet with high magnetic flux density and low iron loss can be obtained.

(発明が解決しようとする課題) ところで、方向性型+ntHJ板の磁気特性の向上はこ
れで十分というものでなく、さらに改善していく必要が
ある。
(Problems to be Solved by the Invention) However, the improvement in the magnetic properties of the directional type +ntHJ board is not sufficient, and further improvements are required.

方向性電磁鋼板はスラブ加熱時にインヒビター形成成分
を鋼中に完全に固溶させるため、−aに1280°C超
の高温に加熱される。この際のスラブ結晶粒の粗大化に
起因して、該スラブの熱延板に(100)<Of 1>
方位の伸延粒が存在することがある。このような場合、
二次再結晶に悪影響を及ぼし、例えば最終板厚が0.1
8 mm以下と薄くなると線状細粒発生の一因となる。
The grain-oriented electrical steel sheet is heated to -a at a high temperature exceeding 1280°C in order to completely dissolve the inhibitor-forming component in the steel during slab heating. Due to the coarsening of the slab crystal grains at this time, the hot-rolled plate of the slab has (100) <Of 1>
Oriented distracted grains may be present. In such a case,
It has a negative effect on secondary recrystallization, for example, the final plate thickness is 0.1
When the thickness is less than 8 mm, it becomes a cause of generation of linear fine grains.

本発明はこのような問題を、製造コストを高めずに解決
せんとするもので、/INを主インヒビターとして、薄
手方向性電磁鋼板を製造する場合、前述のように板厚が
例えば0.18 mm以下と薄くとも二次再結晶を十分
に発現させ、鉄損が極めて低く高磁束密度のものを得る
ことを目的とする。
The present invention aims to solve such problems without increasing the manufacturing cost. When manufacturing a thin grain-oriented electrical steel sheet using /IN as the main inhibitor, the sheet thickness is, for example, 0.18 mm as described above. The purpose is to sufficiently exhibit secondary recrystallization even if the thickness is less than mm, and to obtain a material with extremely low iron loss and high magnetic flux density.

(課題を解決するための手段) 本発明者達は前記目的を達成すべく、AZNを主インヒ
ビターとし、熱間圧延の後にインヒビター析出焼鈍し、
最終冷延を圧下率80超〜95%の弾圧下にて行なう薄
手方向性電磁鋼板の製造について、実験し検討した。そ
の結果、珪素鋼スラブを熱間圧延後に低温巻取し、該巻
取コイルを低圧下率で予備冷延すると、熱延板の結晶粒
組織内に、スラブ加熱時の粗大化粒に起因して存在して
いる伸延粒に、炭化物が粗大に析出することなく微細に
析出した状態を維持し、前記予備冷延により加工歪が伸
延粒に蓄積され、次いで行なうインヒビター析出焼鈍で
析出物の微細な分散が図られるとともに伸延粒は再結晶
して整粒化され、最終冷延し7、その後脱炭焼鈍し、仕
上焼鈍を行なったときに、二次再結晶が完全に発現する
ことを見出した。
(Means for Solving the Problems) In order to achieve the above object, the present inventors used AZN as the main inhibitor, performed inhibitor precipitation annealing after hot rolling,
Experiments and studies were carried out on the production of thin grain-oriented electrical steel sheets in which the final cold rolling is carried out under pressure with a rolling reduction of more than 80% to 95%. As a result, when a silicon steel slab is hot-rolled and then coiled at a low temperature, and the coiled coil is pre-cold-rolled at a low rolling reduction rate, the crystal grain structure of the hot-rolled sheet is caused by coarse grains during heating of the slab. The state in which carbides are finely precipitated in the elongated grains existing in the elongated grains is maintained, and the processing strain is accumulated in the elongated grains by the preliminary cold rolling, and the fine precipitates are reduced by the subsequent inhibitor precipitation annealing. It was discovered that the secondary recrystallization was fully expressed when the elongated grains were recrystallized and sized, and then subjected to final cold rolling, followed by decarburization annealing, and final annealing. Ta.

本発明はこの知見に基づきなされたものであり、以下に
詳細に説明する。
The present invention has been made based on this knowledge, and will be explained in detail below.

本発明が適用される電磁鋼スラブの成分組成は、重置%
テc : 0.02〜0.10%、Si : 2.0〜
4.0%、Mn:0102〜0.10%、S : 0.
01〜0.04%、酸可?8A/(以下so1.AIト
イう):0.010〜0.065%、N:0.0030
−0.0100%、さらに必要に応じて、0.08%以
下のCu、0.03〜0.50 % (7:l Sn、
0.10%以下)門。、0.01〜0.05%のSe、
0.10%以下のCr、の1種または2種以」−を含み
、残部が鉄および不可避的不純物からなる。
The composition of the electromagnetic steel slab to which the present invention is applied is
Tec: 0.02~0.10%, Si: 2.0~
4.0%, Mn: 0102-0.10%, S: 0.
01-0.04%, acid acceptable? 8A/(hereinafter referred to as so1.AI toy): 0.010 to 0.065%, N: 0.0030
-0.0100%, and if necessary, up to 0.08% Cu, 0.03-0.50% (7:l Sn,
0.10% or less) phylum. , 0.01-0.05% Se,
It contains one or more of 0.10% or less of Cr, and the remainder consists of iron and unavoidable impurities.

Cは0.02%未満では二次再結晶が不安定となり、一
方その含有量が余りにも多くなると脱炭焼鈍の時間が長
くなるので、0.10%を上限とする。
If C content is less than 0.02%, secondary recrystallization becomes unstable, and if the content is too large, decarburization annealing time becomes longer, so the upper limit is set at 0.10%.

Siは2.0%未満では良好な鉄損が得られない。If Si is less than 2.0%, good core loss cannot be obtained.

一方、その含有量が多くなると冷延性が劣化するので4
.0%以下とする。
On the other hand, if its content increases, cold rollability deteriorates, so 4
.. 0% or less.

MnはSと結合し、インヒビターMnSを形成して二次
再結晶発現に寄与する成分であり、また選択的に含有さ
せるSeとインヒビターMnSeを形成するものである
。これらインヒビターの作用を奏させるために、Mnは
0.02%以上、0.10%以下、Sは0.01%以上
、0,04%以下必要であり、またSeは0.01〜0
.05%必要である。
Mn is a component that combines with S to form the inhibitor MnS and contributes to the expression of secondary recrystallization, and also forms the inhibitor MnSe with Se that is selectively included. In order for these inhibitors to exhibit their effects, Mn needs to be 0.02% or more and 0.10% or less, S needs to be 0.01% or more and 0.04% or less, and Se is 0.01 to 0.
.. 05% is required.

s ol、 AIはNと結合し、インヒビターΔ!Nを
形成する成分であり、その効果を奏させるためには、s
ol、AI ハo、 010%以」二、0.065%以
下、Nは0.0030%以上、0.0100%以下とす
る必要がある。
s ol, AI combines with N and the inhibitor Δ! It is a component that forms N, and in order to achieve its effect, s
ol, AI hao, 010% or more, 2, 0.065% or less, and N needs to be 0.0030% or more and 0.0100% or less.

前記成分の他に、必要に応して、Sn、 Cu、 Mo
In addition to the above components, if necessary, Sn, Cu, Mo
.

Crを含有させる。SnはSi含有量が多(なったとき
、二次再結晶の不安定化を防ぐ作用があり、また粒界に
偏析し二次再結晶の発現を促進する作用があり、その作
用を奏するには0.03〜0.50%必要テアル。Cu
ハフオルステライトG1膜の劣化防止を介して磁気特性
を改善する作用があり、この効果を奏させるためには、
O,08%以内の含有が必要である・MOおよびCrは
粒界に偏析し2、二次再結晶を安定化させる作用があり
、この効果を奏するためには、バ。はo、10%以下、
Crは0. I 0%以下含有させる必要がある。これ
らの選択成分は1種または2種以−ヒ含有される。
Contains Cr. When Sn has a high Si content, it has the effect of preventing destabilization of secondary recrystallization, and also has the effect of segregating at grain boundaries and promoting the development of secondary recrystallization. is 0.03~0.50% required.Cu
It has the effect of improving magnetic properties by preventing deterioration of the haf-orsterite G1 film, and in order to achieve this effect,
The content of O, within 8% is required. MO and Cr segregate at grain boundaries2 and have the effect of stabilizing secondary recrystallization, and in order to achieve this effect, B. is o, 10% or less,
Cr is 0. It is necessary to contain 0% or less of I. One or more of these selected components may be contained.

前述の鋼成分組成を含み、残部が鉄および不可避的不純
物からなる電磁ロスラブは公知の方法で溶製され、例え
ば連続鋳造により製造される。該スラブは公知の128
0°C超の温度に加熱後、熱間圧延される。
An electromagnetic loss slab containing the above-mentioned steel composition with the balance being iron and unavoidable impurities is produced by a known method, for example, by continuous casting. The slab is a known 128
After heating to a temperature above 0°C, it is hot rolled.

熱間圧延は、仕上温度で900 ℃以上で行なわれ、そ
の後巻取られるが熱間圧延終了後の冷却条件が重要であ
る。この点については、実験データを参照して述べる。
Hot rolling is performed at a finishing temperature of 900° C. or higher, and the material is then wound up, but the cooling conditions after hot rolling are important. This point will be discussed with reference to experimental data.

第1表に示ず鋼成分組成の電磁鋼スラブを供試材とし、
1360 ℃でスラブ加熱し、仕上温度1050 ℃で
熱間圧延した。
A magnetic steel slab with a steel composition not shown in Table 1 was used as a test material,
The slab was heated at 1360°C and hot rolled at a finishing temperature of 1050°C.

第   1   表 熱間圧延終了後、冷却条件を変え第2表に示すように巻
取温度を変えて巻取り、水冷または放冷ヲ行なった。次
いで予備冷延し、インヒビター析出焼鈍を行ない、続い
て圧下率85%で冷間圧延し板厚0.17mmとし、8
40 ℃で脱炭焼鈍しMgOを主成分とする焼鈍分離剤
を塗布し、1200℃×20時間の仕上焼鈍を行なった
。その鋼板について、磁束密度BIGと鉄損W l f
f/S。を測定し、その結果を第2表に一緒に示す。
Table 1 After the hot rolling was completed, the coiling conditions were changed and the coiling temperature was changed as shown in Table 2, and the samples were wound and cooled in water or allowed to cool. Next, it was preliminarily cold rolled, subjected to inhibitor precipitation annealing, and then cold rolled at a reduction rate of 85% to a plate thickness of 0.17 mm.
Decarburization annealing was performed at 40°C, an annealing separator containing MgO as a main component was applied, and final annealing was performed at 1200°C for 20 hours. Regarding the steel plate, magnetic flux density BIG and iron loss W l f
f/S. were measured, and the results are also shown in Table 2.

この結果から認められる如く、熱間圧延後に急、冷し、
400°C以下200 ℃以上の低温で巻取り、次いで
水冷したち(1−A、1−B)は磁束密度B1゜、鉄j
J% W 、qys。ともにすぐれている。また、結晶
粒のマクロ組織を調査したところ、前述の条件材は二次
再結晶が十分に発現していた。これに対して500°C
で巻取り放冷したもの(1−C)、460°Cで巻取り
その後水冷したもの(1−D)、350°Cで巻取り放
冷したもの(1−E)は、いずれも磁束密度B、。、鉄
tMW+t/soが劣っている。
As seen from this result, after hot rolling, the
The wires (1-A, 1-B) were wound at a low temperature of 400°C or lower and 200°C or higher, and then water-cooled.
J% W, qys. Both are excellent. Further, when the macrostructure of the crystal grains was investigated, secondary recrystallization was sufficiently expressed in the material under the above conditions. On the other hand, 500°C
(1-C), rolled at 460°C and then cooled in water (1-D), and rolled at 350°C and cooled (1-E), all have magnetic flux densities. B. , iron tMW+t/so is inferior.

これから、本発明では巻取温度を400°C以下200
 ℃以上とする。また、200°C未満では巻取りが不
安定となるので、下限を200°Cとしている。次いで
水冷する。この条件により、炭化物が粗大に析出するこ
となく、微細に析出した状態を維持し、とくにスラブ加
熱時に粗大化し、熱間圧延で伸延粒となったものにも、
その粒内に微細に析出する。これが、その後に行なう予
備冷間圧延でのすべり変形に影響して転位の移動を妨げ
て加工歪を伸延粒にも蓄積し、インヒビター析出焼鈍で
再結晶させ、整粒化するとともに、インヒビターの微細
分散析出が図れると考察している。
From now on, in the present invention, the winding temperature is 400°C or less.
℃ or higher. Furthermore, since winding becomes unstable below 200°C, the lower limit is set at 200°C. Then it is cooled in water. Under these conditions, carbides do not precipitate coarsely and maintain a finely precipitated state, and are particularly effective against carbides that coarsen during slab heating and become elongated grains during hot rolling.
Precipitates finely within the grains. This influences the slip deformation in the subsequent preliminary cold rolling, prevents the movement of dislocations, and accumulates working strain in the elongated grains.Inhibitor precipitation annealing recrystallizes and refines the grains. We believe that dispersed precipitation can be achieved.

また巻取後の水冷は15分以内に行なうことが好ましい
Further, it is preferable that water cooling after winding is performed within 15 minutes.

冷却されたコイルは予備冷延され、次いでインヒビター
析出焼鈍が行なわれる。予備冷延は20〜50%で行な
うことが好ましく、またインヒビター析出焼鈍は108
0〜1160°c×60秒以下に加熱し、さらに800
〜1o00’cで30〜90秒保定し、15〜100″
C/秒で冷却することが好ましい。
The cooled coil is pre-cold rolled and then subjected to inhibitor precipitation annealing. Preliminary cold rolling is preferably carried out at 20 to 50%, and inhibitor precipitation annealing is carried out at 108%.
Heat to 0 to 1160°C x 60 seconds or less, then further heat to 800°C
Hold at ~1o00'c for 30-90 seconds, 15-100''
Preferably, the cooling rate is C/sec.

その後、最終冷延を行なうが、この冷延は1回冷延でよ
く、圧下率80%超95%以下の弾圧下にて行なう。こ
の圧下率が80%以下では磁束密度が劣化し、一方、9
5%超では、二次再結晶が不良化する。
Thereafter, the final cold rolling is performed, and this cold rolling may be performed once, and is performed under pressure with a rolling reduction of more than 80% and less than 95%. If this rolling reduction rate is less than 80%, the magnetic flux density will deteriorate;
If it exceeds 5%, secondary recrystallization becomes poor.

最終冷延により板厚は0.15〜0.23mmとするが
、0.23mm超では鉄損の低下作用が小さく、また、
本発明のような工程は必ずしも必要でない。
The plate thickness is set to 0.15 to 0.23 mm by the final cold rolling, but if the thickness exceeds 0.23 mm, the effect of reducing iron loss is small, and
A process such as that of the present invention is not necessarily necessary.

一方0.15mm未満では二次再結晶が不安定化する。On the other hand, if the thickness is less than 0.15 mm, secondary recrystallization becomes unstable.

次いで、脱炭焼鈍、焼鈍分離剤を塗布しての仕上焼鈍は
公知方法が採用される。
Next, known methods are employed for decarburization annealing and final annealing by applying an annealing separator.

(実施例) 実施例について述べる。(Example) An example will be described.

第3表に示す電磁鋼スラブを用いて、第4表に示す条件
で熱間圧延し、予備冷延し、インヒビター析出焼鈍し、
圧下率88%で冷間圧延し最終板厚を0.17mmとし
た。次いで840°Cで脱炭焼鈍し、MgOを塗布し、
1200”C×20時間の仕上焼鈍を行なった。
Using the electromagnetic steel slab shown in Table 3, hot rolling, pre-cold rolling, and inhibitor precipitation annealing under the conditions shown in Table 4,
It was cold rolled at a reduction rate of 88% to give a final thickness of 0.17 mm. Then, it was decarburized annealed at 840°C, coated with MgO,
Finish annealing was performed at 1200"C x 20 hours.

その鋼板の磁束密度B、。、鉄H4W177、。を測定
し、その結果も第4表に示す。
The magnetic flux density B of the steel plate. , iron H4W177,. The results are also shown in Table 4.

(発明の効果) 以上のように、本発明によると、中間焼鈍を要L2ない
1同席間圧延によっても、二次再結晶が十分に発現した
0.23+、1m以下の薄手方向外電In ′i:ul
板が得ら拘5る。
(Effects of the Invention) As described above, according to the present invention, secondary recrystallization is sufficiently expressed even by one-same rolling that does not require intermediate annealing. :ul
It depends on whether the board is obtained or not.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で、C:0.02〜0.10%、Si:2
.0〜4.0%、Mn:0.02〜0.10%、S:0
.01〜0.04%、sol.Al:0.010〜0.
065%、N:0.0030〜0.0100%、残部が
鉄および不可避的不純物からなる電磁鋼スラブを、熱間
圧延し、インヒビター析出焼鈍し、圧下率80%超〜9
5%の弾圧下最終冷延を含む1回以上の冷間圧延により
最終板厚0.15〜0.23mmとし、脱炭焼鈍し、焼
鈍分離剤を塗布し、仕上焼鈍することからなる方向性電
磁鋼板を製造する方法において、熱間圧延後、200〜
400℃の温度で巻取り、巻取コイルを水冷し、予備冷
延し、インヒビター析出焼鈍することを特徴とする磁気
特性の優れた薄手方向性電磁鋼板の製造方法。
(1) In weight%, C: 0.02 to 0.10%, Si: 2
.. 0-4.0%, Mn: 0.02-0.10%, S: 0
.. 01-0.04%, sol. Al: 0.010-0.
065%, N: 0.0030 to 0.0100%, the balance consisting of iron and unavoidable impurities, hot rolled, inhibitor precipitation annealed, rolling reduction of more than 80% ~ 9
Orientation consisting of cold rolling one or more times including final cold rolling under 5% compression to a final thickness of 0.15 to 0.23 mm, decarburizing annealing, applying an annealing separator, and final annealing. In the method of manufacturing electrical steel sheets, after hot rolling, 200 to
A method for producing a thin grain-oriented electrical steel sheet with excellent magnetic properties, which comprises winding at a temperature of 400°C, water-cooling the wound coil, pre-cold rolling, and inhibitor precipitation annealing.
(2)重量%で、C:0.02〜0.10%、Si:2
.0〜4.0%、Mn:0.02〜0.10%、S:0
.01〜0.04%、sol.Al:0.010〜0.
065%、N:0.0030〜0.0100%、さらに
、Sn:0.03〜0.50%、Cu:0.08%以下
、Mo:0.10%以下、Se:0.01〜0.05%
、Cr:0.10%以下の1種または2種以上を含み、
残部が鉄および不可避的不純物からなる電磁鋼スラブを
、熱間圧延し、インヒビター析出焼鈍し、圧下率80%
超〜95%の弾圧下最終冷延を含む1回以上の冷間圧延
により最終板厚0.15〜0.23mmとし、脱炭焼鈍
し、焼鈍分離剤を塗布し、仕上焼鈍することからなる方
向性電磁鋼板を製造する方法において、熱間圧延後、2
00〜400℃の温度で巻取り、巻取コイルを水冷し、
予備冷延し、インヒビター析出焼鈍することを特徴とす
る磁気特性の優れた薄手方向性電磁鋼板の製造方法。
(2) In weight%, C: 0.02 to 0.10%, Si: 2
.. 0-4.0%, Mn: 0.02-0.10%, S: 0
.. 01-0.04%, sol. Al: 0.010-0.
065%, N: 0.0030-0.0100%, Sn: 0.03-0.50%, Cu: 0.08% or less, Mo: 0.10% or less, Se: 0.01-0 .05%
, Cr: 0.10% or less, containing one or more types,
An electrical steel slab, the remainder of which is iron and unavoidable impurities, is hot rolled and annealed with inhibitor precipitation to achieve a rolling reduction of 80%.
The final plate thickness is 0.15 to 0.23 mm by one or more cold rolling operations including final cold rolling under ultra-95% compression, decarburization annealing, application of an annealing separator, and final annealing. In the method of manufacturing grain-oriented electrical steel sheet, after hot rolling, 2
Winding at a temperature of 00 to 400°C, cooling the wound coil with water,
A method for producing a thin grain-oriented electrical steel sheet with excellent magnetic properties, which comprises preliminary cold rolling and inhibitor precipitation annealing.
JP28609188A 1988-11-12 1988-11-12 Production of thin-gaged grain oriented electrical steel sheet having excellent magnetic characteristics Pending JPH02133524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28609188A JPH02133524A (en) 1988-11-12 1988-11-12 Production of thin-gaged grain oriented electrical steel sheet having excellent magnetic characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28609188A JPH02133524A (en) 1988-11-12 1988-11-12 Production of thin-gaged grain oriented electrical steel sheet having excellent magnetic characteristics

Publications (1)

Publication Number Publication Date
JPH02133524A true JPH02133524A (en) 1990-05-22

Family

ID=17699823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28609188A Pending JPH02133524A (en) 1988-11-12 1988-11-12 Production of thin-gaged grain oriented electrical steel sheet having excellent magnetic characteristics

Country Status (1)

Country Link
JP (1) JPH02133524A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9032623B2 (en) 2007-08-06 2015-05-19 Shell Oil Company Method of manufacturing a burner front face

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9032623B2 (en) 2007-08-06 2015-05-19 Shell Oil Company Method of manufacturing a burner front face

Similar Documents

Publication Publication Date Title
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
KR930004849B1 (en) Electrcal steel sheet having a good magnetic property and its making process
JP2951852B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
EP0468819B1 (en) Method for manufacturing an oriented silicon steel sheet having improved magnetic flux density
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2001040449A (en) Manufacture of grain-oriented electrical steel sheet superior in magnetic flux density and iron loss, and steel plate before final cold rolling for manufacturing the steel plate
JP4013262B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPH02133524A (en) Production of thin-gaged grain oriented electrical steel sheet having excellent magnetic characteristics
JPH0450380B2 (en)
JP4268277B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JPH02133525A (en) Production of thin-gaged grain oriented electrical steel sheet having excellent magnetic characteristics
JPH06212274A (en) Production of grain-oriented silicon steel sheet having extremely low iron loss
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JPH06240358A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JP3392699B2 (en) Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics
JP2000129353A (en) Production of grain oriented silicon steel sheet
JPH02263923A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH0798976B2 (en) Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss
JPH06212262A (en) Production of grain-oriented silicon steel sheet having extremely low core loss
JP2724093B2 (en) Method for producing grain-oriented silicon steel sheet with excellent surface properties and magnetic properties
JPH08253815A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JPH10183249A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPS6296615A (en) Manufacture of grain oriented electrical sheet superior in magnetic characteristic and less in ear cracking at hot rolling