JPH02129077A - Production of sintered oxide material having high density - Google Patents

Production of sintered oxide material having high density

Info

Publication number
JPH02129077A
JPH02129077A JP63282850A JP28285088A JPH02129077A JP H02129077 A JPH02129077 A JP H02129077A JP 63282850 A JP63282850 A JP 63282850A JP 28285088 A JP28285088 A JP 28285088A JP H02129077 A JPH02129077 A JP H02129077A
Authority
JP
Japan
Prior art keywords
sintered
oxide
relative density
sintered oxide
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63282850A
Other languages
Japanese (ja)
Other versions
JPH0791116B2 (en
Inventor
Takao Fujikawa
隆男 藤川
Yasuo Manabe
康夫 真鍋
Yutaka Narukawa
裕 成川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63282850A priority Critical patent/JPH0791116B2/en
Publication of JPH02129077A publication Critical patent/JPH02129077A/en
Publication of JPH0791116B2 publication Critical patent/JPH0791116B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Ceramics (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain the subject sintered material having uniform properties and nearly theoretical relative density by sintering an oxide to high relative density and subjecting the obtained sintered oxide to hot isostatic pressing treatment using dry air having low water content or a mixture of said dry air and N2 gas as a pressure medium. CONSTITUTION:A sintered oxide sintered to a relative density of >=92%, e.g., sintered oxide ceramics such as Mn-Zn-ferrite, is subjected to hot isostatic press(HIP) under the following conditions. The HIP treatment of the sintered oxide is carried out by using dried air having a water content of <=50ppm or a gaseous mixture of said dried air and N2 as a pressure medium. A high- density sintered oxide having a relative density of >=99% can be produced by this process. The present process can be carried out without using an expensive inert gas such as Ar and, accordingly, the production cost can be remarkably reduced compared with the conventional sintered oxide production process using HIP treatment.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、代表的なセラミック材料である酸化物セラミ
ックスの製造に関し、特に気孔を含まない高密度の焼結
体を高温下で高圧ガスの圧力を作用させる熱間静水圧プ
レス(以下、旧Pと略記する)法を用いて製造する方法
に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to the production of oxide ceramics, which are typical ceramic materials, and in particular, the present invention relates to the production of oxide ceramics, which are typical ceramic materials. The present invention relates to a manufacturing method using a hot isostatic press (hereinafter abbreviated as old P) method in which pressure is applied.

(従来の技術) 気孔のない高密度のセラミックス焼結体を製造する方法
として、−旦、通常の焼結方法により相対密度92〜9
7%の閉気孔状態の焼結体を作製し、これをアルゴンな
どの不活性ガスを圧媒として高温下で数100〜200
0 kg f / csJの圧力で加圧して高密度の焼
結体とする方法が工業的に用いられている。
(Prior art) As a method for producing a high-density ceramic sintered body without pores, the relative density is 92 to 9 by a normal sintering method.
A sintered body with 7% closed pores is prepared, and this is heated under high temperature using an inert gas such as argon as a pressure medium to form several 100 to 200 pores.
A method of pressurizing at a pressure of 0 kgf/csJ to form a high-density sintered body is used industrially.

このとき通常、圧媒ガスとしては、アルゴンガスが使用
されているが、この理由は、■P法が超硬合金やTi合
金製鋳造部材など酸素や窒素などと反応し易い処理品に
適用されてきたこと、およびHIP装置の電気炉部材と
して耐酸化性に乏しいモリブデンやグラファイトが多く
用いられていることにある。
At this time, argon gas is usually used as the pressure gas, but the reason for this is that ■P method is applied to treated products that easily react with oxygen, nitrogen, etc., such as cemented carbide and Ti alloy cast members. This is because molybdenum and graphite, which have poor oxidation resistance, are often used as electric furnace members for HIP equipment.

しかし、最近では、Mn−Zn−フェライト、Ni−Z
nフヱライト、PZTなどの複合酸化物セラミックスや
ジルコニアなどの酸化物系のセラミックスにIIIP処
理の適用が進められ、この場合にはアルゴンなどの不活
性ガスを用いてIIIP処理を行うと、処理品中の酸素
が抜けて、フェライトでは所期の磁気特性が得られなか
ったり表層部がウスタイト化してヘアクラックが生じる
こと、また、ジルコニアでは黒色化したり、部分安定化
ジルコニアの正方晶粒子が単斜晶に変化して所期の強度
特性が得られないことがあることなどが見出され、これ
を改善するために、圧媒ガスとしてアルゴンに酸素を混
ぜて使用することが検討されている。特に、最近見出さ
れた超電導セラミックスの旧P処理では、セラミックス
中の酸素量の制御に、圧媒ガス中に酸素を混合して適当
な酸素分圧を与えて処理することが不可欠とされており
、上記のアルゴンと酸素と混合ガスによるIIIP処理
が試みられている。
However, recently, Mn-Zn-ferrite, Ni-Z
IIIP treatment is being applied to composite oxide ceramics such as n-fluorite and PZT, and oxide ceramics such as zirconia.In this case, if IIIP treatment is performed using an inert gas such as argon, In ferrite, the desired magnetic properties may not be obtained or the surface layer may turn into wustite, causing hair cracks. In addition, zirconia may turn black, or the tetragonal grains of partially stabilized zirconia may become monoclinic. It has been found that the desired strength characteristics may not be obtained due to changes in the strength of the material.In order to improve this problem, the use of a mixture of argon and oxygen as a pressure medium gas is being considered. In particular, in the recently discovered old P treatment of superconducting ceramics, it is essential to mix oxygen into the pressure medium gas to give an appropriate oxygen partial pressure in order to control the amount of oxygen in the ceramics. Therefore, attempts have been made to perform IIIP processing using the above-mentioned mixed gas of argon and oxygen.

(発明が解決しようとする課題) 上記の如く、一部の酸化物系セラミックスのIIP処理
では、圧媒ガス中に酸素の分圧がないと、HIP処理時
に処理品に酸素欠損が生じて所期の効果が得られないこ
とから、アルゴンと酸素の混合ガスの試用されつつある
が、この方法は、酸素欠損の発生抑制という点で効果が
認められる反面、工業的な利用という点では下記の如き
欠点を有している。
(Problems to be Solved by the Invention) As mentioned above, in the IIP treatment of some oxide ceramics, if there is no partial pressure of oxygen in the pressure medium gas, oxygen vacancies may occur in the treated product during the HIP treatment. However, while this method is effective in suppressing the occurrence of oxygen vacancies, it has the following disadvantages in terms of industrial use. It has the following drawbacks.

まず、多くの場合、酸素分圧すなわち、アルゴンガスと
酸素の混合割合を、毎回のIIIP処理ごとに所定の範
囲に保っておく必要があり、この特定の酸素量を有する
混合ガスの製造が不可欠となる。
First, in many cases, it is necessary to maintain the oxygen partial pressure, that is, the mixing ratio of argon gas and oxygen, within a predetermined range for each IIIP process, and it is essential to produce a mixed gas with a specific amount of oxygen. becomes.

アルゴンガスそのものが、かなり高価なうえ、アルゴン
ガスと酸素の混合という作業および混合量チエツクのた
めの分析作業が必要となるため、できあがった混合ガス
は非常に高価なものとなる。
Argon gas itself is quite expensive, and it also requires mixing the argon gas and oxygen and analysis to check the amount of mixture, making the resulting mixed gas very expensive.

また、使用後の圧媒ガスを回収して繰返し使用する場合
、処理品や電気炉部材により吸収された酸素量を補充し
てやる必要があり、このためにはその都度、使用後のガ
スを分析し、補充量を算出して補充する酸素の量を求め
、これを混合、十分に撹拌した後、さらに分析を行うと
いう煩雑な作業が必要となる。これを回避するには、ガ
スを使い捨てとせざるを得ないが、この場合、旧P処理
コストが非常に高(なり、工業的な使用は1!J1待で
きない。
In addition, when used pressure medium gas is recovered and used repeatedly, it is necessary to replenish the amount of oxygen absorbed by treated products and electric furnace parts, and for this purpose, the gas after use must be analyzed each time. It is necessary to calculate the amount of oxygen to be replenished, find the amount of oxygen to be replenished, mix it, stir it sufficiently, and then perform further analysis, which is a complicated process. To avoid this, the gas must be made disposable, but in this case, the cost of processing the old P would be extremely high, and industrial use cannot wait.

本発明は上述の如き実状に対処し、その問題を解消すべ
〈発明されたものであって、特にその圧媒を特定するこ
とにより、酸化物系セラミックスのHIP処理コストの
大幅な軽減を図り、かつ処理材の特性のバラツキを低減
することを目的とするものである。
The present invention has been invented to address the above-mentioned actual situation and solve the problem.In particular, by specifying the pressure medium, the cost of HIP treatment of oxide ceramics can be significantly reduced. The purpose is also to reduce variations in the properties of treated materials.

(課題を解決するための手段) 即ち、上記目的に適合する本発明の特徴とするところは
、相対密度92%以上に焼結された酸化物焼結体を、水
分含有量50ppm以下の乾燥空気または該乾燥空気と
窒素の混合ガスを圧力媒体として)11P処理を行い、
相対密度99%以上に高密度化することにある。
(Means for Solving the Problems) That is, the feature of the present invention that meets the above object is that an oxide sintered body sintered to a relative density of 92% or more is heated in dry air with a moisture content of 50 ppm or less. or using the mixed gas of dry air and nitrogen as a pressure medium) 11P treatment,
The objective is to increase the relative density to 99% or more.

ここで、上記処理が適用される酸化物焼結体としては、
代表的なセラミック材料である酸化物セラミックス焼結
体が挙げられ、例えば、前述のMnZn−フェライト、
Ni−Zn−フェライト、PZTなどの複合酸化物セラ
ミックスやジルコニアなどの酸化物系のセラミックス、
更に最近の超電導セラミックスなどが包含される。
Here, the oxide sintered body to which the above treatment is applied is as follows:
Typical ceramic materials include oxide ceramic sintered bodies, such as the aforementioned MnZn-ferrite,
Composite oxide ceramics such as Ni-Zn-ferrite and PZT, oxide ceramics such as zirconia,
Furthermore, recent superconducting ceramics and the like are included.

そして、これに対する前記処理の基本的な点は酸素の含
有量が約19%と安定しており、かつ安価な空気を使用
することにある。しかし、ただ通常の空気はかなりの量
の水分を含んでおり、これをそのまま使用すると、高圧
容器内部で結露して高圧容器内に内蔵された電気炉の電
極部分の絶縁不良や短絡事故を生じ易いことなどが問題
であるところから、水分含有量50ppm以下の乾燥空
気を用いるに至ったのである。
The basic point of the above-mentioned treatment is to use air, which has a stable oxygen content of about 19% and is inexpensive. However, ordinary air contains a considerable amount of moisture, and if this air is used as is, dew condenses inside the high-pressure vessel, causing poor insulation and short circuits in the electrodes of the electric furnace built into the high-pressure vessel. Since dry air was a problem, it was decided to use dry air with a moisture content of 50 ppm or less.

以下、更に上記本発明の特徴につき詳細に説明する。Hereinafter, the features of the present invention described above will be further explained in detail.

先ず、上記の如き空気を旧P処理の圧媒として用いる場
合の技術的な問題点は上述の水分の問題と、高温高圧条
件下における窒素の酸化物(NOx)の発生の可能性に
ある。
First, the technical problems when using air as described above as a pressure medium in the old P treatment are the above-mentioned moisture problem and the possibility of generation of nitrogen oxides (NOx) under high temperature and high pressure conditions.

前者についてはこれまでのArあるいはN2でのIII
P装置の運転経験、即ち、これらのガスの繰返し使用に
おいて不可避的に生じる不純物としての水分の濃縮によ
る結露発生の有無についての経験から50体積ppm以
下の水分量では電極部分の絶縁不良の問題は生じないと
の結論に達した。
Regarding the former, the previous Ar or N2 III
Based on our experience in operating the P equipment, that is, the presence or absence of condensation due to concentration of water as an impurity that inevitably occurs during repeated use of these gases, we have learned that if the water content is less than 50 ppm by volume, there will be a problem of poor insulation in the electrode part. The conclusion was reached that it would not occur.

もちろん、50体積ppn+を越える水分があっても、
50体積ppmを少し越えたからと云って、直ちに、絶
縁不良による短絡事故につながるものではなく、水分の
絶対量、即ち圧媒ガスの量に左右される性格のものであ
る。ただ、余りに水分量、特に絶対量が多くなると、I
IIP処理の最後の工程であるガスの回収時に、圧媒ガ
スが減圧弁を通過する際、断熱膨張による回収ガス温度
の低下が水分を結露させ、配管内部で閉塞現象を生じる
ことがあり、水分量が少ない程、好ましい。
Of course, even if there is water exceeding 50 volume ppn+,
Even if it slightly exceeds 50 ppm by volume, it does not immediately lead to a short circuit accident due to poor insulation, but it depends on the absolute amount of moisture, that is, the amount of pressurized gas. However, if the water content, especially the absolute amount, becomes too large, I
During gas recovery, which is the last step in IIP processing, when the pressurized gas passes through the pressure reducing valve, the temperature of the recovered gas decreases due to adiabatic expansion, causing moisture to condense and causing a blockage phenomenon inside the piping. The smaller the amount, the more preferable.

一方、後者の窒素酸化物の発生については、その発生量
は単に窒素、酸素の量や圧力、温度のみに依存せず、共
存する水分、CH,、GOなどの不純物ガス成分の量、
さらにはIIIP装置の電気炉の構成材料の種類にも依
存する。
On the other hand, regarding the latter generation of nitrogen oxides, the amount generated does not simply depend on the amount of nitrogen and oxygen, pressure, and temperature, but also depends on the amount of coexisting impurity gas components such as moisture, CH, GO, etc.
Furthermore, it also depends on the type of constituent material of the electric furnace of the IIIP apparatus.

通常のIIIP処理条件2000 kg / cyi、
1500℃程度まではその発生量はさ程、多くなく、電
気炉材料や高圧機器構成部材を変質させるに至らない程
度である。唯、使用後のガスの放出については、その量
によっては、窒素酸化物の除去処理を行ってから放出す
ることが好ましい。
Normal IIIP processing conditions 2000 kg/cyi,
The amount generated is not so large up to about 1500°C, and is at a level that does not alter the quality of electric furnace materials or high-pressure equipment components. However, depending on the amount, it is preferable to carry out nitrogen oxide removal treatment before releasing the gas after use.

前記本発明の特徴とする要件はこれらの問題を勘案した
上で設定したものであり、水分含有量50ppm以下の
乾燥、空気はもとより、これに窒素を混合して酸素を薄
めて使用することも本発明の実施に差支えなく、本発明
の包含することろである。
The requirements characteristic of the present invention were set after taking these problems into consideration, and include not only dry air with a moisture content of 50 ppm or less, but also the use of diluted oxygen by mixing nitrogen with it. The invention may be carried out without any problems and is included within the scope of the invention.

なお、一般に空気には窒素約80%、酸素量19%、ア
ルゴン約1%のほか、前記の水分や二酸化炭素、−酸化
炭素なども含まれているが、l!IP装置の操業の観点
からは木取外の成分は通常の含有量であれば殆ど問題が
ない。ただY−Ba−Cu−0系の超電導セラミックス
の場合には二酸化炭素は容易に反応して炭酸バリウムが
生成するので何らかの方法で除去しておくことが好まし
い。
Generally, air contains about 80% nitrogen, 19% oxygen, and about 1% argon, as well as the aforementioned moisture, carbon dioxide, and carbon oxide, but l! From the point of view of the operation of the IP device, there is almost no problem if the components other than wood removal are contained in the usual amount. However, in the case of Y-Ba-Cu-0 type superconducting ceramics, carbon dioxide easily reacts to produce barium carbonate, so it is preferable to remove it by some method.

次に本発明の実施例を比較例と対照して説明する。Next, examples of the present invention will be explained in comparison with comparative examples.

(実施例) 0.3重量%のMgOを混合したA 6203粉末をボ
ールミルで混合した後、金型成形により30 X 50
 X6 (fl)の成形体を作製し、これを大気中14
50℃で1時間焼成して密度3.9g/cal (相対
密度98%)の焼結体を得た。この焼結体を白金型のヒ
ータエレメントを装着したIIIP装置内に装入した。
(Example) A 6203 powder mixed with 0.3% by weight of MgO was mixed in a ball mill, and then molded into 30 x 50 pieces.
A molded body of X6 (fl) was prepared and exposed to air for 14 hours.
It was fired at 50° C. for 1 hour to obtain a sintered body with a density of 3.9 g/cal (relative density 98%). This sintered body was charged into a IIIP device equipped with a platinum-shaped heater element.

旧P装置内部を真空引きした後、乾燥空気(水分50p
pm)の空気で置換した。更に120kg/(J+まで
空気を加圧注入した。次いで前記白金ヒータに通電して
、1400℃まで昇温した。このとき旧P装置内部の圧
力は約350kg/calとなった。1400℃で1時
間保持した後、降温してガスをIIIP装置外部に放出
した。
After vacuuming the inside of the old P device, dry air (moisture 50p
pm) of air. Further, air was injected under pressure to 120 kg/(J+. Then, the platinum heater was energized and the temperature was raised to 1400°C. At this time, the pressure inside the old P device was about 350 kg/cal. At 1400°C, After holding for a certain period of time, the temperature was lowered and the gas was discharged to the outside of the IIIP apparatus.

この放出ガス中の酸素の量を分析した結果、約18%で
あった。処理が終わった焼結体の密度は、3゜975g
/cjで、微組織を走査型電子顕微鏡で調査したところ
、気孔はほとんど認られなかった。また焼結体の色調は
大気中で焼結した時とほぼ同じで若干橙色を帯びた白色
であった。
Analysis of the amount of oxygen in this released gas revealed that it was approximately 18%. The density of the sintered body after treatment is 3°975g.
/cj, and when the microstructure was examined using a scanning electron microscope, almost no pores were observed. The color tone of the sintered body was almost the same as when sintered in the air, and was slightly orange-tinged white.

同じ処理を5回繰返したが、前記結果はほぼ再現された
The same process was repeated five times, and the above results were almost reproduced.

(比較例1) 実施例1と同じ手順にて準備した^1203焼結体を、
圧媒ガスにアルゴンと酸素(20%)の混合ガスを用い
て、1400℃、350 kg / ciで1時間の処
理を行った。処理後のガスを回収して分析を行ったとこ
ろ酸素量は約18%に低下していた。焼結体の密度は、
3 、975g / calで実施例1とほぼ同じで気
孔も認められなかった。
(Comparative Example 1) A ^1203 sintered body prepared in the same procedure as Example 1 was
Using a mixed gas of argon and oxygen (20%) as the pressure medium, treatment was performed at 1400°C and 350 kg/ci for 1 hour. When the gas after treatment was collected and analyzed, the oxygen content had decreased to about 18%. The density of the sintered body is
3, 975 g/cal, almost the same as in Example 1, and no pores were observed.

アルゴンと酸素の混合ガスは高価なため回収したガスを
そのまま繰返し使用して5回の処理を行った。不足分は
アルゴン+酸素(20%)を使用した。その結果、酸素
の量は1回の処理で1.5〜2%ずつ低下した。処理後
の焼結体の密度には大きな変化は認られなかったが、色
調には若干の差異が生じ、実施例1程の再現性は認めら
れなかった。
Since mixed gas of argon and oxygen is expensive, the treatment was performed five times by repeatedly using the recovered gas as it was. Argon + oxygen (20%) was used to make up for the shortage. As a result, the amount of oxygen decreased by 1.5-2% per treatment. Although no major change was observed in the density of the sintered body after treatment, some differences occurred in color tone, and reproducibility as good as in Example 1 was not observed.

(比較例2) 実施例1と同じ手順にて基準したA 1 zox焼結体
を、純アルゴンを用いて、1400℃、350 kg 
/ claで1時間の処理を行った。焼結体の密度は、
3,980g/cdで実施例1、比較例1と比較して若
干高い値となったが、色調は白色であり、大気中で焼結
した時の色調とは変化していた。
(Comparative Example 2) A 1 zox sintered body based on the same procedure as Example 1 was heated at 1400° C. and 350 kg using pure argon.
/cla for 1 hour. The density of the sintered body is
Although the value was 3,980 g/cd, which was slightly higher than that of Example 1 and Comparative Example 1, the color tone was white, which was different from the color tone when sintered in the air.

(比較例3) 比較例2と同様にして、通常の空気(水分量1100p
p+)を用いて処理を試みたが、ヒータの絶縁不良が発
生し、操業可能であった。
(Comparative Example 3) In the same manner as Comparative Example 2, normal air (moisture content 1100p
p+) was attempted, but insulation failure of the heater occurred and operation was not possible.

HIP処理内部底の部分に多量の水が溜っていた。A large amount of water had accumulated at the bottom of the HIP process.

(発明の効果) 本発明は以上のように旧P処理を利用した高密度酸化物
焼結体の製造において、水分含有量50ppmの乾燥空
気またはこれと窒素の混合ガスを圧力媒体として用いる
ことにより^rなどの高価な不活性ガスや、該不活性ガ
スと酸素との混合ガスを用いる必要がなくなり、これま
で行われて来たIIIP処理利用の酸化物焼結体の製造
に比し大幅なコストの低減を可能とすると共に、酸素の
量についても比較的酸素含有量の安定した空気を用いる
のでその量の管理、制御が容易となり、結果として処理
材の特性のバラツキを低減することができる格段の工業
的効果を奏する。
(Effects of the Invention) As described above, the present invention uses dry air with a moisture content of 50 ppm or a mixed gas of nitrogen and dry air as a pressure medium in the production of a high-density oxide sintered body using the old P treatment. There is no need to use expensive inert gases such as In addition to making it possible to reduce costs, since air with a relatively stable oxygen content is used, the amount of oxygen can be easily managed and controlled, and as a result, variations in the properties of treated materials can be reduced. It has a remarkable industrial effect.

なお、本発明は実施例で示したA I 、0.系酸化物
系セラミックスの外、チタン酸ジルコン酸鉛(PZT)
系、ソフトフェライト、チタン酸バリウム系などの電子
材料セラミックス、部分安定化ジルコニアにも適用が可
能で、従来、高価といわれたH!P処理の低コスト化に
よりその波及効果が大きく期待されるところである。
In addition, the present invention is applicable to A I shown in Examples, 0. In addition to oxide-based ceramics, lead zirconate titanate (PZT)
It can be applied to electronic material ceramics such as ferrite, soft ferrite, barium titanate, and partially stabilized zirconia, and H! The reduction in cost of P processing is expected to have a significant ripple effect.

Claims (1)

【特許請求の範囲】[Claims] 1.相対密度92%以上に焼結された酸化物焼結体を、
水分含有量50ppm以下の乾燥空気または該乾燥空気
と窒素の混合ガスを圧力媒体として熱間静水圧プレス処
理を行い、相対密度99%以上に高密度化することを特
徴とする高密度酸化物焼結体の製造方法。
1. An oxide sintered body sintered to a relative density of 92% or more,
A high-density oxide sintered material characterized in that it is densified to a relative density of 99% or more by hot isostatic pressing using dry air with a water content of 50 ppm or less or a mixed gas of the dry air and nitrogen as a pressure medium. Method for producing solids.
JP63282850A 1988-11-08 1988-11-08 Method for manufacturing high-density oxide sintered body Expired - Fee Related JPH0791116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63282850A JPH0791116B2 (en) 1988-11-08 1988-11-08 Method for manufacturing high-density oxide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63282850A JPH0791116B2 (en) 1988-11-08 1988-11-08 Method for manufacturing high-density oxide sintered body

Publications (2)

Publication Number Publication Date
JPH02129077A true JPH02129077A (en) 1990-05-17
JPH0791116B2 JPH0791116B2 (en) 1995-10-04

Family

ID=17657881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63282850A Expired - Fee Related JPH0791116B2 (en) 1988-11-08 1988-11-08 Method for manufacturing high-density oxide sintered body

Country Status (1)

Country Link
JP (1) JPH0791116B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007017086A1 (en) * 2005-07-25 2007-02-15 Avure Technologies Ab Method for hot isostatic pressing
JP2017040420A (en) * 2015-08-19 2017-02-23 株式会社神戸製鋼所 Hot isotropic pressurization device and press method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252485A (en) * 1985-04-30 1986-11-10 株式会社神戸製鋼所 Pressing heat treatment device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252485A (en) * 1985-04-30 1986-11-10 株式会社神戸製鋼所 Pressing heat treatment device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007017086A1 (en) * 2005-07-25 2007-02-15 Avure Technologies Ab Method for hot isostatic pressing
WO2007016930A1 (en) * 2005-07-25 2007-02-15 Avure Technologies Ab A hot isostatic pressing arrangement, method and use
JP2017040420A (en) * 2015-08-19 2017-02-23 株式会社神戸製鋼所 Hot isotropic pressurization device and press method thereof

Also Published As

Publication number Publication date
JPH0791116B2 (en) 1995-10-04

Similar Documents

Publication Publication Date Title
CA1186346A (en) Sintered bodies of aluminum nitride
EP0774449A2 (en) Silicon nitride ceramic, silicon-base composition for production thereof and processes for producing these
JP2008145435A (en) Manufacturing method of nuclear fuel sintered body
JPH02129077A (en) Production of sintered oxide material having high density
JPH10500487A (en) Oxygen sensor consisting of lanthanum ferrite doped with alkaline earth
US6156259A (en) Method of manufacturing piezoelectric materials
Ricote et al. Microstructure-properties relationships in samarium modified lead titanate piezoceramics—II. Dielectric, piezoelectric and mechanical properties
EP0648717A2 (en) Reaction sintered ceramics and method of producing the same
JPS6049152B2 (en) Manufacturing method of low loss dielectric material
JP2004307247A (en) Electroconductive oxide sintered compact, its manufacturing method, and sputtering target obtained by using the oxide sintered compact
JPH08277467A (en) Production of sputtering sintered target material for formation of oxide thin film having (ba, sr)ti perovskite structure
JPH03261659A (en) Black sintered zirconia-based ceramics and production thereof
JPS5939769A (en) Method of sintering silicon nitride
JP2000169245A (en) Production of oxide-based ceramic sintered compact
JPH03174364A (en) Silicon nitride-based sintered body
JP2006096567A (en) Method for producing perovskite-structure oxide powder
JPH022824B2 (en)
JPH06144809A (en) Aluminum nitride powder, its production and sintered aluminum nitride produced from the powder
JPH05319926A (en) Production of piezoelectric porcelain
JPH0321500B2 (en)
JPH0465354A (en) Production of oxide sintered compact having heat resistance and electric conductivity
JPH0338802A (en) Manufacture of positive temperature coefficient semiconductor porcelain
JPH06236809A (en) Manufacture of ni-zn ferrite
JP2577155B2 (en) Silicon nitride sintered body
Nagai et al. Preparation of Ceramic Nanocomposite with Perovskite Dispersoid

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees