JPH0791116B2 - Method for manufacturing high-density oxide sintered body - Google Patents

Method for manufacturing high-density oxide sintered body

Info

Publication number
JPH0791116B2
JPH0791116B2 JP63282850A JP28285088A JPH0791116B2 JP H0791116 B2 JPH0791116 B2 JP H0791116B2 JP 63282850 A JP63282850 A JP 63282850A JP 28285088 A JP28285088 A JP 28285088A JP H0791116 B2 JPH0791116 B2 JP H0791116B2
Authority
JP
Japan
Prior art keywords
oxygen
sintered body
gas
amount
hip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63282850A
Other languages
Japanese (ja)
Other versions
JPH02129077A (en
Inventor
隆男 藤川
康夫 真鍋
成川  裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63282850A priority Critical patent/JPH0791116B2/en
Publication of JPH02129077A publication Critical patent/JPH02129077A/en
Publication of JPH0791116B2 publication Critical patent/JPH0791116B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Ceramics (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、代表的なセラミック材料である酸化物セラミ
ックスの製造に関し、特に気孔を含まない高密度の焼結
体を高温下で高圧ガスの圧力を作用させる熱間静水圧プ
レス(以下、HIPと略記する)法を用いて製造する方法
に関するものである。
Description: TECHNICAL FIELD The present invention relates to the production of oxide ceramics, which is a typical ceramic material, and particularly to the production of a high-density sintered body containing no pores under a high pressure gas at a high temperature. The present invention relates to a manufacturing method using a hot isostatic pressing (hereinafter abbreviated as HIP) method in which a pressure is applied.

(従来の技術) 気孔のない高密度のセラミックス焼結体を製造する方法
として、一旦、通常の焼結方法により相対密度92〜97%
の閉気孔状態の焼結体を作製し、これをアルゴンなどの
不活性ガスを圧媒として高温下で数100〜2000kgf/cm2
圧力で加圧して高密度の焼結体とする方法が工業的に用
いられている。
(Prior art) As a method for producing a high-density ceramics sintered body with no pores, once the relative density was 92 to 97% by the ordinary sintering method.
The method of making a sintered body in the closed pore state and pressurizing it with a pressure of several 100 to 2000 kgf / cm 2 at high temperature using an inert gas such as argon as a pressure medium to obtain a high density sintered body is It is used industrially.

このとき通常、圧媒ガスとしては、アルゴンガスが使用
されているが、この理由は、HIP法が超硬合金やTi合金
製鋳造部材など酸素や窒素などと反応し易い処理品に適
用されてきたこと、およびHIP装置の電気炉部材として
耐酸化性に乏しいモリブデンやグラファイトが多く用い
られていることにある。
At this time, usually, argon gas is used as the pressure medium gas, but the reason for this is that the HIP method has been applied to treated products such as cemented carbide and Ti alloy cast members that easily react with oxygen and nitrogen. That is, molybdenum and graphite, which have poor oxidation resistance, are often used as electric furnace members for HIP equipment.

しかし、最近では、Mn−Zn−フェライト、Ni−Zn−フェ
ライト、PZTなどの複合酸化物セラミックスやジルコニ
アなどの酸化物系のセラミックスにHIP処理の適用が進
められ、この場合にはアルゴンなどの不活性ガスを用い
てHIP処理を行うと、処理品中の酸素が抜けて、フェラ
イトでは所期の磁気特性が得られなかったり表層部がウ
スタイト化してヘアクラックが生じること、また、ジル
コニアでは黒色化したり、部分安定化ジルコニアの正方
晶粒子が単斜晶に変化して所期の強度特性が得られない
ことがあることなどが見出され、これを改善するため
に、圧媒ガスとしてアルゴンに酸素を混ぜて使用するこ
とが検討されている。特に、最近見出された超電導セラ
ミックスのHIP処理では、セラミックス中の酸素量の制
御に、圧媒ガス中に酸素を混合して適当な酸素分圧を与
えて処理することが不可欠とされており、上記のアルゴ
ンと酸素と混合ガスによるHIP処理が試みられている。
Recently, however, HIP treatment has been applied to complex oxide ceramics such as Mn-Zn-ferrite, Ni-Zn-ferrite, and PZT, and oxide-based ceramics such as zirconia. When HIP treatment is performed using active gas, oxygen in the treated product escapes, the desired magnetic properties cannot be obtained with ferrite, or the surface layer part becomes wustite and hair cracks occur, and zirconia turns black. In some cases, the tetragonal grains of partially stabilized zirconia may change into monoclinic crystals and the desired strength characteristics may not be obtained.To improve this, argon was used as a pressure medium gas. The use of a mixture of oxygen is being considered. In particular, in the HIP treatment of superconducting ceramics that has recently been discovered, it is essential to control the amount of oxygen in the ceramics by mixing oxygen in the pressure medium gas and applying an appropriate oxygen partial pressure. The HIP treatment with the mixed gas of argon and oxygen has been attempted.

(発明が解決しようとする課題) 上記の如く、一部の酸化物系セラミックスのHIP処理で
は、圧媒バス中に酸素の分圧がないと、HIP処理時に処
理品に酸素欠損が生じて所期の効果が得られないことか
ら、アルゴンと酸素の混合ガスの使用されつつあるが、
この方法は、酸素欠損の発生抑制という点で効果が認め
られる反面、工業的な利用という点では下記の如き欠点
を有している。
(Problems to be solved by the invention) As described above, in the HIP treatment of some oxide-based ceramics, if there is no partial pressure of oxygen in the pressure medium bath, oxygen deficiency may occur in the treated product during the HIP treatment. The mixed gas of argon and oxygen is being used because the effect of the period is not obtained.
While this method is effective in suppressing the generation of oxygen deficiency, it has the following drawbacks in industrial use.

まず、多くの場合、酸素分圧すなわち、アルゴンガスと
酸素の混合割合を、毎回のHIP処理ごとに所定の範囲に
保っておく必要があり、この特定の酸素量を有する混合
ガスの製造が不可欠となる。アルゴンガスそのものが、
かなり高価なうえ、アルゴンガスと酸素の混合という作
業および混合量チエックのための分析作業が必要となる
ため、できあがった混合ガスは非常に高価なものとな
る。
First, in many cases, it is necessary to keep the oxygen partial pressure, that is, the mixing ratio of argon gas and oxygen within a predetermined range for each HIP treatment, and it is essential to manufacture a mixed gas having this specific amount of oxygen. Becomes Argon gas itself
In addition to being quite expensive, the work of mixing argon gas and oxygen and the analysis work for checking the mixing amount check are required, so that the resulting mixed gas becomes very expensive.

また、使用後の圧媒ガスを回収して繰返し使用する場
合、処理品や電気炉部材により吸収された酸素分を補充
してやる必要があり、このためにはその都度、使用後の
ガスを分析し、補充量を算出して補充する酸素の量を求
め、これを混合、十分に攪拌した後、さらに分析を行う
という煩雑な作業が必要となる。これを回避するには、
ガスを使い捨てとせざるを得ないが、この場合、HIP処
理コストが非常に高くなり、工業的な使用は期待できな
い。
In addition, when the pressure medium gas after use is collected and repeatedly used, it is necessary to supplement the oxygen content absorbed by the processed product and the electric furnace member.For this purpose, the gas after use must be analyzed each time. It is necessary to calculate the amount of replenishment to obtain the amount of oxygen to be replenished, mix this, sufficiently stir, and then carry out further analysis. To avoid this,
There is no choice but to dispose of the gas, but in this case, the HIP processing cost becomes very high, and industrial use cannot be expected.

本発明は上述の如き実状に対処し、その問題を解消すべ
く発明されたものであって、特にその圧媒を特定するこ
とにより、酸化物系セラミックスのHIP処理コストの大
幅な軽減を図り、かつ処理材の特性のバラッキを低減す
ることを目的とするものである。
The present invention deals with the actual situation as described above, and has been invented to solve the problem, in particular, by specifying the pressure medium, it is possible to significantly reduce the HIP treatment cost of oxide ceramics, Moreover, it is intended to reduce the variation in the characteristics of the treated material.

(課題を解決するための手段) 即ち、上記目的に適合する本発明の特徴とするところ
は、相対密度92%以上に焼結された酸化物焼結体を、水
分含有量50ppm以下の乾燥空気または該乾燥空気と窒素
の混合ガスを圧力媒体として熱間静水圧プレス処理を行
い、相対密度99%以上に高密度化することにある。
(Means for Solving the Problems) That is, the feature of the present invention that meets the above-mentioned object is that an oxide sintered body sintered at a relative density of 92% or more is dried air having a water content of 50 ppm or less. Alternatively, hot isostatic pressing is performed by using the mixed gas of dry air and nitrogen as a pressure medium to increase the relative density to 99% or more.

ここで、上記処理が適用される酸化物焼結体としては、
代表的なセラミック材料である酸化物セラミックス焼結
体が挙げられ、例えば、前述のMn−Zn−フェライト、Ni
−Zn−フェライト、PZTなどの複合酸化物セラミックス
やジルコニアなどの酸化物系のセラミックス、更に最近
の超電導セラミックスなどが包含される。
Here, as the oxide sintered body to which the above treatment is applied,
Oxide ceramics sintered bodies, which are typical ceramic materials, can be mentioned, for example, the above-mentioned Mn-Zn-ferrite and Ni.
-Zn-ferrite, composite oxide ceramics such as PZT, oxide ceramics such as zirconia, and more recent superconducting ceramics are included.

そして、これに対する前記処理の基本的な点は酸素の含
有量が約19%と安定しており、かつ安価な空気を使用す
ることにある。しかし、ただ通常の空気はかなりの量の
水分を含んでおり、これをそのまま使用すると、高圧容
器内部で結露して高圧容器内に内蔵された電気炉の電極
部分の絶縁不良や短絡事故を生じ易いことなどが問題で
あるところから、水分含有量50ppm以下の乾燥空気を用
いるに至ったのである。
The basic point of the above-mentioned treatment is to use air which has a stable oxygen content of about 19% and is inexpensive. However, normal air contains a considerable amount of water, and if this is used as it is, dew will condense inside the high-pressure vessel, causing insulation failure and short-circuit accidents in the electrode part of the electric furnace built into the high-pressure vessel. Since it is easy to use, dry air with a water content of 50 ppm or less has been used.

以下、更に上記本発明の特徴につき詳細に説明する。Hereinafter, the features of the present invention will be described in more detail.

先ず、上記の如き空気をHIP処理の圧媒として用いる場
合の技術的な問題点は上述の水分の問題と、高温高圧条
件下における窒素の酸化物(NOX)の発生の可能性にあ
る。
First, the technical problem in the case of using the above-described air as pressure medium in HIP processing is the possibility of occurrence of the problems described above of water, oxides of nitrogen at high pressure conditions (NO X).

前者についてはこれまでのArあるいはN2でのHIP装置の
運転経験、即ち、これらのガスの繰返し使用において不
可避的に生じる不純物としての水分の濃縮による結露発
生の有無についての経験から50体積ppm以下の水分量で
は電極部分の絶縁不良の問題は生じないとの結論に達し
た。
For the former, from the experience of operating the HIP device with Ar or N 2 up to now, that is, the presence or absence of dew condensation due to the concentration of water as impurities that inevitably occurs in repeated use of these gases, 50 ppm by volume or less It was concluded that the amount of water does not cause the problem of insulation failure in the electrode part.

もちろん、50体積ppmを越える水分があっても、50体積p
pmを少し越えたからと云って、直ちに、絶縁不良による
短絡事故につながるものではなく、水分の絶対量、即ち
圧媒ガスの量に左右される性格のものである。ただ、余
りに水分量、特に絶対量が多くなると、HIP処理の最後
の工程であるガスの回収時に、圧媒ガスが減圧弁を通過
する際、断熱膨張による回収ガス温度の低下が水分を結
露させ、配管内部で閉塞現象を生じることがあり、水分
量が少ない程、好ましい。
Of course, even if the water content exceeds 50 volume ppm, 50 volume p
Even if it exceeds a little pm, it does not immediately lead to a short circuit accident due to poor insulation, but it has a character that depends on the absolute amount of water, that is, the amount of pressure medium gas. However, if the amount of water, especially the absolute amount, becomes too large, when the pressure medium gas passes through the pressure reducing valve during gas recovery, which is the last step of the HIP process, the decrease in the temperature of the recovered gas due to adiabatic expansion causes condensation of water. The clogging phenomenon may occur inside the pipe, and the smaller the water content, the better.

一方、後者の窒素酸化物の発生については、その発生量
は単に窒素、酸素の量や圧力、温度のみに依存せず、共
存する水分、CH4、COなどの不純物ガス成分の量、さら
にはHIP装置の電気炉の構成材料の種類にも依存する。
On the other hand, with regard to the latter generation of nitrogen oxides, the generated amount does not depend only on the amounts and pressures of nitrogen and oxygen, and the temperature, but the amount of coexisting water, the amount of impurity gas components such as CH 4 and CO, and further It also depends on the type of constituent material of the electric furnace of the HIP device.

通常のHIP処理条件2000kg/cm2、1500℃程度まではその
発生量はさ程、多くなく、電気炉材料や高圧機器構成部
材を変質させるに至らない程度である。唯、使用後のガ
スの放出については、その量によっては、窒素酸化物の
除去処理を行ってから放出することが好ましい。
Under normal HIP treatment conditions of 2000 kg / cm 2 , up to about 1500 ° C, the generated amount is not so large that it does not deteriorate the electric furnace material and high pressure equipment components. However, regarding the release of the gas after use, it is preferable to perform the nitrogen oxide removal treatment before the release depending on the amount thereof.

前記本発明の特徴とする要件はこれらの問題を勘案した
上で設定したものであり、水分含有量50ppm以下の乾燥
空気はもとより、これに窒素を混合して酸素を薄めて使
用することも本発明の実施に差支えなく、本発明の包含
するところである。
The characteristic feature of the present invention is set in consideration of these problems, not only dry air having a water content of 50 ppm or less, but also mixed with nitrogen to this and diluted with oxygen to be used. The present invention may be embodied regardless of the implementation of the invention.

なお、一般に空気には窒素約80%、酸素約19%、アルゴ
ン約1%のほか、前記の水分や二酸化炭素、一酸化炭素
なども含まれているが、HIP装置の操業の観点からは水
分以外の成分は通常の含有量であれば殆ど問題がない。
ただY−Ba−Cu−O系の超電導セラミックスの場合には
二酸化炭素は容易に反応して炭酸バリウムが生成するの
で何らかの方法で除去しておくことが好ましい。
Generally, air contains about 80% of nitrogen, about 19% of oxygen, about 1% of argon, as well as the above-mentioned water, carbon dioxide, carbon monoxide, etc. Other components have almost no problem as long as they are normal contents.
However, in the case of Y-Ba-Cu-O-based superconducting ceramics, carbon dioxide easily reacts to form barium carbonate, so it is preferable to remove it by some method.

次に本発明の実施例を比較例と対照して説明する。Next, examples of the present invention will be described in comparison with comparative examples.

(実施例) 0.3重量%のMgOを混合したAl2O3粉末をボールミルで混
合した後、金型成形により30×50×6(mm)の成形体を
作製し、これを大気中1450℃で1時間焼成して密度3.9g
/cm3(相対密度98%)の焼結体を得た。この焼結体を白
金製のヒータエレメントを装着したHIP装置内に装入し
た。HIP装置内部を真空引きした後、乾燥空気(水分50p
pm)の空気で置換した。更に120kg/cm2まで空気を加圧
注入した。次いで前記白金ヒータに通電して、1400℃ま
で昇温した。このときHIP装置内部の圧力は約350kg/cm2
となった。1400℃で1時間保持した後、降温してガスを
HIP装置外部に放出した。この放出ガス中の酸素の量を
分析した結果、約18%であった。処理が終わった焼結体
の密度は、3,975g/cm3で、微組織を走査型電子顕微鏡で
調査したところ、気孔はほとんど認められなかった。ま
た焼結体の色調は大気中で焼結した時とほぼ同じで若干
橙色を帯びた白色であった。
(Example) After mixing Al 2 O 3 powder mixed with 0.3% by weight of MgO with a ball mill, a molded body of 30 × 50 × 6 (mm) was prepared by die molding, and this was molded at 1450 ° C. in the atmosphere. Density 3.9g after firing for 1 hour
A sintered body of / cm 3 (relative density 98%) was obtained. This sintered body was placed in a HIP device equipped with a platinum heater element. After evacuating the inside of the HIP device, dry air (water content 50p
pm) air. Further, air was injected under pressure up to 120 kg / cm 2 . Then, the platinum heater was energized to raise the temperature to 1400 ° C. At this time, the pressure inside the HIP device is approximately 350 kg / cm 2
Became. Hold at 1400 ℃ for 1 hour, then lower the temperature to remove the gas.
It was released outside the HIP device. As a result of analyzing the amount of oxygen in the released gas, it was about 18%. The density of the treated sintered body was 3,975 g / cm 3 , and when the microstructure was examined by a scanning electron microscope, almost no pores were observed. The color tone of the sintered body was almost the same as when it was sintered in the air, and it was white with a slight orange tinge.

同じ処理を5回繰返したが、前記結果はほぼ再現され
た。
The same treatment was repeated 5 times, but the above results were almost reproduced.

(比較例1) 実施例1と同じ手順にて準備したAl2O3焼結体を、圧媒
ガスにアルゴンと酸素(20%)の混合ガスを用いて、14
00℃、350kg/cm2で1時間の処理を行った。処理後のガ
スを回収して分析を行ったところ酸素量は約18%に低下
していた。焼結体の密度は、3,975g/cm3で実施例1とほ
ぼ同じで気孔も認められなかった。
(Comparative Example 1) An Al 2 O 3 sintered body prepared by the same procedure as in Example 1 was prepared by using a mixed gas of argon and oxygen (20%) as a pressure medium gas.
Treatment was carried out at 00 ° C. and 350 kg / cm 2 for 1 hour. When the gas after the treatment was collected and analyzed, the amount of oxygen decreased to about 18%. The density of the sintered body was 3,975 g / cm 3 , which was almost the same as in Example 1 and no pores were observed.

アルゴンと酸素の混合ガスは高価なため回収したガスを
そのまま繰返し使用して5回の処理を行った。不足分は
アルゴン+酸素(20%)を使用した。その結果、酸素の
量は1回の処理で1.5〜2%ずつ低下した。処理後の焼
結体の密度には大きな変化は認められなかったが、色調
には若干の差異が生じ、実施例1程の再現性は認められ
なかった。
Since the mixed gas of argon and oxygen is expensive, the recovered gas was repeatedly used as it was for five treatments. The shortage was argon + oxygen (20%). As a result, the amount of oxygen was decreased by 1.5 to 2% by one treatment. No significant change was observed in the density of the sintered body after the treatment, but a slight difference was generated in the color tone, and the reproducibility as in Example 1 was not observed.

(比較例2) 実施例1と同じ手順にて基準したAl2O3焼結体を、純ア
ルゴンを用いて、1400℃、350kg/cm2で1時間の処理を
行った。焼結体の密度は、3,980g/cm3で実施例1、比較
例1と比較して若干高い値となったが、色調は白色であ
り、大気中で焼結した時の色調とは変化していた。
Comparative Example 2 The Al 2 O 3 sintered body prepared by the same procedure as in Example 1 was treated with pure argon at 1400 ° C. and 350 kg / cm 2 for 1 hour. The density of the sintered body was 3,980 g / cm 3 , which was slightly higher than those of Example 1 and Comparative Example 1, but the color tone was white, which was different from the color tone when sintered in air. Was.

(比較例3) 比較例2と同様にして、通常の空気(水分約100ppm)を
用いて処理を試みたが、ヒータの絶縁不良が発生し、操
業が不可能となった。
(Comparative Example 3) Similar to Comparative Example 2, an attempt was made to perform treatment using normal air (moisture of about 100 ppm), but insulation failure of the heater occurred and operation was impossible.

HIP処理内部底の部分に多量の水が溜っていた。A large amount of water was accumulated in the bottom part inside the HIP treatment.

(発明の効果) 本発明は以上のようにHIP処理を利用した高密度酸化物
焼結体の製造において、水分含有量50ppmの乾燥空気ま
たはこれと窒素の混合ガスを圧力媒体として用いること
によりArなどの高価な不活性ガスや、該不活性ガスと酸
素との混合ガスを用いる必要がなくなり、これまで行わ
れて来たHIP処理利用の酸化物焼結体の製造に比し大幅
なコストの低減を可能とすると共に、酸素の量について
も比較的酸素含有量の安定した空気を用いるのでその量
の管理、制御が容易となり、結果として処理材の特性の
バラツキを低減することができる格段の工業的効果を奏
する。
(Effect of the invention) As described above, according to the present invention, in the production of a high-density oxide sintered body using the HIP treatment, by using dry air having a water content of 50 ppm or a mixed gas of nitrogen and Ar as a pressure medium, It is no longer necessary to use expensive inert gas such as or a mixed gas of the inert gas and oxygen, and the cost is significantly higher than that of the conventional production of oxide sintered body using HIP treatment. In addition to reducing the amount of oxygen, the use of air with a relatively stable oxygen content also makes it easier to control and control the amount of oxygen, and as a result, it is possible to reduce the variation in the characteristics of the treated material. Has an industrial effect.

なお、本発明は実施例で示したAl2O3系酸化物系セラミ
ックスの外、チタン酸ジルコン酸鉛(PZT)系、ソフト
フエライト、チタン酸バリウム系などの電子材料セラミ
ックス、部分安定化ジルコニアにも適用が可能で、従
来、高価といわれたHIP処理の低コスト化によりその波
及効果が大きく期待されるところである。
In addition to the Al 2 O 3 -based oxide ceramics shown in the examples, the present invention is applicable to lead material zirconate titanate (PZT) -based, soft ferrite, barium titanate-based electronic material ceramics, and partially stabilized zirconia. Can also be applied, and the ripple effect is expected to be great due to the cost reduction of HIP processing, which was said to be expensive in the past.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】相対密度92%以上に焼結された酸化物焼結
体を、水分含有量50ppm以下の乾燥空気または該乾燥空
気と窒素の混合ガスを圧力媒体として熱間静水圧プレス
処理を行い、相対密度99%以上に高密度化することを特
徴とする高密度酸化物焼結体の製造方法。
1. A hot isostatic pressing process is performed on an oxide sintered body having a relative density of 92% or more using dry air having a water content of 50 ppm or less or a mixed gas of the dry air and nitrogen as a pressure medium. A method for producing a high-density oxide sintered body, which comprises performing a densification to a relative density of 99% or more.
JP63282850A 1988-11-08 1988-11-08 Method for manufacturing high-density oxide sintered body Expired - Fee Related JPH0791116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63282850A JPH0791116B2 (en) 1988-11-08 1988-11-08 Method for manufacturing high-density oxide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63282850A JPH0791116B2 (en) 1988-11-08 1988-11-08 Method for manufacturing high-density oxide sintered body

Publications (2)

Publication Number Publication Date
JPH02129077A JPH02129077A (en) 1990-05-17
JPH0791116B2 true JPH0791116B2 (en) 1995-10-04

Family

ID=17657881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63282850A Expired - Fee Related JPH0791116B2 (en) 1988-11-08 1988-11-08 Method for manufacturing high-density oxide sintered body

Country Status (1)

Country Link
JP (1) JPH0791116B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007016930A1 (en) * 2005-07-25 2007-02-15 Avure Technologies Ab A hot isostatic pressing arrangement, method and use
JP6433391B2 (en) * 2015-08-19 2018-12-05 株式会社神戸製鋼所 Hot isostatic pressurizing device and press method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252485A (en) * 1985-04-30 1986-11-10 株式会社神戸製鋼所 Pressing heat treatment device

Also Published As

Publication number Publication date
JPH02129077A (en) 1990-05-17

Similar Documents

Publication Publication Date Title
RU2041179C1 (en) Ceramic material, metalloceramic composition material and a method of ceramic material producing
Watari et al. Densification and thermal conductivity of AIN doped with Y2O3, CaO, and Li2O
JP2002093252A (en) Method of manufacturing oxide superconducting wire and pressure heat treatment device used for the method
JPH0791116B2 (en) Method for manufacturing high-density oxide sintered body
JP2011136876A (en) Method for manufacturing metal boride sintered compact, lanthanum boride sintered compact, and target using the lanthanum boride sintered compact
JPH0336782B2 (en)
JP2742619B2 (en) Silicon nitride sintered body
JPS63276819A (en) Manufacture of ceramic superconductive filament
JP3007732B2 (en) Silicon nitride-mixed oxide sintered body and method for producing the same
KR940007596B1 (en) Manufacturing method of superconducting ceramic
JP2883234B2 (en) Silicon nitride sintered body
JP3340025B2 (en) Alumina sintered body and method for producing the same
JPH03261659A (en) Black sintered zirconia-based ceramics and production thereof
JPH01294569A (en) Superconductive matter and product thereof
JPS6049152B2 (en) Manufacturing method of low loss dielectric material
JPH01257160A (en) High density oxide superconducting sintered body and sintering method therefor
Katsumata et al. Volumetric analysis of decarbonation during sintering process of oxide superconductor
JPH08277467A (en) Production of sputtering sintered target material for formation of oxide thin film having (ba, sr)ti perovskite structure
JPH01208358A (en) Superconducting oxide
JPS5939769A (en) Method of sintering silicon nitride
Heintz et al. Existence and role of an amorphous layer at the grain surfaces of YBa2Cu3O7− δ ceramics obtained by solid state sintering
JP2574173B2 (en) Superconducting wire manufacturing method
JPS62202873A (en) Ceramic sintered body and manufacture
JPS62252388A (en) Silicon nitride sintered body
Zhou et al. Grain growth and phase separation of ZrO2-Y2O3 ceramics annealed at high temperature

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees