JPH05319926A - Production of piezoelectric porcelain - Google Patents

Production of piezoelectric porcelain

Info

Publication number
JPH05319926A
JPH05319926A JP4124511A JP12451192A JPH05319926A JP H05319926 A JPH05319926 A JP H05319926A JP 4124511 A JP4124511 A JP 4124511A JP 12451192 A JP12451192 A JP 12451192A JP H05319926 A JPH05319926 A JP H05319926A
Authority
JP
Japan
Prior art keywords
piezoelectric
sintering
strength
temperature
strain constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4124511A
Other languages
Japanese (ja)
Other versions
JP3087924B2 (en
Inventor
Takenobu Sakai
酒井  武信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP04124511A priority Critical patent/JP3087924B2/en
Publication of JPH05319926A publication Critical patent/JPH05319926A/en
Application granted granted Critical
Publication of JP3087924B2 publication Critical patent/JP3087924B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To maintain the piezo-electrostriction constant and the Curie temperature at the substantially same high values as those of conventional porcelains and simultaneously improve the antifolding strength representing the strength of the porcelain. CONSTITUTION:The raw material powder prepared so as to give a composition represented by formula: (Pb1-xSrx)(ZryTi1-y-zNbz)O3 [0.08<=x<=0.14, 0.49<=y-0.5x<=0.51, 0.02<z<=0.06] is subsequently sintered at a prescribed temperature to produce the primary sintered product. The primary sintered product is subjected to a HIP treatment for sintering the primary sintered product under a gas having a high temperature and a high pressure. The diameters of crystal particles in the porcelain are reduced by increasing the Nb content in comparison with conventional porcelains, and the pores are furthermore minimized by the HIP treatment. The strength of the piezoelectric porcelain is improved by the synergistic effect.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、PbTiO3 −PbZ
rO3 系(以下、PZT系という)の圧電磁器の製造方
法に関する。本発明により製造される圧電磁器は、特に
高い機械的強度を必要とされる自動車用の圧電アクチュ
エータなどに利用できる。
The present invention relates to PbTiO 3 --PbZ
The present invention relates to a method of manufacturing an rO 3 system (hereinafter referred to as PZT system) piezoelectric ceramic. The piezoelectric ceramic manufactured according to the present invention can be used for a piezoelectric actuator for automobiles, which requires particularly high mechanical strength.

【0002】[0002]

【従来の技術】PZT系の圧電磁器は優れた圧電特性を
示し、圧電アクチュエータとして広く用いられている。
このPZT系の圧電磁器を製造するには、先ず主として
PbO,TiO2 ,ZrO2 からなる原料粉末をボール
ミルなどで混合する。その混合粉末を仮焼してPZT粉
末とし、粉砕後所定形状の成形体を形成する。そして、
その成形体を焼結し、その後機械加工や分極処理などの
後加工を行って圧電磁器を形成するのが一般的な方法で
ある。
2. Description of the Related Art PZT type piezoelectric ceramics exhibit excellent piezoelectric characteristics and are widely used as piezoelectric actuators.
In order to manufacture this PZT-based piezoelectric ceramic, raw material powders mainly composed of PbO, TiO 2 , and ZrO 2 are first mixed in a ball mill or the like. The mixed powder is calcined to obtain PZT powder, which is crushed to form a compact having a predetermined shape. And
It is a general method to sinter the molded body and then perform post-processing such as mechanical processing and polarization processing to form a piezoelectric ceramic.

【0003】PZT系の圧電磁器を圧電アクチュエータ
として利用する場合、圧電特性が良好なこと、すなわち
圧電歪み定数(d33)が大きいことが望ましい。また自
動車の部品として用いられる場合には、使用温度が10
0℃付近になることから、分極劣化を防止するためには
キュリー温度(Tc)が180℃以上であることが望ま
しい。この圧電歪み定数とキュリー温度は、圧電磁器を
構成する金属元素の種類とその組成割合により大きく変
動することがわかってきている。
When a PZT type piezoelectric ceramic is used as a piezoelectric actuator, it is desirable that the piezoelectric characteristic is good, that is, the piezoelectric strain constant (d 33 ) is large. When used as an automobile part, the operating temperature is 10
Since the temperature is around 0 ° C., the Curie temperature (Tc) is preferably 180 ° C. or higher in order to prevent polarization deterioration. It has been known that the piezoelectric strain constant and the Curie temperature greatly vary depending on the type of metal element that constitutes the piezoelectric ceramic and the composition ratio thereof.

【0004】例えばPZT系固溶体にNbを加えると、
K定数誘電率が向上し、それに伴って圧電歪み定数も大
きくなることが知られている。またPbをSrで置換す
ることにより、誘電率が高くなることも知られている。
さらに特開平2−288381号公報には、式(Pb
1-x Srx )(Zry Ti1-y-z Nbz )O3 〔式中、
0.08≦x≦0.14、0.49≦y−0.5 x≦0.51、0.005 ≦z
≦0.02〕で表される組成とすることで、400×10
-12 m/V以上の圧電歪み定数と、200℃以上のキュ
リー温度が達成できた圧電磁器組成物が開示されてい
る。
For example, when Nb is added to a PZT solid solution,
It is known that the K constant dielectric constant is improved and the piezoelectric strain constant is increased accordingly. It is also known that the dielectric constant is increased by replacing Pb with Sr.
Further, in Japanese Patent Laid-Open No. 2-288381, the formula (Pb
1-x Sr x ) (Zr y Ti 1-yz Nb z ) O 3 [wherein
0.08 ≦ x ≦ 0.14, 0.49 ≦ y−0.5 x ≦ 0.51, 0.005 ≦ z
≦ 0.02], the composition is 400 × 10
A piezoelectric ceramic composition capable of achieving a piezoelectric strain constant of -12 m / V or higher and a Curie temperature of 200 ° C. or higher is disclosed.

【0005】ところで近年、PZT系の圧電磁器の利用
範囲が拡大し、例えばフューエルインジェクタなど自動
車のエンジン制御部品への利用も検討されている。しか
しこのような部品に利用した場合には高温条件下で20
0〜400kgの荷重が加わるため、駆動耐久性が大き
な問題となる。この駆動耐久性を向上させるためには、
高いキュリー温度と高い強度を有する圧電磁器とするこ
とが必要である。
By the way, in recent years, the range of use of PZT type piezoelectric ceramics has been expanded, and its use in engine control parts of automobiles such as fuel injectors is also under consideration. However, when it is used for such parts, it is
Since a load of 0 to 400 kg is applied, driving durability becomes a big problem. In order to improve this driving durability,
It is necessary to have a piezoelectric ceramic with a high Curie temperature and high strength.

【0006】セラミックス焼結体の強度を向上させる方
法として、焼結密度を向上させる方法、Al,Siなど
を混入して粒界を補強する方法の2つの方法が有効であ
ることが知られている。しかし圧電磁器においては、混
入する材料の種類やその状態、混入方法、分散状態など
により圧電特性に大きな影響があるため、後者の方法は
利用できない。そこで前者の方法として、特公昭60−
9352号、特開昭63−100075号などの公報に
開示されているように、成形体を高温高圧のガス雰囲気
中で熱間静水圧プレスする方法(以下HIP処理とい
う)が有用であることが知られている。このHIP処理
法によれば、ホットプレス法などに比べて加圧力や大き
さの制限がなく、容器や圧力媒体から不純物が混入する
こともないため、品質や生産性に優れ容易に焼結密度を
向上させることができる。
As a method for improving the strength of the ceramics sintered body, two methods are known to be effective: a method of improving the sintering density and a method of mixing Al, Si and the like to reinforce the grain boundaries. There is. However, in the piezoelectric ceramic, the latter method cannot be used because the piezoelectric characteristics are greatly affected by the type and state of the material to be mixed, the mixing method, and the dispersion state. Therefore, as the former method, Japanese Patent Publication Sho 60-
As disclosed in Japanese Patent Application Laid-Open No. 9352 and Japanese Patent Application Laid-Open No. 63-100075, a method of hot isostatic pressing a molded body in a high temperature and high pressure gas atmosphere (hereinafter referred to as HIP treatment) is useful. Are known. According to this HIP processing method, there is no restriction on the pressing force and size as compared with the hot pressing method, and since impurities are not mixed in from the container or the pressure medium, it is excellent in quality and productivity and easily sintered density Can be improved.

【0007】[0007]

【発明が解決しようとする課題】ところが、特開平2−
288381号公報に開示された圧電磁器組成物では、
圧電歪み定数とキュリー温度は満足されるものの、HI
P処理法を用いて製造しても強度面で不満が残ってい
た。本発明はこのような事情に鑑みてなされたものであ
り、圧電歪み定数とキュリー温度は従来とほぼ同等の高
い値を維持するとともに、強度を代表する抗折強度を一
段と向上させることを目的とする。
However, Japanese Unexamined Patent Publication No. HEI 2-
In the piezoelectric ceramic composition disclosed in 288381,
Piezoelectric strain constant and Curie temperature are satisfied, but HI
Even when manufactured by using the P treatment method, dissatisfaction remained in terms of strength. The present invention has been made in view of such circumstances, and an object thereof is to maintain the piezoelectric strain constant and the Curie temperature at a high value almost equal to the conventional value, and to further improve the flexural strength representing the strength. To do.

【0008】[0008]

【課題を解決するための手段】上記課題を解決する本発
明の圧電磁器の製造方法は、式(Pb1-x Srx )(Z
y Ti1-y-z Nbz )O3 〔式中、0.08≦x≦0.14、
0.49≦y−0.5 x≦0.51、0.02<z≦0.06〕で表される
組成となるように調合された原料粉末から所定形状の成
形体を形成する成形工程と、成形体を所定温度で焼結し
て一次焼結体とする一次焼結工程と、一次焼結体を高温
高圧のガス下で焼結するHIP処理工程と、からなるこ
とを特徴とする。
A method of manufacturing a piezoelectric ceramic of the present invention which solves the above-mentioned problems is represented by the formula (Pb 1-x Sr x ) (Z
r y Ti 1-yz Nb z ) O 3 [wherein 0.08 ≦ x ≦ 0.14,
0.49 ≤ y-0.5 x ≤ 0.51, 0.02 <z ≤ 0.06] A molding step of forming a compact of a predetermined shape from raw material powders prepared to have a composition represented by the following formula, and sintering the compact at a predetermined temperature. And a HIP treatment step of sintering the primary sintered body under a high-temperature and high-pressure gas.

【0009】本発明者らは、特開平2−288381号
公報に開示された組成物の抗折強度を向上させるために
鋭意研究した結果、Nbの含有量を規定範囲より多くし
た組成物について一次焼結を行い、次いでHIP処理す
ることにより、得られる圧電磁器の抗折強度が著しく向
上することを発見し本発明を完成した。Nbの含有量を
増すと圧電歪み定数及びキュリー温度は低下するため
に、前記公報ではz≦0.02としていた。しかしNbを増
すと確かに圧電歪み定数とキュリー温度は低下するが、
その低下度合いは僅かで充分使用可能な範囲にあり、そ
れよりも適切な焼結による抗折強度向上の度合いの方が
極めて大きいことを見出したのである。
The inventors of the present invention have conducted extensive studies to improve the transverse rupture strength of the composition disclosed in JP-A-2-288381, and as a result, found that the composition containing Nb in a larger amount than the specified range was primary. The present invention was completed by discovering that the bending strength of the obtained piezoelectric ceramic was remarkably improved by performing the sintering and then the HIP treatment. Since the piezoelectric strain constant and the Curie temperature decrease as the content of Nb increases, z ≦ 0.02 in the above publication. However, if Nb is increased, the piezoelectric strain constant and the Curie temperature certainly decrease,
It has been found that the degree of decrease is slight and within a usable range, and that the degree of increase in transverse strength by appropriate sintering is much higher than that.

【0010】Srの組成割合xを0.08≦x≦0.14とした
のは、この範囲を外れると圧電歪み定数が400×10
-12 m/Vより小さくなり、0.14より大きくなるとキュ
リー温度も180℃未満となるからである。Zrの組成
割合yは、Srの組成割合xとの関連で0.49≦y−0.5
x≦0.51とする必要がある。y−0.5 xがこの範囲を外
れると、圧電歪み定数及び抗折強度が不足する。
The composition ratio x of Sr is set to 0.08 ≦ x ≦ 0.14 because the piezoelectric strain constant is 400 × 10 outside this range.
This is because if it is smaller than -12 m / V and larger than 0.14, the Curie temperature becomes lower than 180 ° C. The composition ratio y of Zr is 0.49 ≦ y−0.5 in relation to the composition ratio x of Sr.
It is necessary to set x ≦ 0.51. When y-0.5x is out of this range, the piezoelectric strain constant and the bending strength are insufficient.

【0011】Nbの組成割合zは、0.02<z≦0.06の範
囲とされる。zが0.02より小さいと抗折強度の増大が望
めず、0.06を超えると圧電歪み定数及びキュリー温度が
不足する。0.03≦z≦0.05の範囲が特に好ましい。P
b,Sr,Zr,Ti及びNbの組成割合がx,y,z
が上記範囲となるように構成された素原料粉末は、均一
に混合後仮焼される。この仮焼はPZT固溶体を形成す
るものであり、従来と同様一般に800〜900℃の温
度で行われる。得られたPZT原料粉末は再びボールミ
ルなどで粉砕され、従来と同様に成形されて成形体とさ
れる。
The composition ratio z of Nb is in the range of 0.02 <z ≦ 0.06. If z is less than 0.02, the bending strength cannot be expected to increase, and if it exceeds 0.06, the piezoelectric strain constant and the Curie temperature are insufficient. The range of 0.03 ≦ z ≦ 0.05 is particularly preferable. P
The composition ratio of b, Sr, Zr, Ti and Nb is x, y, z
The raw material powder having the above range is uniformly mixed and then calcined. This calcination is to form a PZT solid solution and is generally performed at a temperature of 800 to 900 ° C. as in the conventional case. The obtained PZT raw material powder is pulverized again by a ball mill or the like and molded into a molded body in the same manner as in the past.

【0012】本発明の一つの特色をなす一次焼結工程で
は、上記成形体が理想密度より低い密度となるように焼
結される。ここで理想密度とは得られる焼結体中の各元
素の濃度から算出される理論密度でもよいし、理論密度
より若干低い現実に得られる最大焼結密度も含む概念で
ある。理想密度の91%以上の密度となるように焼結す
るのが好ましい。一次焼結体の密度が理想密度の91%
未満であると、HIP処理の効果が小さくなる。この一
次焼結工程は、鉛成分の揮散を防止するためにPZT原
料粉末などに埋設した状態で行うことが好ましい。
In the primary sintering step, which is one of the features of the present invention, the compact is sintered to have a density lower than the ideal density. Here, the ideal density may be a theoretical density calculated from the concentration of each element in the obtained sintered body, or is a concept including the actually obtained maximum sintered density slightly lower than the theoretical density. It is preferable to sinter so that the density is 91% or more of the ideal density. The density of the primary sintered body is 91% of the ideal density
If it is less than the above, the effect of the HIP treatment becomes small. This primary sintering step is preferably performed in a state of being embedded in PZT raw material powder or the like in order to prevent volatilization of the lead component.

【0013】本願の第二の発明は、一次焼結工程を酸素
富化状態で行うところに最大の特徴を有する。酸素富化
状態で焼結することにより、PbOの溶融温度が低下し
て一層緻密に焼結できる。そして一次焼結体内の空孔内
は酸素で置換されるため、HIP処理工程において酸素
が固溶し、空孔内のガスが減少するためHIP処理によ
り空孔を一層小さくすることができる。
The second invention of the present application is most characterized in that the primary sintering step is performed in an oxygen-enriched state. By sintering in an oxygen-enriched state, the melting temperature of PbO is lowered and more dense sintering can be performed. Since the voids in the primary sintered body are replaced with oxygen, oxygen is dissolved in the HIP treatment step, and the gas in the voids is reduced, so that the voids can be made smaller by the HIP treatment.

【0014】一次焼結工程の条件としては、焼結温度が
1250±50℃、焼結時間が10分〜5時間、酸素濃
度は50%以上が推奨される。HIP処理工程は、温度
が1250±50℃、処理時間10分〜5時間、圧力が
100〜200MPa、昇温速度が200〜500℃/
hrの条件で行うことが望ましい。
As the conditions of the primary sintering step, it is recommended that the sintering temperature is 1250 ± 50 ° C., the sintering time is 10 minutes to 5 hours, and the oxygen concentration is 50% or more. In the HIP treatment step, the temperature is 1250 ± 50 ° C., the treatment time is 10 minutes to 5 hours, the pressure is 100 to 200 MPa, and the temperature rising rate is 200 to 500 ° C. /
It is desirable to carry out under the condition of hr.

【0015】そして上記のように一次焼結工程及びHI
P処理工程を行うことにより、圧電歪み定数が400×
10-12 m/Vより大きく、キュリー温度が180℃以
上となり、かつ抗折強度が90MPa以上の圧電磁器を
製造することができる。
Then, as described above, the primary sintering step and the HI
By performing the P treatment process, the piezoelectric strain constant is 400 ×
It is possible to manufacture a piezoelectric ceramic having a Curie temperature of 180 ° C. or higher and a bending strength of 90 MPa or higher, which is higher than 10 −12 m / V.

【0016】[0016]

【作用】本第一発明の製造方法に用いられる原料粉末
は、Nbの組成割合zが0.02<z≦0.06の範囲とされ、
従来に比べてNbが多く含まれている。これにより圧電
磁器結晶の粒径が小さくなる。例えば、Nbが1モル%
の場合には平均粒径が約10μm、密度95%である
が、Nbを4モル%とすると平均粒径が約2μmに低下
し、密度が99%に向上することが明らかとなってい
る。したがって、圧電磁器内部に生成する空孔径が小さ
くなり抗折強度が向上する。
The raw material powder used in the manufacturing method of the first invention is such that the composition ratio z of Nb is in the range of 0.02 <z ≦ 0.06,
It contains more Nb than before. This reduces the grain size of the piezoelectric ceramic crystal. For example, Nb is 1 mol%
In this case, the average particle size is about 10 μm and the density is 95%, but it is clear that when Nb is 4 mol%, the average particle size is reduced to about 2 μm and the density is improved to 99%. Therefore, the pore diameter generated inside the piezoelectric ceramic is reduced, and the bending strength is improved.

【0017】なおNbの組成割合を増すことにより、圧
電歪み定数とキュリー温度は低下するが、zが0.06以下
であれば圧電歪み定数及びキュリー温度の低下度合いが
小さく、自動車部品用としても十分利用可能な範囲にあ
る。そして、Nbを増した原料粉末を用いて一次焼結及
びHIP処理を行うため、空孔が一層縮小され密度が向
上する。さらに、一次焼結工程を酸素富化状態で行え
ば、PbOの溶融温度の低下により緻密に焼結できると
ともに、酸素ガスで置換された空孔内では酸素ガスが周
壁に固溶するため空孔内のガス量が低下し、HIP処理
時の空孔容積の圧縮が助長されるので、一層緻密な焼結
体とすることができる。
The piezoelectric strain constant and the Curie temperature are lowered by increasing the composition ratio of Nb. However, if z is 0.06 or less, the piezoelectric strain constant and the Curie temperature are reduced to a small extent, and the piezoelectric strain constant and the Curie temperature are sufficiently used for automobile parts. Within the possible range. Then, since the primary sintering and the HIP process are performed using the raw material powder with increased Nb, the pores are further reduced and the density is improved. Further, if the primary sintering process is performed in an oxygen-rich state, the melting temperature of PbO can be decreased to achieve a dense sintering, and in the holes replaced with oxygen gas, oxygen gas is solid-dissolved in the peripheral wall so that the holes are vacant. Since the amount of gas in the inside decreases and the compression of the void volume during HIP processing is promoted, a more dense sintered body can be obtained.

【0018】[0018]

【実施例】以下、試験例により本発明を具体的に説明す
る。 (1)試験例1:Nbの組成割合の検討 主成分の成分比が式(Pb1-x Srx )(Zry Ti
1-y-z Nbz )O3 で表される場合に、x=0.11,y=
0.55で固定とし、0.005 ≦z≦0.07の範囲でzを選ん
で、酸化鉛(PbO)、酸化ジルコニウム(Zr
2 )、酸化チタン(TiO2 )及び五酸化ニオブ(N
2 5 )粉末を調合し、ボールミルにて48時間湿式
混合した。これを脱水乾燥後、空気中で800℃・5時
間仮焼した。その後再びボールミルにて48時間湿式粉
砕し、脱水乾燥した。
EXAMPLES The present invention will be specifically described below with reference to test examples. (1) Test Example 1: Examination of the composition ratio of Nb The component ratio of the main component is expressed by the formula (Pb 1-x Sr x ) (Zr y Ti
1-yz Nb z ) O 3 , x = 0.11, y =
It is fixed at 0.55, and z is selected in the range of 0.005 ≤ z ≤ 0.07, and lead oxide (PbO) and zirconium oxide (Zr
O 2 ), titanium oxide (TiO 2 ) and niobium pentoxide (N
b 2 O 5 ) powder was prepared and wet-mixed in a ball mill for 48 hours. This was dehydrated and dried, and then calcined in air at 800 ° C. for 5 hours. After that, it was wet pulverized again in a ball mill for 48 hours, dehydrated and dried.

【0019】得られた混合粉末にバインダとしてポリビ
ニルアルコール(PVA)を1重量%加えて造粒し、成
形圧力1000kg/cm2 で直径20mm、厚さ1m
mの円板状の成形体を形成した。得られたそれぞれの成
形体を大気下にて1250℃で1時間焼成し、Nbの含
有量が異なるそれぞれの圧電磁器を得た。
1% by weight of polyvinyl alcohol (PVA) as a binder was added to the obtained mixed powder to granulate, and a molding pressure of 1000 kg / cm 2 gave a diameter of 20 mm and a thickness of 1 m.
A disk-shaped molded body of m was formed. The obtained molded bodies were fired at 1250 ° C. for 1 hour in the atmosphere to obtain piezoelectric ceramics having different Nb contents.

【0020】それぞれの圧電磁器は、両表面にそれぞれ
銀電極が形成され、50KV/cmの印加電圧により1
00℃のシリコンオイル中で30分の分極処理を行っ
た。そして24時間放置後、それぞれの圧電磁器につい
て圧電歪み定数(d33)、キュリー温度及び抗折強度を
測定した。結果を図1〜図3に示す。圧電歪み定数(d
33)は、圧電磁器に印加する電圧を0Vと500Vで切
替え、圧電磁器の歪み量を表面粗さ計にて直接計測して
求めた。またキュリー温度は誘電率の温度変化から求め
た。そして抗折強度は、スパン10mmの治具により圧
電磁器をそのまま抗折して求めた。
Each piezoelectric ceramic has two surfaces
A silver electrode is formed and the applied voltage of 50 KV / cm
30 minutes of polarization treatment in silicone oil at 00 ℃
It was After leaving it for 24 hours,
And piezoelectric strain constant (d33), Curie temperature and bending strength
It was measured. The results are shown in FIGS. Piezoelectric strain constant (d
33) Is for switching the voltage applied to the piezoelectric ceramic between 0V and 500V.
Instead, measure the distortion amount of the piezoelectric ceramic directly with a surface roughness meter.
I asked. The Curie temperature is calculated from the change in dielectric constant with temperature.
It was And the bending strength is pressed by a jig with a span of 10 mm.
I sought the iron plate as it was.

【0021】図1及び図2より、Nbの含有量が増加す
るにつれてd33とキュリー温度は低下していることがわ
かる。しかしNbの含有量が6モル%以下(z≦0.06)
であれば、圧電歪み定数(d33)は400×10-12
/V以上の値を示し、キュリー温度は180℃以上であ
って、十分な使用可能範囲にある。一方図3より、Nb
の含有量が2モル%を超える(0.02<z)と、抗折強度
が著しく増大し、6モル%で飽和してそれ以上含有して
も抗折強度はむしろ低下傾向にあることが明らかであ
る。 (2)試験例2:Nb以外の成分の組成割合の検討 次に、Nbの含有量を4モル%(z=0.04)に固定し、
PbをSrで6〜16モル%置換しZr/(Zr+T
i)を0.51〜0.60の範囲で変化させた組成(x=0.06〜
0.16、y=0.51〜0.60)で粉末を調合した。それぞれの
調合粉末の組成を図4に丸数字で示す。なお、Sr源と
しては炭酸ストロンチウム(SrCO3 )を用いた。そ
して試験例1と同様にしてそれぞれの圧電磁器を作製
し、同様に圧電歪み定数(d33)、キュリー温度及び抗
折強度を測定した。結果を表1に示す。
From FIGS. 1 and 2, it can be seen that the d 33 and the Curie temperature decrease as the Nb content increases. However, the Nb content is 6 mol% or less (z ≦ 0.06)
If so, the piezoelectric strain constant (d 33 ) is 400 × 10 −12 m
/ V or more and the Curie temperature is 180 ° C. or higher, which is in a sufficient usable range. On the other hand, from FIG. 3, Nb
When the content of Al exceeds 2 mol% (0.02 <z), the flexural strength remarkably increases, and it is clear that even if the content exceeds 6 mol% and the content exceeds this value, the flexural strength tends to decrease. is there. (2) Test Example 2: Examination of composition ratio of components other than Nb Next, the content of Nb was fixed at 4 mol% (z = 0.04),
Substituting 6 to 16 mol% of Pb with Sr, Zr / (Zr + T
Composition in which i) is changed in the range of 0.51 to 0.60 (x = 0.06 to
0.16, y = 0.51-0.60). The composition of each blended powder is shown by circled numbers in FIG. Strontium carbonate (SrCO 3 ) was used as the Sr source. Then, each piezoelectric ceramic was produced in the same manner as in Test Example 1, and the piezoelectric strain constant (d 33 ), Curie temperature and bending strength were measured in the same manner. The results are shown in Table 1.

【0022】表1より、圧電歪み定数(d33)が400
×10-12 m/V以上、キュリー温度が180℃以上、
さらに抗折強度が80MPa以上のものを選んで図4中
に表示すると、図4の斜線域が求められた。この斜線域
をxとyを用いた数式で示すと、0.08≦x≦0.14かつ0.
49≦y−0.5 x≦0.51となる。すなわち、式(Pb1-x
Srx )(Zry Ti1-y-z Nbz )O3 式においてz
が0.04のときに、0.08≦x≦0.14かつ0.49≦y−0.5 x
≦0.51であれば、圧電歪み定数(d33)とキュリー温度
を最適な範囲に維持しつつ、高い抗折強度が得られ、ア
クチュエータ材料として最適であることがわかる。
From Table 1, the piezoelectric strain constant (d 33 ) is 400.
× 10 −12 m / V or more, Curie temperature of 180 ° C. or more,
Further, when a flexural strength of 80 MPa or more was selected and displayed in FIG. 4, the shaded area in FIG. 4 was obtained. When this shaded area is expressed by a mathematical expression using x and y, 0.08 ≦ x ≦ 0.14 and 0.
49 ≦ y−0.5 x ≦ 0.51. That is, the formula (Pb 1-x
Sr x ) (Zr y Ti 1-yz Nb z ) O 3 In formula z
Is 0.04, 0.08 ≦ x ≦ 0.14 and 0.49 ≦ y−0.5 x
It can be seen that if ≦ 0.51, a high bending strength is obtained while maintaining the piezoelectric strain constant (d 33 ) and the Curie temperature in the optimum range, which is the optimum actuator material.

【0023】[0023]

【表1】 [Table 1]

【0024】(3)試験例3:焼結条件の検討(その
1) そこで試験例1で形成されたそれぞれの成形体につい
て、先ず大気中1250℃で1時間加熱する一次焼結を
行い、次いでO2 /Ar=1/5の混合比のガスを用
い、100MPaの圧力下で400℃/hrの昇温速度
で加熱し、1250℃で1時間保持するHIP処理を行
った。
(3) Test Example 3: Examination of Sintering Conditions (Part 1) Then, each of the compacts formed in Test Example 1 was first subjected to primary sintering by heating at 1250 ° C. for 1 hour in the air, and then, Using the gas having a mixture ratio of O 2 / Ar = 1/5, HIP treatment was performed under a pressure of 100 MPa, heating at a temperature rising rate of 400 ° C./hr, and holding at 1250 ° C. for 1 hour.

【0025】得られたそれぞれの圧電磁器について圧電
歪み定数(d33)、キュリー温度及び抗折強度を測定し
た。圧電歪み定数(d33)及びキュリー温度について
は、試験例1で得られたものとほとんど同様の結果が得
られた。一方、抗折強度については、図3に示すように
試験例1に比べて一段と向上していることが明らかとな
った。 (4)試験例4:焼結条件の検討(その2) 試験例1で形成されたそれぞれの成形体を、PbZrO
3 が入れられたアルミナ製坩堝に入れ、PbO雰囲気を
保ちながら、焼結炉内に100%の酸素ガスを一定量導
入した状態で、1250℃で1時間加熱して一次焼結し
た。
The piezoelectric strain constant (d 33 ), Curie temperature and bending strength of each of the obtained piezoelectric ceramics were measured. Regarding the piezoelectric strain constant (d 33 ) and the Curie temperature, almost the same results as those obtained in Test Example 1 were obtained. On the other hand, it was revealed that the transverse rupture strength was further improved as compared with Test Example 1 as shown in FIG. (4) Test Example 4: Examination of Sintering Conditions (Part 2) Each of the compacts formed in Test Example 1 was mixed with PbZrO.
It was placed in an alumina crucible containing 3 and, while maintaining a PbO atmosphere, a predetermined amount of 100% oxygen gas was introduced into the sintering furnace and heated at 1250 ° C. for 1 hour to perform primary sintering.

【0026】得られた一次焼結体について試験例3と同
様にHIP処理を行い、それぞれの圧電磁器を得た。得
られたそれぞれの圧電磁器について圧電歪み定数
(d33)、キュリー温度及び抗折強度を測定した。圧電
歪み定数(d33)及びキュリー温度については、試験例
1で得られたものとほとんど同様の結果が得られた。一
方、抗折強度については、図3に示すように試験例1及
び試験例3に比べて格段に向上していることが明らかと
なった。
The resulting primary sintered body was subjected to HIP treatment in the same manner as in Test Example 3 to obtain respective piezoelectric ceramics. The piezoelectric strain constant (d 33 ), Curie temperature and bending strength of each of the obtained piezoelectric ceramics were measured. Regarding the piezoelectric strain constant (d 33 ) and the Curie temperature, almost the same results as those obtained in Test Example 1 were obtained. On the other hand, it was revealed that the transverse rupture strength was remarkably improved as compared with Test Examples 1 and 3 as shown in FIG.

【0027】また、試験例2で形成されたそれぞれの成
形体を上記と同様に酸素雰囲気下で一次焼結し、次いで
HIP処理して得られた圧電磁器について、圧電歪み定
数(d33)、キュリー温度及び抗折強度を測定し、結果
を表2に示す。表2より、圧電歪み定数(d33)が40
0×10-12 m/V以上、キュリー温度が180℃以
上、さらに抗折強度が110MPa以上のものを選ぶ
と、図4と同様の斜線域が求められた。
The piezoelectric ceramics obtained by subjecting each of the compacts formed in Test Example 2 to primary sintering in an oxygen atmosphere and then HIPing the piezoelectric strain constant (d 33 ) Curie temperature and bending strength were measured, and the results are shown in Table 2. From Table 2, the piezoelectric strain constant (d 33 ) is 40.
When 0.times.10.sup.- 12 m / V or more, Curie temperature of 180.degree. C. or more, and bending strength of 110 MPa or more were selected, the shaded area as in FIG. 4 was obtained.

【0028】すなわち、酸素雰囲気下で一次焼結し、さ
らにHIP処理する方法においても、式(Pb1-x Sr
x )(Zry Ti1-y-z Nbz )O3 式においてzが0.
04のときに、0.08≦x≦0.14かつ0.49≦y−0.5 x≦0.
51の組成とすることにより、圧電歪み定数(d33)とキ
ュリー温度を最適な範囲に維持しつつ、抗折強度が11
0MPa以上と著しく向上することが明らかである。
That is, also in the method of performing primary sintering in an oxygen atmosphere and further performing HIP treatment, the formula (Pb 1-x Sr
x ) (Zr y Ti 1-yz Nb z ) O 3 where z is 0.
When 04, 0.08 ≦ x ≦ 0.14 and 0.49 ≦ y−0.5 x ≦ 0.
With the composition of 51, the flexural strength is 11 while maintaining the piezoelectric strain constant (d 33 ) and the Curie temperature in the optimum ranges.
It is clear that the value is significantly improved to 0 MPa or more.

【0029】[0029]

【表2】 [Table 2]

【0030】(5)試験例5:圧電特性の耐久性 試験例1においてNb量が5モル%の組成を選び、試験
例1の方法により得られた圧電磁器(HIP処理無し)
と、試験例4の方法により得られた圧電磁器(酸素中焼
結後HIP処理)について、300kgfの荷重を加
え、100℃の雰囲気温度で−100〜600Vの電圧
を繰り返し印加する耐久試験を行った。そして耐久試験
中の圧電歪み定数(d33)を測定し、結果を図5に示
す。
(5) Test Example 5: Durability of Piezoelectric Properties A piezoelectric ceramic obtained by the method of Test Example 1 (without HIP treatment) by selecting a composition having an Nb content of 5 mol% in Test Example 1
Then, the piezoelectric ceramic obtained by the method of Test Example 4 (HIP treatment after sintering in oxygen) was subjected to a durability test in which a load of 300 kgf was applied and a voltage of −100 to 600 V was repeatedly applied at an ambient temperature of 100 ° C. It was The piezoelectric strain constant (d 33 ) was measured during the durability test, and the results are shown in FIG.

【0031】図5より、耐久試験の進行に伴って圧電歪
み定数が低下することが分かる。これは、印加された電
圧や荷重、温度により、圧電磁器の分極方向が歪方向
(分極方向)からずれること、すなわち90度ドメイン
スイッチングが多く起こることに起因している。そして
図5より、試験例4の方法により得られた圧電磁器によ
ればその低下度合いが従来に比べて小さいことが分か
る。これは、90度ドメインスイッチングの際にドメイ
ン間に結晶格子の歪みが繰り返し作用し、微細クラック
が発生する可能性があるが、強度が高い方が微細クラッ
クの発生の可能性が小さいからであろうと考えられる。 (6)試験例6:圧電歪み定数の保持率 また、試験例5の2種類の圧電磁器と、試験例1におけ
るNb量が1モル%の組成で試験例1の方法により得ら
れた圧電磁器(HIP処理無し)について、圧電磁器の
初期の抗拆強度と、上記耐久試験を108 回繰り返した
耐久試験前後の圧電歪み定数から圧電歪み定数の保持率
を算出した。結果を図6に示す。図6より、初期抗折強
度と圧電歪み定数の保持率との間には相関関係があり、
初期抗折強度が高くなるほど圧電歪み定数の保持率が大
きくなっていることが分かる。すなわち、従来は圧電歪
み定数の低下は電気的特性と考えられていたが、この結
果より、抗折強度を高くすることで圧電歪み定数の低下
までも防止できることが明らかとなった。
From FIG. 5, it can be seen that the piezoelectric strain constant decreases as the durability test progresses. This is because the polarization direction of the piezoelectric ceramic deviates from the strain direction (polarization direction) due to the applied voltage, load, and temperature, that is, 90-degree domain switching often occurs. From FIG. 5, it can be seen that the piezoelectric ceramic obtained by the method of Test Example 4 has a smaller degree of decrease than the conventional one. This is because the strain of the crystal lattice repeatedly acts between the domains during 90-degree domain switching and fine cracks may occur, but the higher the strength, the smaller the possibility of fine cracks. Thought to be. (6) Test Example 6: Piezoelectric strain constant retention rate Further, two types of piezoelectric ceramics of Test Example 5 and a piezoelectric ceramic obtained by the method of Test Example 1 with a composition in which the Nb amount in Test Example 1 is 1 mol%. With respect to (without HIP treatment), the piezoelectric strain constant retention rate was calculated from the initial resistance to pressure of the piezoelectric ceramic and the piezoelectric strain constant before and after the durability test in which the above durability test was repeated 10 8 times. Results are shown in FIG. From FIG. 6, there is a correlation between the initial bending strength and the retention rate of the piezoelectric strain constant,
It can be seen that the higher the initial bending strength, the higher the piezoelectric strain constant retention rate. That is, conventionally, it was considered that the decrease of the piezoelectric strain constant was an electrical characteristic, but from this result, it became clear that the decrease of the piezoelectric strain constant can be prevented by increasing the bending strength.

【0032】[0032]

【発明の効果】すなわち本発明の圧電磁器の製造方法に
よれば、圧電歪み定数、キュリー温度を高く維持しつ
つ、従来に比べて格段に高い抗折強度をもつ圧電磁器が
得られる。したがって得られた圧電磁器は、高温高荷重
時であっても割れが生じにくいので、自動車部品用の圧
電アクチュエータに特に適している。
According to the method of manufacturing a piezoelectric ceramic of the present invention, it is possible to obtain a piezoelectric ceramic having a significantly higher bending strength than the conventional one while maintaining a high piezoelectric strain constant and a Curie temperature. Therefore, the obtained piezoelectric ceramic is not suitable for cracking even under high temperature and high load, and is particularly suitable for a piezoelectric actuator for automobile parts.

【図面の簡単な説明】[Brief description of drawings]

【図1】Nb添加量と圧電歪み定数(d33)の関係を示
すグラフである。
FIG. 1 is a graph showing the relationship between the amount of Nb added and the piezoelectric strain constant (d 33 ).

【図2】Nb添加量とキュリー温度の関係を示すグラフ
である。
FIG. 2 is a graph showing the relationship between the amount of Nb added and the Curie temperature.

【図3】Nb添加量と抗折強度の関係を示すグラフであ
る。
FIG. 3 is a graph showing the relationship between the amount of Nb added and the bending strength.

【図4】x値とy値の最適範囲を説明するグラフであ
る。
FIG. 4 is a graph illustrating an optimum range of x value and y value.

【図5】耐久試験回数と圧電歪み定数の関係を示すグラ
フである。
FIG. 5 is a graph showing the relationship between the number of durability tests and the piezoelectric strain constant.

【図6】抗折強度と圧電歪み定数の保持率の関係を示す
グラフである。
FIG. 6 is a graph showing the relationship between bending strength and piezoelectric strain constant retention rate.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 式(Pb1-x Srx )(Zry Ti
1-y-z Nbz )O3 〔式中、0.08≦x≦0.14、0.49≦y
−0.5 x≦0.51、0.02<z≦0.06〕で表される組成とな
るように調合された原料粉末から所定形状の成形体を形
成する成形工程と、 該成形体を所定温度で焼結して一次焼結体とする一次焼
結工程と、 該一次焼結体を高温高圧のガス下で焼結するHIP処理
工程と、からなることを特徴とする圧電磁器の製造方
法。
1. The formula (Pb 1-x Sr x ) (Zr y Ti
1-yz Nb z ) O 3 [wherein 0.08 ≦ x ≦ 0.14, 0.49 ≦ y
-0.5 x ≤ 0.51, 0.02 <z ≤ 0.06] A molding step of forming a molded body of a predetermined shape from raw material powders prepared to have a composition represented by the following formula, and sintering the molded body at a predetermined temperature. A method of manufacturing a piezoelectric ceramic, comprising: a primary sintering step of forming a primary sintered body; and a HIP treatment step of sintering the primary sintered body under a high temperature and high pressure gas.
【請求項2】 式(Pb1-x Srx )(Zry Ti
1-y-z Nbz )O3 〔式中、0.08≦x≦0.14、0.49≦y
−0.5 x≦0.51、0.005 ≦z≦0.06〕で表される組成と
なるように調合された原料粉末から所定形状の成形体を
形成する成形工程と、 該成形体を大気以上の酸素を含む酸素富化状態で所定温
度で焼結して一次焼結体とする一次焼結工程と、 該一次焼結体を高温高圧のガス下で焼結するHIP処理
工程と、からなることを特徴とする圧電磁器の製造方
法。
2. The formula (Pb 1-x Sr x ) (Zr y Ti
1-yz Nb z ) O 3 [wherein 0.08 ≦ x ≦ 0.14, 0.49 ≦ y
-0.5 x ≤ 0.51, 0.005 ≤ z ≤ 0.06], and a forming step of forming a molded body of a predetermined shape from raw material powders prepared so as to have a composition represented by: It is characterized by comprising a primary sintering step of sintering in a rich state at a predetermined temperature to obtain a primary sintered body, and a HIP treatment step of sintering the primary sintered body under a high temperature and high pressure gas. Piezoelectric ceramic manufacturing method.
JP04124511A 1992-05-18 1992-05-18 Method of manufacturing piezoelectric ceramic Expired - Fee Related JP3087924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04124511A JP3087924B2 (en) 1992-05-18 1992-05-18 Method of manufacturing piezoelectric ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04124511A JP3087924B2 (en) 1992-05-18 1992-05-18 Method of manufacturing piezoelectric ceramic

Publications (2)

Publication Number Publication Date
JPH05319926A true JPH05319926A (en) 1993-12-03
JP3087924B2 JP3087924B2 (en) 2000-09-18

Family

ID=14887304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04124511A Expired - Fee Related JP3087924B2 (en) 1992-05-18 1992-05-18 Method of manufacturing piezoelectric ceramic

Country Status (1)

Country Link
JP (1) JP3087924B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150694A (en) * 2003-10-23 2005-06-09 Seiko Epson Corp Piezoelectric film, piezoelectric element, piezoelectric actuator, piezoelectric pump, ink-jet recording head, ink-jet printer, surface acoustic wave element, thin film piezoelectric resonator, frequency filter, oscillator, electronic circuit, and electronic apparatus
JP2020045274A (en) * 2018-09-12 2020-03-26 日立金属株式会社 Ion conductive oxide, and battery including the same, and method for producing ion conductive oxide
JP2020045273A (en) * 2018-09-12 2020-03-26 日立金属株式会社 Ion conductive oxide, and battery including the same, and method for producing ion conductive oxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150694A (en) * 2003-10-23 2005-06-09 Seiko Epson Corp Piezoelectric film, piezoelectric element, piezoelectric actuator, piezoelectric pump, ink-jet recording head, ink-jet printer, surface acoustic wave element, thin film piezoelectric resonator, frequency filter, oscillator, electronic circuit, and electronic apparatus
JP2020045274A (en) * 2018-09-12 2020-03-26 日立金属株式会社 Ion conductive oxide, and battery including the same, and method for producing ion conductive oxide
JP2020045273A (en) * 2018-09-12 2020-03-26 日立金属株式会社 Ion conductive oxide, and battery including the same, and method for producing ion conductive oxide

Also Published As

Publication number Publication date
JP3087924B2 (en) 2000-09-18

Similar Documents

Publication Publication Date Title
JP3108724B2 (en) High durability piezoelectric composite ceramics and its manufacturing method
JP3087924B2 (en) Method of manufacturing piezoelectric ceramic
JP4582835B2 (en) Method for manufacturing piezoelectric member for actuator
JP3295871B2 (en) Piezoelectric ceramic composition
JP2000072539A (en) Piezoelectric material
KR101722391B1 (en) Method of forming lead zirconate titanate sintered compact, lead zirconate titanate sintered compact and lead zirconate titanate sputtering target
US6156259A (en) Method of manufacturing piezoelectric materials
JPH05139828A (en) Production of piezoelectric ceramic
JP3032761B1 (en) Piezoelectric ceramics
JP2936828B2 (en) Method for manufacturing piezoelectric element for laminated piezoelectric actuator
JP3699599B2 (en) Piezoelectric ceramic
JP4102308B2 (en) Piezoelectric / electrostrictive material and manufacturing method thereof
JP3981221B2 (en) Piezoelectric ceramic
JPH0741363A (en) Piezoelectric ceramics composition
JPH08259320A (en) Perovskite compound sintered compact
US11812665B1 (en) Hard piezoelectric ceramic composition for multilayer piezoelectric transformers
JP3061224B2 (en) Bismuth layered compound polarization method
JPH06116010A (en) Production of bismuth laminar compound
JP2000264732A (en) Piezoelectric ceramics
JP2000264733A (en) Piezoelectric ceramics
JPH11209173A (en) Dielectric porcelain
JPH08268756A (en) Production of ferroelectric ceramics
JP3554397B2 (en) Piezoelectric material
JP3117247B2 (en) Method of manufacturing piezoelectric ceramic
KR950004596B1 (en) Manufacturing method of piezo electric composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080714

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080714

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees