JP2020045273A - Ion conductive oxide, and battery including the same, and method for producing ion conductive oxide - Google Patents

Ion conductive oxide, and battery including the same, and method for producing ion conductive oxide Download PDF

Info

Publication number
JP2020045273A
JP2020045273A JP2019160139A JP2019160139A JP2020045273A JP 2020045273 A JP2020045273 A JP 2020045273A JP 2019160139 A JP2019160139 A JP 2019160139A JP 2019160139 A JP2019160139 A JP 2019160139A JP 2020045273 A JP2020045273 A JP 2020045273A
Authority
JP
Japan
Prior art keywords
mol
conductive oxide
ion
less
composition formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019160139A
Other languages
Japanese (ja)
Other versions
JP7267154B2 (en
Inventor
渉平 鈴木
Shohei Suzuki
渉平 鈴木
俊 ▲高▼野
俊 ▲高▼野
shun Takano
岡本 直之
Naoyuki Okamoto
直之 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JP2020045273A publication Critical patent/JP2020045273A/en
Application granted granted Critical
Publication of JP7267154B2 publication Critical patent/JP7267154B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide an ion conductive oxide with low compactness.SOLUTION: The present invention relates to a perovskite type ion conductive oxide containing Li, Sr and Zr elements, the ion conductive oxide containing at least Al element, represented by composition formula (1), where sq. is an atomic vacancy, 0.65≤x≤0.75, 0.005<y<0.02, 0≤z≤1. LiSrAlsq.TaNbZrO(1).SELECTED DRAWING: Figure 4

Description

本発明は、イオン伝導性酸化物、及びそれを用いた電池、並びにイオン伝導性酸化物の製造方法に関する。   The present invention relates to an ion-conductive oxide, a battery using the same, and a method for producing the ion-conductive oxide.

酸化物固体電解質を適用した全固体二次電池は、高耐熱性を有する、電解質が燃焼しないため安全性が高い、といった特徴を有する。このため、従来のリチウムイオン二次電池に比べて冷却機構、安全機構が簡略化でき、モジュールコストの低減に加えエネルギー密度改善が見込める。   An all-solid secondary battery to which an oxide solid electrolyte is applied has features such as high heat resistance and high safety because the electrolyte does not burn. For this reason, the cooling mechanism and the safety mechanism can be simplified as compared with the conventional lithium ion secondary battery, and the improvement of the energy density can be expected in addition to the reduction of the module cost.

この酸化物固体電解質の一つとして、Li、Sr及びZrを含むペロブスカイト型イオン伝導性酸化物を挙げることができる。このLi、Sr及びZrを含むペロブスカイト型イオン伝導性酸化物としては、例えば、特許文献1にはCaおよびLaを添加することでイオン伝導度を改善することが可能なことが示されている。   As one of the oxide solid electrolytes, a perovskite-type ion conductive oxide containing Li, Sr, and Zr can be given. As a perovskite-type ion conductive oxide containing Li, Sr, and Zr, for example, Patent Document 1 discloses that the ion conductivity can be improved by adding Ca and La.

特開2016−169145号公報JP-A-2006-169145

しかしながら、特許文献1に記載のイオン伝導性酸化物においては、緻密性が十分でなく、イオン伝導度および機械強度に課題があった。   However, the ion-conductive oxide described in Patent Literature 1 has insufficient denseness, and has problems in ionic conductivity and mechanical strength.

本発明は緻密性が高いイオン伝導性酸化物を提供することを目的とする。   An object of the present invention is to provide an ion conductive oxide having high density.

上述した課題を解決するため、本発明のイオン伝導性酸化物は、Li、Sr及びZr元素を含むペロブスカイト型イオン伝導性酸化物において、少なくともAl元素を含み、組成式(1)で表され、□は原子空孔であり、0.65≦x≦0.75、0.005<y<0.02、0≦z≦1である。

Li((1/2)x−(2/3)y)Sr(1−(3/4)x)Al((1/4)x−(1/3)y)Ta(x−(7/3)y)(1−z)Nb(x−(7/3)y)zZr((7/3)y+1−x)・・・(1)
In order to solve the above-mentioned problems, the ion-conductive oxide of the present invention is a perovskite-type ion-conductive oxide containing Li, Sr, and Zr elements, which contains at least an Al element and is represented by a composition formula (1): □ is an atomic vacancy, and 0.65 ≦ x ≦ 0.75, 0.005 <y <0.02, and 0 ≦ z ≦ 1.

Li ((1/2) x- (2/3 ) y) Sr (1- (3/4) x) Al y □ ((1/4) x- (1/3) y) Ta (x- ( 7/3) y) (1-z ) Nb (x- (7/3) y) z Zr ((7/3) y + 1-x) O 3 ··· (1)

また、好ましくは、前記zの範囲が0.2≦z≦0.4である。   Preferably, the range of z is 0.2 ≦ z ≦ 0.4.

さらに本発明のイオン伝導性酸化物の製造方法としては、組成式(1)に含まれる金属元素を含む原料を、組成式(1)に基づき秤量する工程と、前記原料を混合し、混合粉を得る工程と、前記混合粉を仮焼し、仮焼粉を得る工程と、前記仮焼粉を成形し、成形体を得る工程と、前記成形体を本焼成する工程と、を含み、前記組成式(1)において、□は原子空孔であり、0.65≦x≦0.75、0.005<y<0.02、0≦z≦1である。

Li((1/2)x−(2/3)y)Sr(1−(3/4)x)Al((1/4)x−(1/3)y)Ta(x−(7/3)y)(1−z)Nb(x−(7/3)y)zZr((7/3)y+1−x)・・・(1)
Further, as a method for producing an ion-conductive oxide according to the present invention, a step of weighing a raw material containing a metal element contained in the composition formula (1) based on the composition formula (1); And calcining the mixed powder, obtaining a calcined powder, molding the calcined powder, obtaining a molded body, and final firing the molded body, comprising: In the composition formula (1), □ is an atomic vacancy, and 0.65 ≦ x ≦ 0.75, 0.005 <y <0.02, and 0 ≦ z ≦ 1.

Li ((1/2) x- (2/3 ) y) Sr (1- (3/4) x) Al y □ ((1/4) x- (1/3) y) Ta (x- ( 7/3) y) (1-z ) Nb (x- (7/3) y) z Zr ((7/3) y + 1-x) O 3 ··· (1)

本発明によれば、緻密性の高いイオン伝導性酸化物を得ることができる。   According to the present invention, an ion-conductive oxide having high density can be obtained.

図1は、実施例1で調製したLi0.37Sr0.44Al0.010.18Ta0.73Zr0.27焼結体のXRDパターンである。図中矢印はペロブスカイト相に帰属される。Figure 1 is a XRD pattern of Li 0.37 Sr 0.44 Al 0.01 □ 0.18 Ta 0.73 Zr 0.27 O 3 sintered body prepared in Example 1. The arrows in the figure belong to the perovskite phase. 図2は、実施例1で調製したLi0.37Sr0.44Al0.010.18Ta0.73Zr0.27仮焼粉のXRDパターンである。図中矢印はペロブスカイト相に帰属される。FIG. 2 is an XRD pattern of the calcined powder of Li 0.37 Sr 0.44 Al 0.010.18 Ta 0.73 Zr 0.27 O 3 prepared in Example 1. The arrows in the figure belong to the perovskite phase. 図3は、実施例8で調製したLi0.37Sr0.44Al0.010.18Ta0.73Zr0.27仮焼粉のXRDパターンである。図中矢印はペロブスカイト相に帰属される。FIG. 3 is an XRD pattern of the calcined powder of Li 0.37 Sr 0.44 Al 0.010.18 Ta 0.73 Zr 0.27 O 3 prepared in Example 8. The arrows in the figure belong to the perovskite phase. 図4は、実施例1で調製したLi0.37Sr0.44Al0.010.18Ta0.73Zr0.27焼結体の断面SEM像である。Figure 4 is a cross-sectional SEM image of Li 0.37 Sr 0.44 Al 0.01 □ 0.18 Ta 0.73 Zr 0.27 O 3 sintered body prepared in Example 1. 図5は、実施例3で調製したLi0.37Sr0.44Al0.010.18Ta0.51Nb0.22Zr0.27焼結体の断面SEM像である。FIG. 5 is a cross-sectional SEM image of the sintered body of Li 0.37 Sr 0.44 Al 0.010.18 Ta 0.51 Nb 0.22 Zr 0.27 O 3 prepared in Example 3. 図6は、比較例1で調製したLi0.38Sr0.440.18Ta0.75Zr0.25焼結体の断面SEM像である。FIG. 6 is a cross-sectional SEM image of the Li 0.38 Sr 0.440.18 Ta 0.75 Zr 0.25 O 3 sintered body prepared in Comparative Example 1. 図7は、比較例4で調製したLi0.36Sr0.44Al0.030.17Ta0.68Zr0.32焼結体の断面SEM像である。FIG. 7 is a cross-sectional SEM image of the Li 0.36 Sr 0.44 Al 0.030.17 Ta 0.68 Zr 0.32 O 3 sintered body prepared in Comparative Example 4. 図8は、比較例6で調製したLi0.31Sr0.44Al0.100.15Ta0.52Zr0.48焼結体の断面SEM像である。FIG. 8 is a cross-sectional SEM image of the Li 0.31 Sr 0.44 Al 0.100.15 Ta 0.52 Zr 0.48 O 3 sintered body prepared in Comparative Example 6. 図9は、比較例7で調製したLi0.37Sr0.44Ca0.010.18Ta0.74Zr0.26焼結体の断面SEM像である。FIG. 9 is a cross-sectional SEM image of the sintered body of Li 0.37 Sr 0.44 Ca 0.010.18 Ta 0.74 Zr 0.26 O 3 prepared in Comparative Example 7. 図10は、比較例12で調製したLi0.37Sr0.44La0.010.18Ta0.73Zr0.27焼結体の断面SEM像である。Figure 10 is a cross-sectional SEM image of Li 0.37 Sr 0.44 La 0.01 □ 0.18 Ta 0.73 Zr 0.27 O 3 sintered body prepared in Comparative Example 12.

本発明を実施する形態の一つのペロブスカイト型イオン伝導性酸化物は、Li、Sr及びZr元素を含み、少なくともAl元素を含み、下記の組成式(1)で表され、□は原子空孔であり、0.65≦x≦0.75、0.005<y<0.02、0≦z≦1である。

Li((1/2)x−(2/3)y)Sr(1−(3/4)x)Al((1/4)x−(1/3)y)Ta(x−(7/3)y)(1−z)Nb(x−(7/3)y)zZr((7/3)y+1−x)・・・(1)
One perovskite-type ion conductive oxide according to an embodiment of the present invention contains Li, Sr, and Zr elements, contains at least an Al element, is represented by the following composition formula (1), and □ is an atomic vacancy. Yes, 0.65 ≦ x ≦ 0.75, 0.005 <y <0.02, 0 ≦ z ≦ 1.

Li ((1/2) x- (2/3 ) y) Sr (1- (3/4) x) Al y □ ((1/4) x- (1/3) y) Ta (x- ( 7/3) y) (1-z ) Nb (x- (7/3) y) z Zr ((7/3) y + 1-x) O 3 ··· (1)

組成式(1)において、組成の決め方について以下に説明する。ペロブスカイト型イオン伝導性酸化物(ABO)はSrZrOを主たる組成として、少なくともAlを含ませたものである。具体的には、AサイトのSrをLiやAl、BサイトのZrをTaやNbなどで元素置換した化合物である。ペロブスカイト相の生成はXRDにより確認できる。例として、Li0.37Sr0.44Al0.010.18Ta0.73Zr0.27焼結体のXRDパターンを図1に示す。図中矢印で示したピークにより、ペロブスカイト相の生成を確認できる。この結晶構造は化合物中のSrまたはZr比率を低下させることで不安定化し、異相が生成する。そのため、SrはAサイト中に40%以上含まれることが望ましく、ZrはBサイト中に20%以上含まれることが望ましい。Zr比率が小さいほど導電率が高い傾向があり、Zr比率は35%以下であることが望ましく、30%以下であることがより望ましい。ペロブスカイト型イオン伝導性酸化物の導電率はLi比率と空孔サイト(□)比率の積と正の相関があり、これを最大化するようにするように組成を決定している。ここで説明した組成式(1)は、あくまで組成比の考え方を明確にするための表記であり、結晶構造内における原子配置を表記したものではない。実際には各種要因により、結晶構造内で原子が意図した配置になっていない可能性は想定される。 In the composition formula (1), how to determine the composition will be described below. The perovskite-type ion conductive oxide (ABO 3 ) contains SrZrO 3 as a main component and at least Al. Specifically, it is a compound in which Sr at the A site is replaced with Li or Al, and Zr at the B site is replaced with Ta or Nb. The formation of the perovskite phase can be confirmed by XRD. As an example, shows the XRD patterns of Li 0.37 Sr 0.44 Al 0.01 □ 0.18 Ta 0.73 Zr 0.27 O 3 sintered body in Fig. The formation of a perovskite phase can be confirmed by the peaks indicated by arrows in the figure. This crystal structure is destabilized by reducing the Sr or Zr ratio in the compound, and a hetero phase is generated. Therefore, it is desirable that Sr be contained in the A site by 40% or more, and that Zr be contained in the B site by 20% or more. The smaller the Zr ratio, the higher the conductivity tends to be. The Zr ratio is preferably 35% or less, more preferably 30% or less. The conductivity of the perovskite-type ion conductive oxide has a positive correlation with the product of the Li ratio and the vacancy site (□) ratio, and the composition is determined so as to maximize this. The composition formula (1) described here is for the purpose of clarifying the concept of the composition ratio, and is not for describing the arrangement of atoms in the crystal structure. Actually, it is assumed that atoms may not be arranged as intended in the crystal structure due to various factors.

本発明では、AサイトのSrをLiイオンだけでなくAlでも置換するもので、Alの組成範囲yを、0.005<y<0.02の範囲で添加することで、焼結性を高め、緻密性を改善し導電率を増大する効果が得られることを知見した。これはAlの作用によってイオン伝導性酸化物の粒界を緻密に形成することができるようになるためである。   In the present invention, Sr at the A site is replaced not only with Li ions but also with Al. By adding the Al composition range y in the range of 0.005 <y <0.02, sinterability is improved. It was found that the effect of improving the compactness and increasing the conductivity was obtained. This is because the grain boundary of the ion-conductive oxide can be formed densely by the action of Al.

また、主組成のZrを置換したTaは、さらにイオン半径がほとんど等しいNbと置き換えることが可能である。任意の割合で置き換えることができるが、組成範囲として0.2≦z≦0.4の範囲で含むことで導電率が特に高い電解質となり好ましいことがわかった。   Further, Ta obtained by substituting Zr of the main composition can be further substituted by Nb having almost the same ionic radius. Although it can be replaced by an arbitrary ratio, it has been found that the inclusion of the composition in the range of 0.2 ≦ z ≦ 0.4 results in an electrolyte having particularly high conductivity, which is preferable.

組成式(1)と0.65≦x≦0.75、0.005<y<0.02、0≦z≦1より、金属元素の物質量合計に対する各金属元素Li、Sr、Ta、Nb、Zr、Alの物質量比率(mol%)を算出した。その結果、素原料を混合した後の全体に、Li元素を16.9mol%より多く20.5mol%より少なく、Sr元素を24.0mol%より多く27.9mol%より少なく、Ta元素を0mol%以上40.7mol%より少なく、Nb元素を0mol%以上40.7mol%より少なく、Zr元素を14.4mol%より多く21.5mol%より少なく、Al元素を0.3mol%より多く1.1mol%より少なく、各金属元素を含むことが好ましい。   From the composition formula (1) and 0.65 ≦ x ≦ 0.75, 0.005 <y <0.02, and 0 ≦ z ≦ 1, each metal element Li, Sr, Ta, and Nb with respect to the total amount of the metal elements is calculated. , Zr, and Al content ratio (mol%) were calculated. As a result, after the raw materials are mixed, the Li element is more than 16.9 mol% and less than 20.5 mol%, the Sr element is more than 24.0 mol% and less than 27.9 mol%, and the Ta element is 0 mol%. Not less than 40.7 mol%, Nb element is 0 mol% or more and less than 40.7 mol%, Zr element is more than 14.4 mol% and less than 21.5 mol%, and Al element is more than 0.3 mol% and 1.1 mol%. It is preferable to contain each metal element in a smaller amount.

また、0.2≦z≦0.4の範囲でTaをNbに置き換えることで導電率が特に高い電解質が得られることから、Ta元素は19.6mol%より多く32.6mol%より少なく、Nb元素を6.5mol%より多く16.3mol%より少なく、含むことがより好ましい。   Further, by replacing Ta with Nb in the range of 0.2 ≦ z ≦ 0.4, an electrolyte having particularly high conductivity can be obtained. Therefore, the Ta element is more than 19.6 mol% and less than 32.6 mol%, and Nb More preferably, the element contains more than 6.5 mol% and less than 16.3 mol%.

(イオン伝導性酸化物の製造方法)
本発明を実施する形態の一つとして、ペロブスカイト型イオン伝導性酸化物を製造する方法を以下に説明する。まず、組成式(1)に含まれる金属元素を含む原料を、組成式(1)に基づき秤量する工程を行う。組成式(1)は以下の通りで、□は原子空孔であり、0.65≦x≦0.75、0.005<y<0.02、0≦z≦1である。

Li((1/2)x−(2/3)y)Sr(1−(3/4)x)Al((1/4)x−(1/3)y)Ta(x−(7/3)y)(1−z)Nb(x−(7/3)y)zZr((7/3)y+1−x)・・・(1)
(Method for producing ion-conductive oxide)
As one embodiment of the present invention, a method for producing a perovskite-type ion conductive oxide will be described below. First, a step of weighing a raw material containing a metal element contained in the composition formula (1) based on the composition formula (1) is performed. The composition formula (1) is as follows, and □ is an atomic vacancy, and 0.65 ≦ x ≦ 0.75, 0.005 <y <0.02, and 0 ≦ z ≦ 1.

Li ((1/2) x- (2/3 ) y) Sr (1- (3/4) x) Al y □ ((1/4) x- (1/3) y) Ta (x- ( 7/3) y) (1-z ) Nb (x- (7/3) y) z Zr ((7/3) y + 1-x) O 3 ··· (1)

用いる原料は、組成式(1)に含まれる金属元素Li、Sr、Al、Ta、Nb、Zrの炭酸塩や酸化物、硝酸塩やアルコキシドなどを用いることができ、特に純度や原料コストなどの観点から炭酸塩や酸化物を用いることが好ましい。後に固相反応させることを考慮して、原料は粉末であることが好ましく、原料粉と表すこともある。原料粉の粒子径は特に問わないが、粒子径が小さいほど固相反応が速やかに進行する。一方、粒子径が大きいほど凝集が起こりづらく混合が容易である。したがって、D50は0.1μm以上10μm以下の原料粉が好ましい。   As the raw material to be used, carbonates, oxides, nitrates and alkoxides of the metal elements Li, Sr, Al, Ta, Nb, and Zr contained in the composition formula (1) can be used, and in particular, the viewpoint of purity, raw material cost, and the like Therefore, it is preferable to use a carbonate or an oxide. The raw material is preferably a powder in consideration of the subsequent solid phase reaction, and may be referred to as a raw material powder. The particle size of the raw material powder is not particularly limited, but the smaller the particle size, the faster the solid phase reaction proceeds. On the other hand, the larger the particle size, the less likely aggregation occurs and the easier the mixing. Therefore, D50 is preferably a raw material powder having a size of 0.1 μm or more and 10 μm or less.

次に、前記原料を混合し、混合粉を得る工程を行う。混合方法は、溶媒中に原料を分散させて行う湿式混合法や、乾式で行う方法、ジェットミルなどを用いてもよい。特に湿式のボールミルであれば収率が高いため好ましい。湿式混合を選定した場合、溶媒としては、エタノールなどのアルコール類やジメチルエーテルなどのエーテル類、酢酸エチルなどのエステル類、などの有機溶媒を適用することで、水と反応する場合でも湿式混合を用いることができるため好ましい。   Next, a step of mixing the raw materials to obtain a mixed powder is performed. As a mixing method, a wet mixing method in which the raw materials are dispersed in a solvent, a dry method, a jet mill, or the like may be used. In particular, a wet ball mill is preferable because the yield is high. When wet mixing is selected, by using an organic solvent such as an alcohol such as ethanol, an ether such as dimethyl ether, an ester such as ethyl acetate, etc., a wet mixing is used even when reacting with water. It is preferable because it can be performed.

続いて、前記混合粉を仮焼し、仮焼粉を得る工程を行う。仮焼は粉末を固相反応により酸化物を得る方法であり、酸素を含む雰囲気中であれば、静置式バッチ炉や管状炉、エレベーター炉、コンベア炉など様々な炉を用いることができる。また、るつぼやセッターを用いる場合、材質はアルミナ、ジルコニアなどを選択してもよい。特に仮焼工程を設けることで単一相を得やすく、仮焼粉において単一相であれば、本焼成後に導電率が高い焼結体が得られるためさらに好ましい。仮焼粉が単一相であることは、XRDによって確認できる。仮焼する工程における保持温度は、800℃以上とすることで、炭酸塩が分解し本焼成時に炭酸ガスの発生とそれに伴う割れ・膨れを抑制できるため好ましく、1250℃以上とすることで、仮焼粉が単一相となりやすくなるためさらに好ましい。また、Li揮発の問題から、焼成温度は1300℃以下で行うことが好ましく、900℃以下とすることでLi揮発が抑制されるためさらに好ましい。保持温度は、処理量にもよるが、例えば1時間以上24時間以下であることが好ましい。   Subsequently, a step of calcining the mixed powder to obtain a calcined powder is performed. Calcination is a method of obtaining an oxide by a solid-phase reaction of a powder, and various furnaces such as a stationary batch furnace, a tubular furnace, an elevator furnace, and a conveyor furnace can be used in an atmosphere containing oxygen. When a crucible or a setter is used, the material may be selected from alumina, zirconia and the like. In particular, a single phase is easily obtained by providing a calcining step, and a single phase in the calcined powder is more preferable because a sintered body having high conductivity can be obtained after the main firing. The single phase of the calcined powder can be confirmed by XRD. The holding temperature in the calcining step is preferably set to 800 ° C. or higher, because the carbonate is decomposed and the generation of carbon dioxide gas and the accompanying cracks and swelling during main firing can be suppressed. It is more preferable that the baked powder easily becomes a single phase. Further, from the problem of Li volatilization, the calcination temperature is preferably performed at 1300 ° C. or lower, and more preferably 900 ° C. or lower because Li volatilization is suppressed. The holding temperature depends on the processing amount, but is preferably, for example, 1 hour or more and 24 hours or less.

さらに、前記仮焼粉を成形し、成形体を得る工程を行う。成形体を作製するために使用する仮焼粉は仮焼後の粉をそのまま使用することも可能であるし、湿式粉砕などの方法で粉砕してから使用してもよい。このとき、湿式粉砕の溶媒としては、エタノールなどのアルコール類やジメチルエーテルなどのエーテル類、酢酸エチルなどのエステル類、などの有機溶媒を適用することで、水と反応する場合でも湿式粉砕を用いることができるため好ましい。成形は一軸加圧成型や冷間等方圧プレス(CIP)などを用いて良い。この際に、仮焼粉を加圧成形してもよいが、湿式粉砕などで得られたスラリーをシート状に成形するシート成形法を用いるなどして、成形体としてグリーンシートを作製してもよい。また、グリーンシートは加圧などしても良く、例えば加圧時にはバインダのガラス転移温度以上の温度で加温しながら加圧することがより望ましい。   Further, a step of molding the calcined powder to obtain a molded body is performed. The calcined powder used for producing the molded body may be the calcined powder as it is, or may be used after being ground by a method such as wet grinding. At this time, by using an organic solvent such as an alcohol such as ethanol, an ether such as dimethyl ether, an ester such as ethyl acetate, etc. as a solvent for wet grinding, wet grinding is used even when reacting with water. Is preferred because The molding may be performed by uniaxial pressure molding or cold isostatic pressing (CIP). At this time, the calcined powder may be pressure-formed, but a green sheet may be formed as a green body by using a sheet forming method of forming a slurry obtained by wet grinding or the like into a sheet. Good. The green sheet may be pressurized or the like. For example, it is more preferable to pressurize the green sheet while heating it at a temperature equal to or higher than the glass transition temperature of the binder.

成形体としてグリーンシートを得る場合、例えば以下のように調製する。まず、バインダ(例えばポリビニルブチラール(PVB)など)の溶液を調製する。そして、この溶液に対して前記仮焼粉の含有量が、例えば5質量%以上20質量%以下となるように混合する。なお、この溶液には可塑剤(例えばジオクチルフタレート(DOP)など)を混合してもよい。そして、得られた溶液についてボールミルを使用して十分に混合及び分散が行われ、これにより、グリーンシート用のスラリーが得られる。このスラリーに対し、減圧下で脱泡と溶媒の一部揮発などを行い、粘度を調整してもよい。スラリーは、ブレード法によりポリエチレンテレフタレート(PET)フィルムなどに塗工し、その全体を乾燥する。乾燥後、フィルムから剥がし、所望の大きさ及び形状に切断することで、グリーンシートが作製される。   When a green sheet is obtained as a molded body, it is prepared, for example, as follows. First, a solution of a binder (for example, polyvinyl butyral (PVB) or the like) is prepared. Then, the solution is mixed with the solution so that the content of the calcined powder is, for example, 5% by mass or more and 20% by mass or less. Note that a plasticizer (for example, dioctyl phthalate (DOP) or the like) may be mixed in this solution. Then, the obtained solution is sufficiently mixed and dispersed using a ball mill, whereby a slurry for a green sheet is obtained. The viscosity of the slurry may be adjusted by defoaming and partially volatilizing the solvent under reduced pressure. The slurry is applied to a polyethylene terephthalate (PET) film or the like by a blade method, and the whole is dried. After drying, the green sheet is peeled off from the film and cut into a desired size and shape to produce a green sheet.

次に、得られた成形体を本焼成する工程を行う。本焼成は静置式バッチ炉や管状炉、エレベーター炉、コンベア炉など様々な炉を用いることができる。また、るつぼやセッターを用いる場合、材質はアルミナ、ジルコニアなどを選択してもよい。焼成温度が900℃を超える場合にはLi揮発の懸念があるため、仮焼粉にLiCOなどの原料を過剰に添加するか、例えばパウダーベッド法などでの焼成が望ましい。パウダーベッド法による焼成は、マザーパウダで加圧成形体を包む焼成方法となる。このときマザーパウダは加圧成形体と同一組成であり、本焼成温度でも焼結しにくいように粉末性状を調整した仮焼粉を用いることが望ましい。 Next, a step of final firing the obtained molded body is performed. Various furnaces such as a stationary batch furnace, a tubular furnace, an elevator furnace, and a conveyor furnace can be used for the main firing. When a crucible or a setter is used, the material may be selected from alumina, zirconia and the like. If the firing temperature exceeds 900 ° C., there is a concern of Li volatilization. Therefore, it is desirable to add a raw material such as Li 2 CO 3 to the calcined powder in excess, or to fire the powder by, for example, a powder bed method. Firing by the powder bed method is a firing method of wrapping the press-formed body with mother powder. At this time, the mother powder has the same composition as the pressure-molded body, and it is desirable to use calcined powder whose powder properties have been adjusted so that sintering is difficult even at the main firing temperature.

以下に、実施例について説明する。まず、以下の表1に組成(x,y,zの値)およびAサイト置換元素と収縮率、相対密度、及び導電率の実験結果を一覧にして示す。   Hereinafter, examples will be described. First, Table 1 below lists the compositions (values of x, y, and z), the A-site substitution element, and the experimental results of the shrinkage, relative density, and conductivity.

実施例1は以下のように実施した。原料はLiCO、SrCO、Al、Ta、ZrOを準備した。次に、組成式Li((1/2)x−(2/3)y)Sr(1−(3/4)x)Al((1/4)x−(1/3)y)Ta(x−(7/3)y)(1−z)Nb(x−(7/3)y)zZr((7/3)y+1−x)においてx=0.75、y=0.01、z=0となるイオン伝導性酸化物を調製するために、化学量論比でLiCO、SrCO、Al、Ta、ZrOを秤量した。秤量した原料をエタノールおよびジルコニアボールとともにボールミルで20時間混合し、エタノールを蒸発させることで原料混合粉を得た。この原料混合粉をアルミナるつぼに入れ、1100℃で12時間仮焼した。このようにして得られた仮焼粉は、アルミナるつぼと接触する面は廃棄し、るつぼからのAl混入がないようにした。目安として、収率が50%となるようにした。さらに、φ14mmのダイスで9.8kN・m−2で一軸プレスし、ペレットを作製した。焼成するペレットの周囲を2倍の重量のマザーパウダ(ペレットと同組成の仮焼粉)で覆うようにし、1300℃で15時間本焼成し、イオン伝導性酸化物の焼結体を得た。 Example 1 was performed as follows. As raw materials, Li 2 CO 3 , SrCO 3 , Al 2 O 3 , Ta 2 O 5 , and ZrO 2 were prepared. Next, the composition formula Li ((1/2) x- (2/3 ) y) Sr (1- (3/4) x) Al y □ ((1/4) x- (1/3) y) ta (x- (7/3) y) (1-z) Nb (x- (7/3) y) z Zr x = 0.75 in the ((7/3) y + 1- x) O 3, y = Li 2 CO 3 , SrCO 3 , Al 2 O 3 , Ta 2 O 5 , and ZrO 2 were weighed at a stoichiometric ratio in order to prepare an ion conductive oxide having 0.01 and z = 0. The weighed raw material was mixed with ethanol and zirconia balls in a ball mill for 20 hours, and the ethanol was evaporated to obtain a raw material mixed powder. This raw material mixed powder was placed in an alumina crucible and calcined at 1100 ° C. for 12 hours. The calcined powder thus obtained was discarded on the surface that was in contact with the alumina crucible, so that no Al was mixed from the crucible. As a guide, the yield was adjusted to 50%. Furthermore, it was uniaxially pressed at 9.8 kN · m −2 with a φ14 mm die to produce pellets. The periphery of the pellet to be fired was covered with twice the weight of mother powder (calcined powder having the same composition as the pellet), and the main firing was performed at 1300 ° C. for 15 hours to obtain a sintered body of an ion conductive oxide.

導電率は、以下のように測定した。本焼成で得られたペレットの両面を研磨し、Au蒸着した。このペレットをIn箔で挟み込み、電気化学セル内に入れた。このセルの抵抗(R)は、インピーダンスアナライザ(Solartron1260)を用いて交流インピーダンス法により測定した。ペレットの直径から面積(S)を算出し、ペレットの面積(S)とペレットの厚み(t)を用いて、導電率(σ)を以下の式により決定した。   The conductivity was measured as follows. Both surfaces of the pellets obtained by the main firing were polished, and Au was deposited. The pellet was sandwiched between In foils and placed in an electrochemical cell. The resistance (R) of this cell was measured by an AC impedance method using an impedance analyzer (Solartron 1260). The area (S) was calculated from the diameter of the pellet, and the conductivity (σ) was determined by the following equation using the area (S) of the pellet and the thickness (t) of the pellet.

相対密度は以下のように測定した。仮焼粉の真密度を、ピクノメーター(ULTRAPYC 1200e)で求めた。前述のように測定した厚み、面積とペレット重量とからペレット密度を求め、真密度に対する割合を相対密度とし、百分率で算出した。収縮率(ΔV)はペレットの直径が焼成前(14mm)から焼成後に収縮した割合であり、ペレットの直径(r)から、以下の式に基づいて算出した。尚、試料の良・不良の判定については、焼結体の緻密性に関しては収縮率が15%を超える場合に良(〇)としそれ以外については不良(×)とした。   The relative density was measured as follows. The true density of the calcined powder was determined using a pycnometer (ULTRAPYC 1200e). The pellet density was determined from the thickness, area, and pellet weight measured as described above, and the ratio to the true density was defined as a relative density and calculated as a percentage. The shrinkage ratio (ΔV) is the ratio of the diameter of the pellet shrinking from before firing (14 mm) to after firing, and was calculated from the diameter (r) of the pellet based on the following equation. In addition, regarding the judgment of good or bad of the sample, the denseness of the sintered body was evaluated as good (に) when the shrinkage rate exceeded 15%, and as poor (x) otherwise.

仮焼粉および焼結体の結晶構造をXRD測定により評価した。試料が粉末の場合では、ガラス試料板に試料面と基準面が一致するように均一に充填し、測定した。焼結体の場合では、測定面をあらかじめ研磨紙で研磨することで表面粗さが10μm以下程度となるように平坦化し、試料面と基準面が一致するように試料台の上に乗せた。装置はリガク製SmartLab(9kW)XGを使用した。X線源としてCuKα線(波長 1.53Å、45kV、200mA)を用いて2θ=20〜80°の範囲で50°min−1で測定した。 The crystal structures of the calcined powder and the sintered body were evaluated by XRD measurement. When the sample was powder, the glass sample plate was uniformly filled so that the sample surface and the reference surface coincided with each other, and the measurement was performed. In the case of a sintered body, the measurement surface was polished in advance with polishing paper so as to be flattened so that the surface roughness was about 10 μm or less, and was placed on a sample table so that the sample surface and the reference surface coincided. The device used was Rigaku's SmartLab (9 kW) XG. The measurement was performed at 50 ° min −1 in the range of 2θ = 20 to 80 ° using CuKα ray (wavelength 1.53 °, 45 kV, 200 mA) as an X-ray source.

試料断面を観察するためにSEM測定した。断面観察試料作製にあたり、焼結体を研磨紙で研磨することで断面を表出させた。断面をさらにArミリング装置(日立ハイテクノロジーズ、E−3500)で加工し、その断面形態を電界放出型走査型顕微鏡(FE−SEM、日立製S−4800)で観察した。観察時の加速電圧は5kVとした。   SEM measurement was performed to observe the cross section of the sample. In preparing the cross section observation sample, the cross section was exposed by polishing the sintered body with abrasive paper. The cross section was further processed with an Ar milling device (Hitachi High-Technologies Corporation, E-3500), and the cross-sectional shape was observed with a field emission scanning microscope (FE-SEM, Hitachi S-4800). The accelerating voltage at the time of observation was 5 kV.

比較例1は、原料としてLiCO、SrCO、Ta、ZrOを準備し、組成式Li((1/2)x−(2/3)y)Sr(1−(3/4)x)Al((1/4)x−(1/3)y)Ta(x−(7/3)y)(1−z)Nb(x−(7/3)y)zZr((7/3)y+1−x)においてx=0.75、y=0、z=0となるように化学量論比で原料を秤量したこと以外は実施例1と同様に実施した。 In Comparative Example 1, Li 2 CO 3 , SrCO 3 , Ta 2 O 5 , and ZrO 2 were prepared as raw materials, and the composition formula Li ((1/2) x- (2/3) y) Sr (1- (3 / 4) x) Al y □ ((1/4) x- (1/3) y) Ta (x- (7/3) y) (1-z) Nb (x- (7/3) y) As in Example 1, except that the raw materials were weighed at stoichiometric ratios so that z = 0.75, y = 0, and z = 0 in z Zr ((7/3) y + 1-x) O 3 . Carried out.

比較例2は、組成式Li((1/2)x−(2/3)y)Sr(1−(3/4)x)Al((1/4)x−(1/3)y)Ta(x−(7/3)y)(1−z)Nb(x−(7/3)y)zZr((7/3)y+1−x)においてx=0.75、y=0.005、z=0となるように化学量論比で原料を秤量したこと以外は実施例1と同様に実施した。 Comparative Example 2, the composition formula Li ((1/2) x- (2/3 ) y) Sr (1- (3/4) x) Al y □ ((1/4) x- (1/3) y) Ta (x- (7/3) y) (1-z) Nb (x- (7/3) y) z Zr ((7/3) x = 0.75 in the y + 1-x) O 3 , The operation was performed in the same manner as in Example 1 except that the raw materials were weighed at stoichiometric ratios so that y = 0.005 and z = 0.

比較例3は、組成式Li((1/2)x−(2/3)y)Sr(1−(3/4)x)Al((1/4)x−(1/3)y)Ta(x−(7/3)y)(1−z)Nb(x−(7/3)y)zZr((7/3)y+1−x)においてx=0.75、y=0.02、z=0となるように化学量論比で原料を秤量したこと以外は実施例1と同様に実施した。 Comparative Example 3, the composition formula Li ((1/2) x- (2/3 ) y) Sr (1- (3/4) x) Al y □ ((1/4) x- (1/3) y) Ta (x- (7/3) y) (1-z) Nb (x- (7/3) y) z Zr ((7/3) x = 0.75 in the y + 1-x) O 3 , The procedure was performed in the same manner as in Example 1 except that the raw materials were weighed at a stoichiometric ratio so that y = 0.02 and z = 0.

比較例4は、組成式Li((1/2)x−(2/3)y)Sr(1−(3/4)x)Al((1/4)x−(1/3)y)Ta(x−(7/3)y)(1−z)Nb(x−(7/3)y)zZr((7/3)y+1−x)においてx=0.75、y=0.03、z=0となるように化学量論比で原料を秤量したこと以外は実施例1と同様に実施した。 Comparative Example 4, the composition formula Li ((1/2) x- (2/3 ) y) Sr (1- (3/4) x) Al y □ ((1/4) x- (1/3) y) Ta (x- (7/3) y) (1-z) Nb (x- (7/3) y) z Zr ((7/3) x = 0.75 in the y + 1-x) O 3 , The procedure was performed in the same manner as in Example 1 except that the raw materials were weighed at stoichiometric ratios so that y = 0.03 and z = 0.

比較例5は、組成式Li((1/2)x−(2/3)y)Sr(1−(3/4)x)Al((1/4)x−(1/3)y)Ta(x−(7/3)y)(1−z)Nb(x−(7/3)y)zZr((7/3)y+1−x)においてx=0.75、y=0.05、z=0となるように化学量論比で原料を秤量したこと以外は実施例1と同様に実施した。 Comparative Example 5, the composition formula Li ((1/2) x- (2/3 ) y) Sr (1- (3/4) x) Al y □ ((1/4) x- (1/3) y) Ta (x- (7/3) y) (1-z) Nb (x- (7/3) y) z Zr ((7/3) x = 0.75 in the y + 1-x) O 3 , The operation was performed in the same manner as in Example 1 except that the raw materials were weighed at stoichiometric ratios so that y = 0.05 and z = 0.

比較例6は、組成式Li((1/2)x−(2/3)y)Sr(1−(3/4)x)Al((1/4)x−(1/3)y)Ta(x−(7/3)y)(1−z)Nb(x−(7/3)y)zZr((7/3)y+1−x)においてx=0.75、y=0.10、z=0となるように化学量論比で原料を秤量したこと以外は実施例1と同様に実施した。 Comparative Example 6, the composition formula Li ((1/2) x- (2/3 ) y) Sr (1- (3/4) x) Al y □ ((1/4) x- (1/3) y) Ta (x- (7/3) y) (1-z) Nb (x- (7/3) y) z Zr ((7/3) x = 0.75 in the y + 1-x) O 3 , The procedure was performed in the same manner as in Example 1 except that the raw materials were weighed at a stoichiometric ratio so that y = 0.10 and z = 0.

比較例7は、原料としてLiCO、SrCO、CaCO、Ta、ZrOを準備し、組成式Li((1/2)x−(2/3)y)Sr(1−(3/4)x)Ca((1/4)x−(1/3)y)Ta(x−(4/3)y)(1−z)Nb(x−(4/3)y)zZr((4/3)y+1−x)においてx=0.75、y=0.01、z=0となるように化学量論比で秤量したこと以外は実施例1と同様に実施した。すなわち、Alに代えてCaを置換したものである。 In Comparative Example 7, Li 2 CO 3 , SrCO 3 , CaCO 3 , Ta 2 O 5 , and ZrO 2 were prepared as raw materials, and a composition formula Li ((1/2) x− (2/3) y) Sr (1 - (3/4) x) Ca y □ ((1/4) x- (1/3) y) Ta (x- (4/3) y) (1-z) Nb (x- (4/3 Example 1 ) y) z Zr ((4/3) y + 1-x) Example 1 except that stoichiometric ratios were weighed so that x = 0.75, y = 0.01 and z = 0 in O 3 . Was performed in the same manner as described above. That is, Ca is substituted for Al.

比較例8は、組成式Li((1/2)x−(2/3)y)Sr(1−(3/4)x)Ca((1/4)x−(1/3)y)Ta(x−(4/3)y)(1−z)Nb(x−(4/3)y)zZr((4/3)y+1−x)においてx=0.75、y=0.02、z=0となるようにとなるように化学量論比で原料を秤量したこと以外は比較例7と同様に実施した。 Comparative Example 8, the composition formula Li ((1/2) x- (2/3 ) y) Sr (1- (3/4) x) Ca y □ ((1/4) x- (1/3) y) Ta (x- (4/3) y) (1-z) Nb (x- (4/3) y) z Zr ((4/3) x = 0.75 in the y + 1-x) O 3 , The same operation as in Comparative Example 7 was performed except that the raw materials were weighed at stoichiometric ratios so that y = 0.02 and z = 0.

比較例9は、組成式Li((1/2)x−(2/3)y)Sr(1−(3/4)x)Ca((1/4)x−(1/3)y)Ta(x−(4/3)y)(1−z)Nb(x−(4/3)y)zZr((4/3)y+1−x)においてx=0.75、y=0.03、z=0となるようにとなるように化学量論比で原料を秤量したこと以外は比較例7と同様に実施した。 Comparative Example 9, a composition formula Li ((1/2) x- (2/3 ) y) Sr (1- (3/4) x) Ca y □ ((1/4) x- (1/3) y) Ta (x- (4/3) y) (1-z) Nb (x- (4/3) y) z Zr ((4/3) x = 0.75 in the y + 1-x) O 3 , Comparative Example 7 was carried out in the same manner as in Comparative Example 7, except that the raw materials were weighed at stoichiometric ratios so that y = 0.03 and z = 0.

比較例10は、組成式Li((1/2)x−(2/3)y)Sr(1−(3/4)x)Ca((1/4)x−(1/3)y)Ta(x−(4/3)y)(1−z)Nb(x−(4/3)y)zZr((4/3)y+1−x)においてx=0.75、y=0.05、z=0となるようにとなるように化学量論比で原料を秤量したこと以外は比較例7と同様に実施した。 Comparative Example 10, the composition formula Li ((1/2) x- (2/3 ) y) Sr (1- (3/4) x) Ca y □ ((1/4) x- (1/3) y) Ta (x- (4/3) y) (1-z) Nb (x- (4/3) y) z Zr ((4/3) x = 0.75 in the y + 1-x) O 3 , The operation was performed in the same manner as in Comparative Example 7, except that the raw materials were weighed at a stoichiometric ratio so that y = 0.05 and z = 0.

比較例11は、組成式Li((1/2)x−(2/3)y)Sr(1−(3/4)x)Ca((1/4)x−(1/3)y)Ta(x−(4/3)y)(1−z)Nb(x−(4/3)y)zZr((4/3)y+1−x)においてx=0.75、y=0.10、z=0となるようにとなるように化学量論比で原料を秤量したこと以外は比較例7と同様に実施した。 Comparative Example 11, the composition formula Li ((1/2) x- (2/3 ) y) Sr (1- (3/4) x) Ca y □ ((1/4) x- (1/3) y) Ta (x- (4/3) y) (1-z) Nb (x- (4/3) y) z Zr ((4/3) x = 0.75 in the y + 1-x) O 3 , The same operation as in Comparative Example 7 was performed except that the raw materials were weighed at stoichiometric ratios so that y = 0.10 and z = 0.

比較例12は、原料としてLiCO、SrCO、La(OH)、Ta、ZrOを準備し、組成式Li((1/2)x−(2/3)y)Sr(1−(3/4)x)La((1/4)x−(1/3)y)Ta(x−(7/3)y)(1−z)Nb(x−(7/3)y)zZr((7/3)y+1−x)においてx=0.75、y=0.01、z=0となるイオン伝導性酸化物を調製するために、化学量論比で秤量したこと以外は実施例1と同様に実施した。すなわち、Alに代えてLaを置換したものである。 In Comparative Example 12, Li 2 CO 3 , SrCO 3 , La (OH) 3 , Ta 2 O 5 , and ZrO 2 were prepared as raw materials, and the composition formula was Li ((1/2) x− (2/3) y). sr (1- (3/4) x) La y □ ((1/4) x- (1/3) y) Ta (x- (7/3) y) (1-z) Nb (x- ( 7/3) y) z Zr (( 7/3) y + 1-x) in O 3 x = 0.75, y = 0.01, to prepare the ion conductive oxide having a z = 0, chemical The procedure was performed in the same manner as in Example 1 except that the stoichiometric ratio was used. That is, La is substituted for Al.

比較例13は、組成式Li((1/2)x−(2/3)y)Sr(1−(3/4)x)La((1/4)x−(1/3)y)Ta(x−(7/3)y)(1−z)Nb(x−(7/3)y)zZr((7/3)y+1−x)においてx=0.75、y=0.02、z=0となるように化学量論比で原料を秤量したこと以外は比較例12と同様に実施した。 Comparative Example 13, the composition formula Li ((1/2) x- (2/3 ) y) Sr (1- (3/4) x) La y □ ((1/4) x- (1/3) y) Ta (x- (7/3) y) (1-z) Nb (x- (7/3) y) z Zr ((7/3) x = 0.75 in the y + 1-x) O 3 , The operation was performed in the same manner as in Comparative Example 12 except that the raw materials were weighed at stoichiometric ratios so that y = 0.02 and z = 0.

比較例14は、組成式Li((1/2)x−(2/3)y)Sr(1−(3/4)x)La((1/4)x−(1/3)y)Ta(x−(7/3)y)(1−z)Nb(x−(7/3)y)zZr((7/3)y+1−x)においてx=0.75、y=0.03、z=0となるように化学量論比で原料を秤量したこと以外は比較例12と同様に実施した。 Comparative Example 14, the composition formula Li ((1/2) x- (2/3 ) y) Sr (1- (3/4) x) La y □ ((1/4) x- (1/3) y) Ta (x- (7/3) y) (1-z) Nb (x- (7/3) y) z Zr ((7/3) x = 0.75 in the y + 1-x) O 3 , The operation was performed in the same manner as in Comparative Example 12 except that the raw materials were weighed at a stoichiometric ratio so that y = 0.03 and z = 0.

比較例15は、組成式Li((1/2)x−(2/3)y)Sr(1−(3/4)x)La((1/4)x−(1/3)y)Ta(x−(7/3)y)(1−z)Nb(x−(7/3)y)zZr((7/3)y+1−x)においてx=0.75、y=0.05、z=0となるように化学量論比で原料を秤量したこと以外は比較例12と同様に実施した。 Comparative Example 15, the composition formula Li ((1/2) x- (2/3 ) y) Sr (1- (3/4) x) La y □ ((1/4) x- (1/3) y) Ta (x- (7/3) y) (1-z) Nb (x- (7/3) y) z Zr ((7/3) x = 0.75 in the y + 1-x) O 3 , The operation was performed in the same manner as in Comparative Example 12 except that the raw materials were weighed at stoichiometric ratios so that y = 0.05 and z = 0.

比較例16は、組成式Li((1/2)x−(2/3)y)Sr(1−(3/4)x)La((1/4)x−(1/3)y)Ta(x−(7/3)y)(1−z)Nb(x−(7/3)y)zZr((7/3)y+1−x)においてx=0.75、y=0.10、z=0となるように化学量論比で原料を秤量したこと以外は比較例12と同様に実施した。 Comparative Example 16, the composition formula Li ((1/2) x- (2/3 ) y) Sr (1- (3/4) x) La y □ ((1/4) x- (1/3) y) Ta (x- (7/3) y) (1-z) Nb (x- (7/3) y) z Zr ((7/3) x = 0.75 in the y + 1-x) O 3 , The operation was performed in the same manner as in Comparative Example 12 except that the raw materials were weighed at stoichiometric ratios so that y = 0.10 and z = 0.

実施例1、及び比較例1〜16において、実施例1に示した置換元素がAlの試料のみが収縮率が良く、特に0.005<y<0.02の場合に収縮率が15%を超え緻密性が十分に高いことが分かった。   In Example 1 and Comparative Examples 1 to 16, only the sample in which the substitution element shown in Example 1 was Al had a good shrinkage ratio, and particularly, when 0.005 <y <0.02, the shrinkage ratio was 15%. It was found that the overdensity was sufficiently high.

さらに、図4、6〜10に示した断面SEM像において、置換元素がAlでy=0.01の図4の試料のみが空隙(黒色部)がほとんどなく、それ以外の試料では空隙(黒色部)が顕著に見られた。   Further, in the cross-sectional SEM images shown in FIGS. 4 and 6 to 10, only the sample of FIG. 4 in which the substitution element is Al and y = 0.01 has almost no voids (black portions), and the other samples have voids (black portions). Part) was remarkably observed.

このことから、置換元素Alの場合において0.005<y<0.02とすることにより、緻密性を改善できることが示された。   This indicates that the density can be improved by setting 0.005 <y <0.02 in the case of the substitution element Al.

続いて、表1に示した実施例2〜7の実験結果について説明する。   Subsequently, the experimental results of Examples 2 to 7 shown in Table 1 will be described.

実施例2は、原料として実施例1の原料に加えてNbを準備し、組成式Li((1/2)x−(2/3)y)Sr(1−(3/4)x)Al((1/4)x−(1/3)y)Ta(x−(7/3)y)(1−z)Nb(x−(7/3)y)zZr((7/3)y+1−x)においてx=0.75、y=0.01、z=0.2となるように化学量論比で原料を秤量したこと以外は実施例1と同様に実施した。 Example 2 prepares a Nb 2 O 5 in addition to the raw material of Example 1 as a starting material, the composition formula Li ((1/2) x- (2/3 ) y) Sr (1- (3/4) x) Al y □ ((1/4 ) x- (1/3) y) Ta (x- (7/3) y) (1-z) Nb (x- (7/3) y) z Zr ( (7/3) y + 1-x) Same as Example 1 except that the raw materials were weighed at stoichiometric ratios so that x = 0.75, y = 0.01 and z = 0.2 in O 3 . It was carried out.

実施例3は、組成式Li((1/2)x−(2/3)y)Sr(1−(3/4)x)Al((1/4)x−(1/3)y)Ta(x−(7/3)y)(1−z)Nb(x−(7/3)y)zZr((7/3)y+1−x)においてx=0.75、y=0.01、z=0.3となるように化学量論比で原料を秤量したこと以外は実施例2と同様に実施した。 Example 3, the composition formula Li ((1/2) x- (2/3 ) y) Sr (1- (3/4) x) Al y □ ((1/4) x- (1/3) y) Ta (x- (7/3) y) (1-z) Nb (x- (7/3) y) z Zr ((7/3) x = 0.75 in the y + 1-x) O 3 , The operation was performed in the same manner as in Example 2 except that the raw materials were weighed at a stoichiometric ratio so that y = 0.01 and z = 0.3.

実施例4は、組成式Li((1/2)x−(2/3)y)Sr(1−(3/4)x)Al((1/4)x−(1/3)y)Ta(x−(7/3)y)(1−z)Nb(x−(7/3)y)zZr((7/3)y+1−x)においてx=0.75、y=0.01、z=0.4となるように化学量論比で原料を秤量したこと以外は実施例2と同様に実施した。 Example 4 composition formula Li ((1/2) x- (2/3 ) y) Sr (1- (3/4) x) Al y □ ((1/4) x- (1/3) y) Ta (x- (7/3) y) (1-z) Nb (x- (7/3) y) z Zr ((7/3) x = 0.75 in the y + 1-x) O 3 , The operation was performed in the same manner as in Example 2 except that the raw materials were weighed at a stoichiometric ratio so that y = 0.01 and z = 0.4.

実施例5は、組成式Li((1/2)x−(2/3)y)Sr(1−(3/4)x)Al((1/4)x−(1/3)y)Ta(x−(7/3)y)(1−z)Nb(x−(7/3)y)zZr((7/3)y+1−x)においてx=0.75、y=0.01、z=0.6となるように化学量論比で原料を秤量し、仮焼温度を1000℃、本焼成温度を1250℃としたこと以外は実施例2と同様に実施した。 Example 5, the composition formula Li ((1/2) x- (2/3 ) y) Sr (1- (3/4) x) Al y □ ((1/4) x- (1/3) y) Ta (x- (7/3) y) (1-z) Nb (x- (7/3) y) z Zr ((7/3) x = 0.75 in the y + 1-x) O 3 , The raw materials were weighed at stoichiometric ratios so that y = 0.01 and z = 0.6, and the same procedure as in Example 2 was performed except that the calcination temperature was 1000 ° C. and the main calcination temperature was 1250 ° C. did.

実施例6は、組成式Li((1/2)x−(2/3)y)Sr(1−(3/4)x)Al((1/4)x−(1/3)y)Ta(x−(7/3)y)(1−z)Nb(x−(7/3)y)zZr((7/3)y+1−x)においてx=0.75、y=0.01、z=0.8となるように化学量論比で原料を秤量したこと以外は実施例5と同様に実施した。 Example 6 composition formula Li ((1/2) x- (2/3 ) y) Sr (1- (3/4) x) Al y □ ((1/4) x- (1/3) y) Ta (x- (7/3) y) (1-z) Nb (x- (7/3) y) z Zr ((7/3) x = 0.75 in the y + 1-x) O 3 , Example 5 was carried out in the same manner as in Example 5, except that the raw materials were weighed at a stoichiometric ratio so that y = 0.01 and z = 0.8.

実施例7は、組成式Li((1/2)x−(2/3)y)Sr(1−(3/4)x)Al((1/4)x−(1/3)y)Ta(x−(7/3)y)(1−z)Nb(x−(7/3)y)zZr((7/3)y+1−x)においてx=0.75、y=0.01、z=1となるように化学量論比で原料を秤量したこと以外は実施例5と同様に実施した。 Example 7, the composition formula Li ((1/2) x- (2/3 ) y) Sr (1- (3/4) x) Al y □ ((1/4) x- (1/3) y) Ta (x- (7/3) y) (1-z) Nb (x- (7/3) y) z Zr ((7/3) x = 0.75 in the y + 1-x) O 3 , Example 5 was carried out in the same manner as in Example 5, except that the raw materials were weighed at a stoichiometric ratio so that y = 0.01 and z = 1.

実施例2〜7において、Nb比率によらず置換元素Alでy=0.01とすることによって、収縮率が15%を超え、緻密性を改善できることが分かった。また、導電率も1×10−5S・cm−1を超え、導電率も改善できることが分かった。特に、zの範囲が0.2≦z≦0.4の場合では導電率が1×10−4S・cm−1を超え、特に優れることが分かった。 In Examples 2 to 7, it was found that by setting y = 0.01 with the replacement element Al regardless of the Nb ratio, the shrinkage ratio exceeded 15%, and the denseness could be improved. In addition, the conductivity also exceeded 1 × 10 −5 S · cm −1, and it was found that the conductivity could be improved. In particular, when the range of z was 0.2 ≦ z ≦ 0.4, the conductivity exceeded 1 × 10 −4 S · cm −1 , which proved to be particularly excellent.

図6には実施例3の焼結体の断面SEM像を示すが、空隙(黒色部)がほとんどなく、緻密な焼結体となっていることが分かった。   FIG. 6 shows a cross-sectional SEM image of the sintered body of Example 3, and it was found that there was almost no void (black portion) and the sintered body was dense.

以上から、置換元素Alで0.005<y<0.02の場合に緻密性及び導電率が改善できることが示された。   From the above, it was shown that when the substitution element Al satisfies 0.005 <y <0.02, the denseness and the electrical conductivity can be improved.

また、表1には記載していないが、実施例8として、仮焼工程における仮焼温度を1300℃とし、酢酸ブチルを溶媒として仮焼粉を40時間ボールミル粉砕したこと以外には実施例1と同様に実施した。この結果、収縮率20.6%、相対密度92%であり、導電率は3.11×10−4S・cm−1と、実施例1より高かった。 Although not described in Table 1, as Example 8, except that the calcining temperature in the calcining step was 1300 ° C. and the calcined powder was ball-milled for 40 hours using butyl acetate as a solvent. Was performed in the same manner as described above. As a result, the shrinkage was 20.6%, the relative density was 92%, and the conductivity was 3.11 × 10 −4 S · cm −1 , which was higher than that of Example 1.

このことから、仮焼温度を1300℃とすることで導電率が改善することが示された。図2に示したように、実施例のように仮焼温度が1100℃の仮焼粉にはペロブスカイト相以外にも結晶相が析出している。一方で、図3に示したような仮焼温度が1300℃の仮焼粉はペロブスカイト相単相である。すなわち、仮焼粉がペロブスカイト相の単一相となることで、焼結体の導電率が改善することが示された。   This indicated that the conductivity was improved by setting the calcination temperature to 1300 ° C. As shown in FIG. 2, a crystal phase other than the perovskite phase is precipitated in the calcined powder having a calcining temperature of 1100 ° C. as in the example. On the other hand, the calcined powder having a calcining temperature of 1300 ° C. as shown in FIG. 3 is a single perovskite phase. That is, it was shown that the conductivity of the sintered body was improved when the calcined powder became a single perovskite phase.

これまで説明した実施例について、組成式を用いずに組成比を記載するため、金属元素の物質量の比率に着目し、原料における物質量比率(mol%)範囲の決め方について、以下に説明する。   In the embodiments described so far, the composition ratio is described without using the composition formula. Therefore, a method of determining the range of the material amount ratio (mol%) in the raw material will be described below, focusing on the ratio of the material amount of the metal element. .

ここで、物質量の比率として、原料全体に含まれる金属元素の物質量の合計を100mol%としており、ペロブスカイト型の結晶構造を維持できていれば、各金属元素の比率のずれを許容できる。本発明の目指すペロブスカイト型イオン伝導性酸化物は、Li、Sr、Ta、Zr、およびAl元素を含み、前述の組成式(1)で表された組成比となる様に用いる素原料の比率を調整している。ここでさらにNb元素などを加えてもよい。用いた原料や工程については、これまで説明した通り、秤量した原料を混合し反応させてペロブスカイト型の結晶構造を含むイオン伝導性酸化物を得たことに変わりはない。この時反応はペロブスカイト型の結晶構造を含むイオン伝導性酸化物を得られれば、仮焼後の粉末でも、焼結後の焼結体でも、良い。   Here, as the ratio of the substance amounts, the total of the substance amounts of the metal elements contained in the entire raw material is set to 100 mol%, and if the perovskite-type crystal structure can be maintained, the deviation of the ratio of each metal element can be tolerated. The perovskite-type ion conductive oxide aimed at by the present invention contains Li, Sr, Ta, Zr, and Al elements, and the ratio of the raw materials used so as to have the composition ratio represented by the composition formula (1) described above. I am adjusting. Here, an Nb element or the like may be further added. As described above, the used raw materials and processes are the same as those described above in that the weighed raw materials are mixed and reacted to obtain an ion-conductive oxide having a perovskite crystal structure. At this time, as long as an ion conductive oxide having a perovskite-type crystal structure can be obtained, a powder after calcination or a sintered body after sintering may be used.

以上に説明したイオン伝導性酸化物を用いて電池を作成することで、電解質部分の緻密性が改善され、イオン伝導度や機械強度の向上が期待される電池を提供できる。

By preparing a battery using the above-described ion-conductive oxide, it is possible to provide a battery in which the denseness of the electrolyte portion is improved and the ion conductivity and mechanical strength are expected to be improved.

Claims (9)

Li、Sr及びZr元素を含むペロブスカイト型イオン伝導性酸化物において、
少なくともAl元素を含み、
組成式(1)で表され、□は原子空孔であり、0.65≦x≦0.75、0.005<y<0.02、0≦z≦1であることを特徴とするイオン伝導性酸化物。

Li((1/2)x−(2/3)y)Sr(1−(3/4)x)Al((1/4)x−(1/3)y)Ta(x−(7/3)y)(1−z)Nb(x−(7/3)y)zZr((7/3)y+1−x)・・・(1)
In a perovskite-type ion-conductive oxide containing Li, Sr and Zr elements,
At least containing Al element,
An ion represented by the composition formula (1), wherein □ is an atomic vacancy, and 0.65 ≦ x ≦ 0.75, 0.005 <y <0.02, and 0 ≦ z ≦ 1. Conductive oxide.

Li ((1/2) x- (2/3 ) y) Sr (1- (3/4) x) Al y □ ((1/4) x- (1/3) y) Ta (x- ( 7/3) y) (1-z ) Nb (x- (7/3) y) z Zr ((7/3) y + 1-x) O 3 ··· (1)
前記zの範囲が0.2≦z≦0.4であることを特徴とする請求項1に記載のイオン伝導性酸化物。   The ion conductive oxide according to claim 1, wherein the range of z is 0.2 ≦ z ≦ 0.4. 請求項1または請求項2に記載のイオン伝導性酸化物を用いた電池。   A battery using the ion-conductive oxide according to claim 1 or 2. 組成式(1)に含まれる金属元素を含む原料を、組成式(1)に基づき秤量する工程と、
前記原料を混合し、混合粉を得る工程と、
前記混合粉を仮焼し、仮焼粉を得る工程と、
前記仮焼粉を成形し、成形体を得る工程と
前記成形体を本焼成する工程と、
を含み、前記組成式(1)において、□は原子空孔であり、0.65≦x≦0.75、0.005<y<0.02、0≦z≦1であることを特徴とするイオン伝導性酸化物の製造方法。

Li((1/2)x−(2/3)y)Sr(1−(3/4)x)Al((1/4)x−(1/3)y)Ta(x−(7/3)y)(1−z)Nb(x−(7/3)y)zZr((7/3)y+1−x)・・・(1)
A step of weighing the raw material containing the metal element contained in the composition formula (1) based on the composition formula (1);
Mixing the raw materials to obtain a mixed powder;
Calcining the mixed powder to obtain a calcined powder,
Molding the calcined powder to obtain a molded body; and main firing the molded body;
Wherein in the composition formula (1), □ is an atomic vacancy, and 0.65 ≦ x ≦ 0.75, 0.005 <y <0.02, and 0 ≦ z ≦ 1. Of producing an ion conductive oxide.

Li ((1/2) x- (2/3 ) y) Sr (1- (3/4) x) Al y □ ((1/4) x- (1/3) y) Ta (x- ( 7/3) y) (1-z ) Nb (x- (7/3) y) z Zr ((7/3) y + 1-x) O 3 ··· (1)
前記混合する工程は、有機溶媒を用いた湿式混合を行うことを特徴とする請求項4に記載のイオン伝導性酸化物の製造方法。   The method for producing an ion-conductive oxide according to claim 4, wherein the mixing is performed by wet mixing using an organic solvent. 前記仮焼する工程は、保持温度800℃以上、1300℃以下で行うことを特徴とする請求項4または請求項5に記載のイオン伝導性酸化物の製造方法。   The method for producing an ion-conductive oxide according to claim 4, wherein the calcining step is performed at a holding temperature of 800 ° C. or more and 1300 ° C. or less. 原料を混合した後の全体に含まれる金属元素の物質量の合計を100mol%として、
Li元素を16.9mol%より多く20.5mol%より少なく、
Sr元素を24.0mol%より多く27.9mol%より少なく、
Ta元素を0mol%以上40.7mol%より少なく、
Zr元素を14.4mol%より多く21.5mol%より少なく、
Al元素を0.3mol%より多く1.1mol%より少なく、
秤量した原料を混合し反応させてペロブスカイト型の結晶構造を含むイオン伝導性酸化物を得る工程、を含むイオン伝導性酸化物の製造方法。
Assuming that the total amount of metal elements contained in the whole after mixing the raw materials is 100 mol%,
More than 16.9 mol% and less than 20.5 mol% Li element;
The Sr element is more than 24.0 mol% and less than 27.9 mol%,
0 to less than 40.7 mol% of Ta element,
More than 14.4 mol% and less than 21.5 mol% Zr element,
More than 0.3 mol% and less than 1.1 mol% of Al element,
Mixing the weighed raw materials and reacting to obtain an ion-conductive oxide having a perovskite-type crystal structure.
前記原料にさらに
Nb元素を40.7mol%より少なく、含むことを特徴とする請求項7に記載のイオン伝導性酸化物の製造方法。
The method according to claim 7, wherein the raw material further contains less than 40.7 mol% of an Nb element.
前記原料は
Ta元素を19.6mol%より多く32.6mol%より少なく、
Nb元素を6.5mol%より多く16.3mol%より少なく、含むことを特徴とする請求項8に記載のイオン伝導性酸化物。

The raw material contains more than 19.6 mol% of Ta element and less than 32.6 mol%,
9. The ion conductive oxide according to claim 8, comprising more than 6.5 mol% and less than 16.3 mol% of Nb element.

JP2019160139A 2018-09-12 2019-09-03 Ion-conducting oxide, battery using the same, and method for producing ion-conducting oxide Active JP7267154B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018170440 2018-09-12
JP2018170440 2018-09-12

Publications (2)

Publication Number Publication Date
JP2020045273A true JP2020045273A (en) 2020-03-26
JP7267154B2 JP7267154B2 (en) 2023-05-01

Family

ID=69900698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019160139A Active JP7267154B2 (en) 2018-09-12 2019-09-03 Ion-conducting oxide, battery using the same, and method for producing ion-conducting oxide

Country Status (1)

Country Link
JP (1) JP7267154B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136190A1 (en) * 2022-01-11 2023-07-20 三井金属鉱業株式会社 Oxide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05319926A (en) * 1992-05-18 1993-12-03 Toyota Motor Corp Production of piezoelectric porcelain
JP2013157254A (en) * 2012-01-31 2013-08-15 Mitsubishi Heavy Ind Ltd Solid oxide fuel cell stack
JP2016169145A (en) * 2015-03-09 2016-09-23 株式会社豊田中央研究所 Perovskite type ion conductive oxide, complex and lithium secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05319926A (en) * 1992-05-18 1993-12-03 Toyota Motor Corp Production of piezoelectric porcelain
JP2013157254A (en) * 2012-01-31 2013-08-15 Mitsubishi Heavy Ind Ltd Solid oxide fuel cell stack
JP2016169145A (en) * 2015-03-09 2016-09-23 株式会社豊田中央研究所 Perovskite type ion conductive oxide, complex and lithium secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Stable lithium-ion conducting perovskite lithium-strontium-tantalum-zirconium-oxide system", SOLID STATE IONICS, JPN7023001444, 2004, ISSN: 0005033474 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136190A1 (en) * 2022-01-11 2023-07-20 三井金属鉱業株式会社 Oxide

Also Published As

Publication number Publication date
JP7267154B2 (en) 2023-05-01

Similar Documents

Publication Publication Date Title
Yi et al. Flame made nanoparticles permit processing of dense, flexible, Li+ conducting ceramic electrolyte thin films of cubic-Li 7 La 3 Zr 2 O 12 (c-LLZO)
JP7137617B2 (en) Lithium-garnet solid electrolyte composites, tape products, and methods therefor
EP3642899B1 (en) Lithium-stuffed garnet electrolytes with secondary phase inclusions
KR101592752B1 (en) Garnet powder, manufacturing method thereof, solid electrolyte sheet using hot-press and manufacturing method thereof
US20180375149A1 (en) Lithium-stuffed garnet electrolytes with secondary phase inclusions
JP5803700B2 (en) Inorganic all-solid secondary battery
US20210028444A1 (en) Thin film ceramics that offer electric and electrochemical properties using nanopowders of controlled compositions
JP2014096350A (en) Ceramic positive electrode-solid electrolyte assembly
KR101808387B1 (en) Ceria electrolyte for low temperature sintering and solid oxide fuel cells using the same
JP3980927B2 (en) Solid electrolyte based on ceria
CN109650873B (en) Ca-W mixed doped Bi2O3Method for preparing solid electrolyte
JP4360110B2 (en) Lanthanum gallate sintered body and solid oxide fuel cell using the same as a solid electrolyte
JP2020129433A (en) Solid electrolytic member, solid oxide type fuel battery, water electrolyzer, hydrogen pump and manufacturing method of solid electrolytic member
JP7267154B2 (en) Ion-conducting oxide, battery using the same, and method for producing ion-conducting oxide
JP6819687B2 (en) Solid electrolyte composition, solid electrolyte green sheet, method for producing solid electrolyte green sheet, solid electrolyte sheet, method for producing solid electrolyte sheet, and all-solid-state battery.
Unti et al. Synthesis and electrical characterization of Ba5Nb4O15 and Ba5Nb3. 9M0. 1O (15-δ)(M= Ti, Zr) hexagonal perovskites
JP7267155B2 (en) Ion-conducting oxide, battery using the same, and method for producing ion-conducting oxide
JP7267156B2 (en) Ion-conducting oxide and method for producing the same
JP7171487B2 (en) Method for producing perovskite-type ion-conducting oxide
JP7319844B2 (en) Ion-conducting oxide and method for producing the same
JP4038628B2 (en) Oxide ion conductor, method for producing the same, and solid oxide fuel cell
KR101840094B1 (en) Ceria electrolyte for low temperature sintering and solid oxide fuel cells using the same
JP7167145B2 (en) Proton conductor and electrochemical device using it
US20220388856A1 (en) Cold sintering process of using sodium beta alumina
Avila A Study on Flash Sintering of Films and Phase Evolution during Reactive Flash Sintering of Multicomponent Oxides

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210617

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20211221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230419

R150 Certificate of patent or registration of utility model

Ref document number: 7267154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150