JP5803700B2 - Inorganic all-solid secondary battery - Google Patents

Inorganic all-solid secondary battery Download PDF

Info

Publication number
JP5803700B2
JP5803700B2 JP2012016825A JP2012016825A JP5803700B2 JP 5803700 B2 JP5803700 B2 JP 5803700B2 JP 2012016825 A JP2012016825 A JP 2012016825A JP 2012016825 A JP2012016825 A JP 2012016825A JP 5803700 B2 JP5803700 B2 JP 5803700B2
Authority
JP
Japan
Prior art keywords
powder
lagp
solid
inorganic
green sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012016825A
Other languages
Japanese (ja)
Other versions
JP2013157195A (en
Inventor
康宏 廣部
康宏 廣部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2012016825A priority Critical patent/JP5803700B2/en
Publication of JP2013157195A publication Critical patent/JP2013157195A/en
Application granted granted Critical
Publication of JP5803700B2 publication Critical patent/JP5803700B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明はリチウムイオンによる無機全固体二次電池に関する。   The present invention relates to an inorganic all-solid secondary battery using lithium ions.

近年、パーソナルコンピュータや携帯電話といった携帯用情報機器の開発に伴い二次電池の需要が急速に増大している。従来このような二次電池には、イオン伝導媒体(電解質)として、可燃性の有機溶媒を含む液体電解質(有機電解液)や、高分子に有機電解液が含浸されたゲルポリマー電解質が主に使用されている。このような二次電池は電解液の漏液等の問題を有している。   In recent years, with the development of portable information devices such as personal computers and mobile phones, the demand for secondary batteries has increased rapidly. Conventionally, in such secondary batteries, as an ionic conduction medium (electrolyte), a liquid electrolyte (organic electrolyte) containing a flammable organic solvent or a gel polymer electrolyte in which a polymer is impregnated with an organic electrolyte is mainly used. It is used. Such secondary batteries have problems such as electrolyte leakage.

この問題に対し、電解質として無機固体電解質を使用するとともに、その他の要素も全て固体で構成した無機全固体二次電池の開発が進められている。無機全固体二次電池は漏液の虞がないため、極めて優れた安全性を有する。なかでも、無機全固体リチウムイオン二次電池は、容易に高エネルギー密度を実現する事が可能な二次電池として研究が行なわれている。従来の無機全固体二次電池は、以下の手順で製造が試みられている(特許文献1及び2、参照)。   In response to this problem, an inorganic all-solid secondary battery in which an inorganic solid electrolyte is used as an electrolyte and all other elements are made of solid is being developed. An inorganic all-solid secondary battery has extremely high safety because there is no risk of leakage. In particular, inorganic all-solid-state lithium ion secondary batteries are being researched as secondary batteries that can easily achieve a high energy density. A conventional inorganic all solid state secondary battery has been manufactured by the following procedure (see Patent Documents 1 and 2).

まず、無機固体電解質の粉末と有機バインダとを含む固体電解質グリーンシートと、正極又は負極の活物質の粉末と有機バインダとを含む電極グリーンシートと、を作成する。次に、固体電解質グリーンシートを正極と負極との電極グリーンシートで挟むように積層し、これを焼成する。添加された有機バインダは焼成時に揮発しうる。焼成後の正極層及び負極層に各極性の集電体層を形成して無機全固体二次電池が得られる。   First, a solid electrolyte green sheet containing an inorganic solid electrolyte powder and an organic binder, and an electrode green sheet containing a positive or negative active material powder and an organic binder are prepared. Next, a solid electrolyte green sheet is laminated so as to be sandwiched between electrode positive and negative electrode green sheets, and this is fired. The added organic binder can volatilize during firing. A current collector layer of each polarity is formed on the fired positive electrode layer and negative electrode layer to obtain an inorganic all-solid secondary battery.

しかし、各グリーンシートは、焼成時に高温雰囲気に曝されて収縮するところ、一般に電極グリーンシート及び固体電解質グリーンシートの収縮率には大きな差異がある。このため焼成後の積層体は反り、剥がれ、クラック等の不具合が発生するという問題がある。   However, when each green sheet shrinks when exposed to a high temperature atmosphere during firing, there is generally a large difference in shrinkage between the electrode green sheet and the solid electrolyte green sheet. For this reason, the laminated body after baking has the problem that defects, such as curvature, peeling, and a crack, generate | occur | produce.

この問題に対し、積層体の焼成温度よりも高温に融点をもつ無機物質粉末を用意し、この粉末を含む層を積層体の外側に配置して、これにより焼成時の収縮を抑制する技術が提案されている(特許文献3、参照)。この電池の製造法により積層体の焼結における各部材の収縮率の差異による不具合は緩和できるとされる。しかし、実際には積層体の収縮は等法的な現象であるため、積層体を緻密化して機械的に強化するために必要な収縮現象も抑制される。その結果、焼成時に充分な緻密化が困難で、無機全固体二次電池において実用上十分な緻密度と抗折強度が得られない傾向がある。そのため無機全固体二次電池の反り、剥がれ、クラック等の不具合を充分に解決できないという問題があり、実用上充分な無機全固体二次電池が実現されているとはいえない。   To solve this problem, there is a technology that prepares an inorganic substance powder having a melting point higher than the firing temperature of the laminate, and arranges a layer containing this powder outside the laminate, thereby suppressing shrinkage during firing. It has been proposed (see Patent Document 3). It is said that this battery manufacturing method can alleviate problems caused by differences in the shrinkage rates of the members in the sintering of the laminate. However, since the shrinkage of the laminate is actually an isometric phenomenon, the shrinkage phenomenon necessary for densifying the laminate and mechanically strengthening the laminate is also suppressed. As a result, sufficient densification is difficult at the time of firing, and there is a tendency that practically sufficient density and bending strength cannot be obtained in an inorganic all-solid secondary battery. For this reason, there is a problem that problems such as warping, peeling and cracking of the inorganic all solid state secondary battery cannot be sufficiently solved, and it cannot be said that a practically sufficient inorganic all solid state secondary battery has been realized.

特開2007−5279号公報JP 2007-5279 A 特開2007−227362号公報JP 2007-227362 A 特開2009−181882号公報JP 2009-181882 A

本発明は、このような問題に鑑みてなされたものであり、実用上十分な緻密度と抗折強度を同時に有する無機全固体二次電池の構造を提案する。ここで、無機全固体二次電池は、実用上必要な特性として、体積容量の観点から85%以上の緻密度を有し、機械的特性の観点から200MPa以上の抗折強度が必要と考えられている。本発明は、これら特性を達成することによりクラックや剥離が生じない構造を有する無機全固体二次電池の提供を目的とする。   The present invention has been made in view of such problems, and proposes a structure of an inorganic all-solid secondary battery having a practically sufficient density and bending strength at the same time. Here, it is considered that the inorganic all-solid secondary battery has a density of 85% or more from the viewpoint of volume capacity and a bending strength of 200 MPa or more from the viewpoint of mechanical characteristics, as practically necessary characteristics. ing. An object of the present invention is to provide an inorganic all solid state secondary battery having a structure in which cracks and peeling do not occur by achieving these characteristics.

課題を解決する為に、本発明に係る無機全固体二次電池の構造は、
(1)リチウムイオン伝導性の結晶化ガラス材料であるLi1+xAlxGe2−x(PO(式中、xは0≦x≦1である。以下、この結晶化ガラス材料を「LAGP結晶化ガラス」という。)と、リチウムイオン伝導性の無機固体電解質とを含有するコンポジットである固体電解質層と、
(2)LAGP結晶化ガラスと、正極活物質とを含有するコンポジットである正極層と、
(3)LAGP結晶化ガラスと、負極活物質とを含有するコンポジットである負極層と、
を含む積層体を電池素体に含むものであって、固体電解質層、正極層ならびに負極層のそれぞれが、全て10質量%以上95質量%以下のLAGP結晶化ガラスを含有する構造とする。ここで、「リチウムイオン伝導性の無機固体電解質」とは、リチウムイオン伝導度が25℃において1×10−8Scm−1以上である無機固体材料をいう。
In order to solve the problem, the structure of the inorganic all-solid secondary battery according to the present invention is as follows.
(1) Li 1 + x AlxGe 2-x (PO 4 ) 3 (wherein x is 0 ≦ x ≦ 1, which is a lithium ion conductive crystallized glass material. Hereinafter, this crystallized glass material is referred to as “LAGP crystal”. A solid electrolyte layer that is a composite containing a lithium ion conductive inorganic solid electrolyte,
(2) a positive electrode layer that is a composite containing LAGP crystallized glass and a positive electrode active material;
(3) a negative electrode layer that is a composite containing LAGP crystallized glass and a negative electrode active material;
In the battery element body, each of the solid electrolyte layer, the positive electrode layer, and the negative electrode layer has a structure containing 10 mass% or more and 95 mass% or less of LAGP crystallized glass. Here, the “lithium ion conductive inorganic solid electrolyte” refers to an inorganic solid material having a lithium ion conductivity of 1 × 10 −8 Scm −1 or more at 25 ° C.

無機全固体二次電池を本発明の構造とすることにより、従来の無機全固体二次電池において実現が困難であった、実用上十分な85体積%以上の緻密度と200MPa以上の抗折強度とを同時に実現することが可能となる。LAGP結晶化ガラスは無機全固体二次電池における各層の空隙に充填されて緻密度を向上させる。LAGP結晶化ガラスが10質量%以上95質量%以下添加された場合、無機全固体二次電池について85%以上の緻密度を実現することができる。一方、LAGP結晶化ガラスは微細な結晶粒界/結晶のすべり面を多数有するため高強度となり、上記の範囲でLAGP結晶化ガラスが添加された無機全固体二次電池は200MPa以上の抗折強度を得ることができる。なお、LAGP結晶化ガラスは粒界を含めて高いリチウムイオン伝導性を有するため、これらの効果は無機全固体二次電池の充放電特性を損なうことはない。   By making the inorganic all-solid secondary battery the structure of the present invention, it was difficult to realize in a conventional inorganic all-solid secondary battery, a practically sufficient density of 85% by volume or more and a bending strength of 200 MPa or more. Can be realized simultaneously. The LAGP crystallized glass is filled in the voids of each layer in the inorganic all-solid secondary battery to improve the density. When LAGP crystallized glass is added in an amount of 10% by mass or more and 95% by mass or less, a density of 85% or more can be realized for the inorganic all-solid secondary battery. On the other hand, LAGP crystallized glass has a high strength because it has a large number of fine grain boundaries / slip planes, and the all-solid-state secondary battery to which LAGP crystallized glass is added in the above range has a bending strength of 200 MPa or more. Can be obtained. In addition, since LAGP crystallized glass has high lithium ion conductivity including a grain boundary, these effects do not impair the charge / discharge characteristics of the inorganic all-solid secondary battery.

本発明により実用上十分な緻密度と抗折強度とを得ることで、無機全固体二次電池は、焼成後の積層体の反り、剥がれ、クラック等の不具合の発生を防止する効果を同時に実現する事ができる。   By obtaining a practically sufficient density and bending strength according to the present invention, the inorganic all-solid secondary battery simultaneously achieves the effect of preventing the occurrence of defects such as warpage, peeling, and cracking of the laminate after firing. I can do it.

図1は本発明の一実施形態に係る無機全固体二次電池の構造を概略的に示す図である。FIG. 1 is a diagram schematically showing the structure of an inorganic all solid state secondary battery according to an embodiment of the present invention.

以下、本発明の一実施形態について図面を参照しながら説明する。ただし、以下に説明する実施形態は本発明を実施する態様の一例に過ぎず、本発明の技術的思想が以下の実施形態に限定されるものではない。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. However, the embodiment described below is merely an example of an embodiment for carrying out the present invention, and the technical idea of the present invention is not limited to the following embodiment.

(無機全固体二次電池)
図1は、本発明の好適な一実施形態である無機全固体二次電池の模式断面図である。本発明の一実施形態に係る無機全固体二次電池は、
(1)LAGP結晶化ガラス11と、リチウムイオン伝導性の無機固体電解質12であるセラミック固体とからなるコンポジットである固体電解質層1と、
(2)LAGP結晶化ガラス11と、正極活物質21であるセラミック固体とを含有するコンポジットである正極層2と、
(3)LAGP結晶化ガラス11と、負極活物質31であるセラミック固体とを含有するコンポジットである負極層3と、
を積層して形成した無機全固体二次電池である。当該無機全固体二次電池は、板状の固体電解質層1と、この固体電解質層の一方の面に焼成一体化して形成される正極層2と、固体電解質層1の他の面に焼成一体化して形成される負極層3と、正極層2に電気的に接続された第1集電体層4と、負極層3に電気的に接続された第2集電体層5とを有することが好ましい。さらに、電気を外部へ出力する為に集電体層4、5には、リード7、8を設けることが好ましい。
(Inorganic all-solid secondary battery)
FIG. 1 is a schematic cross-sectional view of an inorganic all solid state secondary battery which is a preferred embodiment of the present invention. An inorganic all solid state secondary battery according to an embodiment of the present invention,
(1) Solid electrolyte layer 1 which is a composite composed of LAGP crystallized glass 11 and a ceramic solid which is a lithium ion conductive inorganic solid electrolyte 12;
(2) positive electrode layer 2 that is a composite containing LAGP crystallized glass 11 and ceramic solid that is positive electrode active material 21;
(3) negative electrode layer 3 which is a composite containing LAGP crystallized glass 11 and a ceramic solid which is negative electrode active material 31;
It is an inorganic all solid secondary battery formed by stacking. The inorganic all-solid secondary battery includes a plate-shaped solid electrolyte layer 1, a positive electrode layer 2 formed by firing and integration on one surface of the solid electrolyte layer, and a fired integration on the other surface of the solid electrolyte layer 1. The first current collector layer 4 electrically connected to the positive electrode layer 2, and the second current collector layer 5 electrically connected to the negative electrode layer 3. Is preferred. Furthermore, it is preferable to provide leads 7 and 8 on the current collector layers 4 and 5 in order to output electricity to the outside.

実施形態に係る「コンポジット」とは、例えば、LAGP結晶化ガラスとセラミック固体の少なくとも2つ相を含む混合構造を示す。また、或いは、としてLAGP非晶質ガラス原料由来の相とセラミック固体原料由来の相との不均一な構造を示す。   The “composite” according to the embodiment indicates, for example, a mixed structure including at least two phases of a LAGP crystallized glass and a ceramic solid. Alternatively, or as a non-uniform structure of a phase derived from the LAGP amorphous glass raw material and a phase derived from the ceramic solid raw material.

実施形態に係る「結晶化ガラス」とは、本発明の一実施形態に係る焼成条件下で非晶質ガラスの一部又は全部が結晶化したものである。結晶化した材料(ガラスセラミックス)中の結晶量(結晶化度)が100質量%のものも包含する。   The “crystallized glass” according to the embodiment is obtained by crystallizing part or all of the amorphous glass under the firing conditions according to one embodiment of the present invention. A crystal material (glass ceramic) having a crystal amount (crystallinity) of 100% by mass is also included.

実施形態に係るセラミック固体とは、「結晶化ガラス」の焼結温度よりも高い焼結温度を持つ材料であり、また本発明の一実施形態に係る焼成条件下では実質的に焼結をしない材料である。これには、上記の「リチウムイオン伝導性の無機固体電解質12であるセラミック固体」、「正極活物質21であるセラミック固体」、「負極活物質31であるセラミック固体」のほか、必要に応じて添加される導電助剤(例えば、炭素粉末、アルミニウムなどの金属粉末、SnOなどの導電性酸化物粉末、等。)やその他のフィラー(例えば、アルミナ粉末、等。)を含む。 The ceramic solid according to the embodiment is a material having a sintering temperature higher than the sintering temperature of “crystallized glass”, and does not substantially sinter under the firing condition according to an embodiment of the present invention. Material. In addition to the above-mentioned “ceramic solid that is the lithium ion conductive inorganic solid electrolyte 12”, “ceramic solid that is the positive electrode active material 21”, and “ceramic solid that is the negative electrode active material 31”, as necessary It contains a conductive auxiliary agent (for example, carbon powder, metal powder such as aluminum, conductive oxide powder such as SnO 2 , etc.) and other fillers (eg alumina powder, etc.).

実施形態に係る固体電解質層1とは、リチウムイオン伝導性の無機固体電解質LAGP結晶化ガラス11と、リチウムイオン伝導性の無機固体電解質12であるセラミック固体とからなるコンポジットであり、LAGP結晶化ガラス11を10質量%以上95質量%以下含有する。   The solid electrolyte layer 1 according to the embodiment is a composite composed of a lithium ion conductive inorganic solid electrolyte LAGP crystallized glass 11 and a ceramic solid that is a lithium ion conductive inorganic solid electrolyte 12, and LAGP crystallized glass. 11 is contained in an amount of 10% by mass to 95% by mass.

固体電解質層1の厚みには、特に制限はないが、好ましくは5μm〜1mm、更に好ましくは5μm〜100μmである。   Although there is no restriction | limiting in particular in the thickness of the solid electrolyte layer 1, Preferably they are 5 micrometers-1 mm, More preferably, they are 5 micrometers-100 micrometers.

固体電解質12の種類については特に制限はなく、従来から公知の固体電解質を用いることができる。例えば、Li7−xLa(Zr2−x,A)O12(式中AはTi、Al、Si、Ge、V、Yからなる群より選ばれた1種類以上の元素、xは0<x≦0.3)、La2/3−xLi3xTiO(式中、xは0.04≦x≦0.15)、等を挙げる事ができる。更にそのような材料の混合物を使用することもできる。 There is no restriction | limiting in particular about the kind of solid electrolyte 12, A conventionally well-known solid electrolyte can be used. For example, Li 7-x La 3 (Zr 2-x , A x ) O 12 (wherein A is one or more elements selected from the group consisting of Ti, Al, Si, Ge, V, and Y, x is 0 <x ≦ 0.3), La 2 / 3-x Li 3x TiO 3 (wherein x is 0.04 ≦ x ≦ 0.15), and the like. It is also possible to use mixtures of such materials.

実施形態に係る正極層2は、リチウムイオンを吸蔵及び放出する正極活物質21と、LAGP結晶化ガラス11と、導電助剤とを含有するコンポジットである。コンポジット中の導電助剤の混合比率は35質量%以下である事が好ましい。   The positive electrode layer 2 according to the embodiment is a composite containing a positive electrode active material 21 that occludes and releases lithium ions, LAGP crystallized glass 11, and a conductive additive. The mixing ratio of the conductive aid in the composite is preferably 35% by mass or less.

正極活物質21の種類には特に制限はなく、従来から公知の正極活物質を用いる事ができる。例えば可動イオンとしてリチウムを含むものを好適に用いる事ができ、LiVOPO、LiCoO、LiCoPO、LiNiO、LiMn、LiFePO、LixV(式中、0.28≦x≦0.76である)等を挙げる事ができる。特にLiVOPOは、原料粉末を適切に選択すれば結晶化ガラスとして得られるため、LAGP結晶化ガラス11との相溶性の点で好ましい。 There is no restriction | limiting in particular in the kind of positive electrode active material 21, A conventionally well-known positive electrode active material can be used. For example, those containing lithium as a mobile ion can be suitably used, and LiVOPO 4 , LiCoO 2 , LiCoPO 4 , LiNiO 2 , LiMn 2 O 4 , LiFePO 4 , LixV 2 O 5 (where 0.28 ≦ x ≦ 0.76) and the like. In particular, LiVOPO 4 is preferable in terms of compatibility with the LAGP crystallized glass 11 because it can be obtained as crystallized glass if the raw material powder is appropriately selected.

導電助剤の種類には特に制限はなく、従来から公知の電子伝導性材料を導電助剤に用いる事ができる。特に、リチウムを可動イオンとするものを好適に用いる事ができる。例えば、黒鉛、非晶質カーボン、NiO、TiO、SnO等を挙げる事ができる。 There is no restriction | limiting in particular in the kind of conductive support agent, A conventionally well-known electronic conductive material can be used for a conductive support agent. In particular, those using lithium as a movable ion can be preferably used. For example, graphite, amorphous carbon, NiO, TiO 2 , SnO 2 and the like can be mentioned.

正極層2の厚みには特に制限はないが、好ましくは5μm〜1mm、更に好ましくは5μm〜100μmである。   Although there is no restriction | limiting in particular in the thickness of the positive electrode layer 2, Preferably they are 5 micrometers-1 mm, More preferably, they are 5 micrometers-100 micrometers.

実施形態に係る負極層3とは、リチウムイオンを吸蔵及び放出する負極活物質31を含有し、その他、LAGP結晶化ガラス11と導電助剤の両方を含有するコンポジットである。またコンポジット中の導電助剤の混合比率は、35質量%以下である事が好ましい。   The negative electrode layer 3 according to the embodiment is a composite containing a negative electrode active material 31 that occludes and releases lithium ions, and also contains both the LAGP crystallized glass 11 and a conductive additive. Moreover, it is preferable that the mixture ratio of the conductive support agent in a composite is 35 mass% or less.

負極活物質31の種類には特に制限はなく、従来から公知のリチウムを可動イオンとする物質を好適に用いる事ができる。例えば、LiTi12、P−SnO系ガラス、SnO、TiO等を挙げる事ができる。 There is no restriction | limiting in particular in the kind of the negative electrode active material 31, The conventionally well-known substance which uses lithium as a movable ion can be used suitably. For example, can be mentioned Li 4 Ti 5 O 12, P 2 O 5 -SnO -based glass, a SnO 2, TiO 2 or the like.

負極層3の厚みには特に制限はないが、好ましくは5μm〜1mm、更に好ましくは5μm〜100μmである。   Although there is no restriction | limiting in particular in the thickness of the negative electrode layer 3, Preferably it is 5 micrometers-1 mm, More preferably, it is 5 micrometers-100 micrometers.

本発明の一実施形態に係る無機全固体二次電池の電池要素は、固体電解質層1、正極層2、負極層3それぞれについて作成したグリーンシートを出発部材とする。本実施形態における「グリーンシート」とは、薄板状に成形されたLAGP非晶質ガラス粉末とセラミック固体粉末とを含む未焼成体をいい、具体的にはLAGP非晶質ガラス粉末、セラミック固体粉末と、焼成時には揮発しうる有機バインダ、可塑剤、溶剤等との混合スラリーを薄板状に成形したものをいう。成形は、ドクターブレードやカレンダ法、スピンコートやディップコーティング等の塗布法、インクジェット、バブルジェット(登録商標)、及びオフセット等の印刷法、ダイコーター法、スプレー法等でおこなうことができる。ここで、「グリーンシート」には、グリーンシート又はグリーンシートの焼成体に混合スラリーが塗布されたものも包含される。   The battery element of the inorganic all-solid-state secondary battery according to an embodiment of the present invention uses a green sheet prepared for each of the solid electrolyte layer 1, the positive electrode layer 2, and the negative electrode layer 3 as a starting member. The “green sheet” in the present embodiment refers to an unfired body containing a LAGP amorphous glass powder and a ceramic solid powder formed into a thin plate shape, specifically, a LAGP amorphous glass powder and a ceramic solid powder. And a mixture slurry of an organic binder, a plasticizer, a solvent, and the like that can be volatilized during firing, into a thin plate shape. The molding can be performed by a doctor blade or calendar method, a coating method such as spin coating or dip coating, a printing method such as inkjet, bubble jet (registered trademark) and offset, a die coater method, or a spray method. Here, the “green sheet” includes a green sheet or a green sheet fired body coated with a mixed slurry.

乾燥後のグリーンシートに対する、LAGP非晶質ガラス粉末とセラミック固体粉末との含有量は、50質量%以上である事が好ましく、60質量%以上がより好ましい。これにより焼成後の空隙を低減し緻密度が85体積%以上で抗折強度が200MPa以上の緻密な焼成体を製造できる。   The content of the LAGP amorphous glass powder and the ceramic solid powder with respect to the dried green sheet is preferably 50% by mass or more, and more preferably 60% by mass or more. As a result, the voids after firing can be reduced, and a dense fired body having a density of 85% by volume or more and a bending strength of 200 MPa or more can be produced.

LAGP非晶質ガラス粉末の含有量は、得られた無機全固体二次電池の固体電解質層1と正極層2と負極層3で「セラミック固体粉末の質量+LAGP非晶質ガラス粉末の質量」に対して10質量%以上95質量%以下とする。このとき、乾燥後のグリーンシートにおける含有量として設計することにより、無機全固体二次電池の固体電解質層1、正極層2、負極層3の各層についてこの数値範囲とすることができる。無機全固体二次電池のLAGP結晶化ガラスが10質量%未満である場合、実用上十分な緻密度85体積%以上と抗折強度200MPa以上を得る事が困難となる。LAGP結晶化ガラスが95質量%を超える場合、緻密度が95体積%を超える事で積層体の反り等、焼成後の積層体の不具合の発生が顕著になる。なお、有機バインダ及び溶剤は焼成後に飛散するため、可塑剤は無視しうる程度に減少するため、LAGP非晶質ガラス粉末の含有量についてはこれらを無視することができる。したがって、LAGP非晶質ガラス粉末の含有量は「セラミック固体粉末の質量+LAGP非晶質ガラス粉末の質量」を基準に検討することができる。   The content of the LAGP amorphous glass powder is “mass of ceramic solid powder + mass of LAGP amorphous glass powder” in the solid electrolyte layer 1, the positive electrode layer 2, and the negative electrode layer 3 of the obtained inorganic all-solid secondary battery. On the other hand, it is 10 mass% or more and 95 mass% or less. At this time, it can be set as this numerical range about each layer of the solid electrolyte layer 1, the positive electrode layer 2, and the negative electrode layer 3 of an inorganic all-solid-state secondary battery by designing as content in the green sheet after drying. When the LAGP crystallized glass of the inorganic all-solid secondary battery is less than 10% by mass, it becomes difficult to obtain a practically sufficient density of 85% by volume or more and a bending strength of 200 MPa or more. When the LAGP crystallized glass exceeds 95% by mass, the occurrence of defects in the laminated body after firing, such as warpage of the laminated body, becomes remarkable due to the density exceeding 95% by volume. Since the organic binder and the solvent are scattered after firing, the plasticizer is reduced to a negligible level, so that the LAGP amorphous glass powder content can be ignored. Therefore, the content of the LAGP amorphous glass powder can be examined based on “mass of ceramic solid powder + mass of LAGP amorphous glass powder”.

LAGP結晶化ガラスの含有量は、30質量%以上80質量%以下であること、がより好ましい。この場合、セラミック固体の物性を選択する事によって抗折強度をより高める事ができる。   The content of the LAGP crystallized glass is more preferably 30% by mass or more and 80% by mass or less. In this case, the bending strength can be further increased by selecting the properties of the ceramic solid.

グリーンシートは、焼成時に均一に加熱されるように均一な厚みに成形する事が好ましい。そのためグリーンシートの厚みの変動は、グリーンシートの厚みの分布の平均値に対して−10%以上+10%以下であることが好ましい。また、原料をボールミルなどで十分に混合して、グリーンシートの組成を均一にすること、焼成前に一軸、等方加圧、あるいはロールプレス等で加圧して緻密化しておくことが好ましい。   The green sheet is preferably formed to have a uniform thickness so as to be uniformly heated during firing. Therefore, the variation in the thickness of the green sheet is preferably −10% or more and + 10% or less with respect to the average value of the thickness distribution of the green sheet. Further, it is preferable that the raw materials are sufficiently mixed by a ball mill or the like to make the composition of the green sheet uniform, and uniaxially, isotropically pressurized or pressed by a roll press before being densified before firing.

固体電解質層1のグリーンシートを、正極層2のグリーンシートと負極層3のグリーンシートとの間に配置してグリーンシート積層体を形成する。その後、グリーンシート積層体の外側(グリーンシート積層体の正極層2及び負極層3が固体電解質層1と面していない側)の面に、グリーンシート積層体の焼成温度では焼結しないシート状支持体を形成して焼成前積層体を得る。この焼成前積層体を、グリーンシート積層体の焼成温度以上でありシート状支持体の焼成温度よりも低い温度で焼成し積層体を得る。焼成後の積層体から焼結していないシート状支持体を除去して、本実施形態に係る無機全固体二次電池を得る。   The green sheet of the solid electrolyte layer 1 is disposed between the green sheet of the positive electrode layer 2 and the green sheet of the negative electrode layer 3 to form a green sheet laminate. Thereafter, on the outer surface of the green sheet laminate (the side where the positive electrode layer 2 and the negative electrode layer 3 of the green sheet laminate do not face the solid electrolyte layer 1), a sheet shape that does not sinter at the firing temperature of the green sheet laminate. A support is formed to obtain a laminate before firing. This pre-fired laminate is fired at a temperature equal to or higher than the firing temperature of the green sheet laminate and lower than the firing temperature of the sheet-like support to obtain a laminate. The non-sintered sheet-like support is removed from the fired laminate to obtain the inorganic all-solid secondary battery according to this embodiment.

積層体材料の焼成温度では焼結しない「シート状の支持体」は、無機粉末を焼成時には揮発しうる有機バインダ中に分散してなるセラミックグリーンシートである事が望ましい。具体的にはAl、MgO、CaO、SiO、ZrO、BaO、CeOなどの無機粉末等を用いる事ができ、たとえば、酸化物無機粉末を未焼結セラミック体の焼成時には揮発しうる有機バインダ中に分散せしめ、これをシート状に成形してなるセラミックグリーンシートを好適に使用できる。 The “sheet-like support” that does not sinter at the firing temperature of the laminate material is desirably a ceramic green sheet in which inorganic powder is dispersed in an organic binder that can volatilize during firing. Specifically, inorganic powders such as Al 2 O 3 , MgO, CaO, SiO 2 , ZrO 2 , BaO, and CeO 2 can be used. For example, the oxide inorganic powder is volatilized during firing of the unsintered ceramic body. A ceramic green sheet obtained by dispersing in an organic binder and molding it into a sheet can be suitably used.

グリーンシート積層体は、全グリーンシート又は層を重畳した後、所定の積層圧での積層を行なうことができる。積層圧は1MPa〜1000MPaの範囲が好ましい。   The green sheet laminate can be laminated at a predetermined lamination pressure after all the green sheets or layers are superimposed. The lamination pressure is preferably in the range of 1 MPa to 1000 MPa.

グリーンシート積層体の焼成は、ガス炉、マイクロ波炉、電気炉等の中で空気交換しつつ行なう事が望ましい。そして、焼成後、積層体の両面に未焼結体として残存する焼結しないシート状の支持体を除去し、焼結した積層体を得ることができる。   The green sheet laminate is preferably fired while exchanging air in a gas furnace, microwave furnace, electric furnace or the like. And after baking, the sheet-like support body which does not sinter which remain | survives as an unsintered body on both surfaces of a laminated body is removed, and the sintered laminated body can be obtained.

そして、焼結後の積層体の正極層2、負極層3に集電体層4、5を形成する。例えば、集電体粉末、有機バインダ等を含む集電体ペーストを正極層2、負極層3に塗布し、塗布物を焼成する。具体的にはアルミニウム、銅、ニッケル、パラジウム、銀、金、白金からなる群より選ばれる少なくとも1種が挙げられる。あるいは、蒸着法やスパッタリング法などの薄膜作成法により集電体層4、5を形成してもよい。   Then, current collector layers 4 and 5 are formed on the positive electrode layer 2 and the negative electrode layer 3 of the laminated body after sintering. For example, a current collector paste containing current collector powder, an organic binder, and the like is applied to the positive electrode layer 2 and the negative electrode layer 3, and the applied product is baked. Specific examples include at least one selected from the group consisting of aluminum, copper, nickel, palladium, silver, gold, and platinum. Alternatively, the current collector layers 4 and 5 may be formed by a thin film forming method such as a vapor deposition method or a sputtering method.

その後、電気を外部へ出力する為に集電体層4、5にリード7、8を設けて無機全固体二次電池が製造することができる。リード7、8は、アルミニウムやニッケルなどの低抵抗金属材料など、公知の部材を適宜用いることができる。   Thereafter, in order to output electricity to the outside, the current collector layers 4 and 5 are provided with leads 7 and 8, and an inorganic all-solid secondary battery can be manufactured. For the leads 7 and 8, a known member such as a low-resistance metal material such as aluminum or nickel can be appropriately used.

なお、緻密度とは、「100(体積%)−気孔率(体積%)」の事であり、「気孔率(体積%)」とは、焼成後の積層体の断面研磨面を走査型電子顕微鏡(SEM)で観察した際に縦横50μmの面内に観察される気孔面積の割合を20点以上測定した値の平均値をいう。測定数を増加させることによって焼成後の積層体全体の気孔率と近似することができる。   The fine density means “100 (volume%) − porosity (volume%)”, and “porosity (volume%)” means that the cross-sectional polished surface of the fired laminate is scanned with a scanning electron. The average value of values obtained by measuring 20 or more pore area ratios observed in a 50 μm vertical and horizontal plane when observed with a microscope (SEM). By increasing the number of measurements, it can be approximated to the porosity of the entire laminate after firing.

また、抗折強度は、集電体層形成前の焼結後の積層体をJIS R 1601に規定の3点曲げ測定法により測定することができる。   Further, the bending strength can be measured by a three-point bending measurement method stipulated in JIS R 1601 for a laminated body after sintering before forming a current collector layer.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
(無機固体電解質非晶質ガラス粉末の調整)
まず、LiCO、GeO、Al及びNH(POの粉末を化学量論組成で粉砕、混合し、大気中、900℃で焼成する固相反応法により、無機固体電解質材料Li1.5Al0.5Ge1.5(POの結晶粉末を得た。
(Example 1)
(Preparation of inorganic solid electrolyte amorphous glass powder)
First, by a solid phase reaction method in which powders of Li 2 CO 3 , GeO 2 , Al 2 O 3 and NH 4 H 2 (PO 4 ) 3 are pulverized and mixed with a stoichiometric composition and fired at 900 ° C. in the atmosphere. Crystal powder of inorganic solid electrolyte material Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 was obtained.

得られたLi1.5Al0.5Ge1.5(PO結晶粉末をPt坩堝に入れ、1200℃に加熱した大気炉中に投入し、1時間保持した後に取り出し、氷水により急冷しガラス化したLi1.5Al0.5Ge1.5(POを得た。これを乳鉢、及びボールミルで粉砕し、微粒化したLAGP非晶質ガラス粉末を得た。 The obtained Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 crystal powder was put into a Pt crucible, put into an atmospheric furnace heated to 1200 ° C., held for 1 hour, taken out, and rapidly cooled with ice water Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 obtained by vitrification was obtained. This was pulverized with a mortar and a ball mill to obtain a finely divided LAGP amorphous glass powder.

(固体セラミック体粉末の調整)
まず、LiCO、La(OH)、ZrO、及びAlの粉末を化学量論組成で粉砕、混合し、大気中、950℃、10時間で仮焼を行なった。その後、本焼結でのLiの欠損を補う目的で仮焼した粉末に、化学量論組成のLi量に対してLi換算で10at.%になるようにLiCOを過剰添加した。この粉末を、混合した後、成型した後、大気中、1200℃、36時間の条件下で本焼結を行ない、Li6.75La(Zr1.75Al0.25)O12(以下、「LLZ結晶粉末」という。)を得た。これを乳鉢、及びボールミルで粉砕し、微粒化したLLZ結晶粉末を得た。
(Adjustment of solid ceramic body powder)
First, powders of Li 2 CO 3 , La (OH) 3 , ZrO 2 , and Al 2 O 3 were pulverized and mixed with a stoichiometric composition, and calcined in the atmosphere at 950 ° C. for 10 hours. Thereafter, the powder calcined for the purpose of compensating for the loss of Li in the main sintering was 10 at. Li 2 CO 3 was excessively added so as to be a%. This powder was mixed, molded, and then sintered in the atmosphere at 1200 ° C. for 36 hours to obtain Li 6.75 La 3 (Zr 1.75 Al 0.25 ) O 12 (hereinafter, , "LLZ crystal powder"). This was pulverized with a mortar and a ball mill to obtain atomized LLZ crystal powder.

(固体電解質グリーンシートの作製)
LAGP非晶質ガラス粉末とLLZ結晶粉末とを質量比5:5(LAGP非晶質ガラス粉末とセラミック固体粉末との質量比は5:5、つまり固体電解質層で50質量%のLAGP結晶化ガラスの含有量となるように調整した質量比)で混合して得た混合粉と、有機バインダであるアクリル酸エステル共重合体と溶剤であるターピネオールを混合して得られるスラリーを、離型処理が施されたPET製フィルム上にドクターブレード法で厚み30μmの薄板状に成形し、80℃にて一次乾燥し、更に95℃で二次乾燥を行なう事で固体電解質グリーンシートを得た。
(Production of solid electrolyte green sheet)
LAGP amorphous glass powder and LLZ crystal powder have a mass ratio of 5: 5 (LAGP amorphous glass powder and ceramic solid powder have a mass ratio of 5: 5, that is, 50 mass% LAGP crystallized glass in the solid electrolyte layer) The release of the slurry obtained by mixing the mixed powder obtained by mixing at a mass ratio adjusted so as to be the content of), the acrylic ester copolymer as the organic binder, and the terpineol as the solvent. A solid electrolyte green sheet was obtained by forming a thin plate having a thickness of 30 μm on the applied PET film by a doctor blade method, performing primary drying at 80 ° C., and further performing secondary drying at 95 ° C.

(正極活物質粉末の調整)
まず、LiCO、V、NH(POの粉末を化学量論組成で粉砕、混合し、Pt坩堝に入れ、1300℃に加熱した大気炉中に投入。20分間保持した後に取り出し氷水により急冷しガラス化したLiVOPOを得た。これを乳鉢、及びボールミルで粉砕し、微粒化した正極活物質粉末を得た。
(Adjustment of positive electrode active material powder)
First, powders of Li 2 CO 3 , V 2 O 5 and NH 4 H 2 (PO 4 ) 3 were pulverized and mixed with a stoichiometric composition, put into a Pt crucible, and put into an atmospheric furnace heated to 1300 ° C. After holding for 20 minutes, LiVOPO 4 which was taken out and rapidly cooled with ice water and vitrified was obtained. This was pulverized with a mortar and ball mill to obtain a finely divided positive electrode active material powder.

(正極グリーンシートの作製)
LAGP非晶質ガラス粉末と正極活物質粉末とSnO粉末を質量比5:4:1(LAGP非晶質ガラス粉末とセラミック固体粉末との質量比は5:5、つまり正極層で50質量%のLAGP結晶化ガラスの含有量となるように調整した質量比)で混合して得た混合粉末、有機バインダであるアクリル酸エステル共重合体と溶剤であるターピネオールを混合して得られるスラリーを、離型処理が施されたPET製フィルム上にドクターブレード法で厚み50μmの薄板状に成形し、80℃にて一次乾燥し、更に95℃で二次乾燥を行なう事で正極グリーンシートを得た。
(Preparation of positive electrode green sheet)
LAGP amorphous glass powder, positive electrode active material powder, and SnO 2 powder are in a mass ratio of 5: 4: 1 (the mass ratio of LAGP amorphous glass powder to ceramic solid powder is 5: 5, that is, 50% by mass in the positive electrode layer) A mixed powder obtained by mixing at a mass ratio adjusted to be the content of the LAGP crystallized glass), a slurry obtained by mixing an acrylic ester copolymer as an organic binder and terpineol as a solvent, A positive electrode green sheet was obtained by forming a thin plate having a thickness of 50 μm on a PET film that had been subjected to a mold release treatment by a doctor blade method, followed by primary drying at 80 ° C. and secondary drying at 95 ° C. .

(負極グリーンシートの作製)
LAGP非晶質ガラス粉末と市販のLiTi12粉末とSnO粉末を質量比5:4:1(LAGP非晶質ガラス粉末とセラミック固体粉末との質量比は5:5、つまり負極層で50質量%のLAGP結晶化ガラスの含有量となるように調整した質量比)で混合して得た混合粉末と、有機バインダであるアクリル酸エステル共重合体と溶剤であるターピネオールを混合して得られるスラリーを、離型処理が施されたPET製フィルム上にドクターブレード法で厚み50μmの薄板状に成形し、80℃にて一次乾燥し、更に95℃で二次乾燥を行なう事で負極グリーンシートを得た。
(Preparation of negative electrode green sheet)
LAGP amorphous glass powder, commercially available Li 4 Ti 5 O 12 powder and SnO 2 powder have a mass ratio of 5: 4: 1 (the mass ratio of LAGP amorphous glass powder to ceramic solid powder is 5: 5, that is, negative electrode Mixed powder obtained by mixing at a mass ratio adjusted so that the content of LAGP crystallized glass is 50% by mass), an acrylate copolymer as an organic binder, and terpineol as a solvent. The slurry obtained in this way is formed into a thin plate with a thickness of 50 μm by a doctor blade method on a PET film that has been subjected to a release treatment, and is primarily dried at 80 ° C., and further subjected to secondary drying at 95 ° C. A negative electrode green sheet was obtained.

(焼結しないシート状支持体のグリーンシートの作製)
市販のアルミナ粉末(平均粒径1μm)と、有機バインダであるアクリル酸エステル共重合体と溶剤であるターピネオールを混合して得られるスラリーを、離型処理が施されたPET製フィルム上にドクターブレード法で厚み50μmの薄板状に成形し、80℃にて一次乾燥し、更に95℃で二次乾燥を行なう事で焼結しない支持体グリーンシートを得た。
(Preparation of green sheet of non-sintered sheet-like support)
A doctor blade on a PET film that has been subjected to a release treatment, a slurry obtained by mixing commercially available alumina powder (average particle size 1 μm), an acrylic ester copolymer as an organic binder, and terpineol as a solvent The green sheet was formed into a thin plate having a thickness of 50 μm by the above method, primarily dried at 80 ° C., and further subjected to secondary drying at 95 ° C. to obtain a support green sheet that was not sintered.

(積層体の作製)
作製した各グリーンシートを、支持体グリーンシート2枚/正極グリーンシート2枚/固体電解質グリーンシート1枚/負極グリーンシート2枚/支持体グリーンシート2枚の順に重畳し、冷間等方加圧装置(CIP)を用いて196.1MPaにて10分間にわたり加圧することで積層体を作製した。
(Production of laminate)
The produced green sheets are superposed in the order of two support green sheets / two positive electrode green sheets / one solid electrolyte green sheet / two negative electrode green sheets / two support green sheets, and cold isostatically pressed. The laminated body was produced by pressurizing at 196.1 MPa for 10 minutes using an apparatus (CIP).

(焼成)
積層体を580℃で2時間加熱(脱脂)した後、750℃まで急激に昇温し、750℃で30分間保持した後、室温まで徐冷することで焼結積層体を得た。焼結積層体の両面からアルミナ(支持体グリーンシート)を超音波洗浄によって除去した後、90℃にて乾燥を行なった。これによって、固体電解質層と正極層と負極層からなる積層体を得た。このときこの焼成によって、LAGP非晶質ガラス粉末のすくなくとも一部が結晶化し、LAGP結晶化ガラスとなった。
つまり、これによって、LAGP結晶化ガラスとリチウムイオン伝導性の無機固体電解質であるセラミック固体とからなるコンポジットである固体電解質層と、LAGP結晶化ガラスと正極活物質とを含有するコンポジットである正極層と、LAGP結晶化ガラスと負極活物質とを含有するコンポジットである負極層からなる積層体を得た。
(Baking)
After heating (degreasing) the laminated body at 580 ° C. for 2 hours, the temperature was rapidly raised to 750 ° C., held at 750 ° C. for 30 minutes, and then gradually cooled to room temperature to obtain a sintered laminated body. After removing the alumina (support green sheet) from both surfaces of the sintered laminate by ultrasonic cleaning, drying was performed at 90 ° C. This obtained the laminated body which consists of a solid electrolyte layer, a positive electrode layer, and a negative electrode layer. At this time, at least a part of the LAGP amorphous glass powder was crystallized by this firing, and became LAGP crystallized glass.
That is, by this, a solid electrolyte layer which is a composite made of LAGP crystallized glass and a ceramic solid which is a lithium ion conductive inorganic solid electrolyte, and a positive electrode layer which is a composite containing LAGP crystallized glass and a positive electrode active material And the laminated body which consists of a negative electrode layer which is a composite containing LAGP crystallized glass and a negative electrode active material was obtained.

(集電体層形成)
焼結した積層体の正極層2上にアルミペーストを塗布し、乾燥及び焼成を行なうことで、正極層2に集電体層4を取り付け、負極層3上に銅ペーストを塗布し、乾燥及び焼成を行なう事で、負極側に集電体層5を取り付けた。
(Current collector layer formation)
By applying an aluminum paste on the positive electrode layer 2 of the sintered laminate, drying and firing, the current collector layer 4 is attached to the positive electrode layer 2, and a copper paste is applied on the negative electrode layer 3, The current collector layer 5 was attached to the negative electrode side by firing.

その後、正極にアルミニウム箔を正極リード7として接続し、負極に銅箔を負極リード8として接続し、この接続体を、内面が絶縁コートされたアルミニウム製のラミネートフィルムに封入することで、無機全固体二次電池を作製した。この無機全固体二次電池は、平均電圧2.5Vで放電し、充電可能な二次電池であった。   Thereafter, an aluminum foil is connected to the positive electrode as the positive electrode lead 7, a copper foil is connected to the negative electrode as the negative electrode lead 8, and this connection body is sealed in an aluminum laminate film whose inner surface is insulation-coated. A solid secondary battery was produced. This inorganic all solid secondary battery was a secondary battery that was discharged at an average voltage of 2.5 V and could be charged.

(実施例2)
固体電解質グリーンシートの作製の際、LAGP非晶質ガラス粉末と固体セラミック体粉末とを質量比1:9(LAGP非晶質ガラス粉末とセラミック固体粉末との質量比は1:9、つまり固体電解質層で10質量%のLAGP結晶化ガラスの含有量となるように調整した質量比)で混合して得た混合粉末を用いる他は実施例1と同様に操作して実施例2の無機全固体二次電池を得た。
(Example 2)
In the production of the solid electrolyte green sheet, the mass ratio of LAGP amorphous glass powder and solid ceramic body powder is 1: 9 (the mass ratio of LAGP amorphous glass powder and ceramic solid powder is 1: 9, that is, the solid electrolyte. The inorganic total solid of Example 2 was operated in the same manner as in Example 1 except that a mixed powder obtained by mixing at a mass ratio adjusted so that the content of LAGP crystallized glass was 10% by mass in the layer was used. A secondary battery was obtained.

(実施例3)
正極グリーンシートの作製の際に、LAGP非晶質ガラス粉末とガラスであるLiVOPO正極活物質粉末とSnO粉末とを質量比1:8:1(LAGP非晶質ガラス粉末とセラミック固体粉末との質量比は1:9、つまり正極層で10質量%のLAGP結晶化ガラスの含有量となるように調整した質量比)で混合して得た混合粉末を用いた他は実施例1と同様に操作して実施例3の無機全固体二次電池を得た。
(Example 3)
In the production of the positive electrode green sheet, the LAGP amorphous glass powder and the glass LiVOPO 4 positive electrode active material powder and SnO 2 powder were mixed at a mass ratio of 1: 8: 1 (LAGP amorphous glass powder and ceramic solid powder The mass ratio was 1: 9, that is, the same as in Example 1 except that the mixed powder obtained by mixing at a positive electrode layer was adjusted so that the content of LAGP crystallized glass was 10% by mass) was used. The inorganic all solid secondary battery of Example 3 was obtained.

(実施例4)
負極グリーンシートの作製の際に、LAGP非晶質ガラス粉末とLiTi12粉末とSnO粉末とを質量比1:8:1(LAGP非晶質ガラス粉末とセラミック固体粉末との質量比は1:9、つまり負極層で10質量%のLAGP結晶化ガラスの含有量となるように調整した質量比)で混合して得た混合粉末を用いた他は実施例1と同様に操作して実施例3の無機全固体二次電池を得た。
Example 4
In the production of the negative electrode green sheet, the mass ratio of LAGP amorphous glass powder, Li 4 Ti 5 O 12 powder and SnO 2 powder was 1: 8: 1 (mass of LAGP amorphous glass powder and ceramic solid powder. The ratio was 1: 9, that is, the same operation as in Example 1 except that a mixed powder obtained by mixing the negative electrode layer with a mass ratio adjusted so that the content of LAGP crystallized glass was 10% by mass was used. Thus, an inorganic all solid secondary battery of Example 3 was obtained.

(実施例5)
実施例2と同様の方法で固体電解質グリーンシートを作製し、実施例3と同様の方法で正極グリーンシートを作製し、実施例4と同様の方法で負極グリーンシートを作製した他は実施例1と同様に操作して実施例5の無機全固体二次電池を得た。
(Example 5)
Example 1 except that a solid electrolyte green sheet was produced in the same manner as in Example 2, a positive electrode green sheet was produced in the same manner as in Example 3, and a negative electrode green sheet was produced in the same manner as in Example 4. In the same manner as in Example 5, an inorganic all-solid secondary battery of Example 5 was obtained.

(実施例6)
固体電解質グリーンシートの作製の際、LAGP非晶質ガラス粉末と固体セラミック体粉末とを質量比3:7(LAGP非晶質ガラス粉末とセラミック固体粉末との質量比は3:7、つまり固体電解質層で30質量%のLAGP結晶化ガラスの含有量となるように調整した質量比)で混合して得た混合粉末を用いる他は実施例1と同様に操作して実施例2の無機全固体二次電池を得た。
(Example 6)
In the production of the solid electrolyte green sheet, the LAGP amorphous glass powder and the solid ceramic body powder have a mass ratio of 3: 7 (the mass ratio of the LAGP amorphous glass powder and the ceramic solid powder is 3: 7, that is, the solid electrolyte. The inorganic total solid of Example 2 was operated in the same manner as in Example 1 except that a mixed powder obtained by mixing at a mass ratio adjusted so that the content of LAGP crystallized glass was 30% by mass in the layer was used. A secondary battery was obtained.

(実施例7)
正極グリーンシートの作製の際に、LAGP非晶質ガラス粉末とガラスであるLiVOPO正極活物質粉末とSnO粉末とを質量比3:6:1(LAGP非晶質ガラス粉末とセラミック固体粉末との質量比は3:7、つまり正極層で30質量%のLAGP結晶化ガラスの含有量となるように調整した質量比)で混合して得た混合粉末を用いた他は実施例1と同様に操作して実施例3の無機全固体二次電池を得た。
(Example 7)
At the time of producing the positive electrode green sheet, the LAGP amorphous glass powder and the LiVOPO 4 positive electrode active material powder and SnO 2 powder, which are glass, have a mass ratio of 3: 6: 1 (LAGP amorphous glass powder and ceramic solid powder The mass ratio was 3: 7, that is, the same as in Example 1 except that the mixed powder obtained by mixing at a mass ratio adjusted to have a content of LAGP crystallized glass of 30% by mass in the positive electrode layer was used. The inorganic all solid secondary battery of Example 3 was obtained.

(実施例8)
負極グリーンシートの作製の際に、LAGP非晶質ガラス粉末とLiTi12粉末とSnO粉末とを質量比3:6:1(LAGP非晶質ガラス粉末とセラミック固体粉末との質量比は3:7、つまり負極層で30質量%のLAGP結晶化ガラスの含有量となるように調整した質量比)で混合して得た混合粉末を用いた他は実施例1と同様に操作して実施例3の無機全固体二次電池を得た。
(Example 8)
In the production of the negative electrode green sheet, the mass ratio of LAGP amorphous glass powder, Li 4 Ti 5 O 12 powder, and SnO 2 powder was 3: 6: 1 (mass of LAGP amorphous glass powder and ceramic solid powder. The ratio was 3: 7, that is, the same operation as in Example 1 except that a mixed powder obtained by mixing at a negative electrode layer was mixed at a mass ratio adjusted to a content of LAGP crystallized glass of 30% by mass). Thus, an inorganic all solid secondary battery of Example 3 was obtained.

(実施例9)
実施例6と同様の方法で固体電解質グリーンシートを作製し、実施例7と同様の方法で正極グリーンシートを作製し、実施例8と同様の方法で負極グリーンシートを作製した他は実施例1と同様に操作して実施例9の無機全固体二次電池を得た。
Example 9
Example 1 except that a solid electrolyte green sheet was produced in the same manner as in Example 6, a positive electrode green sheet was produced in the same manner as in Example 7, and a negative electrode green sheet was produced in the same manner as in Example 8. In the same manner as in Example 9, an inorganic all-solid secondary battery of Example 9 was obtained.

(実施例10)
固体電解質グリーンシートの作製の際、LAGP非晶質ガラス粉末と固体セラミック体粉末とを質量比8:2(LAGP非晶質ガラス粉末とセラミック固体粉末との質量比は8:2、つまり固体電解質層で80質量%のLAGP結晶化ガラスの含有量となるように調整した質量比)で混合して得た混合粉末を用いる他は実施例1と同様に操作して実施例10の無機全固体二次電池を得た。
(Example 10)
In the production of the solid electrolyte green sheet, the mass ratio of LAGP amorphous glass powder and solid ceramic body powder is 8: 2 (the mass ratio of LAGP amorphous glass powder and ceramic solid powder is 8: 2, that is, solid electrolyte. The inorganic total solid of Example 10 was operated in the same manner as in Example 1 except that a mixed powder obtained by mixing at a mass ratio adjusted so that the content of LAGP crystallized glass was 80% by mass in the layer was used. A secondary battery was obtained.

(実施例11)
正極グリーンシートの作製の際に、LAGP非晶質ガラス粉末とガラスであるLiVOPO正極活物質粉末とSnO粉末とを質量比8:1.5:0.5(LAGP非晶質ガラス粉末とセラミック固体粉末との質量比は8:2、つまり正極層で80質量%のLAGP結晶化ガラスの含有量となるように調整した質量比)で混合して得た混合粉末を用いた他は実施例1と同様に操作して実施例11の無機全固体二次電池を得た。
(Example 11)
In the production of the positive electrode green sheet, the mass ratio of LAGP amorphous glass powder and LiVOPO 4 positive electrode active material powder, which is glass, and SnO 2 powder is 8: 1.5: 0.5 (LAGP amorphous glass powder and The mass ratio with the ceramic solid powder was 8: 2, that is, the mixed powder obtained by mixing with the positive electrode layer was adjusted so that the content of the LAGP crystallized glass was 80% by mass). An inorganic all solid secondary battery of Example 11 was obtained by operating in the same manner as in Example 1.

(実施例12)
負極グリーンシートの作製の際に、LAGP非晶質ガラス粉末とLiTi12粉末とSnO粉末とを質量比8:1.5:0.5(LAGP非晶質ガラス粉末とセラミック固体粉末との質量比は8:2、つまり負極層で80質量%のLAGP結晶化ガラスの含有量となるように調整した質量比)で混合して得た混合粉末を用いた他は実施例1と同様に操作して実施例12の無機全固体二次電池を得た。
(Example 12)
In the production of the negative electrode green sheet, LAGP amorphous glass powder, Li 4 Ti 5 O 12 powder and SnO 2 powder were mixed at a mass ratio of 8: 1.5: 0.5 (LAGP amorphous glass powder and ceramic solid). Example 1 except that a mixed powder obtained by mixing at a mass ratio of 8: 2 with the powder, that is, a mass ratio adjusted so that the negative electrode layer has a content of LAGP crystallized glass of 80% by mass) was used. An inorganic all solid secondary battery of Example 12 was obtained in the same manner as described above.

(実施例13)
実施例10と同様の方法で固体電解質グリーンシートを作製し、実施例11と同様の方法で正極グリーンシートを作製し、実施例12と同様の方法で負極グリーンシートを作製した他は実施例1と同様に操作して実施例13の無機全固体二次電池を得た。
(Example 13)
Example 1 except that a solid electrolyte green sheet was produced in the same manner as in Example 10, a positive electrode green sheet was produced in the same manner as in Example 11, and a negative electrode green sheet was produced in the same manner as in Example 12. An inorganic all solid secondary battery of Example 13 was obtained in the same manner as described above.

(実施例14)
固体電解質グリーンシートの作製の際、LAGP非晶質ガラス粉末と固体セラミック体粉末とを質量比9:1(LAGP非晶質ガラス粉末とセラミック固体粉末との質量比は9:1、つまり固体電解質層で90質量%のLAGP結晶化ガラスの含有量となるように調整した質量比)で混合して得た混合粉末を用いる他は実施例1と同様に操作して実施例14の無機全固体二次電池を得た。
(Example 14)
In the production of the solid electrolyte green sheet, the mass ratio of LAGP amorphous glass powder and solid ceramic body powder is 9: 1 (the mass ratio of LAGP amorphous glass powder and ceramic solid powder is 9: 1, that is, solid electrolyte. The inorganic all solids of Example 14 were operated in the same manner as in Example 1 except that a mixed powder obtained by mixing at a mass ratio adjusted so that the content of LAGP crystallized glass was 90% by mass in the layer was used. A secondary battery was obtained.

(実施例15)
正極グリーンシートの作製の際に、LAGP非晶質ガラス粉末とガラスであるLiVOPO正極活物質粉末とSnO粉末とを質量比9:0.7:0.3(LAGP非晶質ガラス粉末とセラミック固体粉末との質量比は9:1、つまり正極層で90質量%のLAGP結晶化ガラスの含有量となるように調整した質量比)で混合して得た混合粉末を用いた他は実施例1と同様に操作して実施例15の無機全固体二次電池を得た。
(Example 15)
In the production of the positive electrode green sheet, the mass ratio of LAGP amorphous glass powder, LiVOPO 4 positive electrode active material powder and SnO 2 powder, which is glass, is 9: 0.7: 0.3 (LAGP amorphous glass powder and The mass ratio with the ceramic solid powder was 9: 1, that is, the mixed powder obtained by mixing at a mass ratio adjusted so that the content of the LAGP crystallized glass was 90% by mass in the positive electrode layer was used. An inorganic all solid secondary battery of Example 15 was obtained by operating in the same manner as in Example 1.

(実施例16)
負極グリーンシートの作製の際に、LAGP非晶質ガラス粉末とLiTi12粉末とSnO粉末とを質量比9:0.7:0.3(LAGP非晶質ガラス粉末とセラミック固体粉末との質量比は9:1、つまり負極層で90質量%のLAGP結晶化ガラスの含有量となるように調整した質量比)で混合して得た混合粉末を用いた他は実施例1と同様に操作して実施例16の無機全固体二次電池を得た。
(Example 16)
In the production of the negative electrode green sheet, the mass ratio of LAGP amorphous glass powder, Li 4 Ti 5 O 12 powder and SnO 2 powder was 9: 0.7: 0.3 (LAGP amorphous glass powder and ceramic solid Example 1 except that a mixed powder obtained by mixing at a mass ratio of 9: 1 with the powder, that is, a mass ratio adjusted so that the content of the LAGP crystallized glass was 90% by mass in the negative electrode layer was used. In the same manner as in Example 16, an inorganic all solid secondary battery of Example 16 was obtained.

(実施例17)
実施例14と同様の方法で固体電解質グリーンシートを作製し、実施例15と同様の方法で正極グリーンシートを作製し、実施例16と同様の方法で負極グリーンシートを作製した他は実施例1と同様に操作して実施例17の無機全固体二次電池を得た。
(Example 17)
Example 1 except that a solid electrolyte green sheet was produced in the same manner as in Example 14, a positive electrode green sheet was produced in the same manner as in Example 15, and a negative electrode green sheet was produced in the same manner as in Example 16. An inorganic all solid secondary battery of Example 17 was obtained in the same manner as described above.

(比較例1)
固体電解質グリーンシートの作製の際、LAGP非晶質ガラス粉末と固体セラミック体粉末とを質量比0.9:9.1(LAGP非晶質ガラス粉末とセラミック固体粉末との質量比は0.9:9.1、つまり固体電解質層で9質量%のLAGP結晶化ガラスの含有量となるように調整した質量比)で混合して得た混合粉末を用いる事以外は実施例1と同様に操作して比較例1の無機全固体二次電池を得た。
(Comparative Example 1)
In the production of the solid electrolyte green sheet, the mass ratio of LAGP amorphous glass powder and solid ceramic body powder is 0.9: 9.1 (the mass ratio of LAGP amorphous glass powder and ceramic solid powder is 0.9). : 9.1, that is, the same operation as in Example 1 except that a mixed powder obtained by mixing the solid electrolyte layer at a mass ratio adjusted so that the content of LAGP crystallized glass is 9% by mass is used. Thus, an inorganic all solid secondary battery of Comparative Example 1 was obtained.

(比較例2)
正極グリーンシートの作製の際に、LAGP非晶質ガラス粉末とガラスであるLiVOPO正極活物質粉末とSnO粉末とを質量比0.9:8:1.1(LAGP非晶質ガラス粉末とセラミック固体粉末との質量比は0.9:9.1、つまり正極層で9質量%のLAGP結晶化ガラスの含有量となるように調整した質量比)で混合して得た混合粉末を用いた事以外は実施例1と同様に操作して比較例2の無機全固体二次電池を得た。
(Comparative Example 2)
In the production of the positive electrode green sheet, the mass ratio of LAGP amorphous glass powder, LiVOPO 4 positive electrode active material powder, which is glass, and SnO 2 powder is 0.9: 8: 1.1 (LAGP amorphous glass powder and The mass ratio with the ceramic solid powder is 0.9: 9.1, that is, a mixed powder obtained by mixing at a positive electrode layer adjusted so that the content of LAGP crystallized glass is 9 mass%) is used. An inorganic all solid secondary battery of Comparative Example 2 was obtained by operating in the same manner as in Example 1 except that.

(比較例3)
負極グリーンシートの作製の際に、LAGP非晶質ガラス粉末とLiTi12粉末とSnO粉末とを質量比0.9:8:1.1(LAGP非晶質ガラス粉末とセラミック固体粉末との質量比は0.9:9.1、つまり負極層で9質量%のLAGP結晶化ガラスの含有量となるように調整した質量比)で混合して得た混合粉末を用いた事以外は実施例1と同様に操作して比較例3の無機全固体二次電池を得た。
(Comparative Example 3)
In the production of the negative electrode green sheet, the mass ratio of LAGP amorphous glass powder, Li 4 Ti 5 O 12 powder and SnO 2 powder was 0.9: 8: 1.1 (LAGP amorphous glass powder and ceramic solid The mass ratio with the powder is 0.9: 9.1, that is, the mixed powder obtained by mixing the negative electrode layer with a mass ratio adjusted so that the content of LAGP crystallized glass is 9% by mass) is used. Were operated in the same manner as in Example 1 to obtain an inorganic all solid secondary battery of Comparative Example 3.

(比較例4)
比較例1と同様の方法で固体電解質グリーンシートを作製し、比較例2と同様の方法で正極グリーンシートを作製し、比較例3と同様の方法で負極グリーンシートを作製した他は実施例1と同様に操作して比較例4の無機全固体二次電池を得た。
(Comparative Example 4)
Example 1 except that a solid electrolyte green sheet was prepared by the same method as Comparative Example 1, a positive electrode green sheet was prepared by the same method as Comparative Example 2, and a negative electrode green sheet was prepared by the same method as Comparative Example 3. An inorganic all solid secondary battery of Comparative Example 4 was obtained in the same manner as described above.

(比較例5)
固体電解質グリーンシートの作製の際、LAGP非晶質ガラス粉末と固体セラミック体粉末とを質量比9.6:0.4(LAGP非晶質ガラス粉末とセラミック固体粉末との質量比は9.6:0.4、つまり固体電解質層で96質量%のLAGP結晶化ガラスの含有量となるように調整した質量比)で混合して得た混合粉末を用いる事以外は実施例1と同様に操作して比較例5の無機全固体二次電池を得た。
(Comparative Example 5)
In the production of the solid electrolyte green sheet, the mass ratio of LAGP amorphous glass powder and solid ceramic body powder is 9.6: 0.4 (the mass ratio of LAGP amorphous glass powder and ceramic solid powder is 9.6). : 0.4, that is, the same operation as in Example 1 except that a mixed powder obtained by mixing at a solid electrolyte layer with a mass ratio adjusted to 96 mass% LAGP crystallized glass) was used. Thus, an inorganic all solid secondary battery of Comparative Example 5 was obtained.

(比較例6)
正極グリーンシートの作製の際、LAGP非晶質ガラス粉末とガラスであるLiVOPO正極活物質粉末とSnO粉末を質量比9.6:0.3:0.1(LAGP非晶質ガラス粉末とセラミック固体粉末との質量比は9.6:0.4、つまり正極層で96質量%のLAGP結晶化ガラスの含有量となるように調整した質量比)で混合して得た混合粉末を用いる事以外は実施例1と同様に操作して比較例6の無機全固体二次電池を得た。
(Comparative Example 6)
At the time of producing the positive electrode green sheet, the mass ratio of LAGP amorphous glass powder, LiVOPO 4 positive electrode active material powder, which is glass, and SnO 2 powder is 9.6: 0.3: 0.1 (LAGP amorphous glass powder and The mass ratio with the ceramic solid powder is 9.6: 0.4, that is, a mixed powder obtained by mixing at a positive electrode layer adjusted so that the content of the 96 mass% LAGP crystallized glass is obtained. Except for the above, an inorganic all solid secondary battery of Comparative Example 6 was obtained in the same manner as in Example 1.

(比較例7)
負極グリーンシートの作製の際、LAGP非晶質ガラス粉末とLiTi12粉末とSnO粉末とを質量比9.6:0.3:0.1(LAGP非晶質ガラス粉末とセラミック固体粉末との質量比は9.6:0.4、つまり負極層で96質量%のLAGP結晶化ガラスの含有量となるように調整した質量比)で混合して得た混合粉末を用いる事以外は実施例1と同様に操作して比較例7の無機全固体二次電池を得た。
(Comparative Example 7)
In the production of the negative electrode green sheet, the mass ratio of LAGP amorphous glass powder, Li 4 Ti 5 O 12 powder and SnO 2 powder was 9.6: 0.3: 0.1 (LAGP amorphous glass powder and ceramic The mass ratio with the solid powder is 9.6: 0.4, that is, the mixed powder obtained by mixing at a mass ratio adjusted so that the negative electrode layer has a content of 96 mass% LAGP crystallized glass is used. Except that, an inorganic all solid secondary battery of Comparative Example 7 was obtained in the same manner as in Example 1.

(比較例8)
比較例5と同様の方法で固体電解質グリーンシートを作製し、比較例6と同様の方法で正極グリーンシートを作製し、比較例7と同様の方法で負極グリーンシートを作製した他は実施例1と同様に操作して比較例8の無機全固体二次電池を得た。
(Comparative Example 8)
Example 1 except that a solid electrolyte green sheet was prepared by the same method as Comparative Example 5, a positive electrode green sheet was prepared by the same method as Comparative Example 6, and a negative electrode green sheet was prepared by the same method as Comparative Example 7. In the same manner as in Example 1, an inorganic all solid secondary battery of Comparative Example 8 was obtained.

(評価)
実施例1〜17及び比較例1〜8で得た無機全固体二次電池を、集電体層形成前の焼結積層体の段階で、以下の方法で緻密度、抗折強度、反り、クラック、剥離の評価を各水準の基板10枚に対して行なった。得られた評価結果をまとめて表1に示す。「緻密度」は各水準の各基板に対してそれぞれ40点行なったSEM観察(縦横50μm)の結果から水準ごとの平均気孔面積割合を求めた。「抗折強度」はJIS R 1601の3点曲げ測定方法に規定する抗折強度の測定に準拠して行なった。また、「反り」とは、集電体層形成前の焼結後の積層体で評価を行なった結果であり、接触式表面粗さ計で基板表面を計測したとき、基板中央の水平面に対する外周部のずれを測定した。「クラック、剥離」ついては焼結後の積層体を目視で観察し、「クラック、剥離発生のあった枚数/全基板枚数(10枚)」で表した。
(Evaluation)
The inorganic all solid state secondary batteries obtained in Examples 1 to 17 and Comparative Examples 1 to 8 were processed at the stage of the sintered laminate before forming the current collector layer, with the following methods: density, bending strength, warpage, Evaluation of crack and peeling was performed on 10 substrates of each level. The evaluation results obtained are summarized in Table 1. “Density” was obtained as the average pore area ratio for each level from the results of SEM observation (50 μm in length and width) performed on each substrate at each level. “Folding strength” was performed in accordance with the measurement of bending strength specified in the three-point bending measurement method of JIS R 1601. In addition, “warp” is a result of evaluation with a laminate after sintering before forming a current collector layer. When the substrate surface is measured with a contact-type surface roughness meter, the outer periphery relative to the horizontal plane at the center of the substrate The displacement of the part was measured. Regarding “cracking and peeling”, the laminate after sintering was visually observed, and expressed as “number of cracks and peeling occurred / total number of substrates (10)”.

Figure 0005803700
Figure 0005803700

表1に示すように、実施例1〜17の無機全固体二次電池は、実用上十分な緻密度と抗折強度を同時に有する事が確認された。これに対し、比較例1〜8の無機全固体二次電池は、緻密度と抗折強度との両方又はいずれかが実用的な水準に達しない事が確認された。これにより、実施例1〜17の無機全固体二次電池は、クラック又は剥離の不具合発生が抑制されているのに対して、比較例1〜8の無機全固体二次電池は、反り、クラック、剥離のいずれかの不具合発生が著しいと認められた。これらの結果より、実施例1〜17に例示のごとく本発明の実施による無機全固体二次電池は実用的な水準にあることが確認された。   As shown in Table 1, it was confirmed that the inorganic all-solid secondary batteries of Examples 1 to 17 had practically sufficient density and bending strength at the same time. On the other hand, it was confirmed that the inorganic all solid state secondary batteries of Comparative Examples 1 to 8 did not reach a practical level in both density and bending strength. Thereby, while the inorganic all solid state secondary batteries of Examples 1 to 17 are suppressed from occurrence of cracks or peeling defects, the inorganic all solid state secondary batteries of Comparative Examples 1 to 8 are warped and cracked. It was recognized that the occurrence of any defect in peeling was significant. From these results, it was confirmed that the inorganic all solid state secondary battery according to the practice of the present invention is at a practical level as exemplified in Examples 1 to 17.

本発明は、実用上十分な緻密度と抗折強度を有することによりクラックや剥離等の不具合がない無機全固体二次電池を提供するため、産業上おおいに利用できる発明である。   The present invention provides an inorganic all-solid secondary battery that has a practically sufficient density and bending strength and is free from defects such as cracks and peeling, and thus can be used industrially.

1・・・固体電解質層、11・・・LAGP結晶化ガラス、12・・・リチウムイオン伝導性の無機固体電解質、2・・・正極層、21・・・正極活物質、3・・・負極層、31・・・負極活物質、4・・・第1集電体層、5・・・第2集電体層、7・・・正極リード、8・・・負極リード   DESCRIPTION OF SYMBOLS 1 ... Solid electrolyte layer, 11 ... LAGP crystallized glass, 12 ... Inorganic solid electrolyte of lithium ion conductivity, 2 ... Positive electrode layer, 21 ... Positive electrode active material, 3 ... Negative electrode Layer, 31 ... negative electrode active material, 4 ... first current collector layer, 5 ... second current collector layer, 7 ... positive electrode lead, 8 ... negative electrode lead

Claims (1)

LiAlGe2−x(PO の結晶化ガラス(式中、xは0≦x≦1である。(以下、「LAGP結晶化ガラス」という。))と、リチウムイオン伝導性の無機固体電解質である
セラミック固体とからなるコンポジットである固体電解質層と、
LAGP結晶化ガラスと正極活物質とを含有するコンポジットである正極層と、
LAGP結晶化ガラスと負極活物質とを含有するコンポジットである負極層との積層体
であり、
前記固体電解質層、前記正極層及び前記負極層のそれぞれが、10質量%以上95質量
%以下のLAGP結晶化ガラスを含有する焼結体から成る無機全固体二次電池。
Li 1 + x Al x Ge 2-x (PO 4 ) 3 crystallized glass (wherein x is 0 ≦ x ≦ 1 (hereinafter referred to as “LAGP crystallized glass”)) and lithium ions A solid electrolyte layer that is a composite composed of a ceramic solid that is a conductive inorganic solid electrolyte; and
A positive electrode layer that is a composite containing LAGP crystallized glass and a positive electrode active material;
A laminate of a negative electrode layer which is a composite containing LAGP crystallized glass and a negative electrode active material;
An inorganic all solid secondary battery, wherein each of the solid electrolyte layer, the positive electrode layer, and the negative electrode layer is made of a sintered body containing LAGP crystallized glass of 10% by mass to 95% by mass.
JP2012016825A 2012-01-30 2012-01-30 Inorganic all-solid secondary battery Active JP5803700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012016825A JP5803700B2 (en) 2012-01-30 2012-01-30 Inorganic all-solid secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012016825A JP5803700B2 (en) 2012-01-30 2012-01-30 Inorganic all-solid secondary battery

Publications (2)

Publication Number Publication Date
JP2013157195A JP2013157195A (en) 2013-08-15
JP5803700B2 true JP5803700B2 (en) 2015-11-04

Family

ID=49052175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012016825A Active JP5803700B2 (en) 2012-01-30 2012-01-30 Inorganic all-solid secondary battery

Country Status (1)

Country Link
JP (1) JP5803700B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6209413B2 (en) * 2013-09-30 2017-10-04 Fdk株式会社 Manufacturing method of all solid state battery
KR101556701B1 (en) * 2013-10-04 2015-10-02 한국기계연구원 Method of manufacturing solid electrolyte-lithium ion conductivity polymer composite film
EP3242300A4 (en) * 2015-03-31 2018-07-25 Murata Manufacturing Co., Ltd. Lithium ion conductor, solid electrolyte layer, electrode, battery and electronic device
JP6607959B2 (en) 2015-12-16 2019-11-20 富士フイルム株式会社 Electrode material, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
JP6660766B2 (en) * 2016-02-29 2020-03-11 Fdk株式会社 Manufacturing method of all solid state battery
JP6757573B2 (en) * 2016-02-29 2020-09-23 Fdk株式会社 Manufacturing method of all-solid-state battery and all-solid-state battery
JP2020024780A (en) * 2016-11-08 2020-02-13 株式会社日立製作所 All-solid battery and manufacturing method thereof
JP6863389B2 (en) * 2016-11-16 2021-04-21 株式会社村田製作所 Solid-state batteries, battery packs, vehicles, power storage systems, power tools and electronic devices
JPWO2018131627A1 (en) * 2017-01-16 2019-11-07 日本電気硝子株式会社 Electrode mixture for sodium ion secondary battery and method for producing the same
JP7068845B2 (en) * 2018-02-15 2022-05-17 Fdk株式会社 Manufacturing method of all-solid-state battery
JP7048466B2 (en) * 2018-09-19 2022-04-05 太陽誘電株式会社 All solid state battery
WO2020184718A1 (en) * 2019-03-13 2020-09-17 Tdk株式会社 All-solid-state secondary battery
JP2023041135A (en) * 2021-09-13 2023-03-24 太陽誘電株式会社 All-solid battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210360A (en) * 2000-01-26 2001-08-03 Kyocera Corp Manufacturing method of all-solid secondary battery
JP5269665B2 (en) * 2009-03-23 2013-08-21 日本碍子株式会社 All solid state battery and manufacturing method thereof
KR20130066661A (en) * 2010-07-12 2013-06-20 가부시키가이샤 무라타 세이사쿠쇼 All-solid-state battery
JP2013045738A (en) * 2011-08-26 2013-03-04 Toyota Motor Corp Solid electrolyte sintered body, method of manufacturing the same, and all-solid lithium battery
WO2013069083A1 (en) * 2011-11-07 2013-05-16 トヨタ自動車株式会社 All-solid-state battery

Also Published As

Publication number Publication date
JP2013157195A (en) 2013-08-15

Similar Documents

Publication Publication Date Title
JP5803700B2 (en) Inorganic all-solid secondary battery
US10164287B2 (en) All-solid battery and manufacturing method therefor
JP5312966B2 (en) Method for producing lithium ion secondary battery
WO2018123479A1 (en) Lithium ion cell and method for manufacturing same
CN107709269A (en) The method of dense solid electrolyte matter is prepared for the load bearing board of solid electrolyte making and with it
US20180277890A1 (en) Solid electrolyte for all-solid-state lithium ion secondary battery, all-solid-state lithium ion secondary battery using the same, and method for producing solid electrolyte for all-solid-state lithium ion secondary battery
JP5192841B2 (en) Solid electrolyte manufacturing method and lithium battery manufacturing method
JP2012099225A (en) All-solid lithium ion secondary battery and method of manufacturing the same
JP5289072B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP5144846B2 (en) Method for producing green sheet laminate
JP2009181873A (en) Manufacturing method of lithium ion secondary battery
JP5811191B2 (en) All-solid battery and method for manufacturing the same
JP6955881B2 (en) All-solid-state battery and manufacturing method of all-solid-state battery
JP2009181882A (en) Method of manufacturing lithium battery
JP5306663B2 (en) Laminate for lithium ion secondary battery and method for producing the same
JP6192540B2 (en) All-solid battery and method for manufacturing the same
JP2009181876A (en) Method of manufacturing laminate for lithium ion secondary battery
JP2009193857A (en) Methods of manufacturing solid electrolyte green sheet, solid electrolyte and lithium cell
JP5345824B2 (en) Battery separator and method for producing the same
JP6554267B2 (en) Solid ion capacitor
JPWO2019004001A1 (en) Ion-conductive composite body, all-solid-state battery, and methods for producing the same
JP2022135581A (en) All-solid battery and manufacturing method thereof
JP2012246167A (en) Method for producing compacting sintered body
KR101995549B1 (en) Electrolyte sheet and manufacturing method thereof
JP2015176912A (en) Solid ion capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150817

R150 Certificate of patent or registration of utility model

Ref document number: 5803700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150