WO2013069083A1 - All-solid-state battery - Google Patents

All-solid-state battery Download PDF

Info

Publication number
WO2013069083A1
WO2013069083A1 PCT/JP2011/075614 JP2011075614W WO2013069083A1 WO 2013069083 A1 WO2013069083 A1 WO 2013069083A1 JP 2011075614 W JP2011075614 W JP 2011075614W WO 2013069083 A1 WO2013069083 A1 WO 2013069083A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
positive electrode
solid electrolyte
average particle
Prior art date
Application number
PCT/JP2011/075614
Other languages
French (fr)
Japanese (ja)
Inventor
達哉 古賀
元 長谷川
杉浦 功一
敬介 大森
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/075614 priority Critical patent/WO2013069083A1/en
Publication of WO2013069083A1 publication Critical patent/WO2013069083A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an all solid state battery having low battery resistance and high capacity.
  • lithium secondary batteries have high electromotive force and high energy density, they are widely used in the fields of information-related equipment and communication equipment.
  • development of electric vehicles and hybrid vehicles has been urgently caused by environmental problems and resource problems, and lithium secondary batteries are also being studied as power sources for these.
  • lithium secondary batteries currently on the market use an electrolyte containing a flammable organic solvent, they are equipped with a safety device that prevents the temperature rise during short-circuiting and in terms of structure and materials for short-circuit prevention. Improvement is needed.
  • an all-solid lithium secondary battery in which the electrolyte solution is changed to a solid electrolyte layer to make the battery all solid does not use a flammable organic solvent in the battery, so the safety device can be simplified and manufactured. It is considered to be excellent in cost and productivity.
  • Such an all-solid battery generally has a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer formed between the positive electrode active material layer and the negative electrode active material layer.
  • Patent Document 1 includes a positive electrode active material that is at least one of LiCoO 2 and LiNiO 2 and a sulfide solid electrolyte material, and the average particle size of the positive electrode active material is in the range of 1 to 5 ⁇ m.
  • a positive electrode layer forming material in which the volume fraction of the active material is in the range of 37 to 42 vol% is disclosed. This technique aims to improve lithium ion conductivity while maintaining good electron conductivity.
  • the proportion of the positive electrode active material contained in the positive electrode active material layer is preferably higher.
  • the present invention has been made in view of the above circumstances, and a main object of the present invention is to provide an all solid state battery having low battery resistance and high capacity.
  • a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer formed between the positive electrode active material layer and the negative electrode active material layer are all included.
  • the positive electrode active material layer contains a positive electrode active material and a solid electrolyte material, and the ratio of the positive electrode active material to the total of the positive electrode active material and the solid electrolyte material is greater than 50% by volume,
  • an all-solid battery characterized in that an average particle diameter ratio of the positive electrode active material to a solid electrolyte material is 0.9 or more.
  • the battery resistance is low and the capacity is reduced.
  • a high all-solid-state battery can be obtained.
  • the positive electrode active material preferably has an average particle size of 20 ⁇ m or less, and the solid electrolyte material preferably has an average particle size of 18 ⁇ m or less. This is because lower resistance and higher capacity can be achieved.
  • an average particle diameter of the positive electrode active material is 5 ⁇ m or less and an average particle diameter of the solid electrolyte material is 3 ⁇ m or less. This is because the contact area (reaction area) between the positive electrode active material and the solid electrolyte material can be increased, and further reduction in resistance and increase in capacity can be achieved.
  • the solid electrolyte material preferably has an average particle size of 0.8 ⁇ m or more. This is because a decrease in ionic conductivity due to an increase in grain boundary resistance can be suppressed.
  • the average particle size ratio of the positive electrode active material to the solid electrolyte material is preferably 1.6 or more.
  • FIG. 3 is a result of battery capacity evaluation for the batteries obtained in Examples 1 to 4 and Comparative Examples 1 to 5.
  • FIG. 3 is a result of battery resistance evaluation (1C discharge) for the batteries obtained in Examples 1 to 4 and Comparative Examples 1 to 5.
  • FIG. 3 shows the results of battery capacity evaluation for the batteries obtained in Examples 5 to 9 and Comparative Example 6.
  • FIG. 6 is a result of battery resistance evaluation (1C discharge) for the batteries obtained in Examples 5 to 9 and Comparative Example 6.
  • FIG. 6 is a result of battery resistance evaluation (10C discharge) for the batteries obtained in Examples 5 to 9 and Comparative Example 6.
  • An all solid state battery of the present invention is an all solid state battery having a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer formed between the positive electrode active material layer and the negative electrode active material layer.
  • the positive electrode active material layer contains a positive electrode active material and a solid electrolyte material, and the ratio of the positive electrode active material to the total of the positive electrode active material and the solid electrolyte material is greater than 50% by volume.
  • the average particle size ratio of the positive electrode active material is 0.9 or more.
  • FIG. 1 is a schematic sectional view showing an example of the all solid state battery of the present invention.
  • An all-solid battery 10 in FIG. 1 includes a positive electrode active material layer 1, a negative electrode active material layer 2, a solid electrolyte layer 3 formed between the positive electrode active material layer 1 and the negative electrode active material layer 2, and a solid electrolyte layer 3.
  • the positive electrode active material layer 1 contains a positive electrode active material (for example, an oxide active material) and a solid electrolyte material (for example, a sulfide solid electrolyte material), and the volume ratio of the positive electrode active material and the positive electrode active material with respect to the solid electrolyte material.
  • the average particle size ratio is in a specific range.
  • the battery resistance is low and the capacity is reduced.
  • a high all-solid-state battery can be obtained. That is, in the positive electrode active material layer, when the volume ratio of the positive electrode active material is higher than the volume ratio of the solid electrolyte material, the average particle size ratio is adjusted to a specific value or more to increase the capacity of the all solid state battery. Can be planned.
  • the positive electrode active material has a volume ratio of 40 vol%, the positive electrode active material has an average particle diameter of 4 ⁇ m, and the sulfide solid electrolyte material has an average particle diameter of 7 ⁇ m.
  • an active material layer is described, in this case, if only the volume ratio of the positive electrode active material is simply increased, there is a problem that battery resistance increases and capacity decreases. The reason is considered as follows.
  • the ion conduction path in a positive electrode active material layer is ensured by making the said average particle diameter ratio more than a specific value.
  • the battery resistance decreases and the capacity increases.
  • the contact area of a positive electrode active material and a solid electrolyte material becomes large by making the said average particle diameter ratio more than a specific value.
  • the reaction points at which metal ions are inserted into and desorbed from the positive electrode active material increase, the battery resistance decreases, and the capacity increases.
  • the all solid state battery of the present invention will be described for each configuration.
  • the positive electrode active material layer in the present invention is a layer containing at least a positive electrode active material and a solid electrolyte material.
  • the ratio of the positive electrode active material to the total of the positive electrode active material and the solid electrolyte material is usually larger than 50% by volume, preferably 55% by volume or more, and preferably 60% by volume or more. It is more preferable. This is because if the volume ratio is too small, the energy density may not be sufficiently improved.
  • the ratio is not particularly limited, but is preferably 95% by volume or less, more preferably 90% by volume or less, and still more preferably 85% by volume or less. This is because if the volume ratio is too large, the ion conduction path may not be sufficiently secured.
  • the average particle size ratio of the positive electrode active material to the solid electrolyte material is usually 0.9 or more, preferably 1 or more, and preferably 1.6 or more. More preferred. This is because if the average particle size ratio is too small, the ion conduction path and the contact area between the two may not be sufficiently secured.
  • the average particle diameter ratio is not particularly limited, but is preferably 20 or less, more preferably 15 or less, and still more preferably 10 or less, for example. If the average particle size ratio is too large, the contact area between the two may decrease due to the large particle size of the positive electrode active material, or the grain boundary due to the small particle size of the solid electrolyte material. This is because the resistance may increase.
  • the average particle size ratio can be calculated by dividing the average particle size of the positive electrode active material by the average particle size of the solid electrolyte material.
  • the average and particle size is usually refers to the average particle diameter D 50 was measured with a particle size distribution measurement, a value calculated by a scanning electron microscope (SEM) may be an average particle diameter.
  • SEM scanning electron microscope
  • the average particle diameter of the positive electrode active material is not particularly limited, but is preferably, for example, 20 ⁇ m or less, more preferably 10 ⁇ m or less, and further preferably 5 ⁇ m or less. This is because if the average particle diameter of the positive electrode active material is too large, there is a possibility that a sufficient contact area between the positive electrode active material and the solid electrolyte material cannot be secured. In particular, when the average particle diameter of the positive electrode active material is 5 ⁇ m or less, as will be described in Examples described later, an all-solid battery capable of increasing discharge capacity and capable of high-rate discharge can be obtained.
  • the average particle size of the positive electrode active material is, for example, preferably 0.1 ⁇ m or more, and more preferably 2 ⁇ m or more. This is because if the average particle diameter of the positive electrode active material is too small, the grain boundaries increase and the grain boundary resistance increases.
  • the average particle size of the solid electrolyte material is not particularly limited, but is preferably, for example, 18 ⁇ m or less, more preferably 8 ⁇ m or less, and further preferably 3 ⁇ m or less. This is because if the average particle size of the solid electrolyte material is too large, there is a possibility that a sufficient contact area between the solid electrolyte material and the positive electrode active material cannot be secured. In particular, when the average particle size of the solid electrolyte material is 3 ⁇ m or less, as will be described later in Examples, the discharge capacity is increased, and an all-solid battery capable of high rate discharge can be obtained.
  • the average particle size of the solid electrolyte material is preferably 0.01 ⁇ m or more, for example, preferably 0.1 ⁇ m or more, and more preferably 0.8 ⁇ m or more. This is because the grain boundary resistance may increase if the average particle size of the solid electrolyte material is too small.
  • the positive electrode active material in this invention is not specifically limited, For example, an oxide active material and a sulfide active material can be mentioned.
  • a rock salt layer type such as LiCoO 2 , LiMnO 2 , LiNiO 2 , LiVO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 Active material, spinel type active material such as LiMn 2 O 4 and Li (Ni 0.5 Mn 1.5 ) O 4 , reverse spinel type active material such as LiNiVO 4 and LiCoVO 4 , LiFePO 4 , LiMnPO 4 , LiCoPO 4 , olivine active material LiNiPO 4 etc., can be cited Li 2 FeSiO 4, Li 2 MnSiO Si -containing active material such as 4.
  • an oxide active material a rock salt layer shape in which a part of transition metal is substituted with a different metal, such as LiNi 0.8 Co (0.2-x) Al x O 2 (0 ⁇ x ⁇ 0.2).
  • Type active material Li 1 + x Mn 2-xy M y O 4 (M is at least one of Al, Mg, Co, Fe, Ni, Zn, and 0 ⁇ x + y ⁇ 2).
  • a spinel active material whose part is replaced with a different metal, or lithium titanate such as Li 4 Ti 5 O 12 may be used.
  • examples of the sulfide active material include copper chevrel, iron sulfide, cobalt sulfide, nickel sulfide and the like.
  • a coat layer is preferably formed on the surface of the positive electrode active material. This is because, for example, the generation of the high resistance layer due to the reaction between the oxide active material and the sulfide solid electrolyte material can be suppressed.
  • the material for the coating layer include an oxide material having ion conductivity.
  • lithium niobate LiNbO 3
  • lithium titanate for example, Li 4 Ti 5 O 12
  • lithium phosphate Li 3 PO 4
  • LATP for example Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3
  • LAGP for example Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3
  • Li 2 WO 4 Li 2 ZrO 3
  • Li 4 SiO 4 Li 2 CO 3 , Li 2 BO 2 and the like.
  • metal oxides such as ZrO 2 , Al 2 O 3 , HgO, WO 3 , BaTiO 3 , and Pb (Zr, Ti) O 3 are present on the surface of the positive electrode active material. You may do it. This is because the resistance can be further reduced.
  • the solid electrolyte material in the present invention is not particularly limited, and examples thereof include a sulfide solid electrolyte material and an oxide solid electrolyte material.
  • the sulfide solid electrolyte material is preferable in that it has a higher ion conductivity than the oxide solid electrolyte material, and the oxide solid electrolyte material has higher chemical stability than the sulfide solid electrolyte material. This is preferable.
  • the solid electrolyte material in the present invention may be an amorphous material or a crystalline material. The amorphous material can be obtained, for example, by applying a mechanical milling method or a melt quenching method to the raw material composition.
  • the crystalline material can be obtained, for example, by applying a solid phase method to the raw material composition.
  • a material (glass ceramic) obtained by heat-treating an amorphous material at a temperature equal to or higher than the crystallization temperature may be used as the solid electrolyte material.
  • Examples of the sulfide solid electrolyte material having Li ion conductivity include Li 2 S—P 2 S 5 , Li 2 S—P 2 S 5 —LiI, Li 2 S—P 2 S 5 —LiCl, and Li 2 S.
  • Li 2 S-P 2 S 5 -LiBr Li 2 S-P 2 S 5 -Li 2 O, Li 2 S-P 2 S 5 -Li 2 O-LiI, Li 2 S-SiS 2, Li 2 S-SiS 2 - LiI, Li 2 S—SiS 2 —LiBr, Li 2 S—SiS 2 —LiCl, Li 2 S—SiS 2 —B 2 S 3 —LiI, Li 2 S—SiS 2 —P 2 S 5 —LiI, Li 2 S-B 2 S 3, Li 2 S-P 2 S 5 -Z m S n ( however, m, n is the number of positive .Z is, Ge, Zn, one of Ga.), Li 2 S- GeS 2, Li 2 S-SiS 2 -Li 3 PO 4, Li 2 S- iS 2 -Li x MO y (provided that, x, y is a positive number .M is, P, Si,
  • examples of the oxide solid electrolyte material having Li ion conductivity include Li 2 O—B 2 O 3 —P 2 O 5 , Li 2 O—SiO 2 , LiLaTaO (eg, Li 5 La 3 Ta 2 O 12).
  • LiLaZrO eg, Li 7 La 3 Zr 2 O 12
  • LiBaLaTaO eg, Li 6 BaLa 2 Ta 2 O 12
  • Li 1 + x Si x P 1-x O 4 (0 ⁇ x ⁇ 1, eg, Li 3.6 Si 0.6 P 0.4 O 4
  • Li 1 + x Al x Ge 2-x (PO 4 ) 3 (0 ⁇ x ⁇ 2)
  • Li 1 + x Al x Ti 2-x (PO 4 ) 3 (0 ⁇ x ⁇ 2)
  • LiI and Li 3 N can be used as other solid electrolyte materials.
  • the sulfide solid electrolyte material is a raw material composition containing Li 2 S and a sulfide of A (A is at least one of P, Si, Ge, Al, and B). It is preferable to use it.
  • the raw material composition may further contain a halogen compound.
  • the sulfide of A include P 2 S 3 , P 2 S 5 , SiS 2 , GeS 2 , Al 2 S 3 , B 2 S 3 and the like.
  • the halogen compound include LiF, LiPF 6 , LiCl, LiBr, LiI, and the like, and LiI is preferable.
  • the sulfide solid electrolyte material has an ortho-composition anion structure (PS 4 3- structure, SiS 4 4- structure, GeS 4 4- structure, AlS 3 3- structure, BS 3 3- structure) as a main component. It is preferable to have. This is because a sulfide solid electrolyte material having high chemical stability can be obtained.
  • the ratio of the anion structure of the ortho composition is preferably 60 mol% or more, more preferably 70 mol% or more, still more preferably 80 mol% or more, based on the total anion structure in the ion conductor, 90 mol % Or more is particularly preferable.
  • the ratio of the anion structure of the ortho composition can be determined by Raman spectroscopy, NMR, XPS, or the like.
  • ortho generally refers to one having the highest degree of hydration among oxo acids obtained by hydrating the same oxide.
  • the crystal composition in which Li 2 S is added most in the sulfide is called the ortho composition.
  • Li 3 PS 4 corresponds to the ortho composition
  • Li 2 S—Al 2 S 3 system Li 3 AlS 3 corresponds to the ortho composition
  • Li 3 BS 3 corresponds to the ortho composition
  • Li 4 SiS 4 corresponds to the ortho composition
  • Li 4 GeS 4 corresponds to the ortho composition. Applicable.
  • the raw material composition is, when containing Li 2 S and P 2 S 5, the proportion of Li 2 S to the total of Li 2 S and P 2 S 5 is preferably in the range of 70 mol% ⁇ 80 mol% 72 mol% to 78 mol% is more preferable, and 74 mol% to 76 mol% is more preferable.
  • the raw material composition is, when containing Li 2 S and Al 2 S 3, which is the same when containing Li 2 S and B 2 S 3.
  • the raw material composition is, when containing Li 2 S and SiS 2, the ratio of Li 2 S to the total of Li 2 S and SiS 2 is in the range of 62.5mol% ⁇ 70.9mol% Is more preferable, within the range of 63 mol% to 70 mol%, more preferably within the range of 64 mol% to 68 mol%.
  • the raw material composition contains Li 2 S and GeS 2 .
  • the proportion of the halogen compound in the raw material composition is preferably in the range of 1 mol% to 60 mol%, and preferably in the range of 5 mol% to 40 mol%. More preferably, it is more preferably in the range of 10 mol% to 40 mol%.
  • the positive electrode active material layer in the present invention is a layer containing at least the positive electrode active material and the solid electrolyte material, and may contain only the positive electrode active material layer and the solid electrolyte material, and at least of the conductive material and the binder. One may be further contained.
  • the total ratio of the positive electrode active material and the solid electrolyte material in the positive electrode active material layer is, for example, 80% by weight or more, preferably 85% by weight or more, and more preferably 90% by weight or more. The total may be 100% by weight.
  • the positive electrode active material layer may further contain a conductive material.
  • a conductive material By adding a conductive material, the electronic conductivity of the positive electrode active material layer can be improved.
  • the conductive material include carbon materials such as acetylene black (AB), ketjen black (KB), vapor grown carbon fiber (VGCF), carbon nanotube (CNT), and carbon nanofiber (CNF). It can.
  • the positive electrode active material layer may further contain a binder. By adding a binder, flexibility can be imparted to the positive electrode active material layer. Examples of the binder include butylene rubber, styrene butadiene rubber (SBR), polyvinylidene fluoride (PVDF), and the like.
  • the thickness of the positive electrode active material layer varies depending on the type of the target battery, but is preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, for example.
  • Negative electrode active material layer is a layer containing at least a negative electrode active material, and further contains at least one of a solid electrolyte material, a conductive material and a binder as necessary. Also good.
  • the negative electrode active material in this invention is not specifically limited, For example, a carbon active material, a metal active material, an oxide active material etc. can be mentioned.
  • the carbon active material include graphite such as mesocarbon microbeads (MCMB) and highly oriented graphite (HOPG), and amorphous carbon such as hard carbon and soft carbon.
  • the metal active material include In, Al, Si, Sn, and alloys containing at least one of these elements.
  • oxide active material may include, for example Nb 2 O 5, Li 4 Ti 5 O 12, SiO and the like.
  • Examples of the shape of the negative electrode active material include a particle shape and a film shape.
  • the average particle size of the particulate negative electrode active material is preferably in the range of 0.1 ⁇ m to 50 ⁇ m, for example.
  • the method for obtaining the average particle diameter is as described above.
  • the content of the negative electrode active material in the negative electrode active material layer is preferably in the range of, for example, 10% by weight to 99% by weight, and more preferably in the range of 20% by weight to 90% by weight.
  • the negative electrode active material layer preferably contains a solid electrolyte material, and more preferably contains a sulfide solid electrolyte material. This is because the ion conductivity in the negative electrode active material layer can be improved. In addition, since it is the same as that of the content described in said "1. positive electrode active material layer" about solid electrolyte material, description here is abbreviate
  • the content of the solid electrolyte material in the negative electrode active material layer is, for example, preferably in the range of 1% by weight to 90% by weight, and more preferably in the range of 10% by weight to 80% by weight.
  • the negative electrode active material layer may further contain a conductive material.
  • the negative electrode active material layer may further contain a binder.
  • the conductive material and the binder are the same as those described in “1. Cathode active material layer”, and are not described here.
  • the thickness of the negative electrode active material layer varies depending on the type of the target battery, but is preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, for example.
  • Solid electrolyte layer in the present invention is a layer containing at least a solid electrolyte material.
  • the solid electrolyte material is the same as the contents described in “1. Positive electrode active material layer”, and therefore the description thereof is omitted here.
  • the content of the solid electrolyte material in the solid electrolyte layer is, for example, preferably 60% by weight or more, more preferably 70% by weight or more, and particularly preferably 80% by weight or more.
  • the solid electrolyte layer may contain a binder or may be composed only of a solid electrolyte material.
  • the thickness of the solid electrolyte layer varies greatly depending on the configuration of the battery. For example, the thickness is preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, and more preferably in the range of 0.1 ⁇ m to 300 ⁇ m.
  • the all solid state battery of the present invention has at least the positive electrode active material layer, the negative electrode active material layer, and the solid electrolyte layer described above. Furthermore, it usually has a positive electrode current collector for collecting current of the positive electrode active material layer and a negative electrode current collector for collecting current of the negative electrode active material layer.
  • the material for the positive electrode current collector include SUS, nickel, chromium, gold, platinum, aluminum, iron, titanium, zinc, and carbon.
  • examples of the material for the negative electrode current collector include SUS, copper, nickel, iron, titanium, cobalt, zinc, and carbon.
  • the thickness and shape of the positive electrode current collector and the negative electrode current collector are preferably appropriately selected according to the use of the battery.
  • a general battery case can be used for the battery case used for this invention, For example, the battery case made from SUS, the battery case made from aluminum, an aluminum laminated foil etc. can be mentioned.
  • All-solid battery Examples of the all-solid battery of the present invention include an all-solid lithium battery, an all-solid sodium battery, an all-solid magnesium battery, an all-solid calcium battery, and the like. Among these, an all-solid lithium battery is preferable.
  • the all solid state battery of the present invention may be a primary battery or a secondary battery, but is preferably a secondary battery. This is because it can be repeatedly charged and discharged and is useful, for example, as an in-vehicle battery.
  • examples of the shape of the all solid state battery of the present invention include a coin type, a laminate type, a cylindrical type, and a square type.
  • the manufacturing method of the all-solid-state battery of this invention will not be specifically limited if it is a method which can obtain the all-solid-state battery mentioned above.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
  • Example 1 Synthesis of sulfide solid electrolyte materials
  • lithium sulfide (Li 2 S), diphosphorus pentasulfide (P 2 S 5 ) and lithium iodide (LiI) were used as starting materials.
  • Li 2 S and P 2 S 5 were weighed so as to have a molar ratio of 75Li 2 S ⁇ 25P 2 S 5 (Li 3 PS 4 , ortho composition).
  • LiI was weighed so that the LiI ratio was 30 mol%.
  • sulfide glass ceramic sulfide glass ceramic.
  • the resulting sulfide solid electrolyte material, stainless steel mesh sieve was classified with an average particle diameter D 50 was obtained 6.7 .mu.m, 16.3, a sulfide solid electrolyte material 34.8Myuemu.
  • a composition prepared by dissolving equimolar LiOC 2 H 5 and Nb (OC 2 H 5 ) 5 in an ethanol solvent was prepared as LiNi 1/3 Co 1/3 Mn 1/3 O 2 (manufactured by Nichia Corporation). ) was spray coated using a tumbling fluidized coating apparatus (SFP-01, manufactured by POWREC Co., Ltd.). Thereafter, the coated LiNi 1/3 Co 1/3 Mn 1/3 O 2 was heat-treated at 350 ° C. under atmospheric pressure for 1 hour, and LiNbO 3 coated LiNi 1/3 Co 1/3. Mn 1/3 O 2 was obtained. The obtained positive electrode active material, stainless steel mesh sieve classified was used to adjust the average particle diameter D 50 at a predetermined value.
  • Examples 2 and 3 Comparative Examples 1 to 3
  • a battery was fabricated in the same manner as in Example 1 except that the conditions such as the average particle diameter of the positive electrode active material and the sulfide solid electrolyte material were changed as shown in Table 1.
  • Example 4 A battery was fabricated in the same manner as in Example 4 except that the conditions such as the average particle diameter of the positive electrode active material and the sulfide solid electrolyte material were changed as shown in Table 2.
  • the relationship between the average particle size ratio (A / B) and the discharge capacity is shown in FIG. As shown in FIG. 2, when the average particle size ratio (A / B) was 0.9 or more, the discharge capacity increased. Moreover, the relationship between average particle diameter ratio (A / B) and battery resistance is shown in FIG. As shown in FIG. 3, when the average particle size ratio (A / B) was 0.9 or more, the battery resistance decreased.
  • Example 5 The resulting sulfide solid electrolyte material in Example 1 (sulfide glass ceramics), stainless steel mesh sieve was classified with an average particle diameter D 50 was obtained 6.7 .mu.m, a sulfide solid electrolyte material of 16 [mu] m. Also, the sulfide solid electrolyte material obtained in Example 1 (sulfide glass ceramics), and pulverized in a ball mill, 0.8 [mu] m average particle diameter D 50, 1.5 [mu] m, 2.5 [mu] m sulfide solid electrolyte material Got.
  • a composition prepared by dissolving equimolar LiOC 2 H 5 and Nb (OC 2 H 5 ) 5 in an ethanol solvent was prepared as LiNi 1/3 Co 1/3 Mn 1/3 O 2 (manufactured by Nichia Corporation). ) was spray coated using a tumbling fluidized coating apparatus (SFP-01, manufactured by POWREC Co., Ltd.). Thereafter, the coated LiNi 1/3 Co 1/3 Mn 1/3 O 2 was heat-treated at 350 ° C. under atmospheric pressure for 1 hour, and LiNbO 3 coated LiNi 1/3 Co 1/3. Mn 1/3 O 2 was obtained. The obtained positive electrode active material, stainless steel mesh sieve classified was used to adjust the average particle diameter D 50 at a predetermined value.
  • a conductive material (VGCF, Showa) Denko)
  • a binder 5% by weight heptane solution of butylene rubber binder
  • dehydrated heptane was added.
  • the PP container is stirred for 30 seconds with an ultrasonic dispersion apparatus (SMH, UH-50), and then the PP solution is stirred for 3 minutes with a shaker (Shiba Chemical Co., Ltd., TTM-1). Shake it.
  • SSH ultrasonic dispersion apparatus
  • the obtained composition was coated on a carbon coated Al foil (Showa Denko, SDX) by a blade method using an applicator. Then, it dried for 30 minutes on a 100 degreeC hotplate, and obtained the positive electrode.
  • a binder 5% by weight heptane solution of butylene rubber-based binder
  • dehydrated heptane were added.
  • the PP container is stirred for 30 seconds with an ultrasonic dispersing device (SMH, UH-50), and then the PP solution is stirred for 30 minutes with a shaker (Shiba Chemical Co., Ltd., TTM-1). Shake it.
  • the obtained composition was coated on Cu foil by a blade method using an applicator. Then, it dried for 30 minutes on a 100 degreeC hotplate, and obtained the negative electrode.
  • SSH ultrasonic dispersing device
  • the solid electrolyte layer is disposed in a mold of 1 cm 2, it was pressed under a pressure of 1 ton / cm 2.
  • the positive electrode was placed on one surface of the obtained solid electrolyte layer and pressed at a pressure of 1 ton / cm 2 .
  • the negative electrode was placed on the other surface of the solid electrolyte layer and pressed at a pressure of 4 ton / cm 2 to form a negative electrode active material layer.
  • a battery was produced using the obtained power generation element.
  • Example 6 A battery was fabricated in the same manner as in Example 5 except that the conditions such as the average particle diameter of the positive electrode active material and the sulfide solid electrolyte material were changed as shown in Table 3.
  • FIG. 4 shows the relationship between the average particle size ratio (A / B) and the discharge capacity. As shown in FIG. 4, when the average particle size ratio (A / B) is 0.9 or more, the discharge capacity is increased. In Examples 5 to 7, the discharge capacity was higher than that in Examples 8 and 9.
  • FIG. 5 shows the relationship between the average particle size ratio (A / B) and the battery resistance in 1C discharge. As shown in FIG. 5, when the average particle size ratio (A / B) was 0.9 or more, the battery resistance was low. In Examples 5 to 7, the battery resistance was further reduced as compared with Examples 8 and 9.
  • FIG. 6 shows the relationship between the average particle size ratio (A / B) and the battery resistance in 10C discharge. As shown in FIG. 6 and Table 3, in Examples 8 and 9 and Comparative Example 6, the resistance was too high to be measured, whereas in Examples 5 to 7, the resistance was as low as measurable. there were.

Abstract

The present invention addresses the problem of providing an all-solid-state battery which has low battery resistance and high capacity. The present invention solves the above-described problem by providing an all-solid-state battery, which comprises a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer that is formed between the positive electrode active material layer and the negative electrode active material layer, and which is characterized in that: the positive electrode active material layer contains a positive electrode active material and a solid electrolyte material; the ratio of the positive electrode active material relative to the total of the positive electrode active material and the solid electrolyte material is larger than 50% by volume; and the ratio of the average particle diameter of the positive electrode active material relative to that of the solid electrolyte material is not less than 0.9.

Description

全固体電池All solid battery
 本発明は、電池抵抗が低く、容量の高い全固体電池に関する。 The present invention relates to an all solid state battery having low battery resistance and high capacity.
 例えばリチウム二次電池は、高い起電力および高エネルギー密度を有するため、情報関連機器、通信機器の分野で広く実用化されている。一方、自動車の分野においても、環境問題、資源問題から電気自動車やハイブリッド自動車の開発が急がれており、これらの電源としても、リチウム二次電池が検討されている。 For example, since lithium secondary batteries have high electromotive force and high energy density, they are widely used in the fields of information-related equipment and communication equipment. On the other hand, in the field of automobiles, development of electric vehicles and hybrid vehicles has been urgently caused by environmental problems and resource problems, and lithium secondary batteries are also being studied as power sources for these.
 現在市販されているリチウム二次電池は、可燃性の有機溶媒を含む電解液が使用されているため、短絡時の温度上昇を抑える安全装置の取り付けや短絡防止のための構造・材料面での改善が必要となる。これに対し、電解液を固体電解質層に変えて、電池を全固体化した全固体リチウム二次電池は、電池内に可燃性の有機溶媒を用いないので、安全装置の簡素化が図れ、製造コストや生産性に優れると考えられている。 Since lithium secondary batteries currently on the market use an electrolyte containing a flammable organic solvent, they are equipped with a safety device that prevents the temperature rise during short-circuiting and in terms of structure and materials for short-circuit prevention. Improvement is needed. In contrast, an all-solid lithium secondary battery in which the electrolyte solution is changed to a solid electrolyte layer to make the battery all solid does not use a flammable organic solvent in the battery, so the safety device can be simplified and manufactured. It is considered to be excellent in cost and productivity.
 このような全固体電池は、一般的には、正極活物質層と、負極活物質層と、正極活物質層および負極活物質層の間に形成された固体電解質層とを有する。例えば特許文献1には、LiCoOおよびLiNiOの少なくとも一方である正極活物質と、硫化物固体電解質材料とを有し、正極活物質の平均粒径が1~5μmの範囲内であり、正極活物質の体積分率が37~42vol%の範囲内である正極層形成用材料が開示されている。この技術は、電子伝導性を良好に維持しつつ、リチウムイオン伝導度を向上させることを目的としている。 Such an all-solid battery generally has a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer formed between the positive electrode active material layer and the negative electrode active material layer. For example, Patent Document 1 includes a positive electrode active material that is at least one of LiCoO 2 and LiNiO 2 and a sulfide solid electrolyte material, and the average particle size of the positive electrode active material is in the range of 1 to 5 μm. A positive electrode layer forming material in which the volume fraction of the active material is in the range of 37 to 42 vol% is disclosed. This technique aims to improve lithium ion conductivity while maintaining good electron conductivity.
特開2009-238636号公報JP 2009-238636 A
 電池のエネルギー密度を向上させる観点から、正極活物質層に含まれる正極活物質の割合はより高いことが好ましい。一方、例えば特許文献1の実施例1には、正極活物質の体積割合が40vol%、正極活物質の平均粒径が4μm、硫化物固体電解質材料の平均粒径が7μmである正極活物質層が記載されているが、この場合に、単純に正極活物質の体積割合のみを増加させると、電池抵抗が高くなり、容量が低くなるという問題がある。本発明は、上記実情に鑑みてなされたものであり、電池抵抗が低く、容量の高い全固体電池を提供することを主目的とする。 From the viewpoint of improving the energy density of the battery, the proportion of the positive electrode active material contained in the positive electrode active material layer is preferably higher. On the other hand, for example, in Example 1 of Patent Document 1, a positive electrode active material layer in which the volume ratio of the positive electrode active material is 40 vol%, the average particle size of the positive electrode active material is 4 μm, and the average particle size of the sulfide solid electrolyte material is 7 μm. However, in this case, if only the volume ratio of the positive electrode active material is simply increased, there is a problem that the battery resistance increases and the capacity decreases. The present invention has been made in view of the above circumstances, and a main object of the present invention is to provide an all solid state battery having low battery resistance and high capacity.
 上記目的を達成するために、本発明においては、正極活物質層と、負極活物質層と、上記正極活物質層および上記負極活物質層の間に形成された固体電解質層と、を有する全固体電池であって、上記正極活物質層は、正極活物質および固体電解質材料を含有し、上記正極活物質および上記固体電解質材料の合計に対する上記正極活物質の割合が50体積%より大きく、上記固体電解質材料に対する上記正極活物質の平均粒径比が、0.9以上であることを特徴とする全固体電池を提供する。 In order to achieve the above object, in the present invention, a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer formed between the positive electrode active material layer and the negative electrode active material layer are all included. In the solid battery, the positive electrode active material layer contains a positive electrode active material and a solid electrolyte material, and the ratio of the positive electrode active material to the total of the positive electrode active material and the solid electrolyte material is greater than 50% by volume, Provided is an all-solid battery characterized in that an average particle diameter ratio of the positive electrode active material to a solid electrolyte material is 0.9 or more.
 本発明によれば、正極活物質層において、正極活物質の体積割合、および、固体電解質材料に対する正極活物質の平均粒径比が、特定の範囲にあることから、電池抵抗が低く、容量の高い全固体電池とすることができる。 According to the present invention, in the positive electrode active material layer, since the volume ratio of the positive electrode active material and the average particle diameter ratio of the positive electrode active material to the solid electrolyte material are in a specific range, the battery resistance is low and the capacity is reduced. A high all-solid-state battery can be obtained.
 上記発明においては、上記正極活物質の平均粒径が20μm以下であり、上記固体電解質材料の平均粒径が18μm以下であることが好ましい。より低抵抗化および高容量化を図ることができるからである。 In the above invention, the positive electrode active material preferably has an average particle size of 20 μm or less, and the solid electrolyte material preferably has an average particle size of 18 μm or less. This is because lower resistance and higher capacity can be achieved.
 上記発明においては、上記正極活物質の平均粒径が5μm以下であり、上記固体電解質材料の平均粒径が3μm以下であることが好ましい。正極活物質および固体電解質材料の接触面積(反応面積)を増加させることができ、さらなる低抵抗化および高容量化を図ることができるからである。 In the above invention, it is preferable that an average particle diameter of the positive electrode active material is 5 μm or less and an average particle diameter of the solid electrolyte material is 3 μm or less. This is because the contact area (reaction area) between the positive electrode active material and the solid electrolyte material can be increased, and further reduction in resistance and increase in capacity can be achieved.
 上記発明においては、上記固体電解質材料の平均粒径が0.8μm以上であることが好ましい。粒界抵抗の増加によるイオン伝導度の低下を抑制できるからである。 In the above invention, the solid electrolyte material preferably has an average particle size of 0.8 μm or more. This is because a decrease in ionic conductivity due to an increase in grain boundary resistance can be suppressed.
 上記発明においては、上記固体電解質材料に対する上記正極活物質の平均粒径比が、1.6以上であることが好ましい。 In the above invention, the average particle size ratio of the positive electrode active material to the solid electrolyte material is preferably 1.6 or more.
 本発明においては、電池抵抗が低く、容量の高い全固体電池を提供できるという効果を奏する。 In the present invention, it is possible to provide an all-solid battery having a low battery resistance and a high capacity.
本発明の全固体電池の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the all-solid-state battery of this invention. 実施例1~4および比較例1~5で得られた電池に対する、電池容量評価の結果である。3 is a result of battery capacity evaluation for the batteries obtained in Examples 1 to 4 and Comparative Examples 1 to 5. FIG. 実施例1~4および比較例1~5で得られた電池に対する、電池抵抗評価(1C放電)の結果である。3 is a result of battery resistance evaluation (1C discharge) for the batteries obtained in Examples 1 to 4 and Comparative Examples 1 to 5. FIG. 実施例5~9および比較例6で得られた電池に対する、電池容量評価の結果である。3 shows the results of battery capacity evaluation for the batteries obtained in Examples 5 to 9 and Comparative Example 6. 実施例5~9および比較例6で得られた電池に対する、電池抵抗評価(1C放電)の結果である。FIG. 6 is a result of battery resistance evaluation (1C discharge) for the batteries obtained in Examples 5 to 9 and Comparative Example 6. FIG. 実施例5~9および比較例6で得られた電池に対する、電池抵抗評価(10C放電)の結果である。FIG. 6 is a result of battery resistance evaluation (10C discharge) for the batteries obtained in Examples 5 to 9 and Comparative Example 6. FIG.
 以下、本発明の全固体電池について、詳細に説明する。 Hereinafter, the all solid state battery of the present invention will be described in detail.
 本発明の全固体電池は、正極活物質層と、負極活物質層と、上記正極活物質層および上記負極活物質層の間に形成された固体電解質層と、を有する全固体電池であって、上記正極活物質層は、正極活物質および固体電解質材料を含有し、上記正極活物質および上記固体電解質材料の合計に対する上記正極活物質の割合が50体積%より大きく、上記固体電解質材料に対する上記正極活物質の平均粒径比が、0.9以上であることを特徴とするものである。 An all solid state battery of the present invention is an all solid state battery having a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer formed between the positive electrode active material layer and the negative electrode active material layer. The positive electrode active material layer contains a positive electrode active material and a solid electrolyte material, and the ratio of the positive electrode active material to the total of the positive electrode active material and the solid electrolyte material is greater than 50% by volume. The average particle size ratio of the positive electrode active material is 0.9 or more.
 図1は、本発明の全固体電池の一例を示す概略断面図である。図1における全固体電池10は、正極活物質層1と、負極活物質層2と、正極活物質層1および負極活物質層2の間に形成された固体電解質層3と、固体電解質層3とは反対側の正極活物質層1の表面に形成された正極集電体4と、固体電解質層3とは反対側の負極活物質層2の表面に形成された負極集電体5と、を有する。正極活物質層1は、正極活物質(例えば酸化物活物質)および固体電解質材料(例えば硫化物固体電解質材料)を含有し、正極活物質の体積割合、および、固体電解質材料に対する正極活物質の平均粒径比が、特定の範囲にあることを特徴とする。 FIG. 1 is a schematic sectional view showing an example of the all solid state battery of the present invention. An all-solid battery 10 in FIG. 1 includes a positive electrode active material layer 1, a negative electrode active material layer 2, a solid electrolyte layer 3 formed between the positive electrode active material layer 1 and the negative electrode active material layer 2, and a solid electrolyte layer 3. A positive electrode current collector 4 formed on the surface of the negative electrode active material layer 1 opposite to the solid electrolyte layer 3, a negative electrode current collector 5 formed on the surface of the negative electrode active material layer 2 opposite to the solid electrolyte layer 3, Have The positive electrode active material layer 1 contains a positive electrode active material (for example, an oxide active material) and a solid electrolyte material (for example, a sulfide solid electrolyte material), and the volume ratio of the positive electrode active material and the positive electrode active material with respect to the solid electrolyte material. The average particle size ratio is in a specific range.
 本発明によれば、正極活物質層において、正極活物質の体積割合、および、固体電解質材料に対する正極活物質の平均粒径比が、特定の範囲にあることから、電池抵抗が低く、容量の高い全固体電池とすることができる。すなわち、正極活物質層において、正極活物質の体積割合が固体電解質材料の体積割合よりも高い場合に、平均粒径比を特定の値以上に調整することで、全固体電池の高容量化を図ることができる。 According to the present invention, in the positive electrode active material layer, since the volume ratio of the positive electrode active material and the average particle diameter ratio of the positive electrode active material to the solid electrolyte material are in a specific range, the battery resistance is low and the capacity is reduced. A high all-solid-state battery can be obtained. That is, in the positive electrode active material layer, when the volume ratio of the positive electrode active material is higher than the volume ratio of the solid electrolyte material, the average particle size ratio is adjusted to a specific value or more to increase the capacity of the all solid state battery. Can be planned.
 上述したように、例えば特許文献1の実施例1には、正極活物質の体積割合が40vol%、正極活物質の平均粒径が4μm、硫化物固体電解質材料の平均粒径が7μmである正極活物質層が記載されているが、この場合に、単純に正極活物質の体積割合のみを増加させると、電池抵抗が高くなり、容量が低くなるという問題がある。その理由は、以下の通りであると考えられる。すなわち、平均粒径比(正極活物質/固体電解質材料)が低い状態で、単純に正極活物質の体積割合のみを増加させると、(i)正極活物質層におけるイオン伝導パスが細くなる(あるいは途切れる)という問題、(ii)正極活物質および固体電解質材料の接触面積が小さくなるという問題が生じる。(i)については、イオン伝導パスが短くなると、正極活物質に金属イオンが挿入・脱離する反応点への金属イオンの供給が律速となり、電池抵抗が増加し容量が低下すると考えられる。さらに、イオン伝導パスが途切れて孤立した活物質は反応に関与しなくなるので、この要因によっても容量が低下すると考えられる。(ii)については、接触面積が小さいと、正極活物質に金属イオンが挿入・脱離する反応点が少なくなり、電池抵抗が増加し容量が低下すると考えられる。なお、正極活物質および固体電解質材料がどちらも所定の硬さを有し、正極活物質層をプレスしても粒子間の細かい隙間に両者が入り込みあうことが無い場合には、(ii)の影響が顕著に現れると考えられる。 As described above, for example, in Example 1 of Patent Document 1, the positive electrode active material has a volume ratio of 40 vol%, the positive electrode active material has an average particle diameter of 4 μm, and the sulfide solid electrolyte material has an average particle diameter of 7 μm. Although an active material layer is described, in this case, if only the volume ratio of the positive electrode active material is simply increased, there is a problem that battery resistance increases and capacity decreases. The reason is considered as follows. That is, when the average particle size ratio (positive electrode active material / solid electrolyte material) is low and the volume ratio of the positive electrode active material is simply increased, (i) the ion conduction path in the positive electrode active material layer becomes thin (or (Ii) a problem that the contact area between the positive electrode active material and the solid electrolyte material becomes small. Regarding (i), it is considered that when the ion conduction path is shortened, the supply of metal ions to and from the reaction site where metal ions are inserted into and desorbed from the positive electrode active material becomes rate-determined, battery resistance increases, and capacity decreases. Furthermore, since the active material isolated by interruption of the ion conduction path is not involved in the reaction, it is considered that the capacity is also reduced by this factor. Regarding (ii), it is considered that when the contact area is small, the number of reaction points at which metal ions are inserted into and desorbed from the positive electrode active material is decreased, battery resistance is increased, and capacity is decreased. If both the positive electrode active material and the solid electrolyte material have a predetermined hardness and the positive electrode active material layer is not pressed into the fine gaps between the particles even if the positive electrode active material layer is pressed, (ii) It is thought that the effect appears prominently.
 これに対して、本発明においては、上記平均粒径比を特定の値以上にすることで、正極活物質層におけるイオン伝導パスが確保される。その結果、電池抵抗が低下し容量が増加すると考えられる。また、上記平均粒径比を特定の値以上にすることで、正極活物質および固体電解質材料の接触面積が大きくなる。その結果、正極活物質に金属イオンが挿入・脱離する反応点が増加し、電池抵抗が低下し容量が増加すると考えられる。なお、イオン伝導パスが確保され、接触面積が増加していることは、正極活物質層の断面を観察することで確認した。
 以下、本発明の全固体電池について、構成ごとに説明する。
On the other hand, in this invention, the ion conduction path in a positive electrode active material layer is ensured by making the said average particle diameter ratio more than a specific value. As a result, it is considered that the battery resistance decreases and the capacity increases. Moreover, the contact area of a positive electrode active material and a solid electrolyte material becomes large by making the said average particle diameter ratio more than a specific value. As a result, it is considered that the reaction points at which metal ions are inserted into and desorbed from the positive electrode active material increase, the battery resistance decreases, and the capacity increases. In addition, it was confirmed by observing the cross section of a positive electrode active material layer that the ion conduction path was ensured and the contact area increased.
Hereinafter, the all solid state battery of the present invention will be described for each configuration.
1.正極活物質層
 本発明における正極活物質層は、少なくとも正極活物質および固体電解質材料を含有する層である。本発明における正極活物質層では、正極活物質および固体電解質材料の合計に対する正極活物質の割合が、通常、50体積%より大きく、55体積%以上であることが好ましく、60体積%以上であることがより好ましい。上記体積割合が小さすぎると、エネルギー密度の向上を十分に図れない可能性があるからである。一方、上記割合は、特に限定されるものではないが、例えば95体積%以下であることが好ましく、90体積%以下であることがより好ましく、85体積%以下であることがさらに好ましい。上記体積割合が大きすぎると、イオン伝導パスを十分に確保できない可能性があるからである。
1. Positive electrode active material layer The positive electrode active material layer in the present invention is a layer containing at least a positive electrode active material and a solid electrolyte material. In the positive electrode active material layer in the present invention, the ratio of the positive electrode active material to the total of the positive electrode active material and the solid electrolyte material is usually larger than 50% by volume, preferably 55% by volume or more, and preferably 60% by volume or more. It is more preferable. This is because if the volume ratio is too small, the energy density may not be sufficiently improved. On the other hand, the ratio is not particularly limited, but is preferably 95% by volume or less, more preferably 90% by volume or less, and still more preferably 85% by volume or less. This is because if the volume ratio is too large, the ion conduction path may not be sufficiently secured.
 また、本発明における正極活物質層では、固体電解質材料に対する正極活物質の平均粒径比が、通常、0.9以上であり、1以上であることが好ましく、1.6以上であることがより好ましい。上記平均粒径比が小さすぎると、イオン伝導パスおよび両者の接触面積を十分に確保できない可能性があるからである。一方、上記平均粒径比は、特に限定されるものではないが、例えば20以下であることが好ましく、15以下であることがより好ましく、10以下であることがさらに好ましい。上記平均粒径比が大きすぎると、正極活物質の粒径が大きいことに起因して両者の接触面積が低下する可能性、または、固体電解質材料の粒径が小さいことに起因して粒界抵抗が増加する可能性があるからである。ここで、上記平均粒径比は、正極活物質の平均粒径を、固体電解質材料の平均粒径で除することにより、算出することができる。上記平均粒径とは、通常、粒度分布測定により測定した平均粒径D50をいうが、走査型電子顕微鏡(SEM)により算出した値を平均粒径としても良い。SEMによる算出では、固体電解質材料の粒子(n≧100)の最長径と最短径を測定し、その平均値を求めることとする。 In the positive electrode active material layer of the present invention, the average particle size ratio of the positive electrode active material to the solid electrolyte material is usually 0.9 or more, preferably 1 or more, and preferably 1.6 or more. More preferred. This is because if the average particle size ratio is too small, the ion conduction path and the contact area between the two may not be sufficiently secured. On the other hand, the average particle diameter ratio is not particularly limited, but is preferably 20 or less, more preferably 15 or less, and still more preferably 10 or less, for example. If the average particle size ratio is too large, the contact area between the two may decrease due to the large particle size of the positive electrode active material, or the grain boundary due to the small particle size of the solid electrolyte material. This is because the resistance may increase. Here, the average particle size ratio can be calculated by dividing the average particle size of the positive electrode active material by the average particle size of the solid electrolyte material. The average and particle size is usually refers to the average particle diameter D 50 was measured with a particle size distribution measurement, a value calculated by a scanning electron microscope (SEM) may be an average particle diameter. In the calculation by SEM, the longest diameter and the shortest diameter of particles (n ≧ 100) of the solid electrolyte material are measured, and the average value is obtained.
 正極活物質の平均粒径は、特に限定されるものではないが、例えば20μm以下であることが好ましく、10μm以下であることがより好ましく、5μm以下であることがさらに好ましい。正極活物質の平均粒径が大きすぎると、正極活物質および固体電解質材料の接触面積を十分に確保できない可能性があるからである。また、特に正極活物質の平均粒径が5μm以下である場合、後述する実施例に記載するように、放電容量が高くなり、さらに高レート放電可能な全固体電池を得ることができる。一方、正極活物質の平均粒径は、例えば0.1μm以上であることが好ましく、2μm以上であることがより好ましい。正極活物質の平均粒径が小さすぎると、粒界が増え、粒界抵抗が増加するからである。 The average particle diameter of the positive electrode active material is not particularly limited, but is preferably, for example, 20 μm or less, more preferably 10 μm or less, and further preferably 5 μm or less. This is because if the average particle diameter of the positive electrode active material is too large, there is a possibility that a sufficient contact area between the positive electrode active material and the solid electrolyte material cannot be secured. In particular, when the average particle diameter of the positive electrode active material is 5 μm or less, as will be described in Examples described later, an all-solid battery capable of increasing discharge capacity and capable of high-rate discharge can be obtained. On the other hand, the average particle size of the positive electrode active material is, for example, preferably 0.1 μm or more, and more preferably 2 μm or more. This is because if the average particle diameter of the positive electrode active material is too small, the grain boundaries increase and the grain boundary resistance increases.
 固体電解質材料の平均粒径は、特に限定されるものではないが、例えば18μm以下であることが好ましく、8μm以下であることがより好ましく、3μm以下であることがさらに好ましい。固体電解質材料の平均粒径が大きすぎると、固体電解質材料および正極活物質の接触面積を十分に確保できない可能性があるからである。特に固体電解質材料の平均粒径が3μm以下である場合、後述する実施例に記載するように、放電容量が高くなり、さらに高レート放電可能な全固体電池を得ることができる。一方、固体電解質材料の平均粒径は、例えば0.01μm以上であることが好ましく、0.1μm以上であることが好ましく、0.8μm以上であることがより好ましい。固体電解質材料の平均粒径が小さすぎると、粒界抵抗が増加する可能性があるからである。 The average particle size of the solid electrolyte material is not particularly limited, but is preferably, for example, 18 μm or less, more preferably 8 μm or less, and further preferably 3 μm or less. This is because if the average particle size of the solid electrolyte material is too large, there is a possibility that a sufficient contact area between the solid electrolyte material and the positive electrode active material cannot be secured. In particular, when the average particle size of the solid electrolyte material is 3 μm or less, as will be described later in Examples, the discharge capacity is increased, and an all-solid battery capable of high rate discharge can be obtained. On the other hand, the average particle size of the solid electrolyte material is preferably 0.01 μm or more, for example, preferably 0.1 μm or more, and more preferably 0.8 μm or more. This is because the grain boundary resistance may increase if the average particle size of the solid electrolyte material is too small.
 本発明における正極活物質は、特に限定されるものではないが、例えば酸化物活物質、硫化物活物質を挙げることができる。例えば全固体リチウム電池の正極活物質として用いられる酸化物活物質としては、LiCoO、LiMnO、LiNiO、LiVO、LiNi1/3Co1/3Mn1/3等の岩塩層状型活物質、LiMn、Li(Ni0.5Mn1.5)O等のスピネル型活物質、LiNiVO、LiCoVO等の逆スピネル型活物質、LiFePO、LiMnPO、LiCoPO、LiNiPO等のオリビン型活物質、LiFeSiO、LiMnSiO等のSi含有活物質等を挙げることができる。また、酸化物活物質として、LiNi0.8Co(0.2-x)Al(0<x<0.2)のように、遷移金属の一部を異種金属で置換した岩塩層状型活物質、Li1+xMn2-x-y(MはAl、Mg、Co、Fe、Ni、Znの少なくとも一種であり、0<x+y<2)のように、遷移金属の一部を異種金属で置換したスピネル型活物質、LiTi12等のチタン酸リチウムを用いても良い。一方、硫化物活物質としては、例えば、銅シェブレル、硫化鉄、硫化コバルト、硫化ニッケル等を挙げることができる。 Although the positive electrode active material in this invention is not specifically limited, For example, an oxide active material and a sulfide active material can be mentioned. For example, as an oxide active material used as a positive electrode active material of an all-solid-state lithium battery, a rock salt layer type such as LiCoO 2 , LiMnO 2 , LiNiO 2 , LiVO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 Active material, spinel type active material such as LiMn 2 O 4 and Li (Ni 0.5 Mn 1.5 ) O 4 , reverse spinel type active material such as LiNiVO 4 and LiCoVO 4 , LiFePO 4 , LiMnPO 4 , LiCoPO 4 , olivine active material LiNiPO 4 etc., can be cited Li 2 FeSiO 4, Li 2 MnSiO Si -containing active material such as 4. Further, as an oxide active material, a rock salt layer shape in which a part of transition metal is substituted with a different metal, such as LiNi 0.8 Co (0.2-x) Al x O 2 (0 <x <0.2). Type active material, Li 1 + x Mn 2-xy M y O 4 (M is at least one of Al, Mg, Co, Fe, Ni, Zn, and 0 <x + y <2). A spinel active material whose part is replaced with a different metal, or lithium titanate such as Li 4 Ti 5 O 12 may be used. On the other hand, examples of the sulfide active material include copper chevrel, iron sulfide, cobalt sulfide, nickel sulfide and the like.
 正極活物質の表面には、コート層が形成されていることが好ましい。例えば、酸化物活物質と、硫化物固体電解質材料との反応による高抵抗層の発生を抑制できるからである。コート層の材料としては、イオン伝導性を有する酸化物材料を挙げることができ、具体的には、ニオブ酸リチウム(LiNbO)、チタン酸リチウム(例えばLiTi12)、リン酸リチウム(LiPO)、LATP(例えばLi1.5Al0.5Ti1.5(PO)、LAGP(例えばLi1.5Al0.5Ge1.5(PO)、LiWO、LiZrO、LiSiO、LiCO、LiBO等を挙げることができる。また、正極活物質の表面には、ZrO、Al、HgO、WO、BaTiO、Pb(Zr,Ti)O等の金属酸化物(Liを含有しない金属酸化物)が存在していても良い。より低抵抗化できるからである。 A coat layer is preferably formed on the surface of the positive electrode active material. This is because, for example, the generation of the high resistance layer due to the reaction between the oxide active material and the sulfide solid electrolyte material can be suppressed. Examples of the material for the coating layer include an oxide material having ion conductivity. Specifically, lithium niobate (LiNbO 3 ), lithium titanate (for example, Li 4 Ti 5 O 12 ), lithium phosphate (Li 3 PO 4 ), LATP (for example Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 ), LAGP (for example Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 ) , Li 2 WO 4 , Li 2 ZrO 3 , Li 4 SiO 4 , Li 2 CO 3 , Li 2 BO 2 and the like. In addition, metal oxides (metal oxides not containing Li) such as ZrO 2 , Al 2 O 3 , HgO, WO 3 , BaTiO 3 , and Pb (Zr, Ti) O 3 are present on the surface of the positive electrode active material. You may do it. This is because the resistance can be further reduced.
 本発明における固体電解質材料は、特に限定されるものではないが、例えば、硫化物固体電解質材料、酸化物固体電解質材料を挙げることができる。硫化物固体電解質材料は、酸化物固体電解質材料に比べて、イオン伝導性が高いものが多い点で好ましく、酸化物固体電解質材料は、硫化物固体電解質材料に比べて、化学的安定性が高い点で好ましい。また、本発明における固体電解質材料は、非晶質材料であっても良く、結晶質材料であっても良い。非晶質材料は、例えば、原料組成物に対してメカニカルミリング法または溶融急冷法を適用することで、得ることができる。結晶性材料は、例えば、原料組成物に対して固相法を適用することで、得ることができる。また、本発明においては、非晶質材料を結晶化温度以上の温度で熱処理した材料(ガラスセラミックス)を固体電解質材料として用いても良い。 The solid electrolyte material in the present invention is not particularly limited, and examples thereof include a sulfide solid electrolyte material and an oxide solid electrolyte material. The sulfide solid electrolyte material is preferable in that it has a higher ion conductivity than the oxide solid electrolyte material, and the oxide solid electrolyte material has higher chemical stability than the sulfide solid electrolyte material. This is preferable. In addition, the solid electrolyte material in the present invention may be an amorphous material or a crystalline material. The amorphous material can be obtained, for example, by applying a mechanical milling method or a melt quenching method to the raw material composition. The crystalline material can be obtained, for example, by applying a solid phase method to the raw material composition. In the present invention, a material (glass ceramic) obtained by heat-treating an amorphous material at a temperature equal to or higher than the crystallization temperature may be used as the solid electrolyte material.
 Liイオン伝導性を有する硫化物固体電解質材料としては、例えば、LiS-P、LiS-P-LiI、LiS-P-LiCl、LiS-P-LiBr、LiS-P-LiO、LiS-P-LiO-LiI、LiS-SiS、LiS-SiS-LiI、LiS-SiS-LiBr、LiS-SiS-LiCl、LiS-SiS-B-LiI、LiS-SiS-P-LiI、LiS-B、LiS-P-Z(ただし、m、nは正の数。Zは、Ge、Zn、Gaのいずれか。)、LiS-GeS、LiS-SiS-LiPO、LiS-SiS-LiMO(ただし、x、yは正の数。Mは、P、Si、Ge、B、Al、Ga、Inのいずれか。)、Li10GeP12等を挙げることができる。一方、Liイオン伝導性を有する酸化物固体電解質材料としては、例えば、LiO-B-P、LiO-SiO、LiLaTaO(例えばLiLaTa12)、LiLaZrO(例えばLiLaZr12)、LiBaLaTaO(例えばLiBaLaTa12)、Li1+xSi1-x(0≦x<1、例えばLi3.6Si0.60.4)、Li1+xAlGe2-x(PO(0≦x≦2)、Li1+xAlTi2-x(PO(0≦x≦2)、LiPO(4-3/2x)(0≦x<1)等を挙げることができる。また、本発明においては、その他の固体電解質材料として、LiIおよびLiN等を用いることができる。 Examples of the sulfide solid electrolyte material having Li ion conductivity include Li 2 S—P 2 S 5 , Li 2 S—P 2 S 5 —LiI, Li 2 S—P 2 S 5 —LiCl, and Li 2 S. -P 2 S 5 -LiBr, Li 2 S-P 2 S 5 -Li 2 O, Li 2 S-P 2 S 5 -Li 2 O-LiI, Li 2 S-SiS 2, Li 2 S-SiS 2 - LiI, Li 2 S—SiS 2 —LiBr, Li 2 S—SiS 2 —LiCl, Li 2 S—SiS 2 —B 2 S 3 —LiI, Li 2 S—SiS 2 —P 2 S 5 —LiI, Li 2 S-B 2 S 3, Li 2 S-P 2 S 5 -Z m S n ( however, m, n is the number of positive .Z is, Ge, Zn, one of Ga.), Li 2 S- GeS 2, Li 2 S-SiS 2 -Li 3 PO 4, Li 2 S- iS 2 -Li x MO y (provided that, x, y is a positive number .M is, P, Si, Ge, B , Al, Ga, either an In.), be mentioned Li 10 GeP 2 S 12 or the like Can do. On the other hand, examples of the oxide solid electrolyte material having Li ion conductivity include Li 2 O—B 2 O 3 —P 2 O 5 , Li 2 O—SiO 2 , LiLaTaO (eg, Li 5 La 3 Ta 2 O 12). ), LiLaZrO (eg, Li 7 La 3 Zr 2 O 12 ), LiBaLaTaO (eg, Li 6 BaLa 2 Ta 2 O 12 ), Li 1 + x Si x P 1-x O 4 (0 ≦ x <1, eg, Li 3.6 Si 0.6 P 0.4 O 4 ), Li 1 + x Al x Ge 2-x (PO 4 ) 3 (0 ≦ x ≦ 2), Li 1 + x Al x Ti 2-x (PO 4 ) 3 (0 ≦ x ≦ 2), Li 3 PO (4-3 / 2x) N x (0 ≦ x <1), and the like. In the present invention, LiI and Li 3 N can be used as other solid electrolyte materials.
 特に、本発明においては、硫化物固体電解質材料が、LiSと、A(Aは、P、Si、Ge、AlおよびBの少なくとも一種である)の硫化物とを含有する原料組成物を用いてなるものであることが好ましい。上記原料組成物は、ハロゲン化合物をさらに含有していても良い。Aの硫化物としては、例えば、P、P、SiS、GeS、Al、B等を挙げることができる。また、ハロゲン化合物としては、LiF、LiPF、LiCl、LiBr、LiI等を挙げることができ、中でもLiIが好ましい。 In particular, in the present invention, the sulfide solid electrolyte material is a raw material composition containing Li 2 S and a sulfide of A (A is at least one of P, Si, Ge, Al, and B). It is preferable to use it. The raw material composition may further contain a halogen compound. Examples of the sulfide of A include P 2 S 3 , P 2 S 5 , SiS 2 , GeS 2 , Al 2 S 3 , B 2 S 3 and the like. Examples of the halogen compound include LiF, LiPF 6 , LiCl, LiBr, LiI, and the like, and LiI is preferable.
 また、上記硫化物固体電解質材料は、オルト組成のアニオン構造(PS 3-構造、SiS 4-構造、GeS 4-構造、AlS 3-構造、BS 3-構造)を主成分として有することが好ましい。化学安定性の高い硫化物固体電解質材料とすることができるからである。オルト組成のアニオン構造の割合は、イオン伝導体における全アニオン構造に対して、60mol%以上であることが好ましく、70mol%以上であることがより好ましく、80mol%以上であることがさらに好ましく、90mol%以上であることが特に好ましい。なお、オルト組成のアニオン構造の割合は、ラマン分光法、NMR、XPS等により決定することができる。 The sulfide solid electrolyte material has an ortho-composition anion structure (PS 4 3- structure, SiS 4 4- structure, GeS 4 4- structure, AlS 3 3- structure, BS 3 3- structure) as a main component. It is preferable to have. This is because a sulfide solid electrolyte material having high chemical stability can be obtained. The ratio of the anion structure of the ortho composition is preferably 60 mol% or more, more preferably 70 mol% or more, still more preferably 80 mol% or more, based on the total anion structure in the ion conductor, 90 mol % Or more is particularly preferable. The ratio of the anion structure of the ortho composition can be determined by Raman spectroscopy, NMR, XPS, or the like.
 ここで、オルトとは、一般的に、同じ酸化物を水和して得られるオキソ酸の中で、最も水和度の高いものをいう。本発明においては、硫化物で最もLiSが付加している結晶組成をオルト組成という。例えば、LiS-P系ではLiPSがオルト組成に該当し、LiS-Al系ではLiAlSがオルト組成に該当し、LiS-B系ではLiBSがオルト組成に該当し、LiS-SiS系ではLiSiSがオルト組成に該当し、LiS-GeS系ではLiGeSがオルト組成に該当する。 Here, ortho generally refers to one having the highest degree of hydration among oxo acids obtained by hydrating the same oxide. In the present invention, the crystal composition in which Li 2 S is added most in the sulfide is called the ortho composition. For example, in the Li 2 S—P 2 S 5 system, Li 3 PS 4 corresponds to the ortho composition, in the Li 2 S—Al 2 S 3 system, Li 3 AlS 3 corresponds to the ortho composition, and Li 2 S—B 2 In the S 3 system, Li 3 BS 3 corresponds to the ortho composition, in the Li 2 S—SiS 2 system, Li 4 SiS 4 corresponds to the ortho composition, and in the Li 2 S—GeS 2 system, Li 4 GeS 4 corresponds to the ortho composition. Applicable.
 例えば、LiS-P系の場合、オルト組成を得るLiSおよびPの割合は、モル基準で、LiS:P=75:25である。LiS-Al系の場合、LiS-B系の場合も同様である。一方、LiS-SiS系の場合、オルト組成を得るLiSおよびSiSの割合は、モル基準で、LiS:SiS=66.7:33.3である。LiS-GeS系の場合も同様である。 For example, in the case of the Li 2 S—P 2 S 5 system, the ratio of Li 2 S and P 2 S 5 to obtain the ortho composition is Li 2 S: P 2 S 5 = 75: 25 on a molar basis. The same applies to the Li 2 S—Al 2 S 3 system and the Li 2 S—B 2 S 3 system. On the other hand, in the case of the Li 2 S—SiS 2 system, the ratio of Li 2 S and SiS 2 for obtaining the ortho composition is Li 2 S: SiS 2 = 66.7: 33.3 on a molar basis. The same applies to the case of the Li 2 S—GeS 2 system.
 上記原料組成物が、LiSおよびPを含有する場合、LiSおよびPの合計に対するLiSの割合は、70mol%~80mol%の範囲内であることが好ましく、72mol%~78mol%の範囲内であることがより好ましく、74mol%~76mol%の範囲内であることがさらに好ましい。なお、上記原料組成物が、LiSおよびAlを含有する場合、LiSおよびBを含有する場合も同様である。一方、上記原料組成物が、LiSおよびSiSを含有する場合、LiSおよびSiSの合計に対するLiSの割合は、62.5mol%~70.9mol%の範囲内であることが好ましく、63mol%~70mol%の範囲内であることがより好ましく、64mol%~68mol%の範囲内であることがさらに好ましい。なお、上記原料組成物が、LiSおよびGeSを含有する場合も同様である。 The raw material composition is, when containing Li 2 S and P 2 S 5, the proportion of Li 2 S to the total of Li 2 S and P 2 S 5 is preferably in the range of 70 mol% ~ 80 mol% 72 mol% to 78 mol% is more preferable, and 74 mol% to 76 mol% is more preferable. Incidentally, the raw material composition is, when containing Li 2 S and Al 2 S 3, which is the same when containing Li 2 S and B 2 S 3. On the other hand, the raw material composition is, when containing Li 2 S and SiS 2, the ratio of Li 2 S to the total of Li 2 S and SiS 2 is in the range of 62.5mol% ~ 70.9mol% Is more preferable, within the range of 63 mol% to 70 mol%, more preferably within the range of 64 mol% to 68 mol%. The same applies when the raw material composition contains Li 2 S and GeS 2 .
 また、原料組成物が、ハロゲン化合物を含有する場合、原料組成物におけるハロゲン化合物の割合は、1mol%~60mol%の範囲内であることが好ましく、5mol%~40mol%の範囲内であることがより好ましく、10mol%~40mol%の範囲内であることがさらに好ましい。 When the raw material composition contains a halogen compound, the proportion of the halogen compound in the raw material composition is preferably in the range of 1 mol% to 60 mol%, and preferably in the range of 5 mol% to 40 mol%. More preferably, it is more preferably in the range of 10 mol% to 40 mol%.
 本発明における正極活物質層は、少なくとも正極活物質および固体電解質材料を含有する層であり、正極活物質層および固体電解質材料のみを含有していても良く、導電化材および結着材の少なくとも一つをさらに含有していても良い。正極活物質層における正極活物質および固体電解質材料の合計の割合は、例えば80重量%以上であり、85重量%以上であることが好ましく、90重量%以上であることがより好ましい。なお、上記合計は、100重量%であっても良い。 The positive electrode active material layer in the present invention is a layer containing at least the positive electrode active material and the solid electrolyte material, and may contain only the positive electrode active material layer and the solid electrolyte material, and at least of the conductive material and the binder. One may be further contained. The total ratio of the positive electrode active material and the solid electrolyte material in the positive electrode active material layer is, for example, 80% by weight or more, preferably 85% by weight or more, and more preferably 90% by weight or more. The total may be 100% by weight.
 正極活物質層は、さらに導電化材を含有していても良い。導電化材の添加により、正極活物質層の電子伝導性を向上させることができる。導電化材としては、例えば、アセチレンブラック(AB)、ケッチェンブラック(KB)、気相成長炭素繊維(VGCF)、カーボンナノチューブ(CNT)、カーボンナノファイバー(CNF)等の炭素材料を挙げることができる。また、正極活物質層は、さらに結着材を含有していても良い。結着材の添加により、正極活物質層に可撓性を付与することができる。結着材としては、例えば、ブチレンラバー、スチレンブタジエンラバー(SBR)、ポリフッ化ビニリデン(PVDF)等を挙げることができる。また、正極活物質層の厚さは、目的とする電池の種類によって異なるものであるが、例えば、0.1μm~1000μmの範囲内であることが好ましい。 The positive electrode active material layer may further contain a conductive material. By adding a conductive material, the electronic conductivity of the positive electrode active material layer can be improved. Examples of the conductive material include carbon materials such as acetylene black (AB), ketjen black (KB), vapor grown carbon fiber (VGCF), carbon nanotube (CNT), and carbon nanofiber (CNF). it can. The positive electrode active material layer may further contain a binder. By adding a binder, flexibility can be imparted to the positive electrode active material layer. Examples of the binder include butylene rubber, styrene butadiene rubber (SBR), polyvinylidene fluoride (PVDF), and the like. In addition, the thickness of the positive electrode active material layer varies depending on the type of the target battery, but is preferably in the range of 0.1 μm to 1000 μm, for example.
2.負極活物質層
 本発明における負極活物質層は、少なくとも負極活物質を含有する層であり、必要に応じて、固体電解質材料、導電化材および結着材の少なくとも一つをさらに含有していても良い。
2. Negative electrode active material layer The negative electrode active material layer in the present invention is a layer containing at least a negative electrode active material, and further contains at least one of a solid electrolyte material, a conductive material and a binder as necessary. Also good.
 本発明における負極活物質は、特に限定されるものではないが、例えば、カーボン活物質、金属活物質、酸化物活物質等を挙げることができる。カーボン活物質としては、例えばメソカーボンマイクロビーズ(MCMB)、高配向性グラファイト(HOPG)等の黒鉛、ハードカーボンおよびソフトカーボン等の非晶質炭素等を挙げることができる。金属活物質としては、例えばIn、Al、Si、Sn、および、これらの元素を少なくとも一つ含有する合金等を挙げることができる。また、酸化物活物質としては、例えばNb、LiTi12、SiO等を挙げることができる。 Although the negative electrode active material in this invention is not specifically limited, For example, a carbon active material, a metal active material, an oxide active material etc. can be mentioned. Examples of the carbon active material include graphite such as mesocarbon microbeads (MCMB) and highly oriented graphite (HOPG), and amorphous carbon such as hard carbon and soft carbon. Examples of the metal active material include In, Al, Si, Sn, and alloys containing at least one of these elements. As oxide active material may include, for example Nb 2 O 5, Li 4 Ti 5 O 12, SiO and the like.
 負極活物質の形状としては、例えば、粒子形状、膜形状を挙げることができる。粒子形状の負極活物質の平均粒径は、例えば0.1μm~50μmの範囲内であることが好ましい。なお、平均粒径の求め方については上述した通りである。また、負極活物質層における負極活物質の含有量は、例えば10重量%~99重量%の範囲内であることが好ましく、20重量%~90重量%の範囲内であることがより好ましい。 Examples of the shape of the negative electrode active material include a particle shape and a film shape. The average particle size of the particulate negative electrode active material is preferably in the range of 0.1 μm to 50 μm, for example. The method for obtaining the average particle diameter is as described above. In addition, the content of the negative electrode active material in the negative electrode active material layer is preferably in the range of, for example, 10% by weight to 99% by weight, and more preferably in the range of 20% by weight to 90% by weight.
 負極活物質層は、固体電解質材料を含有することが好ましく、硫化物固体電解質材料を含有することがより好ましい。負極活物質層中のイオン伝導性を向上させることができるからである。なお、固体電解質材料については、上記「1.正極活物質層」に記載した内容と同様であるので、ここでの記載は省略する。負極活物質層における固体電解質材料の含有量は、例えば、1重量%~90重量%の範囲内であることが好ましく、10重量%~80重量%の範囲内であることがより好ましい。 The negative electrode active material layer preferably contains a solid electrolyte material, and more preferably contains a sulfide solid electrolyte material. This is because the ion conductivity in the negative electrode active material layer can be improved. In addition, since it is the same as that of the content described in said "1. positive electrode active material layer" about solid electrolyte material, description here is abbreviate | omitted. The content of the solid electrolyte material in the negative electrode active material layer is, for example, preferably in the range of 1% by weight to 90% by weight, and more preferably in the range of 10% by weight to 80% by weight.
 負極活物質層は、さらに導電化材を含有していても良い。負極活物質層は、さらに結着材を含有していても良い。なお、導電化材および結着材については、上記「1.正極活物質層」に記載した内容と同様であるので、ここでの記載は省略する。また、負極活物質層の厚さは、目的とする電池の種類によって異なるものであるが、例えば、0.1μm~1000μmの範囲内であることが好ましい。 The negative electrode active material layer may further contain a conductive material. The negative electrode active material layer may further contain a binder. The conductive material and the binder are the same as those described in “1. Cathode active material layer”, and are not described here. In addition, the thickness of the negative electrode active material layer varies depending on the type of the target battery, but is preferably in the range of 0.1 μm to 1000 μm, for example.
3.固体電解質層
 本発明における固体電解質層は、少なくとも固体電解質材料を含有する層である。固体電解質材料については、上記「1.正極活物質層」に記載した内容と同様であるので、ここでの記載は省略する。
3. Solid electrolyte layer The solid electrolyte layer in the present invention is a layer containing at least a solid electrolyte material. The solid electrolyte material is the same as the contents described in “1. Positive electrode active material layer”, and therefore the description thereof is omitted here.
 固体電解質層における固体電解質材料の含有量は、例えば60重量%以上、中でも70重量%以上、特に80重量%以上であることが好ましい。固体電解質層は、結着材を含有していても良く、固体電解質材料のみから構成されていても良い。固体電解質層の厚さは、電池の構成によって大きく異なるものであるが、例えば0.1μm~1000μmの範囲内、中でも0.1μm~300μmの範囲内であることが好ましい。 The content of the solid electrolyte material in the solid electrolyte layer is, for example, preferably 60% by weight or more, more preferably 70% by weight or more, and particularly preferably 80% by weight or more. The solid electrolyte layer may contain a binder or may be composed only of a solid electrolyte material. The thickness of the solid electrolyte layer varies greatly depending on the configuration of the battery. For example, the thickness is preferably in the range of 0.1 μm to 1000 μm, and more preferably in the range of 0.1 μm to 300 μm.
4.その他の構成
 本発明の全固体電池は、上述した正極活物質層、負極活物質層および固体電解質層を少なくとも有するものである。さらに通常は、正極活物質層の集電を行う正極集電体、および負極活物質層の集電を行う負極集電体を有する。正極集電体の材料としては、例えばSUS、ニッケル、クロム、金、白金、アルミニウム、鉄、チタン、亜鉛およびカーボン等を挙げることができる。一方、負極集電体の材料としては、例えばSUS、銅、ニッケル、鉄、チタン、コバルト、亜鉛およびカーボン等を挙げることができる。また、正極集電体および負極集電体の厚さや形状等については、電池の用途等に応じて適宜選択することが好ましい。また、本発明に用いられる電池ケースには、一般的な電池ケースを用いることができ、例えば、SUS製電池ケース、アルミニウム製電池ケース、アルミニウムラミネート箔等を挙げることができる。
4). Other Configurations The all solid state battery of the present invention has at least the positive electrode active material layer, the negative electrode active material layer, and the solid electrolyte layer described above. Furthermore, it usually has a positive electrode current collector for collecting current of the positive electrode active material layer and a negative electrode current collector for collecting current of the negative electrode active material layer. Examples of the material for the positive electrode current collector include SUS, nickel, chromium, gold, platinum, aluminum, iron, titanium, zinc, and carbon. On the other hand, examples of the material for the negative electrode current collector include SUS, copper, nickel, iron, titanium, cobalt, zinc, and carbon. In addition, the thickness and shape of the positive electrode current collector and the negative electrode current collector are preferably appropriately selected according to the use of the battery. Moreover, a general battery case can be used for the battery case used for this invention, For example, the battery case made from SUS, the battery case made from aluminum, an aluminum laminated foil etc. can be mentioned.
5.全固体電池
 本発明の全固体電池の種類としては、全固体リチウム電池、全固体ナトリウム電池、全固体マグネシウム電池および全固体カルシウム電池等を挙げることができ、中でも、全固体リチウム電池が好ましい。また、本発明の全固体電池は、一次電池であっても良く、二次電池であっても良いが、二次電池であることが好ましい。繰り返し充放電でき、例えば車載用電池として有用だからである。また、本発明の全固体電池の形状としては、例えば、コイン型、ラミネート型、円筒型および角型等を挙げることができる。また、本発明の全固体電池の製造方法は、上述した全固体電池を得ることができる方法であれば特に限定されるものではない。
5. All-solid battery Examples of the all-solid battery of the present invention include an all-solid lithium battery, an all-solid sodium battery, an all-solid magnesium battery, an all-solid calcium battery, and the like. Among these, an all-solid lithium battery is preferable. The all solid state battery of the present invention may be a primary battery or a secondary battery, but is preferably a secondary battery. This is because it can be repeatedly charged and discharged and is useful, for example, as an in-vehicle battery. In addition, examples of the shape of the all solid state battery of the present invention include a coin type, a laminate type, a cylindrical type, and a square type. Moreover, the manufacturing method of the all-solid-state battery of this invention will not be specifically limited if it is a method which can obtain the all-solid-state battery mentioned above.
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 Note that the present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
 以下に実施例を示して本発明をさらに具体的に説明する。 The present invention will be described more specifically with reference to the following examples.
[実施例1]
(硫化物固体電解質材料の合成)
 出発原料として、硫化リチウム(LiS)、五硫化二リン(P)およびヨウ化リチウム(LiI)を用いた。次に、LiSおよびPを、75LiS・25Pのモル比(LiPS、オルト組成)となるように秤量した。次に、LiIの割合が30mol%となるようにLiIを秤量した。秤量した出発原料をメノウ乳鉢で5分間混合し、その混合物2gを遊星型ボールミルの容器(45cc、ZrO製)に投入し、脱水ヘプタン(水分量30ppm以下、4g)を投入し、さらにZrOボール(φ=5mm、53g)を投入し、容器を完全に密閉した。この容器を遊星型ボールミル機(フリッチュ製P7)に取り付け、台盤回転数500rpmで、40時間メカニカルミリングを行った。その後、100℃で乾燥することによりヘプタンを除去し、硫化物ガラスを得た。得られた硫化物ガラス0.5gをAr雰囲気のガラス管の中に入れ、そのガラス管をSUS製密閉容器に入れた。その密閉容器に対して、190℃で10時間熱処理を行い、硫化物固体電解質材料(硫化物ガラスセラミックス)を得た。得られた硫化物固体電解質材料を、ステンレスメッシュふるいを用いて分級し、平均粒径D50が6.7μm、16.3μm、34.8μmの硫化物固体電解質材料を得た。
[Example 1]
(Synthesis of sulfide solid electrolyte materials)
As starting materials, lithium sulfide (Li 2 S), diphosphorus pentasulfide (P 2 S 5 ) and lithium iodide (LiI) were used. Next, Li 2 S and P 2 S 5 were weighed so as to have a molar ratio of 75Li 2 S · 25P 2 S 5 (Li 3 PS 4 , ortho composition). Next, LiI was weighed so that the LiI ratio was 30 mol%. The weighed starting materials were mixed in an agate mortar for 5 minutes, 2 g of the mixture was charged into a planetary ball mill container (45 cc, made of ZrO 2 ), dehydrated heptane (water content of 30 ppm or less, 4 g) was charged, and ZrO 2 was further added. A ball (φ = 5 mm, 53 g) was charged, and the container was completely sealed. This container was attached to a planetary ball mill (P7 made by Fritsch), and mechanical milling was performed for 40 hours at a base plate rotation speed of 500 rpm. Then, heptane was removed by drying at 100 ° C. to obtain a sulfide glass. 0.5 g of the obtained sulfide glass was put in a glass tube in an Ar atmosphere, and the glass tube was put in a SUS sealed container. The sealed container was heat treated at 190 ° C. for 10 hours to obtain a sulfide solid electrolyte material (sulfide glass ceramic). The resulting sulfide solid electrolyte material, stainless steel mesh sieve was classified with an average particle diameter D 50 was obtained 6.7 .mu.m, 16.3, a sulfide solid electrolyte material 34.8Myuemu.
(電池の作製)
 エタノール溶媒に、等モルのLiOCおよびNb(OCを溶解させて作製した組成物を、LiNi1/3Co1/3Mn1/3(日亜化学工業製)の表面に、転動流動コーティング装置(SFP-01、株式会社パウレック製)を用いてスプレーコートした。その後、コーティングされたLiNi1/3Co1/3Mn1/3を、350℃、大気圧下で1時間の条件で熱処理し、LiNbOがコートされたLiNi1/3Co1/3Mn1/3を得た。得られた正極活物質を、ステンレスメッシュふるいを用いて分級し、平均粒径D50を所定の値に調整した。
(Production of battery)
A composition prepared by dissolving equimolar LiOC 2 H 5 and Nb (OC 2 H 5 ) 5 in an ethanol solvent was prepared as LiNi 1/3 Co 1/3 Mn 1/3 O 2 (manufactured by Nichia Corporation). ) Was spray coated using a tumbling fluidized coating apparatus (SFP-01, manufactured by POWREC Co., Ltd.). Thereafter, the coated LiNi 1/3 Co 1/3 Mn 1/3 O 2 was heat-treated at 350 ° C. under atmospheric pressure for 1 hour, and LiNbO 3 coated LiNi 1/3 Co 1/3. Mn 1/3 O 2 was obtained. The obtained positive electrode active material, stainless steel mesh sieve classified was used to adjust the average particle diameter D 50 at a predetermined value.
 次に、上記正極活物質(平均粒径D50=16μm)224.9mgと、導電化材(VGCF、昭和電工製)3.0mgと、上記硫化物固体電解質材料(平均粒径D50=6.7μm)75.1mgとを、脱水ヘプタン(関東化学製)10gに添加し、十分に混合した。その後、脱水ヘプタンを乾燥除去することで、正極合材を得た。正極合材における正極活物質および硫化物固体電解質材料の体積割合は、正極活物質:硫化物固体電解質材料=60:40であった。 Next, 224.9 mg of the positive electrode active material (average particle size D 50 = 16 μm), 3.0 mg of a conductive material (VGCF, manufactured by Showa Denko), and the sulfide solid electrolyte material (average particle size D 50 = 6) (7 μm) and 75.1 mg were added to 10 g of dehydrated heptane (manufactured by Kanto Chemical Co., Ltd.) and mixed well. Thereafter, dehydrated heptane was removed by drying to obtain a positive electrode mixture. The volume ratio of the positive electrode active material and the sulfide solid electrolyte material in the positive electrode mixture was positive electrode active material: sulfide solid electrolyte material = 60: 40.
 次に、負極活物質(天然黒鉛系カーボン、三菱化学製、平均粒径D50=10μm)9.06mgと、上記硫化物固体電解質材料(平均粒径D50=16.3μm)8.24mgとを混合することで、負極合材を得た。 Next, negative electrode active material (natural graphite-based carbon, manufactured by Mitsubishi Chemical Corporation, average particle diameter D 50 = 10 μm) 9.06 mg, and the sulfide solid electrolyte material (average particle diameter D 50 = 16.3 μm) 8.24 mg, Were mixed to obtain a negative electrode mixture.
 次に、1cmの金型に上記硫化物固体電解質材料(平均粒径D50=34.8μm)を65mg添加し、1ton/cmの圧力でプレスし、固体電解質層を形成した。得られた固体電解質層の一方の表面に、正極合材を20.5mg添加し、1ton/cmの圧力でプレスし、正極活物質層を形成した。次に、固体電解質層の他方の表面に、負極合材を17.0mg添加し、4ton/cmの圧力でプレスし、負極活物質層を形成した。得られた発電要素を用いて電池を作製した。 Then, 1 cm 2 of the mold in the sulfide solid electrolyte material (average particle diameter D 50 = 34.8μm) was added 65 mg, was pressed at a pressure of 1 ton / cm 2, to form a solid electrolyte layer. 20.5 mg of the positive electrode mixture was added to one surface of the obtained solid electrolyte layer and pressed at a pressure of 1 ton / cm 2 to form a positive electrode active material layer. Next, 17.0 mg of the negative electrode mixture was added to the other surface of the solid electrolyte layer and pressed at a pressure of 4 ton / cm 2 to form a negative electrode active material layer. A battery was produced using the obtained power generation element.
[実施例2、3、比較例1~3]
 正極活物質および硫化物固体電解質材料の平均粒径等の条件を表1に示すように変更したこと以外は、実施例1と同様にして電池を作製した。
[Examples 2 and 3, Comparative Examples 1 to 3]
A battery was fabricated in the same manner as in Example 1 except that the conditions such as the average particle diameter of the positive electrode active material and the sulfide solid electrolyte material were changed as shown in Table 1.
[実施例4]
 実施例1で用いた正極活物質(平均粒径D50=16μm)281.3mgと、導電化材(VGCF、昭和電工製)3.3mgと、上記硫化物固体電解質材料(平均粒径D50=6.7μm)46.9mgとを、脱水ヘプタン(関東化学製)10gに添加し、十分に混合した。その後、脱水ヘプタンを乾燥除去することで、正極合材を得た。なお、正極合材における正極活物質および硫化物固体電解質材料の体積割合は、正極活物質:硫化物固体電解質材料=75:25であった。
[Example 4]
281.3 mg of the positive electrode active material (average particle size D 50 = 16 μm) used in Example 1, 3.3 mg of a conductive material (VGCF, manufactured by Showa Denko), and the sulfide solid electrolyte material (average particle size D 50) = 6.7 μm) and 46.9 mg were added to 10 g of dehydrated heptane (manufactured by Kanto Chemical) and mixed well. Thereafter, dehydrated heptane was removed by drying to obtain a positive electrode mixture. In addition, the volume ratio of the positive electrode active material and the sulfide solid electrolyte material in the positive electrode mixture was positive electrode active material: sulfide solid electrolyte material = 75: 25.
 次に、1cmの金型に上記硫化物固体電解質材料(平均粒径D50=34.8μm)を65mg添加し、1ton/cmの圧力でプレスし、固体電解質層を形成した。得られた固体電解質層の一方の表面に、正極合材を17.7mg添加し、1ton/cmの圧力でプレスし、正極活物質層を形成した。次に、固体電解質層の他方の表面に、実施例1で用いた負極合材を17.0mg添加し、4ton/cmの圧力でプレスし、負極活物質層を形成した。得られた発電要素を用いて電池を作製した。 Then, 1 cm 2 of the mold in the sulfide solid electrolyte material (average particle diameter D 50 = 34.8μm) was added 65 mg, was pressed at a pressure of 1 ton / cm 2, to form a solid electrolyte layer. 17.7 mg of the positive electrode mixture was added to one surface of the obtained solid electrolyte layer and pressed at a pressure of 1 ton / cm 2 to form a positive electrode active material layer. Next, 17.0 mg of the negative electrode mixture used in Example 1 was added to the other surface of the solid electrolyte layer, and pressed at a pressure of 4 ton / cm 2 to form a negative electrode active material layer. A battery was produced using the obtained power generation element.
[比較例4、5]
 正極活物質および硫化物固体電解質材料の平均粒径等の条件を表2に示すように変更したこと以外は、実施例4と同様にして電池を作製した。
[Comparative Examples 4 and 5]
A battery was fabricated in the same manner as in Example 4 except that the conditions such as the average particle diameter of the positive electrode active material and the sulfide solid electrolyte material were changed as shown in Table 2.
[評価1]
(1)電池容量評価
 実施例1~4および比較例1~5で得られた電池を、10時間率(0.1C、0.304mA)で4.55Vまで定電流充電した。その後15分間休止し、10時間率(0.1C、0.304mA)で3.0Vまで定電流放電し、放電容量を求めた。
[Evaluation 1]
(1) Battery capacity evaluation The batteries obtained in Examples 1 to 4 and Comparative Examples 1 to 5 were charged with a constant current to 4.55 V at a 10-hour rate (0.1 C, 0.304 mA). Thereafter, the operation was stopped for 15 minutes, and a constant current was discharged to 3.0 V at a 10-hour rate (0.1 C, 0.304 mA), and the discharge capacity was determined.
(2)電池抵抗評価
 実施例1~4および比較例1~5で得られた電池を、3.6Vまで定電流-定電圧充電(終止電流0.015mA)した。その後15分休止し、1時間率(1C、3.04mA)で定電流放電を5秒間行った。この時の電圧降下分および電流値から、電池抵抗を求めた(R=ΔV/I)。
(2) Battery resistance evaluation The batteries obtained in Examples 1 to 4 and Comparative Examples 1 to 5 were charged with a constant current-constant voltage (end current 0.015 mA) up to 3.6V. Thereafter, the operation was stopped for 15 minutes, and constant current discharge was performed for 5 seconds at a rate of 1 hour (1C, 3.04 mA). The battery resistance was obtained from the voltage drop and current value at this time (R = ΔV / I).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 また、平均粒径比(A/B)と放電容量との関係を図2に示す。図2に示すように、平均粒径比(A/B)が0.9以上である場合に、放電容量が高くなった。また、平均粒径比(A/B)と電池抵抗との関係を図3に示す。図3に示すように、平均粒径比(A/B)が0.9以上である場合に、電池抵抗が小さくなった。 Also, the relationship between the average particle size ratio (A / B) and the discharge capacity is shown in FIG. As shown in FIG. 2, when the average particle size ratio (A / B) was 0.9 or more, the discharge capacity increased. Moreover, the relationship between average particle diameter ratio (A / B) and battery resistance is shown in FIG. As shown in FIG. 3, when the average particle size ratio (A / B) was 0.9 or more, the battery resistance decreased.
[実施例5]
 実施例1で得られた硫化物固体電解質材料(硫化物ガラスセラミックス)を、ステンレスメッシュふるいを用いて分級し、平均粒径D50が6.7μm、16μmの硫化物固体電解質材料を得た。また、実施例1で得られた硫化物固体電解質材料(硫化物ガラスセラミックス)を、ボールミルで粉砕し、平均粒径D50が0.8μm、1.5μm、2.5μmの硫化物固体電解質材料を得た。
[Example 5]
The resulting sulfide solid electrolyte material in Example 1 (sulfide glass ceramics), stainless steel mesh sieve was classified with an average particle diameter D 50 was obtained 6.7 .mu.m, a sulfide solid electrolyte material of 16 [mu] m. Also, the sulfide solid electrolyte material obtained in Example 1 (sulfide glass ceramics), and pulverized in a ball mill, 0.8 [mu] m average particle diameter D 50, 1.5 [mu] m, 2.5 [mu] m sulfide solid electrolyte material Got.
(電池の作製)
 エタノール溶媒に、等モルのLiOCおよびNb(OCを溶解させて作製した組成物を、LiNi1/3Co1/3Mn1/3(日亜化学工業製)の表面に、転動流動コーティング装置(SFP-01、株式会社パウレック製)を用いてスプレーコートした。その後、コーティングされたLiNi1/3Co1/3Mn1/3を、350℃、大気圧下で1時間の条件で熱処理し、LiNbOがコートされたLiNi1/3Co1/3Mn1/3を得た。得られた正極活物質を、ステンレスメッシュふるいを用いて分級し、平均粒径D50を所定の値に調整した。
(Production of battery)
A composition prepared by dissolving equimolar LiOC 2 H 5 and Nb (OC 2 H 5 ) 5 in an ethanol solvent was prepared as LiNi 1/3 Co 1/3 Mn 1/3 O 2 (manufactured by Nichia Corporation). ) Was spray coated using a tumbling fluidized coating apparatus (SFP-01, manufactured by POWREC Co., Ltd.). Thereafter, the coated LiNi 1/3 Co 1/3 Mn 1/3 O 2 was heat-treated at 350 ° C. under atmospheric pressure for 1 hour, and LiNbO 3 coated LiNi 1/3 Co 1/3. Mn 1/3 O 2 was obtained. The obtained positive electrode active material, stainless steel mesh sieve classified was used to adjust the average particle diameter D 50 at a predetermined value.
 次に、ポリプロピレン(PP)製容器に、上記正極活物質(平均粒径D50=4μm)、上記硫化物固体電解質材料(平均粒径D50=0.8μm)、導電化材(VGCF、昭和電工製)、結着材(ブチレンラバー系結着材の5重量%ヘプタン溶液)および脱水ヘプタンを添加した。次に、PP製容器を、超音波分散装置(エスエムテー製、UH-50)で30秒間撹拌し、その後、PP製溶液を、振とう器(柴田化学株式会社製、TTM-1)で3分間振とうさせた。得られた組成物を、アプリケーターを用いてブレード法にて、カーボン塗工Al箔(昭和電工製、SDX)上に塗工した。その後、100℃のホットプレート上で30分間乾燥を行い、正極を得た。正極合材における正極活物質および硫化物固体電解質材料の体積割合は、正極活物質:硫化物固体電解質材料=60:40であった。 Next, in a polypropylene (PP) container, the positive electrode active material (average particle size D 50 = 4 μm), the sulfide solid electrolyte material (average particle size D 50 = 0.8 μm), a conductive material (VGCF, Showa) Denko), a binder (5% by weight heptane solution of butylene rubber binder) and dehydrated heptane were added. Next, the PP container is stirred for 30 seconds with an ultrasonic dispersion apparatus (SMH, UH-50), and then the PP solution is stirred for 3 minutes with a shaker (Shiba Chemical Co., Ltd., TTM-1). Shake it. The obtained composition was coated on a carbon coated Al foil (Showa Denko, SDX) by a blade method using an applicator. Then, it dried for 30 minutes on a 100 degreeC hotplate, and obtained the positive electrode. The volume ratio of the positive electrode active material and the sulfide solid electrolyte material in the positive electrode mixture was positive electrode active material: sulfide solid electrolyte material = 60: 40.
 次に、ポリプロピレン(PP)製容器に、負極活物質(天然黒鉛系カーボン、三菱化学製、平均粒径D50=10μm)、上記硫化物固体電解質材料(平均粒径D50=2.5μm)、結着材(ブチレンラバー系結着材の5重量%ヘプタン溶液)および脱水ヘプタンを添加した。次に、PP製容器を、超音波分散装置(エスエムテー製、UH-50)で30秒間撹拌し、その後、PP製溶液を、振とう器(柴田化学株式会社製、TTM-1)で30分間振とうさせた。得られた組成物を、アプリケーターを用いてブレード法にて、Cu箔上に塗工した。その後、100℃のホットプレート上で30分間乾燥を行い、負極を得た。 Next, in a polypropylene (PP) container, a negative electrode active material (natural graphite-based carbon, manufactured by Mitsubishi Chemical, average particle size D 50 = 10 μm), the sulfide solid electrolyte material (average particle size D 50 = 2.5 μm) Then, a binder (5% by weight heptane solution of butylene rubber-based binder) and dehydrated heptane were added. Next, the PP container is stirred for 30 seconds with an ultrasonic dispersing device (SMH, UH-50), and then the PP solution is stirred for 30 minutes with a shaker (Shiba Chemical Co., Ltd., TTM-1). Shake it. The obtained composition was coated on Cu foil by a blade method using an applicator. Then, it dried for 30 minutes on a 100 degreeC hotplate, and obtained the negative electrode.
 次に、ポリプロピレン(PP)製容器に、上記硫化物固体電解質材料(平均粒径D50=2.5μm)、結着材(ブチレンラバー系結着材の5重量%ヘプタン溶液)および脱水ヘプタンを添加した。次に、PP製容器を、超音波分散装置(エスエムテー製、UH-50)で30秒間撹拌し、その後、PP製溶液を、振とう器(柴田化学株式会社製、TTM-1)で30分間振とうさせた。得られた組成物を、アプリケーターを用いてブレード法にて、Al箔上に塗工した。その後、100℃のホットプレート上で30分間乾燥を行い、Al箔上に固体電解質層を得た。 Next, the above-mentioned sulfide solid electrolyte material (average particle diameter D 50 = 2.5 μm), binder (a 5 wt% heptane solution of butylene rubber binder) and dehydrated heptane are placed in a polypropylene (PP) container. Added. Next, the PP container is stirred for 30 seconds with an ultrasonic dispersing device (SMH, UH-50), and then the PP solution is stirred for 30 minutes with a shaker (Shiba Chemical Co., Ltd., TTM-1). Shake it. The obtained composition was coated on an Al foil by a blade method using an applicator. Then, it dried for 30 minutes on a 100 degreeC hotplate, and obtained the solid electrolyte layer on Al foil.
 次に、1cmの金型に上記固体電解質層を配置し、1ton/cmの圧力でプレスした。得られた固体電解質層の一方の表面に上記正極を配置し、1ton/cmの圧力でプレスした。次に、固体電解質層の他方の表面に上記負極を配置し、4ton/cmの圧力でプレスし、負極活物質層を形成した。得られた発電要素を用いて電池を作製した。 Next, the solid electrolyte layer is disposed in a mold of 1 cm 2, it was pressed under a pressure of 1 ton / cm 2. The positive electrode was placed on one surface of the obtained solid electrolyte layer and pressed at a pressure of 1 ton / cm 2 . Next, the negative electrode was placed on the other surface of the solid electrolyte layer and pressed at a pressure of 4 ton / cm 2 to form a negative electrode active material layer. A battery was produced using the obtained power generation element.
[実施例6~9、比較例6]
 正極活物質および硫化物固体電解質材料の平均粒径等の条件を表3に示すように変更したこと以外は、実施例5と同様にして電池を作製した。
[Examples 6 to 9, Comparative Example 6]
A battery was fabricated in the same manner as in Example 5 except that the conditions such as the average particle diameter of the positive electrode active material and the sulfide solid electrolyte material were changed as shown in Table 3.
[評価2]
(1)電池容量評価
 実施例5~9および比較例6で得られた電池を、10時間率(0.1C)で4.55Vまで定電流-定電圧充電した。その後15分間休止し、10時間率(0.1C)で3.0Vまで定電流放電し、放電容量を求めた。
[Evaluation 2]
(1) Battery capacity evaluation The batteries obtained in Examples 5 to 9 and Comparative Example 6 were charged at a constant current-constant voltage to 4.55 V at a 10-hour rate (0.1 C). Thereafter, it was paused for 15 minutes, and a constant current was discharged to 3.0 V at a 10-hour rate (0.1 C) to determine the discharge capacity.
(2)電池抵抗評価
 実施例5~9および比較例6で得られた電池を、3.6Vまで定電流-定電圧充電(終止電流0.015mA)した。その後15分休止し、1時間率(1C)で定電流放電を5秒間行った。また、同様に0.1時間率(10C)で定電流放電を5秒間行った。この時の電圧降下分および電流値から、電池抵抗を求めた(R=ΔV/I)。
(2) Battery resistance evaluation The batteries obtained in Examples 5 to 9 and Comparative Example 6 were charged with a constant current-constant voltage up to 3.6 V (end current 0.015 mA). Thereafter, the operation was stopped for 15 minutes, and a constant current discharge was performed at a rate of 1 hour (1C) for 5 seconds. Similarly, constant current discharge was performed for 5 seconds at a rate of 0.1 hour (10 C). The battery resistance was obtained from the voltage drop and current value at this time (R = ΔV / I).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 また、平均粒径比(A/B)と放電容量との関係を図4に示す。図4に示すように、平均粒径比(A/B)が0.9以上である場合に、放電容量が高くなった。実施例5~7は、実施例8、9に比べてさらに放電容量が高くなった。また、平均粒径比(A/B)と1C放電における電池抵抗との関係を図5に示す。図5に示すように、平均粒径比(A/B)が0.9以上である場合に、電池抵抗が低くなった。実施例5~7は、実施例8、9に比べてさらに電池抵抗が低くなった。また、平均粒径比(A/B)と10C放電における電池抵抗との関係を図6に示す。図6および表3に示すように、実施例8、9および比較例6では、抵抗が高すぎて測定不能だったのに対して、実施例5~7では、測定可能な程度に低い抵抗であった。 Also, the relationship between the average particle size ratio (A / B) and the discharge capacity is shown in FIG. As shown in FIG. 4, when the average particle size ratio (A / B) is 0.9 or more, the discharge capacity is increased. In Examples 5 to 7, the discharge capacity was higher than that in Examples 8 and 9. FIG. 5 shows the relationship between the average particle size ratio (A / B) and the battery resistance in 1C discharge. As shown in FIG. 5, when the average particle size ratio (A / B) was 0.9 or more, the battery resistance was low. In Examples 5 to 7, the battery resistance was further reduced as compared with Examples 8 and 9. FIG. 6 shows the relationship between the average particle size ratio (A / B) and the battery resistance in 10C discharge. As shown in FIG. 6 and Table 3, in Examples 8 and 9 and Comparative Example 6, the resistance was too high to be measured, whereas in Examples 5 to 7, the resistance was as low as measurable. there were.
 1 … 正極活物質層
 2 … 負極活物質層
 3 … 固体電解質層
 4 … 正極集電体
 5 … 負極集電体
 10 … 全固体電池
DESCRIPTION OF SYMBOLS 1 ... Positive electrode active material layer 2 ... Negative electrode active material layer 3 ... Solid electrolyte layer 4 ... Positive electrode collector 5 ... Negative electrode collector 10 ... All-solid-state battery

Claims (5)

  1.  正極活物質層と、負極活物質層と、前記正極活物質層および前記負極活物質層の間に形成された固体電解質層と、を有する全固体電池であって、
     前記正極活物質層は、正極活物質および固体電解質材料を含有し、
     前記正極活物質および前記固体電解質材料の合計に対する前記正極活物質の割合が50体積%より大きく、
     前記固体電解質材料に対する前記正極活物質の平均粒径比が、0.9以上であることを特徴とする全固体電池。
    An all solid state battery comprising a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer formed between the positive electrode active material layer and the negative electrode active material layer,
    The positive electrode active material layer contains a positive electrode active material and a solid electrolyte material,
    The ratio of the positive electrode active material to the total of the positive electrode active material and the solid electrolyte material is greater than 50% by volume,
    An all-solid-state battery, wherein an average particle diameter ratio of the positive electrode active material to the solid electrolyte material is 0.9 or more.
  2.  前記正極活物質の平均粒径が20μm以下であり、前記固体電解質材料の平均粒径が18μm以下であることを特徴とする請求項1に記載の全固体電池。 2. The all-solid-state battery according to claim 1, wherein an average particle diameter of the positive electrode active material is 20 μm or less, and an average particle diameter of the solid electrolyte material is 18 μm or less.
  3.  前記正極活物質の平均粒径が5μm以下であり、前記固体電解質材料の平均粒径が3μm以下であることを特徴とする請求項1または請求項2に記載の全固体電池。 3. The all-solid-state battery according to claim 1, wherein the positive electrode active material has an average particle size of 5 μm or less, and the solid electrolyte material has an average particle size of 3 μm or less.
  4.  前記固体電解質材料の平均粒径が0.8μm以上であることを特徴とする請求項1から請求項3までのいずれかの請求項に記載の全固体電池。 The all-solid-state battery according to any one of claims 1 to 3, wherein an average particle size of the solid electrolyte material is 0.8 µm or more.
  5.  前記固体電解質材料に対する前記正極活物質の平均粒径比が、1.6以上であることを特徴とする請求項1から請求項4までのいずれかの請求項に記載の全固体電池。 The all-solid-state battery according to any one of claims 1 to 4, wherein an average particle diameter ratio of the positive electrode active material to the solid electrolyte material is 1.6 or more.
PCT/JP2011/075614 2011-11-07 2011-11-07 All-solid-state battery WO2013069083A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/075614 WO2013069083A1 (en) 2011-11-07 2011-11-07 All-solid-state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/075614 WO2013069083A1 (en) 2011-11-07 2011-11-07 All-solid-state battery

Publications (1)

Publication Number Publication Date
WO2013069083A1 true WO2013069083A1 (en) 2013-05-16

Family

ID=48288671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075614 WO2013069083A1 (en) 2011-11-07 2011-11-07 All-solid-state battery

Country Status (1)

Country Link
WO (1) WO2013069083A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157195A (en) * 2012-01-30 2013-08-15 Tdk Corp Inorganic all-solid secondary battery
US20150357644A1 (en) * 2014-06-04 2015-12-10 Quantumscape Corporation Electrode materials with mixed particle sizes
JPWO2015030053A1 (en) * 2013-09-02 2017-03-02 三菱瓦斯化学株式会社 All-solid battery and method for producing electrode active material
WO2018145565A1 (en) * 2017-02-09 2018-08-16 上海蔚来汽车有限公司 Composite positive electrode material for use in solid-state lithium ion battery and preparation method therefor
JP2020015661A (en) * 2018-07-24 2020-01-30 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Microwave synthesis of lithium thiophosphate composite materials
CN114864885A (en) * 2021-02-04 2022-08-05 丰田自动车株式会社 All-solid-state battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08195219A (en) * 1994-11-14 1996-07-30 Matsushita Electric Ind Co Ltd Fuel-solid lithium secondary battery
JP2009094029A (en) * 2007-10-12 2009-04-30 Ohara Inc All-solid lithium secondary battery, and electrode for all-solid lithium secondary battery
JP2009238636A (en) * 2008-03-27 2009-10-15 Toyota Motor Corp Cathode layer forming material
JP2010140725A (en) * 2008-12-10 2010-06-24 Namics Corp Lithium-ion secondary battery and its manufacturing method
JP2011044249A (en) * 2009-08-19 2011-03-03 Toyota Motor Corp Sulfide solid electrolyte material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08195219A (en) * 1994-11-14 1996-07-30 Matsushita Electric Ind Co Ltd Fuel-solid lithium secondary battery
JP2009094029A (en) * 2007-10-12 2009-04-30 Ohara Inc All-solid lithium secondary battery, and electrode for all-solid lithium secondary battery
JP2009238636A (en) * 2008-03-27 2009-10-15 Toyota Motor Corp Cathode layer forming material
JP2010140725A (en) * 2008-12-10 2010-06-24 Namics Corp Lithium-ion secondary battery and its manufacturing method
JP2011044249A (en) * 2009-08-19 2011-03-03 Toyota Motor Corp Sulfide solid electrolyte material

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157195A (en) * 2012-01-30 2013-08-15 Tdk Corp Inorganic all-solid secondary battery
JPWO2015030053A1 (en) * 2013-09-02 2017-03-02 三菱瓦斯化学株式会社 All-solid battery and method for producing electrode active material
EP3152795B1 (en) 2014-06-04 2019-10-02 QuantumScape Corporation Electrode materials with mixed particle sizes
CN106605329A (en) * 2014-06-04 2017-04-26 昆腾斯科普公司 Electrode materials with mixed particle sizes
US9859560B2 (en) * 2014-06-04 2018-01-02 Quantumscape Corporation Electrode materials with mixed particle sizes
US20150357644A1 (en) * 2014-06-04 2015-12-10 Quantumscape Corporation Electrode materials with mixed particle sizes
KR20230012056A (en) * 2014-06-04 2023-01-25 퀀텀스케이프 배터리, 인코포레이티드 Electrode materials with mixed particle sizes
KR102606710B1 (en) 2014-06-04 2023-11-29 퀀텀스케이프 배터리, 인코포레이티드 Electrode materials with mixed particle sizes
WO2018145565A1 (en) * 2017-02-09 2018-08-16 上海蔚来汽车有限公司 Composite positive electrode material for use in solid-state lithium ion battery and preparation method therefor
JP2020015661A (en) * 2018-07-24 2020-01-30 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Microwave synthesis of lithium thiophosphate composite materials
JP7362332B2 (en) 2018-07-24 2023-10-17 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Microwave synthesis of lithium thiophosphate composite materials
CN114864885A (en) * 2021-02-04 2022-08-05 丰田自动车株式会社 All-solid-state battery
CN114864885B (en) * 2021-02-04 2024-02-09 丰田自动车株式会社 All-solid battery

Similar Documents

Publication Publication Date Title
JP4948510B2 (en) All solid battery
JP5697300B2 (en) Method for producing positive electrode mixture, and positive electrode mixture obtained using the same
JP6330719B2 (en) Negative electrode active material and all solid state secondary battery
JP5255143B2 (en) Positive electrode material, lithium ion secondary battery using the same, and method for manufacturing positive electrode material
JP5747848B2 (en) Method for producing positive electrode active material layer-containing body
JP2016143614A (en) All-solid battery
JP6248639B2 (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same, and method for producing positive electrode active material for lithium ion secondary battery
JP5682318B2 (en) All solid battery
JP6337852B2 (en) Solid electrolyte material and all solid lithium battery
JP6524610B2 (en) Positive electrode active material for non-aqueous secondary battery and method for producing the same
WO2014030298A1 (en) All-solid-state lithium ion battery and positive electrode mixture
WO2013069083A1 (en) All-solid-state battery
JP7318569B2 (en) Sulfide solid electrolyte, precursor of sulfide solid electrolyte, all-solid battery, and method for producing sulfide solid electrolyte
JP2012174577A (en) Negative electrode plate of lithium secondary battery, negative electrode, and lithium secondary battery
KR102378488B1 (en) Sulfide solid electrolyte, precursor of sulfide solid electrolyte, all solid state battery and method for producing sulfide solid electrolyte
JP2018120735A (en) Negative electrode layer and lithium all-solid battery
JP2016081905A (en) Solid electrolyte layer
JP2014002857A (en) Active substance material, battery, and method for producing active substance material
JP6285317B2 (en) All solid state battery system
JP6197707B2 (en) Positive electrode mixture layer
JP6314563B2 (en) Positive electrode mixture layer
WO2012157047A1 (en) All-solid-state secondary battery
JP6413988B2 (en) All solid battery
JP2019096541A (en) All-solid battery
WO2022163585A1 (en) Active material particles, electrode, power storage element, all-solid-state secondary cell, method for manufacturing active material particles, and power storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11875284

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 11875284

Country of ref document: EP

Kind code of ref document: A1