WO2020184718A1 - All-solid-state secondary battery - Google Patents
All-solid-state secondary battery Download PDFInfo
- Publication number
- WO2020184718A1 WO2020184718A1 PCT/JP2020/011239 JP2020011239W WO2020184718A1 WO 2020184718 A1 WO2020184718 A1 WO 2020184718A1 JP 2020011239 W JP2020011239 W JP 2020011239W WO 2020184718 A1 WO2020184718 A1 WO 2020184718A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- particles
- solid
- layer
- active material
- solid electrolyte
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/30—Alkali metal phosphates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/32—Phosphates of magnesium, calcium, strontium, or barium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/36—Aluminium phosphates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/45—Phosphates containing plural metal, or metal and ammonium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/18—Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/20—Silicates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F17/00—Compounds of rare earth metals
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G25/00—Compounds of zirconium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G25/00—Compounds of zirconium
- C01G25/02—Oxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G31/00—Compounds of vanadium
- C01G31/02—Oxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G33/00—Compounds of niobium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to an all-solid-state secondary battery.
- the present application claims priority based on Japanese Patent Application No. 2019-045460 filed in Japan on March 13, 2019, the contents of which are incorporated herein by reference.
- Lithium-ion secondary batteries are widely used as a power source for small portable devices such as mobile phones, notebook PCs, and PDAs. Lithium-ion secondary batteries used in such small portable devices are required to be smaller, thinner, and more reliable.
- all-solid secondary battery As the lithium ion secondary battery, one using an organic electrolyte as an electrolyte and one using a solid electrolyte (so-called all-solid secondary battery) are known. Compared to lithium-ion secondary batteries that use organic electrolytes, all-solid-state secondary batteries have a higher degree of freedom in battery shape design, and it is easier to reduce the size and thickness of batteries. It has the advantage of high reliability without liquid leakage.
- an all-solid-state secondary battery is manufactured by using an oxide-based solid electrolyte that is stable in the air, forming sheets of each member, laminating them, and then firing them at the same time. There is a way to make it.
- the bond is strengthened at the interface of the solid electrolyte layer by adding a sintering aid.
- a sintering aid even if the bonding of the interface is strengthened by the sintering aid, it is considered that it is insufficient to suppress the destruction of the solid electrolyte layer in the vicinity of the interface. Therefore, further improvement of the cycle characteristics of the all-solid-state secondary battery has been required.
- the present invention has been proposed in view of such conventional circumstances, and an object of the present invention is to provide an all-solid-state secondary battery having improved cycle characteristics.
- a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer interposed between the positive electrode active material layer and the negative electrode active material layer are provided.
- the solid electrolyte layer has solid electrolyte particles and subphase particles.
- the subphase particles include oxides containing at least one selected from Ti, Ca, Zr, Al, Li, V, Nb, La, Sr, Si, B, and P, phosphorylates, and the like. Consists of either sulfide or glass, Moreover, it has a composition different from that of the solid electrolyte particles.
- the all-solid-state secondary battery is characterized in that the CV value when the dispersity of the subphase particles having a particle size of 3 nm or more is determined by the partition method is 1.0 or less.
- the CV value when the dispersity of the subphase particles having a particle size of 0.1 ⁇ m or more is determined by the partition method is 1.0 or less.
- Secondary battery [3] The all-solid-state secondary battery according to the above [1] or [2], wherein the average particle size of the subphase particles is 0.01 to 5 ⁇ m.
- the subphase particles are selected from zirconium oxide particles, aluminum oxide particles, titanium oxide particles, niobium oxide particles, calcium phosphate particles, zirconium phosphate calcium particles, aluminum phosphate particles, and zirconium phosphate aluminum particles.
- FIG. 6 shows the structure of the solid electrolyte layer included in the all-solid-state secondary battery shown in FIG. 6
- SEM image showing the interface between the solid electrolyte layer and the active material layer included in the all-solid-state secondary battery shown in FIG.
- graph which shows the density histogram created from the SEM image. This is an image obtained by binarizing an SEM image.
- FIG. 1 is a cross-sectional view showing the configuration of the all-solid-state secondary battery 1.
- the all-solid-state secondary battery 1 of the present embodiment is an all-solid-state lithium-ion secondary battery to which the present invention is applied.
- the all-solid-state secondary battery 1 is a solid state interposed between the first electrode layer 2, the second electrode layer 3, and the first electrode layer 2 and the second electrode layer 3. It includes an electrolyte layer 4.
- the all-solid-state secondary battery 1 has a laminate 5 in which the first electrode layer 2, the solid electrolyte layer 4, and the second electrode layer 3 are repeatedly laminated. Further, the all-solid-state secondary battery 1 includes a first connection terminal 6 electrically connected to each of the plurality of first electrode layers 2 constituting the laminate 5, and a plurality of all-solid-state secondary batteries 1 constituting the laminate 5. It is provided with a second connection terminal 7 electrically connected to each of the second electrode layers 3 of the above.
- the first connection terminal 6 is provided so as to face one side surface of the laminated body 5 and to be in contact with the end portion of each first electrode layer 2 exposed from this side surface.
- the second connection terminal 7 is provided so as to face the other side surface of the laminated body 5 and to be in contact with the end portion of each second electrode layer 3 exposed from this side surface.
- first connection terminal 6 and the second connection terminal 7 It is preferable to use a material having a large conductivity for the first connection terminal 6 and the second connection terminal 7.
- a material having a large conductivity for example, silver (Ag), palladium (Pd), gold (Au), platinum (Pt), aluminum (Al), copper (Cu), nickel (Ni), tin (Sn), gallium (Ga). ), Indium (In), alloys thereof, and the like can be used.
- the first connection terminal 6 and the second connection terminal 7 may be made of the same material or different materials.
- one of the first electrode layer 2 and the second electrode 3 layer (the first electrode layer 2 in the present embodiment) is the positive electrode layer (hereinafter referred to as the positive electrode layer 2).
- the positive electrode layer 2 is the positive electrode layer
- the negative electrode layer 3 functions as a negative electrode layer (hereinafter referred to as a negative electrode layer 3).
- lithium ions are generated via the solid electrolyte layer 4 between the positive electrode layer 2 and the negative electrode layer 3 which are alternately laminated with the solid electrolyte layer 4 interposed therebetween. Charging and discharging is performed by sending and receiving.
- the first electrode layer 2 and the second electrode layer 3 have a positive electrode and a negative electrode depending on which of the positive and negative polarities of the external terminals are connected to the first connection terminal 6 and the second connection terminal 7. Functions as either.
- the positive electrode layer 2 has a positive electrode current collector layer 2a and a positive electrode active material layer 2b.
- the negative electrode layer 3 has a negative electrode current collector layer 3a and a negative electrode active material layer 3b.
- the positive electrode current collector layer 2a and the negative electrode current collector layer 3a it is preferable to use materials having high conductivity for the positive electrode current collector layer 2a and the negative electrode current collector layer 3a.
- materials having high conductivity for example, silver (Ag), palladium (Pd), gold (Au), platinum (Pt), aluminum (Al), copper (Cu), nickel (Ni), or alloys thereof can be used. it can.
- the positive electrode current collector layer 2a and the negative electrode current collector layer 3b may be made of the same material or different materials from each other.
- the positive electrode active material layer 2b is provided on both sides of the positive electrode current collector layer 2a.
- the negative electrode active material layer 3b is provided on both sides of the negative electrode current collector layer 3a.
- An active material capable of efficiently inserting and removing lithium ions can be appropriately selected and used in the positive electrode active material layer 2b and the negative electrode active material layer 3b.
- LiNiO 2 lithium manganese spinel
- LiMn 2 O 4 lithium manganese spinel
- the general formula: in LiNi x Co y Mn z O 2 (x + y + z 1,0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1,0 ⁇ z ⁇ 1)
- Lithium vanadium phosphate Li 3 V 2 (PO 4 ) 3 or LiVOPO 4
- Li 2 MnO 3- LiMcO 2 (Mc Mn, Co, Ni) Li excess system solid solution
- lithium titanate Li 4 Ti 5 O 12
- a metal oxide or the like can be used.
- the positive electrode active material there is no clear distinction between the positive electrode active material and the negative electrode active material, the potentials of the two types of compounds are compared, the compound showing a more noble potential is used as the positive electrode active material, and the compound showing a lower potential is used as the negative electrode. It can be used as an active material.
- the positive electrode current collector layer 2a and the negative electrode current collector layer 3a may contain a positive electrode active material and a negative electrode active material, respectively.
- the content ratio of the active material contained in each of the current collector layers 2a and 3a is not particularly limited as long as it functions as a current collector, but for example, a positive electrode current collector / positive electrode active material or a negative electrode current collector / It is preferable that the negative electrode active material is in the range of 90/10 to 70/30 in volume ratio, respectively.
- the positive electrode current collector layer 2a and the negative electrode current collector layer 3a contain the positive electrode active material and the negative electrode active material, respectively, so that the positive electrode current collector layer 2a constituting the positive electrode layer 2 and the positive electrode active material layer 2b are in close contact with each other.
- the property and the adhesion between the negative electrode current collector layer 3a constituting the negative electrode layer 3 and the negative electrode active material layer 3b are improved.
- the positive electrode active material layer 2b and the negative electrode active material layer 3b may contain, for example, a conductive auxiliary agent, a binder, or the like in addition to the above-mentioned active material.
- the solid electrolyte layer 4 is composed of solid electrolyte particles 11 and subphase particles 12.
- a material having low electron conductivity and high lithium ion conductivity can be appropriately selected and used.
- a perovskite type compound such as La 0.5 Li 0.5 TiO 3
- a ricicon type compound such as Li 14 Zn (GeO 4 ) 4
- a garnet type compound such as Li 7 La 3 Zr 2 O 12
- pear-con type compounds such as LiZr 2 (PO 4 ) 3 , Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 and Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 .
- the subphase particles 12 include titanium (Ti), calcium (Ca), zirconium (Zr), aluminum (Al), lithium (Li), vanadium (V), niobium (Nb), lanthanum (La), and strontium (Sr). , Silicon (Si), boron (B), phosphorus (P), an oxide containing at least one selected from at least one, a phosphorus oxide, a sulfide, and any of glass. However, it has a composition different from that of the solid electrolyte particles 11.
- Examples of the secondary phase particles 12 include zirconium oxide (ZrO 2 ) particles, aluminum oxide (Al 2 O 3 ) particles, titanium oxide (TiO 2 ) particles, niobium oxide (Nb 2 O 5 ) particles, and calcium phosphate (Ca 3 (PO)).
- ZrO 2 zirconium oxide
- Al 2 O 3 aluminum oxide
- TiO 2 titanium oxide
- TiO 2 niobium oxide
- Ca 3 (PO) calcium phosphate
- 4 ) 2 ) Particles calcium zirconium phosphate (CaZr 4 (PO 4 ) 6 ) particles, aluminum phosphate (AlPO 4 ) particles, aluminum zirconium phosphate (Al 4 Zr (PO 4 ) 5 ) particles, etc.
- the solid electrolyte layer 4 is preferably selected as appropriate according to the active material used for the positive electrode active material layer 2b and the negative electrode active material layer 3b.
- the solid electrolyte layer 4 contains the same elements as the elements constituting the active material.
- the bonding between the positive electrode active material layer 2b and the negative electrode active material layer 3b and the solid electrolyte layer 4 becomes strong. Further, the contact area at the interface between the positive electrode active material layer 2b and the negative electrode active material layer 3b and the solid electrolyte 4 can be expanded.
- the thickness of the solid electrolyte layer 4 is preferably in the range of 0.5 to 20.0 ⁇ m. By setting the thickness of the solid electrolyte layer 4 to 0.5 ⁇ m or more, a short circuit between the positive electrode layer 2 and the negative electrode layer 3 can be reliably prevented. Further, by setting the thickness of the solid electrolyte layer 4 to 20.0 ⁇ m or less, the moving distance of lithium ions is shortened, so that the internal resistance of the all-solid-state lithium ion secondary battery can be reduced.
- the method for manufacturing the all-solid-state secondary battery 1 will be described.
- the laminated body 5 is manufactured.
- a simultaneous firing method or a sequential firing method can be used.
- the co-fired method is a method in which the materials forming each layer are laminated and then the laminated body 5 is produced by batch firing.
- the sequential firing method is a method in which firing is performed each time each layer is formed.
- the laminated body 5 can be produced with fewer work steps than when the sequential firing method is used. Therefore, in the present embodiment, a case where the laminated body 5 is produced by using the co-fired method will be described as an example.
- a step of preparing a paste of each material constituting the laminated body 5 a step of applying and drying the paste to prepare a green sheet, and a step of laminating the green sheet are performed. It has a step of forming a laminated sheet and simultaneously firing the laminated sheet.
- each material of the positive electrode current collector 2a, the positive electrode active material layer 2b, the solid electrolyte layer 4, the negative electrode active material layer 3b, and the negative electrode current collector layer 3a constituting the laminate 5 is made into a paste. ..
- the method of making each material into a paste is not particularly limited, and for example, a method of mixing powders of each material with a vehicle to obtain a paste is used.
- vehicle is a general term for a medium in a liquid phase.
- Vehicles include solvents and binders.
- a paste for the positive electrode current collector layer 2a a paste for the positive electrode active material layer 2b, a paste for the solid electrolyte layer 4, a paste for the negative electrode active material layer 3b, and a negative electrode current collector layer make a paste for 3a.
- the raw material powder of the solid electrolyte particles 11 and the raw material powder of the subphase particles 12 are mixed in advance in a desired ratio, and then the paste is formed. At this time, it is possible to adjust the particle size of the subphase particles 12 after sintering by adjusting the particle size of the raw material powder of the subphase particles 12.
- the method for mixing the raw material powder of the solid electrolyte particles 11 and the raw material powder of the subphase particles 12 is not particularly limited, and for example, a wet mixing method using zirconia beads can be used. At this time, the degree of dispersion of the raw material powder of the solid electrolyte particles 11 and the raw material powder of the subphase particles 12 can be adjusted by the mixing time. The longer the mixture, the better the dispersity tends to be.
- the green sheet is obtained by applying a paste prepared for each material on a base material such as PET (polyethylene terephthalate) film, drying it if necessary, and then peeling off the base material. ..
- the method of applying the paste is not particularly limited, and for example, known methods such as screen printing, application, transfer, and doctor blade can be used.
- the green sheets prepared for each material are stacked in a desired order and the number of laminates to prepare a laminated sheet.
- alignment and cutting are performed as necessary. For example, in the case of producing a parallel type or serial parallel type battery, alignment is performed so that the end face of the positive electrode current collector layer 2a and the end face of the negative electrode current collector layer 3a do not match, and the respective green sheets are stacked. Is preferable.
- the laminated sheet may be produced by producing a positive electrode unit and a negative electrode unit and using a method of laminating these units.
- the paste for the solid electrolyte layer 4 is applied on a base material such as a PET film by the doctor blade method, and dried to form the sheet-shaped solid electrolyte layer 4.
- the paste for the positive electrode active material layer 2b is printed on the solid electrolyte layer 4 by screen printing and dried to form the positive electrode active material layer 2b.
- the paste for the positive electrode current collector layer 2a is printed on the positive electrode active material layer 2b by screen printing and dried to form the positive electrode current collector layer 2a.
- the paste for the positive electrode active material layer 2b is printed on the positive electrode current collector layer 2a by screen printing and dried to form the positive electrode active material layer 2b.
- the positive electrode unit can be obtained by peeling off the PET film.
- the positive electrode unit is a laminated sheet in which a solid electrolyte layer 4, a positive electrode active material layer 2b, a positive electrode current collector layer 2a, and a positive electrode active material layer 2b are laminated in this order.
- the negative electrode unit is manufactured by the same procedure.
- the negative electrode unit is a laminated sheet in which a solid electrolyte layer 4, a negative electrode active material layer 3b, a negative electrode current collector layer 3a, and a negative electrode active material layer 3b are laminated in this order.
- the positive electrode unit and the negative electrode unit are laminated.
- the solid electrolyte layer 4 of the positive electrode unit and the negative electrode active material layer 3b of the negative electrode unit are laminated so as to face each other.
- the positive electrode active material layer 2b of the positive electrode unit and the solid electrolyte layer 4 of the negative electrode unit are laminated so as to face each other.
- the positive electrode active material layer 2b, the positive electrode current collector layer 2a, the positive electrode active material layer 2b, the solid electrolyte layer 4, the negative electrode active material layer 3b, the negative electrode current collector layer 3a, the negative electrode active material layer 3b, and the solid electrolyte layer. 4 are laminated in this order.
- the positive electrode layer 2 of the positive electrode unit and the negative electrode layer 3 of the negative electrode unit are laminated while being alternately shifted.
- Sheets for the solid electrolyte layer 4 having a predetermined thickness are further stacked on both sides of the stacked units to prepare a laminated sheet.
- the crimping is preferably performed while heating.
- the heating temperature during crimping is, for example, 40 to 95 ° C.
- the produced laminated sheet can be cut into an unfired laminated body 5 using a dicing device. By removing the bye and firing the laminated body 5, the laminated all-solid-state secondary battery 1 is manufactured.
- the debuying and firing can be performed at a temperature of 600 ° C. to 1100 ° C. in a nitrogen atmosphere, for example.
- the holding time for debuying and firing is, for example, 0.1 to 6 hours.
- the produced laminate 5 may be placed in a cylindrical container together with an abrasive such as alumina (Al 2 O 3 ) for barrel polishing. As a result, the corners of the laminated body 5 can be chamfered.
- the laminate 5 may be polished by sandblasting. This polishing method is preferable because only a specific part can be polished.
- first connection terminal 6 and the second connection terminal 7 are formed on the side surfaces of the produced laminated body 5 facing each other.
- the first connection terminal 6 and the second connection terminal 7 can be formed by means such as sputtering.
- the solid electrolyte layer 4 has a sintered structure in which the particles are dispersed and strengthened by the subphase particles 12 dispersed between the solid electrolyte particles 11. doing.
- FIG. 2 is a schematic view showing the structure of the solid electrolyte layer 4.
- the fracture toughness is improved by containing a small amount of the subphase particles 12 in the solid electrolyte particles 11. This is because the presence of the subphase particles 12 pin the crack growth and thus the propagation to larger cracks is suppressed. Further, the destruction of the solid electrolyte layer 4 near the interface between the solid electrolyte layer 4, the positive electrode active material layer 2b and the negative electrode active material layer 3b is suppressed. Further, the interfacial peeling between the solid electrolyte layer 4, the positive electrode active material layer 2b and the negative electrode active material layer 3b is suppressed. As a result, it is possible to improve the cycle characteristics of the all-solid-state secondary battery 1.
- the effect of improving fracture toughness of the subphase particles 12 differs depending on the material thereof.
- the average particle size of the subphase particles 12 is preferably 0.01 to 5 ⁇ m. By setting the average particle size of the subphase particles 12 in this range, the effect of pinning the growth of cracks is high, so that the fracture toughness is improved and the cycle characteristics are improved.
- the abundance ratio of the subphase particles 12 to the solid electrolyte particles 11 is preferably 0.1 to 30% by volume.
- the all-solid-state secondary battery 1 of the present embodiment is characterized in that the CV value when the dispersity of the subphase particles 12 having a particle size of 3 nm or more is determined by the partition method is 1.0 or less.
- the CV value is used as an index for the presence of the subphase particles 12 evenly.
- FIG. 3 shows an SEM image showing the interface between the solid electrolyte layer 4 and the active material layers 2a and 3b included in the all-solid-state secondary battery 1.
- a cross section including the interface between the solid electrolyte layer 4 and the active material layers 2a and 3b is cut out and then polished, and a scanning electron microscope (SEM) is used to obtain an SEM image as shown in FIG. 3 on the polished surface. obtain. Further, not limited to the SEM image, a TEM image may be obtained by a transmission electron microscope (TEM).
- SEM scanning electron microscope
- the phase (main phase) containing the solid electrolyte particles 11 is identified as “gray”
- the phase containing the subphase particles 12 (subphase) is identified as “light color”
- the void K is identified as "dark color”. Will be done.
- the void K does not necessarily have to exist.
- the vicinity of the interface between the solid electrolyte layer 4 and the active material layers 2a and 3b is shown as a line X.
- the main phase may be identified as "light color” and the subphase as "gray”.
- the degree of dispersion of the subphase particles 12 having a particle size of 3 nm or more is determined by the partition method using image analysis software.
- the above-mentioned SEM image is binarized by image processing.
- a density histogram is created from the SEM image by the mode method as shown in FIG.
- the SEM image is binarized with the density value of the valley corresponding to the boundary between the main phase and the sub-phase as a threshold value. That is, in the SEM image, the region that becomes the main phase and the void across the threshold value is defined as the “dark portion”, and the region that becomes the subphase across the threshold value is defined as the “bright portion” and binarized.
- the density histogram provides a bimodal histogram in which two peaks occur across one valley, but in some cases, two or more valleys occur.
- a valley corresponding to the boundary between the main phase and the sub-phase may be selected, and the concentration value of that valley may be used as the threshold value.
- FIG. 5 After the image shown in FIG. 5 is evenly divided into a plurality of regions, the number of subphase particles 12 having a particle size of 3 nm or more existing in each region is counted.
- the image shown in FIG. 5 was divided into nine square regions, and the number of subphase particles 12 having a particle size of 3 nm or more existing in each of the regions 1 to 9 shown in FIG. 5 was counted.
- the results are shown in Table 1 below.
- the average value was 9.2
- the standard deviation value was 2.6
- the solid electrolyte layer 4 is strengthened by the subphase particles 12 dispersed between the solid electrolyte particles 11. Strength is improved. As a result, it is possible to prevent destruction near the interface between the solid electrolyte layer 4 and the active material layers 2a and 3b during charging and discharging, and to improve the cycle characteristics of the all-solid secondary battery 1.
- the CV value when the dispersity of the subphase particles 12 having a particle size of 0.1 ⁇ m or more is determined by the partition method is preferably 1.0 or less. Also in this case, the strength of the solid electrolyte layer 4 is improved by strengthening the particle dispersion by the subphase particles 12 dispersed between the solid electrolyte particles 11.
- the all-solid-state secondary battery 1 of the present embodiment may have a configuration that does not include the subphase particles 12 having a particle size of 0.1 ⁇ m or more.
- the above-mentioned fracture toughness is improved and the effect of improving the cycle characteristics is reduced. Therefore, it is desirable that the subphase particles having a particle size of 0.1 ⁇ m or more are present evenly, that is, the CV value is low. Specifically, it is preferable that the CV value is 1.0 or less, or that there are no subphase particles 12 having a particle size of 0.1 ⁇ m or more.
- Examples 1 to 111 and Comparative Examples 1 to 6 The solid electrolytes of Examples 1 to 111 and Comparative Examples 1 to 6 were actually prepared, and the capacity retention rate [%] (cycle characteristics) of the all-solid-state lithium ion secondary battery using each solid electrolyte was determined. The results are summarized in Tables 2 to 6 below.
- each sheet of solid electrolyte, positive electrode active material, positive electrode current collector, positive electrode active material, solid electrolyte, negative electrode active material, negative electrode current collector, negative electrode active material and solid electrolyte is arranged in this order. And fired by the simultaneous firing method to prepare a laminated body. Then, the first connection terminal and the second connection terminal were attached to the laminated body to prepare an all-solid-state lithium ion secondary battery.
- the solid electrolyte layers of Examples 1 to 111 were prepared as follows. As the subphase particles, those having a desired average particle size were selected. To 100 parts of the mixed powder of the solid electrolyte particles and the subphase particles, 100 parts of ethanol and 200 parts of toluene were added as solvents and wet-mixed with a ball mill. The mixing time was 10 minutes to 24 hours. Then, 16 parts of the binder and 4.8 parts of benzylbutyl phthalate as a plasticizer were further added and mixed to prepare a solid electrolyte layer paste. This solid electrolyte layer paste was sheet-molded using a PET film as a base material by a doctor blade method.
- the solid electrolytes of Comparative Examples 1 to 6 were prepared by setting the mixing time of the mixed powder of the solid electrolyte particles and the subphase particles and the solvent to 1 to 9 minutes.
- An all-solid-state lithium-ion secondary battery was produced in the same manner as in Examples 1 to 111, except that the solid electrolyte layer was produced as described above.
- the cycle characteristics were indicated by the capacity retention rate [%] in the cycle test in which charging and discharging were repeated 100 times.
- the measurement conditions were that the currents during charging and discharging were both 0.2C, and the final voltages during charging and discharging were 1.6V and 0V, respectively.
- the capacity retention rate [%] was calculated by ⁇ (100th discharge capacity) ⁇ (1st discharge capacity) ⁇ ⁇ 100.
- the all-solid-state lithium-ion secondary batteries of Examples 1 to 111 have a higher capacity retention rate and cycle characteristics than the all-solid-state lithium-ion secondary batteries of Comparative Examples 1 to 6. It turned out to be excellent.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Secondary Cells (AREA)
Abstract
This all-solid-state secondary battery (1) comprises a positive electrode active material layer (2b), a negative electrode active material layer (3b), and a solid electrolyte layer (4) interposed between the positive electrode active material layer (2b) and the negative electrode active material layer (3b). The solid electrolyte layer (4) has solid electrolyte particles (11) and secondary phase particles (12). The secondary phase particles (12) are configured from any of an oxide including at least one selected from Ti, Ca, Zr, Al, Li, V, Nb, La, Sr, Si, B, and P, a phosphorus oxide, a sulfide, and glass, the secondary phase particles having a different composition from the solid electrolyte particles (11), and having a CV value of 1.0 or less when the degree of dispersion of secondary phase particles (12) having a grain size of 3 nm or greater is derived by the quadrat method.
Description
本発明は、全固体二次電池に関する。
本願は、2019年3月13日に、日本に出願された特願2019-045460号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to an all-solid-state secondary battery.
The present application claims priority based on Japanese Patent Application No. 2019-045460 filed in Japan on March 13, 2019, the contents of which are incorporated herein by reference.
本願は、2019年3月13日に、日本に出願された特願2019-045460号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to an all-solid-state secondary battery.
The present application claims priority based on Japanese Patent Application No. 2019-045460 filed in Japan on March 13, 2019, the contents of which are incorporated herein by reference.
リチウムイオン二次電池は、例えば、携帯電話、ノートPC、PDAなどの携帯小型機器の電源として広く使用されている。このような携帯小型機器で使用されるリチウムイオン二次電池は、小型化、薄型化、信頼性の向上が求められている。
Lithium-ion secondary batteries are widely used as a power source for small portable devices such as mobile phones, notebook PCs, and PDAs. Lithium-ion secondary batteries used in such small portable devices are required to be smaller, thinner, and more reliable.
リチウムイオン二次電池としては、電解質に有機電解液を用いたものと、固体電解質を用いたもの(いわゆる全固体二次電池)とが知られている。全固体二次電池には、有機電解液を用いたリチウムイオン二次電池と比較して、電池形状の設計の自由度が高く、電池サイズの小型化や薄型化が容易であり、電解液の液漏れなどが起きず、信頼性が高いといった利点がある。
As the lithium ion secondary battery, one using an organic electrolyte as an electrolyte and one using a solid electrolyte (so-called all-solid secondary battery) are known. Compared to lithium-ion secondary batteries that use organic electrolytes, all-solid-state secondary batteries have a higher degree of freedom in battery shape design, and it is easier to reduce the size and thickness of batteries. It has the advantage of high reliability without liquid leakage.
工業的に採用し得る量産可能な製造方法として、空気中で安定な酸化物系固体電解質を用いて、各部材をシート化して積層した後に、焼成を同時に行うことによって、全固体二次電池を作製する方法がある。
As a mass-produced manufacturing method that can be industrially adopted, an all-solid-state secondary battery is manufactured by using an oxide-based solid electrolyte that is stable in the air, forming sheets of each member, laminating them, and then firing them at the same time. There is a way to make it.
ところで、上述した全固体二次電池では、充放電に伴う正極層及び負極層の膨張収縮挙動と、固体電解質層の膨張収縮挙動とが異なるため、特に、固体電解質層との界面付近で、固体電解質層の破壊が生じ、サイクル特性が劣化するという問題があった(例えば、上記特許文献1を参照)。
By the way, in the above-mentioned all-solid-state secondary battery, the expansion / contraction behavior of the positive electrode layer and the negative electrode layer due to charging / discharging is different from the expansion / contraction behavior of the solid electrolyte layer, so that the solid is particularly near the interface with the solid electrolyte layer. There is a problem that the electrolyte layer is destroyed and the cycle characteristics are deteriorated (see, for example, Patent Document 1 above).
上記特許文献1では、焼結助剤を添加することで、固体電解質層の界面での結合強化を行っている。しかしながら、焼結助剤による界面の結合強化を行ったとしても、界面付近における固体電解質層の破壊を抑えるのに不十分であると考えられる。このため、全固体二次電池の更なるサイクル特性の改善が求められていた。
In Patent Document 1 above, the bond is strengthened at the interface of the solid electrolyte layer by adding a sintering aid. However, even if the bonding of the interface is strengthened by the sintering aid, it is considered that it is insufficient to suppress the destruction of the solid electrolyte layer in the vicinity of the interface. Therefore, further improvement of the cycle characteristics of the all-solid-state secondary battery has been required.
本発明は、このような従来の事情に鑑みて提案されたものであり、サイクル特性を向上させた全固体二次電池を提供することを目的とする。
The present invention has been proposed in view of such conventional circumstances, and an object of the present invention is to provide an all-solid-state secondary battery having improved cycle characteristics.
上記目的を達成するために、本発明は以下の手段を提供する。
〔1〕 正極活物質層と、負極活物質層と、前記正極活物質層と前記負極活物質層との間に介在される固体電解質層とを備え、
前記固体電解質層は、固体電解質粒子と、副相粒子とを有し、
前記副相粒子は、Ti、Ca、Zr、Al、Li、V、Nb、La、Sr、Si、B、Pの中から選択される少なくとも1種以上を含む酸化物と、リン酸化物と、硫化物と、ガラスとの何れかにより構成され、
且つ前記固体電解質粒子とは異なる組成を有し、
なお且つ、粒径が3nm以上となる前記副相粒子の分散度を区画法で求めたときのCV値が1.0以下であることを特徴とする全固体二次電池。
〔2〕 粒径が0.1μm以上となる前記副相粒子の分散度を区画法で求めたときのCV値が1.0以下であることを特徴とする前記〔1〕に記載の全固体二次電池。
〔3〕 前記副相粒子の平均粒径が0.01~5μmであることを特徴とする前記〔1〕又は〔2〕に記載の全固体二次電池。
〔4〕 粒径が0.1μm以上となる前記副相粒子を含まないことを特徴とする前記〔1〕に記載の全固体二次電池。
〔5〕 前記固体電解質粒子に対する前記副相粒子の存在割合が0.1~30体積%であることを特徴とする前記〔1〕~〔4〕の何れか一項に記載の全固体二次電池。
〔6〕 前記副相粒子が、酸化ジルコニウム粒子、酸化アルミニウム粒子、酸化チタン粒子、酸化ニオブ粒子、リン酸カルシウム粒子、リン酸ジルコニウムカルシウム粒子、リン酸アルミニウム粒子、リン酸ジルコニウムアルミニウム粒子の中から選択される何れか1種以上であることを特徴とする前記〔1〕~〔5〕の何れか一項に記載の全固体二次電池。 In order to achieve the above object, the present invention provides the following means.
[1] A positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer interposed between the positive electrode active material layer and the negative electrode active material layer are provided.
The solid electrolyte layer has solid electrolyte particles and subphase particles.
The subphase particles include oxides containing at least one selected from Ti, Ca, Zr, Al, Li, V, Nb, La, Sr, Si, B, and P, phosphorylates, and the like. Consists of either sulfide or glass,
Moreover, it has a composition different from that of the solid electrolyte particles.
Moreover, the all-solid-state secondary battery is characterized in that the CV value when the dispersity of the subphase particles having a particle size of 3 nm or more is determined by the partition method is 1.0 or less.
[2] The all-solid state according to the above [1], wherein the CV value when the dispersity of the subphase particles having a particle size of 0.1 μm or more is determined by the partition method is 1.0 or less. Secondary battery.
[3] The all-solid-state secondary battery according to the above [1] or [2], wherein the average particle size of the subphase particles is 0.01 to 5 μm.
[4] The all-solid-state secondary battery according to the above [1], which does not contain the subphase particles having a particle size of 0.1 μm or more.
[5] The all-solid secondary according to any one of the above [1] to [4], wherein the abundance ratio of the subphase particles to the solid electrolyte particles is 0.1 to 30% by volume. battery.
[6] The subphase particles are selected from zirconium oxide particles, aluminum oxide particles, titanium oxide particles, niobium oxide particles, calcium phosphate particles, zirconium phosphate calcium particles, aluminum phosphate particles, and zirconium phosphate aluminum particles. The all-solid secondary battery according to any one of the above [1] to [5], which comprises any one or more of them.
〔1〕 正極活物質層と、負極活物質層と、前記正極活物質層と前記負極活物質層との間に介在される固体電解質層とを備え、
前記固体電解質層は、固体電解質粒子と、副相粒子とを有し、
前記副相粒子は、Ti、Ca、Zr、Al、Li、V、Nb、La、Sr、Si、B、Pの中から選択される少なくとも1種以上を含む酸化物と、リン酸化物と、硫化物と、ガラスとの何れかにより構成され、
且つ前記固体電解質粒子とは異なる組成を有し、
なお且つ、粒径が3nm以上となる前記副相粒子の分散度を区画法で求めたときのCV値が1.0以下であることを特徴とする全固体二次電池。
〔2〕 粒径が0.1μm以上となる前記副相粒子の分散度を区画法で求めたときのCV値が1.0以下であることを特徴とする前記〔1〕に記載の全固体二次電池。
〔3〕 前記副相粒子の平均粒径が0.01~5μmであることを特徴とする前記〔1〕又は〔2〕に記載の全固体二次電池。
〔4〕 粒径が0.1μm以上となる前記副相粒子を含まないことを特徴とする前記〔1〕に記載の全固体二次電池。
〔5〕 前記固体電解質粒子に対する前記副相粒子の存在割合が0.1~30体積%であることを特徴とする前記〔1〕~〔4〕の何れか一項に記載の全固体二次電池。
〔6〕 前記副相粒子が、酸化ジルコニウム粒子、酸化アルミニウム粒子、酸化チタン粒子、酸化ニオブ粒子、リン酸カルシウム粒子、リン酸ジルコニウムカルシウム粒子、リン酸アルミニウム粒子、リン酸ジルコニウムアルミニウム粒子の中から選択される何れか1種以上であることを特徴とする前記〔1〕~〔5〕の何れか一項に記載の全固体二次電池。 In order to achieve the above object, the present invention provides the following means.
[1] A positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer interposed between the positive electrode active material layer and the negative electrode active material layer are provided.
The solid electrolyte layer has solid electrolyte particles and subphase particles.
The subphase particles include oxides containing at least one selected from Ti, Ca, Zr, Al, Li, V, Nb, La, Sr, Si, B, and P, phosphorylates, and the like. Consists of either sulfide or glass,
Moreover, it has a composition different from that of the solid electrolyte particles.
Moreover, the all-solid-state secondary battery is characterized in that the CV value when the dispersity of the subphase particles having a particle size of 3 nm or more is determined by the partition method is 1.0 or less.
[2] The all-solid state according to the above [1], wherein the CV value when the dispersity of the subphase particles having a particle size of 0.1 μm or more is determined by the partition method is 1.0 or less. Secondary battery.
[3] The all-solid-state secondary battery according to the above [1] or [2], wherein the average particle size of the subphase particles is 0.01 to 5 μm.
[4] The all-solid-state secondary battery according to the above [1], which does not contain the subphase particles having a particle size of 0.1 μm or more.
[5] The all-solid secondary according to any one of the above [1] to [4], wherein the abundance ratio of the subphase particles to the solid electrolyte particles is 0.1 to 30% by volume. battery.
[6] The subphase particles are selected from zirconium oxide particles, aluminum oxide particles, titanium oxide particles, niobium oxide particles, calcium phosphate particles, zirconium phosphate calcium particles, aluminum phosphate particles, and zirconium phosphate aluminum particles. The all-solid secondary battery according to any one of the above [1] to [5], which comprises any one or more of them.
以上のように、本発明によれば、サイクル特性を向上させた全固体二次電池を提供することが可能である。
As described above, according to the present invention, it is possible to provide an all-solid-state secondary battery with improved cycle characteristics.
以下、本発明の実施形態について、図を適宜参照しながら詳細に説明する。
なお、以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合がある。したがって、図面に記載の各構成要素の寸法比率などは、実際とは異なっていることがある。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
In addition, in the drawing used in the following description, in order to make the feature of the present invention easy to understand, the feature portion may be enlarged and shown for convenience. Therefore, the dimensional ratio and the like of each component described in the drawings may differ from the actual ones. Further, the materials, dimensions, etc. exemplified in the following description are examples, and the present invention is not limited thereto, and the present invention can be appropriately modified without changing the gist thereof.
なお、以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合がある。したがって、図面に記載の各構成要素の寸法比率などは、実際とは異なっていることがある。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
In addition, in the drawing used in the following description, in order to make the feature of the present invention easy to understand, the feature portion may be enlarged and shown for convenience. Therefore, the dimensional ratio and the like of each component described in the drawings may differ from the actual ones. Further, the materials, dimensions, etc. exemplified in the following description are examples, and the present invention is not limited thereto, and the present invention can be appropriately modified without changing the gist thereof.
(全固体二次電池)
本発明の一実施形態として、例えば図1に示す全固体二次電池1について説明する。なお、図1は、全固体二次電池1の構成を示す断面図である。 (All-solid-state secondary battery)
As an embodiment of the present invention, for example, the all-solid-statesecondary battery 1 shown in FIG. 1 will be described. Note that FIG. 1 is a cross-sectional view showing the configuration of the all-solid-state secondary battery 1.
本発明の一実施形態として、例えば図1に示す全固体二次電池1について説明する。なお、図1は、全固体二次電池1の構成を示す断面図である。 (All-solid-state secondary battery)
As an embodiment of the present invention, for example, the all-solid-state
本実施形態の全固体二次電池1は、図1に示すように、全固体リチウムイオン二次電池に本発明を適用したものである。具体的に、この全固体二次電池1は、第1の電極層2と、第2の電極層3と、第1の電極層2と第2の電極層3との間に介在される固体電解質層4とを備えている。
As shown in FIG. 1, the all-solid-state secondary battery 1 of the present embodiment is an all-solid-state lithium-ion secondary battery to which the present invention is applied. Specifically, the all-solid-state secondary battery 1 is a solid state interposed between the first electrode layer 2, the second electrode layer 3, and the first electrode layer 2 and the second electrode layer 3. It includes an electrolyte layer 4.
全固体二次電池1は、これら第1の電極層2と固体電解質層4と第2の電極層3とが繰り返し積層された積層体5を有している。また、全固体二次電池1は、この積層体5を構成する複数の第1の電極層2の各々と電気的に接続された第1の接続端子6と、この積層体5を構成する複数の第2の電極層3の各々と電気的に接続された第2の接続端子7とを備えている。
The all-solid-state secondary battery 1 has a laminate 5 in which the first electrode layer 2, the solid electrolyte layer 4, and the second electrode layer 3 are repeatedly laminated. Further, the all-solid-state secondary battery 1 includes a first connection terminal 6 electrically connected to each of the plurality of first electrode layers 2 constituting the laminate 5, and a plurality of all-solid-state secondary batteries 1 constituting the laminate 5. It is provided with a second connection terminal 7 electrically connected to each of the second electrode layers 3 of the above.
第1の接続端子6は、積層体5の一方の側面に対向して、この側面から露出した各第1の電極層2の端部と接触して設けられている。第2の接続端子7は、積層体5の他方の側面に対向して、この側面から露出した各第2の電極層3の端部と接触して設けられている。
The first connection terminal 6 is provided so as to face one side surface of the laminated body 5 and to be in contact with the end portion of each first electrode layer 2 exposed from this side surface. The second connection terminal 7 is provided so as to face the other side surface of the laminated body 5 and to be in contact with the end portion of each second electrode layer 3 exposed from this side surface.
第1の接続端子6及び第2の接続端子7には、導電率が大きい材質のものを用いることが好ましい。具体的には、例えば、銀(Ag)やパラジウム(Pd)、金(Au)、プラチナ(Pt)、アルミニウム(Al)、銅(Cu)、ニッケル(Ni)、錫(Sn)、ガリウム(Ga)、インジウム(In)又はこれらの合金などを用いることができる。なお、第1の接続端子6及び第2の接続端子7には、互いに同じ材質のものを用いてもよく、互いに異なる材質のものを用いてもよい。
It is preferable to use a material having a large conductivity for the first connection terminal 6 and the second connection terminal 7. Specifically, for example, silver (Ag), palladium (Pd), gold (Au), platinum (Pt), aluminum (Al), copper (Cu), nickel (Ni), tin (Sn), gallium (Ga). ), Indium (In), alloys thereof, and the like can be used. The first connection terminal 6 and the second connection terminal 7 may be made of the same material or different materials.
全固体二次電池1では、第1の電極層2と第2電極3層とのうち、何れか一方(本実施形態では第1の電極層2)が正極層(以下、正極層2とする。)として機能し、何れか他方(本実施形態では第2の電極層3)が負極層(以下、負極層3とする。)として機能する。
In the all-solid-state secondary battery 1, one of the first electrode layer 2 and the second electrode 3 layer (the first electrode layer 2 in the present embodiment) is the positive electrode layer (hereinafter referred to as the positive electrode layer 2). ), And either one (second electrode layer 3 in this embodiment) functions as a negative electrode layer (hereinafter referred to as a negative electrode layer 3).
これにより、本実施形態の全固体二次電池1では、固体電解質層4を挟んで交互に積層された正極層2と負極層3との間で、この固体電解質層4を介したリチウムイオンの授受により充放電が行われる。
As a result, in the all-solid-state secondary battery 1 of the present embodiment, lithium ions are generated via the solid electrolyte layer 4 between the positive electrode layer 2 and the negative electrode layer 3 which are alternately laminated with the solid electrolyte layer 4 interposed therebetween. Charging and discharging is performed by sending and receiving.
第1の電極層2と第2の電極層3とは、第1の接続端子6と第2の接続端子7とに正負の何れの極性の外部端子を接続するかによって、正極と負極との何れかとして機能する。
The first electrode layer 2 and the second electrode layer 3 have a positive electrode and a negative electrode depending on which of the positive and negative polarities of the external terminals are connected to the first connection terminal 6 and the second connection terminal 7. Functions as either.
正極層2は、正極集電体層2aと、正極活物質層2bとを有している。同様に、負極層3は、負極集電体層3aと、負極活物質層3bとを有している。
The positive electrode layer 2 has a positive electrode current collector layer 2a and a positive electrode active material layer 2b. Similarly, the negative electrode layer 3 has a negative electrode current collector layer 3a and a negative electrode active material layer 3b.
正極集電体層2a及び負極集電体層3aには、導電率が高い材質のものを用いることが好ましい。具体的には、例えば、銀(Ag)やパラジウム(Pd)、金(Au)、プラチナ(Pt)、アルミニウム(Al)、銅(Cu)、ニッケル(Ni)又はこれらの合金などを用いることができる。
It is preferable to use materials having high conductivity for the positive electrode current collector layer 2a and the negative electrode current collector layer 3a. Specifically, for example, silver (Ag), palladium (Pd), gold (Au), platinum (Pt), aluminum (Al), copper (Cu), nickel (Ni), or alloys thereof can be used. it can.
その中でも、銅は、正極活物質層2b、負極活物質層3b及び固体電解質層4と反応しにくいため、正極集電体層2a及び負極集電体層3aに銅を用いた場合、全固体二次電池1の内部抵抗を低減できる。なお、正極集電体層2a及び負極集電体層3bには、互いに同じ材質のものを用いてもよく、互いに異なる材質のものを用いてもよい。
Among them, copper is unlikely to react with the positive electrode active material layer 2b, the negative electrode active material layer 3b, and the solid electrolyte layer 4. Therefore, when copper is used for the positive electrode current collector layer 2a and the negative electrode current collector layer 3a, it is an all-solid state. The internal resistance of the secondary battery 1 can be reduced. The positive electrode current collector layer 2a and the negative electrode current collector layer 3b may be made of the same material or different materials from each other.
正極活物質層2bは、正極集電体層2aの両面に設けられている。同様に、負極活物質層3bは、負極集電体層3aの両面に設けられている。
The positive electrode active material layer 2b is provided on both sides of the positive electrode current collector layer 2a. Similarly, the negative electrode active material layer 3b is provided on both sides of the negative electrode current collector layer 3a.
正極活物質層2b及び負極活物質層3bには、リチウムイオンを効率的に挿入、脱離できる活物質を適宜選択して用いることができる。具体的には、遷移金属酸化物や遷移金属複合酸化物などを用いることができる。より具体的には、例えば、リチウムマンガン複合酸化物Li2MnaMa1-aO3(0.8≦a≦1、Ma=Co、Ni)、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、リチウムマンガンスピネル(LiMn2O4)、一般式:LiNixCoyMnzO2(x+y+z=1、0≦x≦1、0≦y≦1、0≦z≦1)で表される複合金属酸化物、リチウムバナジウム化合物(LiV2O5)、オリビン型LiMbPO4(但し、Mbは、Co、Ni、Mn、Fe、Mg、Nb、Ti、Al、Zrより選ばれる1種類以上の元素を表す。)、リン酸バナジウムリチウム(Li3V2(PO4)3又はLiVOPO4)、Li2MnO3-LiMcO2(Mc=Mn、Co、Ni)で表されるLi過剰系固溶体、チタン酸リチウム(Li4Ti5O12)、LisNitCouAlvO2(0.9<s<1.3、0.9<t+u+v<1.1)で表される複合金属酸化物などを用いることができる。
An active material capable of efficiently inserting and removing lithium ions can be appropriately selected and used in the positive electrode active material layer 2b and the negative electrode active material layer 3b. Specifically, a transition metal oxide, a transition metal composite oxide, or the like can be used. More specifically, for example, lithium manganese composite oxide Li 2 Mn a Ma 1-a O 3 (0.8 ≦ a ≦ 1, Ma = Co, Ni), lithium cobaltate (LiCoO 2 ), lithium nickelate. (LiNiO 2), lithium manganese spinel (LiMn 2 O 4), the general formula: in LiNi x Co y Mn z O 2 (x + y + z = 1,0 ≦ x ≦ 1,0 ≦ y ≦ 1,0 ≦ z ≦ 1) Represented composite metal oxide, lithium vanadium compound (LiV 2 O 5 ), olivine type LiMbPO 4 (however, Mb is one type selected from Co, Ni, Mn, Fe, Mg, Nb, Ti, Al, Zr. Represents the above elements), Lithium vanadium phosphate (Li 3 V 2 (PO 4 ) 3 or LiVOPO 4 ), Li 2 MnO 3- LiMcO 2 (Mc = Mn, Co, Ni) Li excess system solid solution, lithium titanate (Li 4 Ti 5 O 12) , a composite represented by Li s Ni t Co u Al v O 2 (0.9 <s <1.3,0.9 <t + u + v <1.1) A metal oxide or the like can be used.
正極活物質と負極活物質とは、明確な区別がなく、2種類の化合物の電位を比較して、より貴な電位を示す化合物を正極活物質として用い、より卑な電位を示す化合物を負極活物質として用いることができる。
There is no clear distinction between the positive electrode active material and the negative electrode active material, the potentials of the two types of compounds are compared, the compound showing a more noble potential is used as the positive electrode active material, and the compound showing a lower potential is used as the negative electrode. It can be used as an active material.
正極集電体層2aと負極集電体層3aとは、それぞれ正極活物質と負極活物質とを含んでいてもよい。それぞれの集電体層2a,3aに含まれる活物質の含有比は、集電体として機能する限り特に限定はされないものの、例えば、正極集電体/正極活物質、又は、負極集電体/負極活物質が、それぞれ体積比率で90/10から70/30の範囲であることが好ましい。
The positive electrode current collector layer 2a and the negative electrode current collector layer 3a may contain a positive electrode active material and a negative electrode active material, respectively. The content ratio of the active material contained in each of the current collector layers 2a and 3a is not particularly limited as long as it functions as a current collector, but for example, a positive electrode current collector / positive electrode active material or a negative electrode current collector / It is preferable that the negative electrode active material is in the range of 90/10 to 70/30 in volume ratio, respectively.
正極集電体層2aと負極集電体層3aとがそれぞれ正極活物質と負極活物質とを含むことによって、正極層2を構成する正極集電体層2aと正極活物質層2bとの密着性と、負極層3を構成する負極集電体層3aと負極活物質層3bとの密着性とが向上する。
The positive electrode current collector layer 2a and the negative electrode current collector layer 3a contain the positive electrode active material and the negative electrode active material, respectively, so that the positive electrode current collector layer 2a constituting the positive electrode layer 2 and the positive electrode active material layer 2b are in close contact with each other. The property and the adhesion between the negative electrode current collector layer 3a constituting the negative electrode layer 3 and the negative electrode active material layer 3b are improved.
正極活物質層2b及び負極活物質層3bは、上述した活物質と共に、例えば、導電助剤や結着剤などを含むものであってよい。
The positive electrode active material layer 2b and the negative electrode active material layer 3b may contain, for example, a conductive auxiliary agent, a binder, or the like in addition to the above-mentioned active material.
固体電解質層4は、固体電解質粒子11と副相粒子12から構成される。固体電解質粒子11としては、電子の伝導性が小さく、リチウムイオンの伝導性が高い材料を適宜選択して用いることができる。具体的には、例えば、La0.5Li0.5TiO3などのペロブスカイト型化合物や、Li14Zn(GeO4)4などのリシコン型化合物、Li7La3Zr2O12などのガーネット型化合物、LiZr2(PO4)3、Li1.3Al0.3Ti1.7(PO4)3やLi1.5Al0.5Ge1.5(PO4)3などのナシコン型化合物、Li3.25Ge0.25P0.75S4やLi3PS4などのチオリシコン型化合物、Li2S-P2S5やLi2O-V2O5-SiO2などのガラス化合物、Li3PO4やLi3.5Si0.5P0.5O4やLi2.9PO3.3N0.46などのリン酸化合物などを用いることができる。
The solid electrolyte layer 4 is composed of solid electrolyte particles 11 and subphase particles 12. As the solid electrolyte particles 11, a material having low electron conductivity and high lithium ion conductivity can be appropriately selected and used. Specifically, for example, a perovskite type compound such as La 0.5 Li 0.5 TiO 3 , a ricicon type compound such as Li 14 Zn (GeO 4 ) 4 , and a garnet type compound such as Li 7 La 3 Zr 2 O 12 Compounds, pear-con type compounds such as LiZr 2 (PO 4 ) 3 , Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 and Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 . , Li 3.25 Ge 0.25 P 0.75 S 4 and Li 3 PS 4 and other thiolithicon compounds, Li 2 SP 2 S 5 and Li 2 O-V 2 O 5- SiO 2 and other glass compounds. , Li 3 PO 4 and Li 3.5 Si 0.5 P 0.5 O 4 and Li 2.9 PO 3.3 N 0.46 and other phosphoric acid compounds can be used.
副相粒子12は、チタン(Ti)、カルシウム(Ca)、ジルコニウム(Zr)、アルミニウム(Al)、リチウム(Li)、バナジウム(V)、ニオブ(Nb)、ランタン(La)、ストロンチウム(Sr)、シリコン(Si)、硼素(B)、リン(P)の中から選択される少なくとも1種以上を含む酸化物と、リン酸化物と、硫化物と、ガラスとの何れかにより構成されているが、固体電解質粒子11とは異なる組成を有する。
The subphase particles 12 include titanium (Ti), calcium (Ca), zirconium (Zr), aluminum (Al), lithium (Li), vanadium (V), niobium (Nb), lanthanum (La), and strontium (Sr). , Silicon (Si), boron (B), phosphorus (P), an oxide containing at least one selected from at least one, a phosphorus oxide, a sulfide, and any of glass. However, it has a composition different from that of the solid electrolyte particles 11.
副相粒子12としては、酸化ジルコニウム(ZrO2)粒子や、酸化アルミニウム(Al2O3)粒子、酸化チタン(TiO2)粒子、酸化ニオブ(Nb2O5)粒子、リン酸カルシウム(Ca3(PO4)2)粒子、リン酸ジルコニウムカルシウム(CaZr4(PO4)6)粒子、リン酸アルミニウム(AlPO4)粒子、リン酸ジルコニウムアルミニウム(Al4Zr(PO4)5)粒子などを用いることが好ましい。その中でも特に、強度の高い酸化ジルコニウムを用いることが好ましい。
Examples of the secondary phase particles 12 include zirconium oxide (ZrO 2 ) particles, aluminum oxide (Al 2 O 3 ) particles, titanium oxide (TiO 2 ) particles, niobium oxide (Nb 2 O 5 ) particles, and calcium phosphate (Ca 3 (PO)). 4 ) 2 ) Particles, calcium zirconium phosphate (CaZr 4 (PO 4 ) 6 ) particles, aluminum phosphate (AlPO 4 ) particles, aluminum zirconium phosphate (Al 4 Zr (PO 4 ) 5 ) particles, etc. can be used. preferable. Among them, it is particularly preferable to use zirconium oxide having high strength.
固体電解質層4は、正極活物質層2b及び負極活物質層3bに用いられる活物質に合わせて適宜選択することが好ましい。例えば、固体電解質層4は、活物質を構成する元素と同一の元素を含むことがより好ましい。固体電解質層4が活物質を構成する元素と同一の元素を含むことで、正極活物質層2b及び負極活物質層3bと固体電解質層4との界面における接合が強固なものになる。また、正極活物質層2b及び負極活物質層3bと固体電解質4との界面における接触面積を拡げることができる。
The solid electrolyte layer 4 is preferably selected as appropriate according to the active material used for the positive electrode active material layer 2b and the negative electrode active material layer 3b. For example, it is more preferable that the solid electrolyte layer 4 contains the same elements as the elements constituting the active material. When the solid electrolyte layer 4 contains the same elements as the elements constituting the active material, the bonding between the positive electrode active material layer 2b and the negative electrode active material layer 3b and the solid electrolyte layer 4 becomes strong. Further, the contact area at the interface between the positive electrode active material layer 2b and the negative electrode active material layer 3b and the solid electrolyte 4 can be expanded.
固体電解質層4の厚みは、0.5~20.0μmの範囲にあることが好ましい。固体電解質層4の厚みを0.5μm以上とすることによって、正極層2と負極層3との短絡を確実に防止できる。また、固体電解質層4の厚みを20.0μm以下とすることによって、リチウムイオンの移動距離が短くなるため、全固体リチウムイオン二次電池の内部抵抗を低減できる。
The thickness of the solid electrolyte layer 4 is preferably in the range of 0.5 to 20.0 μm. By setting the thickness of the solid electrolyte layer 4 to 0.5 μm or more, a short circuit between the positive electrode layer 2 and the negative electrode layer 3 can be reliably prevented. Further, by setting the thickness of the solid electrolyte layer 4 to 20.0 μm or less, the moving distance of lithium ions is shortened, so that the internal resistance of the all-solid-state lithium ion secondary battery can be reduced.
(全固体二次電池の製造方法)
上記全固体二次電池1の製造方法について説明する。
上記全固体二次電池1を製造する際は、先ず、上記積層体5を作製する。上記積層体5の作製方法としては、同時焼成法又は逐次焼成法を用いることができる。 (Manufacturing method of all-solid-state secondary battery)
The method for manufacturing the all-solid-statesecondary battery 1 will be described.
When manufacturing the all-solid-statesecondary battery 1, first, the laminated body 5 is manufactured. As a method for producing the laminated body 5, a simultaneous firing method or a sequential firing method can be used.
上記全固体二次電池1の製造方法について説明する。
上記全固体二次電池1を製造する際は、先ず、上記積層体5を作製する。上記積層体5の作製方法としては、同時焼成法又は逐次焼成法を用いることができる。 (Manufacturing method of all-solid-state secondary battery)
The method for manufacturing the all-solid-state
When manufacturing the all-solid-state
同時焼成法は、各層を形成する材料を積層した後、一括焼成により積層体5を作製する方法である。逐次焼成法は、各層を形成する毎に焼成を行う方法である。
The co-fired method is a method in which the materials forming each layer are laminated and then the laminated body 5 is produced by batch firing. The sequential firing method is a method in which firing is performed each time each layer is formed.
同時焼成法を用いる場合、逐次焼成法を用いる場合と比較して、少ない作業工程で積層体5を作製できる。したがって、本実施形態では、同時焼成法を用いて積層体5を作製する場合を例に挙げて説明する。
When the simultaneous firing method is used, the laminated body 5 can be produced with fewer work steps than when the sequential firing method is used. Therefore, in the present embodiment, a case where the laminated body 5 is produced by using the co-fired method will be described as an example.
同時焼成法を用いて積層体5を作製する際は、積層体5を構成する各材料のペーストを作成する工程と、ペーストを塗布乾燥してグリーンシートを作製する工程と、グリーンシートを積層して積層シートとし、これを同時焼成する工程とを有する。
When the laminated body 5 is produced by the co-fired method, a step of preparing a paste of each material constituting the laminated body 5, a step of applying and drying the paste to prepare a green sheet, and a step of laminating the green sheet are performed. It has a step of forming a laminated sheet and simultaneously firing the laminated sheet.
具体的には、先ず、積層体5を構成する正極集電体2a、正極活物質層2b、固体電解質層4、負極活物質層3b、及び負極集電体層3aの各材料をペースト化する。
Specifically, first, each material of the positive electrode current collector 2a, the positive electrode active material layer 2b, the solid electrolyte layer 4, the negative electrode active material layer 3b, and the negative electrode current collector layer 3a constituting the laminate 5 is made into a paste. ..
各材料をペースト化する方法は、特に限定されるものではなく、例えば、ビヒクルに各材料の粉末を混合してペーストを得る方法が用いられる。ここで、ビヒクルとは、液相における媒質の総称である。ビヒクルには、溶媒やバインダーが含まれる。
The method of making each material into a paste is not particularly limited, and for example, a method of mixing powders of each material with a vehicle to obtain a paste is used. Here, vehicle is a general term for a medium in a liquid phase. Vehicles include solvents and binders.
このような方法を用いて、正極集電体層2a用のペースト、正極活物質層2b用のペースト、固体電解質層4用のペースト、負極活物質層3b用のペースト、及び負極集電体層3a用のペーストを作製する。
Using such a method, a paste for the positive electrode current collector layer 2a, a paste for the positive electrode active material layer 2b, a paste for the solid electrolyte layer 4, a paste for the negative electrode active material layer 3b, and a negative electrode current collector layer Make a paste for 3a.
固体電解質4用のペーストにおいては、固体電解質粒子11の原料粉と副相粒子12の原料粉を、所望の割合であらかじめ混合したのち、ペースト化を行う。このとき、副相粒子12の原料粉の粒径によって、焼結後の副相粒子12の粒径を調整することが可能となる。
In the paste for the solid electrolyte 4, the raw material powder of the solid electrolyte particles 11 and the raw material powder of the subphase particles 12 are mixed in advance in a desired ratio, and then the paste is formed. At this time, it is possible to adjust the particle size of the subphase particles 12 after sintering by adjusting the particle size of the raw material powder of the subphase particles 12.
固体電解質粒子11の原料粉と副相粒子12の原料粉の混合方法については特に限定されるものではなく、例えばジルコニアビーズを用いた湿式混合方法を用いることができる。このとき、混合時間によって、固体電解質粒子11の原料粉と副相粒子12の原料粉の分散度を調整することができる。長時間混合するほど、分散度は向上する傾向がある。
The method for mixing the raw material powder of the solid electrolyte particles 11 and the raw material powder of the subphase particles 12 is not particularly limited, and for example, a wet mixing method using zirconia beads can be used. At this time, the degree of dispersion of the raw material powder of the solid electrolyte particles 11 and the raw material powder of the subphase particles 12 can be adjusted by the mixing time. The longer the mixture, the better the dispersity tends to be.
次に、グリーンシートを作製する。グリーンシートは、それぞれの材料毎に作製されたペーストをPET(ポリエチレンテレフタラート)フィルムなどの基材上に塗布し、必要に応じて乾燥させた後、基材を剥離して得られるものである。ペーストの塗布方法は、特に限定されるものではなく、例えば、スクリーン印刷や塗布、転写、ドクターブレードなどの公知の方法を用いることができる。
Next, make a green sheet. The green sheet is obtained by applying a paste prepared for each material on a base material such as PET (polyethylene terephthalate) film, drying it if necessary, and then peeling off the base material. .. The method of applying the paste is not particularly limited, and for example, known methods such as screen printing, application, transfer, and doctor blade can be used.
次に、それぞれの材料毎に作製されたグリーンシートを、所望の順序及び積層数で積み重ねて積層シートを作製する。グリーンシートを積層する際は、必要に応じてアライメントや切断などを行う。例えば、並列型又は直並列型の電池を作製する場合には、正極集電体層2aの端面と負極集電体層3aの端面とが一致しないようにアライメントを行い、それぞれのグリーンシートを積み重ねることが好ましい。
Next, the green sheets prepared for each material are stacked in a desired order and the number of laminates to prepare a laminated sheet. When laminating green sheets, alignment and cutting are performed as necessary. For example, in the case of producing a parallel type or serial parallel type battery, alignment is performed so that the end face of the positive electrode current collector layer 2a and the end face of the negative electrode current collector layer 3a do not match, and the respective green sheets are stacked. Is preferable.
積層シートは、正極ユニット及び負極ユニットを作製し、これらのユニットを積層する方法を用いて作製してもよい。
The laminated sheet may be produced by producing a positive electrode unit and a negative electrode unit and using a method of laminating these units.
具体的には、先ず、PETフィルムなどの基材の上に、固体電解質層4用のペーストをドクターブレード法により塗布し、乾燥してシート状の固体電解質層4を形成する。
Specifically, first, the paste for the solid electrolyte layer 4 is applied on a base material such as a PET film by the doctor blade method, and dried to form the sheet-shaped solid electrolyte layer 4.
固体電解質層4の上に、スクリーン印刷により正極活物質層2b用のペーストを印刷して乾燥し、正極活物質層2bを形成する。
The paste for the positive electrode active material layer 2b is printed on the solid electrolyte layer 4 by screen printing and dried to form the positive electrode active material layer 2b.
正極活物質層2bの上に、スクリーン印刷により正極集電体層2a用のペーストを印刷して乾燥し、正極集電体層2aを形成する。
The paste for the positive electrode current collector layer 2a is printed on the positive electrode active material layer 2b by screen printing and dried to form the positive electrode current collector layer 2a.
正極集電体層2aの上に、スクリーン印刷により正極活物質層2b用のペーストを印刷して乾燥し、正極活物質層2bを形成する。
The paste for the positive electrode active material layer 2b is printed on the positive electrode current collector layer 2a by screen printing and dried to form the positive electrode active material layer 2b.
その後、PETフィルムを剥離することで、正極ユニットが得られる。正極ユニットは、固体電解質層4、正極活物質層2b、正極集電体層2a、及び正極活物質層2bが、この順で積層された積層シートである。
After that, the positive electrode unit can be obtained by peeling off the PET film. The positive electrode unit is a laminated sheet in which a solid electrolyte layer 4, a positive electrode active material layer 2b, a positive electrode current collector layer 2a, and a positive electrode active material layer 2b are laminated in this order.
同様の手順で、負極ユニットを作製する。負極ユニットは、固体電解質層4、負極活物質層3b、負極集電体層3a、及び負極活物質層3bが、この順で積層された積層シートである。
The negative electrode unit is manufactured by the same procedure. The negative electrode unit is a laminated sheet in which a solid electrolyte layer 4, a negative electrode active material layer 3b, a negative electrode current collector layer 3a, and a negative electrode active material layer 3b are laminated in this order.
次に、正極ユニットと負極ユニットとを積層する。このとき、正極ユニットの固体電解質層4と、負極ユニットの負極活物質層3bとが向かい合うように積層する。若しくは、正極ユニットの正極活物質層2bと、負極ユニットの固体電解質層4とが向かい合うように積層する。
Next, the positive electrode unit and the negative electrode unit are laminated. At this time, the solid electrolyte layer 4 of the positive electrode unit and the negative electrode active material layer 3b of the negative electrode unit are laminated so as to face each other. Alternatively, the positive electrode active material layer 2b of the positive electrode unit and the solid electrolyte layer 4 of the negative electrode unit are laminated so as to face each other.
これにより、正極活物質層2b、正極集電体層2a、正極活物質層2b、固体電解質層4、負極活物質層3b、負極集電体層3a、負極活物質層3b、及び固体電解質層4が、この順で積層される。
As a result, the positive electrode active material layer 2b, the positive electrode current collector layer 2a, the positive electrode active material layer 2b, the solid electrolyte layer 4, the negative electrode active material layer 3b, the negative electrode current collector layer 3a, the negative electrode active material layer 3b, and the solid electrolyte layer. 4 are laminated in this order.
正極ユニットと負極ユニットとを積層する際には、正極ユニットの正極層2と、負極ユニットの負極層3とを交互にずらしながら積層する。この積み重ねられたユニットの両面に所定厚みの固体電解質層4用のシートを更に積み重ね、積層シートを作製する。
When laminating the positive electrode unit and the negative electrode unit, the positive electrode layer 2 of the positive electrode unit and the negative electrode layer 3 of the negative electrode unit are laminated while being alternately shifted. Sheets for the solid electrolyte layer 4 having a predetermined thickness are further stacked on both sides of the stacked units to prepare a laminated sheet.
次に、作製した積層シートを一括して圧着する。圧着は、加熱しながら行うことが好ましい。圧着時の加熱温度は、例えば40~95℃とする。
Next, the prepared laminated sheets are collectively crimped. The crimping is preferably performed while heating. The heating temperature during crimping is, for example, 40 to 95 ° C.
作製した積層シートは、ダイシング装置を用いて未焼成の積層体5に切断することができる。この積層体5を脱バイ及び焼成することで、積層型の全固体二次電池1が製造される。脱バイ及び焼成は、例えば窒素雰囲気下で600℃~1100℃の温度で焼成を行うことができる。脱バイ及び焼成の保持時間は、例えば0.1~6時間とする。
The produced laminated sheet can be cut into an unfired laminated body 5 using a dicing device. By removing the bye and firing the laminated body 5, the laminated all-solid-state secondary battery 1 is manufactured. The debuying and firing can be performed at a temperature of 600 ° C. to 1100 ° C. in a nitrogen atmosphere, for example. The holding time for debuying and firing is, for example, 0.1 to 6 hours.
作製された積層体5は、アルミナ(Al2O3)などの研磨材と共に、円筒型の容器に入れて、バレル研磨を行ってもよい。これにより、積層体5の角の面取りを行うことができる。その他の研磨方法として、積層体5をサンドブラストにより研磨してもよい。この研磨方法では、特定の部分のみを削ることができるため好ましい。
The produced laminate 5 may be placed in a cylindrical container together with an abrasive such as alumina (Al 2 O 3 ) for barrel polishing. As a result, the corners of the laminated body 5 can be chamfered. As another polishing method, the laminate 5 may be polished by sandblasting. This polishing method is preferable because only a specific part can be polished.
次に、作製された積層体5の互いに対向する側面に、第1の接続端子6と第2の接続端子7とを形成する。第1の接続端子6及び第2の接続端子7は、スパッタリングなどの手段を用いて形成することができる。
以上のような工程を経ることによって、上記全固体二次電池1を製造することが可能である。 Next, thefirst connection terminal 6 and the second connection terminal 7 are formed on the side surfaces of the produced laminated body 5 facing each other. The first connection terminal 6 and the second connection terminal 7 can be formed by means such as sputtering.
By going through the above steps, the all-solid-statesecondary battery 1 can be manufactured.
以上のような工程を経ることによって、上記全固体二次電池1を製造することが可能である。 Next, the
By going through the above steps, the all-solid-state
本実施形態の全固体二次電池1において、固体電解質層4は、図2に示すように、固体電解質粒子11の間に分散された副相粒子12により粒子分散強化された焼結構造を有している。なお、図2は、固体電解質層4の構造を示す模式図である。
In the all-solid-state secondary battery 1 of the present embodiment, as shown in FIG. 2, the solid electrolyte layer 4 has a sintered structure in which the particles are dispersed and strengthened by the subphase particles 12 dispersed between the solid electrolyte particles 11. doing. Note that FIG. 2 is a schematic view showing the structure of the solid electrolyte layer 4.
固体電解質層4では、固体電解質粒子11中に、副相粒子12を少量含有することで、破壊靭性が向上する。これは、副相粒子12の存在がクラックの進展をピン止めするため、より大きなクラックへの伝播が抑制されるためである。また、固体電解質層4と正極活物質層2b及び負極活物質層3bとの界面付近での固体電解質層4の破壊が抑制される。さらに、固体電解質層4と正極活物質層2b及び負極活物質層3bとの界面剥離が抑制される。その結果、全固体二次電池1のサイクル特性を向上させることが可能である。
In the solid electrolyte layer 4, the fracture toughness is improved by containing a small amount of the subphase particles 12 in the solid electrolyte particles 11. This is because the presence of the subphase particles 12 pin the crack growth and thus the propagation to larger cracks is suppressed. Further, the destruction of the solid electrolyte layer 4 near the interface between the solid electrolyte layer 4, the positive electrode active material layer 2b and the negative electrode active material layer 3b is suppressed. Further, the interfacial peeling between the solid electrolyte layer 4, the positive electrode active material layer 2b and the negative electrode active material layer 3b is suppressed. As a result, it is possible to improve the cycle characteristics of the all-solid-state secondary battery 1.
副相粒子12は、その材質によって破壊靭性向上効果が異なる。副相粒子12は、それ自体の強度が高い方が、クラックの進展をピン止めする効果が高いため、破壊靭性が向上し、サイクル特性が向上する。
The effect of improving fracture toughness of the subphase particles 12 differs depending on the material thereof. The higher the strength of the subphase particles 12 itself, the higher the effect of pinning the growth of cracks, so that the fracture toughness is improved and the cycle characteristics are improved.
副相粒子12の平均粒径は、0.01~5μmであることが好ましい。副相粒子12の平均粒径をこの範囲とすることで、クラックの進展をピン止めする効果が高いため、破壊靭性が向上し、サイクル特性が向上する。
The average particle size of the subphase particles 12 is preferably 0.01 to 5 μm. By setting the average particle size of the subphase particles 12 in this range, the effect of pinning the growth of cracks is high, so that the fracture toughness is improved and the cycle characteristics are improved.
固体電解質粒子11に対する副相粒子12の存在割合は、0.1~30体積%であることが好ましい。固体電解質粒子11に対する副相粒子12の存在割合をこの範囲とすることで、クラックの進展をピン止めする効果が高いため、破壊靭性が向上し、サイクル特性が向上する。
The abundance ratio of the subphase particles 12 to the solid electrolyte particles 11 is preferably 0.1 to 30% by volume. By setting the abundance ratio of the subphase particles 12 to the solid electrolyte particles 11 in this range, the effect of pinning the growth of cracks is high, so that the fracture toughness is improved and the cycle characteristics are improved.
本実施形態の全固体二次電池1は、粒径が3nm以上となる副相粒子12の分散度を区画法で求めたときのCV値が1.0以下であることを特徴とする。
The all-solid-state secondary battery 1 of the present embodiment is characterized in that the CV value when the dispersity of the subphase particles 12 having a particle size of 3 nm or more is determined by the partition method is 1.0 or less.
本実施形態では、副相粒子12が偏りなく存在することの指標として、CV値を用いている。分散度が高い方がCV値は低くなる。すなわち、CV値が低い方が、 副相粒子12が偏りなく存在するため、クラックの進展をピン止めする効果が高まり、破壊靭性が向上し、サイクル特性が向上する。
In this embodiment, the CV value is used as an index for the presence of the subphase particles 12 evenly. The higher the degree of dispersion, the lower the CV value. That is, when the CV value is low, the subphase particles 12 are present evenly, so that the effect of pinning the growth of cracks is enhanced, the fracture toughness is improved, and the cycle characteristics are improved.
全固体二次電池1が備える固体電解質層4と活物質層2a,3bとの界面を示すSEM画像を図3に示す。
FIG. 3 shows an SEM image showing the interface between the solid electrolyte layer 4 and the active material layers 2a and 3b included in the all-solid-state secondary battery 1.
本実施形態では、固体電解質層4と活物質層2a,3bとの界面を含む断面を切り出した後に研磨し、その研磨面について走査型電子顕微鏡(SEM)により図3に示すようなSEM画像を得る。また、SEM画像に限らず、透過型電子顕微鏡(TEM)によりTEM画像を得てもよい。
In the present embodiment, a cross section including the interface between the solid electrolyte layer 4 and the active material layers 2a and 3b is cut out and then polished, and a scanning electron microscope (SEM) is used to obtain an SEM image as shown in FIG. 3 on the polished surface. obtain. Further, not limited to the SEM image, a TEM image may be obtained by a transmission electron microscope (TEM).
図3に示すSEM画像においては、固体電解質粒子11を含む相(主相)は「灰色」、副相粒子12を含む相(副相)は「明色」、空隙Kは「暗色」として識別される。空隙Kは必ずしも存在していなくてもよい。また、図3では、固体電解質層4と活物質層2a,3bとの界面付近を線Xとして示している。なお、相の組成によっては、主相が「明色」、副相が「灰色」として識別される場合もある。
In the SEM image shown in FIG. 3, the phase (main phase) containing the solid electrolyte particles 11 is identified as "gray", the phase containing the subphase particles 12 (subphase) is identified as "light color", and the void K is identified as "dark color". Will be done. The void K does not necessarily have to exist. Further, in FIG. 3, the vicinity of the interface between the solid electrolyte layer 4 and the active material layers 2a and 3b is shown as a line X. Depending on the composition of the phase, the main phase may be identified as "light color" and the subphase as "gray".
本実施形態では、画像解析ソフトを用いて、粒径が3nm以上となる副相粒子12の分散度を区画法により求める。
In the present embodiment, the degree of dispersion of the subphase particles 12 having a particle size of 3 nm or more is determined by the partition method using image analysis software.
具体的には、先ず、上述したSEM画像を画像処理により2値化する。SEM画像の2値化処理については、SEM画像から、図4に示すようなモード法により濃度ヒストグラムを作成する。図4に示す濃度ヒストグラムのうち、主相と副相との境界に当たる谷の濃度値を閾値として、SEM画像の2値化を行う。すなわち、SEM画像のうち、閾値を挟んで主相及び空隙となる領域を「暗部」とし、閾値を挟んで副相となる領域を「明部」として2値化する。
Specifically, first, the above-mentioned SEM image is binarized by image processing. Regarding the binarization process of the SEM image, a density histogram is created from the SEM image by the mode method as shown in FIG. In the density histogram shown in FIG. 4, the SEM image is binarized with the density value of the valley corresponding to the boundary between the main phase and the sub-phase as a threshold value. That is, in the SEM image, the region that becomes the main phase and the void across the threshold value is defined as the “dark portion”, and the region that becomes the subphase across the threshold value is defined as the “bright portion” and binarized.
なお、濃度ヒストグラムでは、多くの場合、1つの谷を挟んで2つの山が生じる双峰性のヒストグラムが得られるが、2つ以上の谷が生じる場合もある。この場合、主相と副相との境界に当たる谷を選んで、その谷の濃度値を閾値とすればよい。
In many cases, the density histogram provides a bimodal histogram in which two peaks occur across one valley, but in some cases, two or more valleys occur. In this case, a valley corresponding to the boundary between the main phase and the sub-phase may be selected, and the concentration value of that valley may be used as the threshold value.
次に、SEM画像を2値化処理した画像を図5に示す。図5に示す画像を均等に複数の領域に区画した後、各領域に存在する粒径が3nm以上となる副相粒子12の個数をカウントする。
Next, an image obtained by binarizing the SEM image is shown in FIG. After the image shown in FIG. 5 is evenly divided into a plurality of regions, the number of subphase particles 12 having a particle size of 3 nm or more existing in each region is counted.
本例では、図5に示す画像を9つの正方領域に区画し、図5中に示す各領域1~9に存在する粒径が3nm以上となる副相粒子12の個数をカウントした。その結果を下記表1に示す。
In this example, the image shown in FIG. 5 was divided into nine square regions, and the number of subphase particles 12 having a particle size of 3 nm or more existing in each of the regions 1 to 9 shown in FIG. 5 was counted. The results are shown in Table 1 below.
次に、各領域1~9においてカウントされた副相粒子12の個数の平均値及び標準偏差値を求め、CV値(=標準偏差値÷平均値)を算出する。その結果、表1に示すように、平均値が9.2、標準偏差値が2.6、CV値(=標準偏差値÷平均値)が0.3となった。
Next, the average value and standard deviation value of the number of subphase particles 12 counted in each region 1 to 9 are obtained, and the CV value (= standard deviation value ÷ average value) is calculated. As a result, as shown in Table 1, the average value was 9.2, the standard deviation value was 2.6, and the CV value (= standard deviation value ÷ average value) was 0.3.
本実施形態の全固体二次電池1では、上述したCV値が1.0以下となることで、固体電解質粒子11の間に分散された副相粒子12による粒子分散強化によって固体電解質層4の強度が向上する。これにより、充放電における固体電解質層4と活物質層2a,3bとの界面付近での破壊を防ぎ、全固体二次電池1のサイクル特性を向上させることが可能である。
In the all-solid-state secondary battery 1 of the present embodiment, when the above-mentioned CV value is 1.0 or less, the solid electrolyte layer 4 is strengthened by the subphase particles 12 dispersed between the solid electrolyte particles 11. Strength is improved. As a result, it is possible to prevent destruction near the interface between the solid electrolyte layer 4 and the active material layers 2a and 3b during charging and discharging, and to improve the cycle characteristics of the all-solid secondary battery 1.
一方、上述したCV値が1.0を超えると、固体電解質粒子11の間に分散された副相粒子12が偏析することによって、固体電解質層4の強度が不十分となる。この場合、充放電における固体電解質層4と活物質層2a,3bとの界面付近での破壊を防ぐことは困難である。
On the other hand, when the above-mentioned CV value exceeds 1.0, the strength of the solid electrolyte layer 4 becomes insufficient due to segregation of the subphase particles 12 dispersed between the solid electrolyte particles 11. In this case, it is difficult to prevent the solid electrolyte layer 4 and the active material layers 2a and 3b from being destroyed near the interface during charging and discharging.
本実施形態の全固体二次電池1では、粒径が0.1μm以上となる副相粒子12の分散度を区画法で求めたときのCV値が1.0以下であることが好ましい。この場合も、固体電解質粒子11の間に分散された副相粒子12による粒子分散強化によって固体電解質層4の強度が向上する。
In the all-solid-state secondary battery 1 of the present embodiment, the CV value when the dispersity of the subphase particles 12 having a particle size of 0.1 μm or more is determined by the partition method is preferably 1.0 or less. Also in this case, the strength of the solid electrolyte layer 4 is improved by strengthening the particle dispersion by the subphase particles 12 dispersed between the solid electrolyte particles 11.
一方、本実施形態の全固体二次電池1では、粒径が0.1μm以上となる副相粒子12を含まない構成であってもよい。
On the other hand, the all-solid-state secondary battery 1 of the present embodiment may have a configuration that does not include the subphase particles 12 having a particle size of 0.1 μm or more.
固体電解質層4において、大きな副相粒子12が偏って存在する場合、上述した破壊靭性が向上し、サイクル特性が向上する効果が低下することになる。したがって、粒径0.1μm以上の副相粒子が偏りなく存在する状態、すなわち、CV値が低い方が望ましい。具体的には、CV値1.0以下であること、若しくは、粒径0.1μm以上の副相粒子12が存在しないことが好ましい。
When large subphase particles 12 are unevenly present in the solid electrolyte layer 4, the above-mentioned fracture toughness is improved and the effect of improving the cycle characteristics is reduced. Therefore, it is desirable that the subphase particles having a particle size of 0.1 μm or more are present evenly, that is, the CV value is low. Specifically, it is preferable that the CV value is 1.0 or less, or that there are no subphase particles 12 having a particle size of 0.1 μm or more.
なお、本発明は、上記実施形態のものに必ずしも限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。すなわち、上記実施形態における各構成及びそれらの組み合わせ等はほんの一例であって、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更を加えることが可能である。
The present invention is not necessarily limited to that of the above embodiment, and various modifications can be made without departing from the spirit of the present invention. That is, each configuration and a combination thereof in the above embodiment are only examples, and it is possible to add, omit, replace, and make other changes to the configuration within a range that does not deviate from the gist of the present invention. ..
以下、実施例により本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。
Hereinafter, the effects of the present invention will be made clearer by the examples. The present invention is not limited to the following examples, and can be appropriately modified and implemented without changing the gist thereof.
(実施例1~111及び比較例1~6)
実施例1~111及び比較例1~6の固体電解質を実際に作製し、それぞれの固体電解質を用いた全固体リチウムイオン二次電池についてその容量保持率[%](サイクル特性)を求めた。
その結果をまとめたものを下記表2~6に示す。 (Examples 1 to 111 and Comparative Examples 1 to 6)
The solid electrolytes of Examples 1 to 111 and Comparative Examples 1 to 6 were actually prepared, and the capacity retention rate [%] (cycle characteristics) of the all-solid-state lithium ion secondary battery using each solid electrolyte was determined.
The results are summarized in Tables 2 to 6 below.
実施例1~111及び比較例1~6の固体電解質を実際に作製し、それぞれの固体電解質を用いた全固体リチウムイオン二次電池についてその容量保持率[%](サイクル特性)を求めた。
その結果をまとめたものを下記表2~6に示す。 (Examples 1 to 111 and Comparative Examples 1 to 6)
The solid electrolytes of Examples 1 to 111 and Comparative Examples 1 to 6 were actually prepared, and the capacity retention rate [%] (cycle characteristics) of the all-solid-state lithium ion secondary battery using each solid electrolyte was determined.
The results are summarized in Tables 2 to 6 below.
全固体リチウムイオン二次電池は、固体電解質、正極活物質、正極集電体、正極活物質、固体電解質、負極活物質、負極集電体、負極活物質及び固体電解質の各シートを、この順で積層し、同時焼成法により焼成して積層体を作製した。その後、積層体に第1の接続端子及び第2の接続端子を取り付けて、全固体リチウムイオン二次電池を作製した。
For the all-solid lithium ion secondary battery, each sheet of solid electrolyte, positive electrode active material, positive electrode current collector, positive electrode active material, solid electrolyte, negative electrode active material, negative electrode current collector, negative electrode active material and solid electrolyte is arranged in this order. And fired by the simultaneous firing method to prepare a laminated body. Then, the first connection terminal and the second connection terminal were attached to the laminated body to prepare an all-solid-state lithium ion secondary battery.
実施例1~111の固体電解質層の作製は、以下のように行った。副相粒子は、所望の平均粒径を有するものを選択した。固体電解質粒子と副相粒子との混合粉100部に対して、溶媒としてエタノール100部、トルエン200部を加えてボールミルで湿式混合した。混合時間は、10分~24時間とした。
その後、バインダー16部と、可塑剤としてフタル酸ベンジルブチル4.8部をさらに投入し、混合して固体電解質層ペーストとして調製した。この固体電解質層用ペーストをドクターブレード法でPETフィルムを基材としてシート成形した。 The solid electrolyte layers of Examples 1 to 111 were prepared as follows. As the subphase particles, those having a desired average particle size were selected. To 100 parts of the mixed powder of the solid electrolyte particles and the subphase particles, 100 parts of ethanol and 200 parts of toluene were added as solvents and wet-mixed with a ball mill. The mixing time was 10 minutes to 24 hours.
Then, 16 parts of the binder and 4.8 parts of benzylbutyl phthalate as a plasticizer were further added and mixed to prepare a solid electrolyte layer paste. This solid electrolyte layer paste was sheet-molded using a PET film as a base material by a doctor blade method.
その後、バインダー16部と、可塑剤としてフタル酸ベンジルブチル4.8部をさらに投入し、混合して固体電解質層ペーストとして調製した。この固体電解質層用ペーストをドクターブレード法でPETフィルムを基材としてシート成形した。 The solid electrolyte layers of Examples 1 to 111 were prepared as follows. As the subphase particles, those having a desired average particle size were selected. To 100 parts of the mixed powder of the solid electrolyte particles and the subphase particles, 100 parts of ethanol and 200 parts of toluene were added as solvents and wet-mixed with a ball mill. The mixing time was 10 minutes to 24 hours.
Then, 16 parts of the binder and 4.8 parts of benzylbutyl phthalate as a plasticizer were further added and mixed to prepare a solid electrolyte layer paste. This solid electrolyte layer paste was sheet-molded using a PET film as a base material by a doctor blade method.
正極集電体層として銅、正極活物質層としてLi3V2(PO4)3、負極集電体層として銅、負極活物質層としてLi3V2(PO4)3、を選択し、上述した製造方法にて、5.0mm×3.0mm×1.0mmの大きさの全固体電池素体(積層体)を作製した。
Copper as the cathode current collector layer, Li 3 V 2 (PO 4 ) 3 as the positive electrode active material layer, Li 3 V 2 as a negative electrode collector layer of copper, as the negative electrode active material layer (PO 4) 3, select, An all-solid-state battery body (laminated body) having a size of 5.0 mm × 3.0 mm × 1.0 mm was produced by the above-mentioned manufacturing method.
比較例1~6の固体電解質は、固体電解質粒子と副相粒子との混合粉と、溶媒との混合時間を1~9分として作製した。固体電解質層の作製を以上のようにして行った以外は、実施例1~111と同様にして全固体リチウムイオン二次電池を作製した。
The solid electrolytes of Comparative Examples 1 to 6 were prepared by setting the mixing time of the mixed powder of the solid electrolyte particles and the subphase particles and the solvent to 1 to 9 minutes. An all-solid-state lithium-ion secondary battery was produced in the same manner as in Examples 1 to 111, except that the solid electrolyte layer was produced as described above.
サイクル特性は、充放電を100回繰り返すサイクル試験における容量保持率[%]によって示された。測定条件は、充電及び放電時の電流をいずれも0.2Cとし、充電時及び放電時の終止電圧をそれぞれ1.6V、0Vとした。容量保持率[%]は、{(100回目の放電容量)÷(1回目の放電容量)}×100により算出した。
The cycle characteristics were indicated by the capacity retention rate [%] in the cycle test in which charging and discharging were repeated 100 times. The measurement conditions were that the currents during charging and discharging were both 0.2C, and the final voltages during charging and discharging were 1.6V and 0V, respectively. The capacity retention rate [%] was calculated by {(100th discharge capacity) ÷ (1st discharge capacity)} × 100.
表2~6に示すように、実施例1~111の全固体リチウムイオン二次電池は、比較例1~6の全固体リチウムイオン二次電池に比べて、容量保持率が高く、サイクル特性に優れていることがわかった。
As shown in Tables 2 to 6, the all-solid-state lithium-ion secondary batteries of Examples 1 to 111 have a higher capacity retention rate and cycle characteristics than the all-solid-state lithium-ion secondary batteries of Comparative Examples 1 to 6. It turned out to be excellent.
本発明によれば、サイクル特性を向上させた全固体二次電池を提供することが可能である。
According to the present invention, it is possible to provide an all-solid-state secondary battery with improved cycle characteristics.
1 全固体二次電池
2 第1の電極層(正極層)
2a 正極集電体層
2b 正極活物質層
3 第2の電極層(負極層)
3a 負極集電体層
3b 負極活物質層
4 固体電解質層
5 積層体
6 第1の接続端子
7 第2の接続端子
11 固体電解質粒子
12 副相粒子 1 All-solid-statesecondary battery 2 First electrode layer (positive electrode layer)
2a Positive electrodecurrent collector layer 2b Positive electrode active material layer 3 Second electrode layer (negative electrode layer)
3a Negative electrodecurrent collector layer 3b Negative electrode active material layer 4 Solid electrolyte layer 5 Laminated body 6 First connection terminal 7 Second connection terminal 11 Solid electrolyte particles 12 Subphase particles
2 第1の電極層(正極層)
2a 正極集電体層
2b 正極活物質層
3 第2の電極層(負極層)
3a 負極集電体層
3b 負極活物質層
4 固体電解質層
5 積層体
6 第1の接続端子
7 第2の接続端子
11 固体電解質粒子
12 副相粒子 1 All-solid-state
2a Positive electrode
3a Negative electrode
Claims (6)
- 正極活物質層と、負極活物質層と、前記正極活物質層と前記負極活物質層との間に介在される固体電解質層とを備え、
前記固体電解質層は、固体電解質粒子と、副相粒子とを有し、
前記副相粒子は、Ti、Ca、Zr、Al、Li、V、Nb、La、Sr、Si、B、Pの中から選択される少なくとも1種以上を含む酸化物と、リン酸化物と、硫化物と、ガラスとの何れかにより構成され、
且つ前記固体電解質粒子とは異なる組成を有し、
なお且つ、粒径が3nm以上となる前記副相粒子の分散度を区画法で求めたときのCV値が1.0以下であることを特徴とする全固体二次電池。 A positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer interposed between the positive electrode active material layer and the negative electrode active material layer are provided.
The solid electrolyte layer has solid electrolyte particles and subphase particles.
The subphase particles include oxides containing at least one selected from Ti, Ca, Zr, Al, Li, V, Nb, La, Sr, Si, B, and P, phosphorylates, and the like. Consists of either sulfide or glass,
Moreover, it has a composition different from that of the solid electrolyte particles.
Moreover, the all-solid-state secondary battery is characterized in that the CV value when the dispersity of the subphase particles having a particle size of 3 nm or more is determined by the partition method is 1.0 or less. - 粒径が0.1μm以上となる前記副相粒子の分散度を区画法で求めたときのCV値が1.0以下であることを特徴とする請求項1に記載の全固体二次電池。 The all-solid-state secondary battery according to claim 1, wherein the CV value when the degree of dispersion of the subphase particles having a particle size of 0.1 μm or more is determined by the partition method is 1.0 or less.
- 前記副相粒子の平均粒径が0.01~5μmであることを特徴とする請求項1又は2に記載の全固体二次電池。 The all-solid-state secondary battery according to claim 1 or 2, wherein the average particle size of the subphase particles is 0.01 to 5 μm.
- 粒径が0.1μm以上となる前記副相粒子を含まないことを特徴とする請求項1に記載の全固体二次電池。 The all-solid-state secondary battery according to claim 1, wherein the subphase particles having a particle size of 0.1 μm or more are not contained.
- 前記固体電解質粒子に対する前記副相粒子の存在割合が0.1~30体積%であることを特徴とする請求項1~4の何れか一項に記載の全固体二次電池。 The all-solid-state secondary battery according to any one of claims 1 to 4, wherein the abundance ratio of the subphase particles to the solid electrolyte particles is 0.1 to 30% by volume.
- 前記副相粒子が、酸化ジルコニウム粒子、酸化アルミニウム粒子、酸化チタン粒子、酸化ニオブ粒子、リン酸カルシウム粒子、リン酸ジルコニウムカルシウム粒子、リン酸アルミニウム粒子、リン酸ジルコニウムアルミニウム粒子の中から選択される何れか1種以上であることを特徴とする請求項1~5の何れか一項に記載の全固体二次電池。 The subphase particles are selected from zirconium oxide particles, aluminum oxide particles, titanium oxide particles, niobium oxide particles, calcium phosphate particles, zirconium phosphate calcium particles, aluminum phosphate particles, and zirconium phosphate aluminum particles. The all-solid secondary battery according to any one of claims 1 to 5, which is characterized by having more than one kind.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019045460 | 2019-03-13 | ||
JP2019-045460 | 2019-03-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020184718A1 true WO2020184718A1 (en) | 2020-09-17 |
Family
ID=72427023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/011239 WO2020184718A1 (en) | 2019-03-13 | 2020-03-13 | All-solid-state secondary battery |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020184718A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115832610A (en) * | 2022-01-30 | 2023-03-21 | 北京卫蓝新能源科技有限公司 | Functionalized lithium battery diaphragm and preparation method and application thereof |
WO2024195744A1 (en) * | 2023-03-17 | 2024-09-26 | Tdk株式会社 | Solid-electrolyte battery |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009064645A (en) * | 2007-09-05 | 2009-03-26 | Seiko Epson Corp | Lithium ion conductive solid electrolyte and total-solid lithium secondary battery using it |
JP2013157195A (en) * | 2012-01-30 | 2013-08-15 | Tdk Corp | Inorganic all-solid secondary battery |
JP2016056054A (en) * | 2014-09-09 | 2016-04-21 | 日本特殊陶業株式会社 | Lithium ion conductive ceramic sintered compact, lithium battery, and method for producing lithium ion conductive ceramic sintered compact |
JP2016081905A (en) * | 2014-10-10 | 2016-05-16 | トヨタ自動車株式会社 | Solid electrolyte layer |
JP2017073201A (en) * | 2015-10-05 | 2017-04-13 | トヨタ自動車株式会社 | All-solid battery |
JP2018152325A (en) * | 2017-03-13 | 2018-09-27 | パナソニックIpマネジメント株式会社 | Solid electrolyte and secondary battery using the same |
-
2020
- 2020-03-13 WO PCT/JP2020/011239 patent/WO2020184718A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009064645A (en) * | 2007-09-05 | 2009-03-26 | Seiko Epson Corp | Lithium ion conductive solid electrolyte and total-solid lithium secondary battery using it |
JP2013157195A (en) * | 2012-01-30 | 2013-08-15 | Tdk Corp | Inorganic all-solid secondary battery |
JP2016056054A (en) * | 2014-09-09 | 2016-04-21 | 日本特殊陶業株式会社 | Lithium ion conductive ceramic sintered compact, lithium battery, and method for producing lithium ion conductive ceramic sintered compact |
JP2016081905A (en) * | 2014-10-10 | 2016-05-16 | トヨタ自動車株式会社 | Solid electrolyte layer |
JP2017073201A (en) * | 2015-10-05 | 2017-04-13 | トヨタ自動車株式会社 | All-solid battery |
JP2018152325A (en) * | 2017-03-13 | 2018-09-27 | パナソニックIpマネジメント株式会社 | Solid electrolyte and secondary battery using the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115832610A (en) * | 2022-01-30 | 2023-03-21 | 北京卫蓝新能源科技有限公司 | Functionalized lithium battery diaphragm and preparation method and application thereof |
WO2024195744A1 (en) * | 2023-03-17 | 2024-09-26 | Tdk株式会社 | Solid-electrolyte battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6651708B2 (en) | Lithium ion secondary battery | |
US11069898B2 (en) | All-solid-state secondary battery | |
JP7127540B2 (en) | All-solid-state lithium-ion secondary battery | |
JP7031596B2 (en) | All-solid-state lithium-ion secondary battery | |
JP6455807B2 (en) | Lithium ion secondary battery | |
JP6992803B2 (en) | All-solid-state lithium-ion secondary battery | |
JP6492958B2 (en) | Solid battery and assembled battery using the same. | |
JP6919657B2 (en) | All-solid-state lithium-ion secondary battery | |
JP6623542B2 (en) | Lithium ion secondary battery | |
JP6881465B2 (en) | All-solid-state lithium-ion secondary battery | |
CN113508487B (en) | All-solid battery | |
WO2020184476A1 (en) | All solid state secondary battery | |
CN113056835A (en) | All-solid-state battery | |
WO2020184718A1 (en) | All-solid-state secondary battery | |
WO2018181545A1 (en) | All-solid-state lithium ion secondary battery | |
JP6992802B2 (en) | All-solid-state lithium-ion secondary battery | |
CN114556618B (en) | All-solid battery | |
CN113228375B (en) | All-solid battery | |
JP2020140963A (en) | Solid electrolyte, all-solid secondary battery, and manufacturing method thereof | |
WO2013035526A1 (en) | Laminated molded body for all-solid-state battery, all-solid-state battery, and production method therefor | |
WO2023282146A1 (en) | All-solid-state battery | |
WO2022202866A1 (en) | All-solid-state secondary battery | |
WO2023188470A1 (en) | All-solid-state secondary battery | |
US20210399339A1 (en) | All-solid-state battery | |
CN118765453A (en) | All-solid secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20770029 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20770029 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |