JP2016169145A - Perovskite type ion conductive oxide, complex and lithium secondary battery - Google Patents

Perovskite type ion conductive oxide, complex and lithium secondary battery Download PDF

Info

Publication number
JP2016169145A
JP2016169145A JP2016043447A JP2016043447A JP2016169145A JP 2016169145 A JP2016169145 A JP 2016169145A JP 2016043447 A JP2016043447 A JP 2016043447A JP 2016043447 A JP2016043447 A JP 2016043447A JP 2016169145 A JP2016169145 A JP 2016169145A
Authority
JP
Japan
Prior art keywords
conductive oxide
ion conductive
lithium
perovskite
perovskite type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016043447A
Other languages
Japanese (ja)
Other versions
JP6451672B2 (en
Inventor
将吾 駒形
Shogo Komagata
将吾 駒形
賢彦 朝岡
Masahiko Asaoka
賢彦 朝岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Publication of JP2016169145A publication Critical patent/JP2016169145A/en
Application granted granted Critical
Publication of JP6451672B2 publication Critical patent/JP6451672B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the ion conductivity of a perovskite type ion conductive oxide.SOLUTION: A perovskite type ion conductive oxide comprises Li, Sr, and Zr, and also comprises element A comprising at least one of Ca, Ba, Sc, Y, Na, K, Rb, Cs and Ln (lanthanoid of atom numbers 57-71) and element M comprising at least one of Ta, Nb, W, Mo, Re, Ru and Os. The perovskite type ion conductive oxide may be represented by the basic composition Lisq.SrAZrMO(where sq. is an atomic vacancy, satisfying 0<x<1, 0<y<1, 0<a<1, x(n-4)+a(1-y-z)(m-2)=y+2z (where, m is a valence of A, n is a valence of M)).SELECTED DRAWING: None

Description

本発明は、ペロブスカイト型イオン伝導性酸化物、複合体及びリチウム二次電池に関する。   The present invention relates to a perovskite type ion conductive oxide, a composite, and a lithium secondary battery.

従来、ペロブスカイト型イオン伝導性酸化物としては、Li、Sr、Ta及びZrを含む酸化物が提案されている(例えば、非特許文献1参照)。このペロブスカイト型酸化物は、30℃での粒内伝導度σbが2×10-4(S/cm)であり、粒界伝導度σgbが1×10-4(S/cm)であり、トータルの伝導度σが7×10-5(S/cm)であるとしている。また、ペロブスカイト型イオン伝導性酸化物としては、基本組成をLi3/8Sr(7/16)Zr1/4Ta3/43とし、パウダーベッドを用いて焼成したものが提案されている(例えば、非特許文献1参照)。このペロブスカイト型酸化物は、27℃での粒内伝導度σbが3.5×10-4(S/cm)であり、粒界伝導度σgbが9.5×10-4(S/cm)であり、トータルの伝導度σが2.7×10-4(S/cm)であるとしている。 Conventionally, oxides containing Li, Sr, Ta, and Zr have been proposed as perovskite ion conductive oxides (see, for example, Non-Patent Document 1). This perovskite oxide has an intragranular conductivity σb at 30 ° C. of 2 × 10 −4 (S / cm) and an intergranular conductivity σgb of 1 × 10 −4 (S / cm). The conductivity σ is 7 × 10 −5 (S / cm). Further, as the perovskite type ion conductive oxide, a basic composition of Li 3/8 Sr (7/16) Zr 1/4 Ta 3/4 O 3 and firing using a powder bed has been proposed. (For example, refer nonpatent literature 1). This perovskite oxide has an intragranular conductivity σb at 27 ° C. of 3.5 × 10 −4 (S / cm) and a grain boundary conductivity σgb of 9.5 × 10 −4 (S / cm). It is assumed that the total conductivity σ is 2.7 × 10 −4 (S / cm).

Solid State Ionics 167(2004)263-272Solid State Ionics 167 (2004) 263-272 Solid State Ionics 261(2014)95-99Solid State Ionics 261 (2014) 95-99

しかしながら、上述の非特許文献1のペロブスカイト型イオン伝導性酸化物では、イオン伝導性を有し、また、非特許文献2では、そのイオン伝導性をより向上してはいるものの、また十分でなく、さらなるイオン伝導性の向上が望まれていた。   However, the perovskite type ion conductive oxide of Non-Patent Document 1 described above has ionic conductivity, and Non-Patent Document 2 has improved the ionic conductivity, but is not sufficient. Further improvement of ion conductivity has been desired.

本発明は、このような課題に鑑みなされたものであり、イオン伝導性をより向上することができるペロブスカイト型イオン伝導性酸化物、複合体及びリチウム二次電池を提供することを主目的とする。   This invention is made | formed in view of such a subject, and it aims at providing the perovskite type ion conductive oxide, composite, and lithium secondary battery which can improve ion conductivity more. .

上述した目的を達成するために鋭意研究したところ、本発明者らは、Li、Sr、Ta及びZrを含むペロブスカイト型イオン伝導性酸化物のSrをCaなどに置換すると、電気伝導度をより向上することができることを見いだし、本発明を完成するに至った。   As a result of diligent research to achieve the above-described object, the present inventors have improved the electrical conductivity by replacing Sr in the perovskite type ion conductive oxide containing Li, Sr, Ta and Zr with Ca or the like. It has been found that it can be done, and the present invention has been completed.

即ち、本発明のペロブスカイト型イオン伝導性酸化物は、
Liと、Srと、Zrとを含み、
Ca、Ba、Mg、Sc、Y、Na、K、Rb、Cs及びLn(原子番号57〜71のランタノイド)のうち1種以上を含む元素Aと、
Ta、Nb、W、Mo、Re、Ru及びOsのうち1種以上を含む元素Mと、を含むものである。
That is, the perovskite type ion conductive oxide of the present invention is
Li, Sr, and Zr,
An element A containing one or more of Ca, Ba, Mg, Sc, Y, Na, K, Rb, Cs and Ln (lanthanoids having an atomic number of 57 to 71);
And element M containing one or more of Ta, Nb, W, Mo, Re, Ru, and Os.

本発明の複合体は、上述したペロブスカイト型イオン伝導性酸化物を含む固体電解質層と、前記固体電解質層に隣接しリチウムを吸蔵放出する活物質を含む活物質層と、を備えたものである。あるいは、本発明の複合体は、上述したペロブスカイト型イオン伝導性酸化物を含む固体電解質層と、前記固体電解質層に隣接しリチウムイオンを伝導する有機電解質層と、を備えたものである。また、本発明のリチウム二次電池は、上述したいずれかの複合体を備えたものである。   The composite of the present invention comprises a solid electrolyte layer containing the perovskite ion conductive oxide described above, and an active material layer containing an active material adsorbing and releasing lithium adjacent to the solid electrolyte layer. . Or the composite_body | complex of this invention is equipped with the solid electrolyte layer containing the perovskite type ion conductive oxide mentioned above, and the organic electrolyte layer which adjoins the said solid electrolyte layer, and conducts lithium ion. Moreover, the lithium secondary battery of this invention is equipped with one of the composites mentioned above.

本発明のペロブスカイト型イオン伝導性酸化物、複合体及びリチウム二次電池は、イオン伝導性をより向上することができる。このような効果が得られる理由は、以下のように推測される。例えば、異種元素により置換されることにより、粒界の構造がイオン伝導を阻害しにくい構造になり、粒界での伝導度がより向上するためであると推察される。また、異種元素により置換されることにより、より最適化された格子定数を有する構造になり、粒内伝導度も上昇するためであると推察される。   The perovskite ion conductive oxide, composite and lithium secondary battery of the present invention can further improve ion conductivity. The reason why such an effect is obtained is presumed as follows. For example, it is presumed that the substitution at the grain boundary makes the structure of the grain boundary difficult to inhibit ionic conduction, and the conductivity at the grain boundary is further improved. Further, it is presumed that by substituting with a different element, the structure has a more optimized lattice constant and the intragranular conductivity increases.

ペロブスカイト型イオン伝導性酸化物の構造の一例を表す模式図。The schematic diagram showing an example of the structure of a perovskite type ion conductive oxide. 全固体型のリチウム電池10の構造の一例を示す説明図。FIG. 2 is an explanatory diagram showing an example of the structure of an all-solid-type lithium battery 10. 全固体型のリチウム電池10Bの構造の一例を示す説明図。Explanatory drawing which shows an example of the structure of the all-solid-type lithium battery 10B. 実験例1〜6のX線回折測定結果。The X-ray-diffraction measurement result of Experimental example 1-6. 実験例1、2、8〜10のX線回折測定結果。The X-ray-diffraction measurement result of Experimental example 1, 2, 8-10. 実験例1〜6のナイキストプロット。Nyquist plot of Experimental Examples 1-6. 実験例2、8〜10のナイキストプロット。Nyquist plot of Experimental Example 2, 8-10. アレニウスプロット及びCaドープ量に対する伝導度の関係図。A related graph of conductivity with respect to Arrhenius plot and Ca doping amount. アレニウスプロット及びLaドープ量に対する伝導度の関係図。FIG. 6 is a graph showing the relationship between the Arrhenius plot and the La doping amount. 実験例7にLiNi0.5Mn1.54を混合焼成したX線回折測定結果。Experimental Example 7 LiNi 0.5 Mn 1.5 O 4 mixed calcined X-ray diffraction measurements. 実験例7にLi4Ti512を混合焼成したX線回折測定結果。Experimental Example 7 Li 4 Ti 5 O 12 mixed calcined X-ray diffraction measurements. 試験セル30の説明図。Explanatory drawing of the test cell 30. FIG. LCO(LiCoO2)試験セルのサイクリックボルタモグラム。Cyclic voltammogram of an LCO (LiCoO 2 ) test cell. LNM(LiNi0.5Mn1.54)試験セルのサイクリックボルタモグラム。Cyclic voltammogram of an LNM (LiNi 0.5 Mn 1.5 O 4 ) test cell. LTO(Li4Ti512)試験セルのサイクリックボルタモグラム。Cyclic voltammogram of LTO (Li 4 Ti 5 O 12 ) test cell.

本発明のペロブスカイト型イオン伝導性酸化物は、Liと、Srと、Zrとを含み、Ca、Ba、Mg、Sc、Y、Na、K、Rb、Cs及びLn(原子番号57〜71のランタノイド)のうち1種以上を含む元素Aと、Ta、Nb、W、Mo、Re、Ru及びOsのうち1種以上を含む元素Mと、を含むものである。   The perovskite type ion conductive oxide of the present invention contains Li, Sr, and Zr, and includes Ca, Ba, Mg, Sc, Y, Na, K, Rb, Cs, and Ln (lanthanoids having an atomic number of 57 to 71). ) And an element A containing at least one of Ta, Nb, W, Mo, Re, Ru, and Os.

このペロブスカイト型イオン伝導性酸化物は、基本構成をSrZrO3とするものとし、SrサイトやZrサイトが他の元素により置換された、基本組成LiyzSr((1-y-z)(1-a))a(1-y-z)Zr(1-x+a(m-2))(x-a(m-2))3で表されるものとしてもよい。図1は、ペロブスカイト型イオン伝導性酸化物の構造の一例を表す模式図である。このペロブスカイト型イオン伝導性酸化物において、基本組成式は、原料配合時の組成をいうものとしてもよい。この基本組成式において、元素Aは、ペロブスカイト型酸化物のSrサイトに基本的に入る元素であり、Ca、Ba、Mg、Sc、Y、Na、K、Rb、Cs及びLn(原子番号57〜71のランタノイド)のうち1種以上の元素である。元素Aは、Ca、Ba、Mg、Y及びLaのいずれか1以上であることが好ましく、Srのイオン半径に近いCaやBa、Y、Laのうち1以上であることがより好ましい。この基本組成式において、元素Mは、ペロブスカイト型酸化物のZrサイトに基本的に入る元素であり、Ta、Nb、W、Mo、Re、Ru及びOsのうち1種以上の元素である。元素Mは、Zrのイオン半径に近いTaであることが好ましい。この基本組成式において、□は原子空孔である。また、この基本組成式において、x,y,z,aは、それぞれ0<x<1、0<y<1、0<a<1、x(n−4)+a(1−y−z)(m−2)=y+2z(但し、mはAの価数であり、nはMの価数)を満たす。この基本組成式において、元素Aの係数aは、0<a≦0.1を満たすことが好ましく、a≦0.05を満たすことがより好ましく、0.025≦a≦0.05を満たすことが更に好ましい。係数aが0<a≦0.1を満たすと、電気伝導度がより向上し、好ましい。また、元素Aは、Srと元素Aとの全体に対して2at%以上10at%以下の範囲でSrを置換していることが好ましく、5at%以下の範囲でSrを置換していることがより好ましく、2.5at%以上5at%以下の範囲でSrを置換していることが更に好ましい。このペロブスカイト型イオン伝導性酸化物は、基本組成Li3/83/16Sr(7(1-a)/16)Ca7a/16Zr1/4Ta3/43(式中、□は原子空孔であり、0<a≦0.1を満たす)で表されるものとしてもよい。また、このペロブスカイト型イオン伝導性酸化物は、基本組成Li3/83/16Sr(7(1-a)/16)La7a/16Zr(1/4+7a/16)Ta(3/4-7a/16)3(式中、□は原子空孔であり、0<a≦0.1を満たす)で表されるものとしてもよい。 This perovskite type ion conductive oxide has a basic composition of SrZrO 3, and a basic composition Li yz Sr ((1-yz) (1- a)) A a (1-yz) Zr (1-x + a (m-2)) M (xa (m-2)) O 3 FIG. 1 is a schematic diagram showing an example of the structure of a perovskite type ion conductive oxide. In this perovskite ion conductive oxide, the basic composition formula may refer to a composition at the time of blending raw materials. In this basic composition formula, the element A is an element that basically enters the Sr site of the perovskite oxide, and includes Ca, Ba, Mg, Sc, Y, Na, K, Rb, Cs, and Ln (atomic number 57 to 71 lanthanoids). The element A is preferably any one or more of Ca, Ba, Mg, Y, and La, and more preferably one or more of Ca, Ba, Y, and La that are close to the ionic radius of Sr. In this basic composition formula, the element M is an element that basically enters the Zr site of the perovskite oxide, and is one or more elements of Ta, Nb, W, Mo, Re, Ru, and Os. The element M is preferably Ta close to the ionic radius of Zr. In this basic composition formula, □ is an atomic vacancy. In this basic composition formula, x, y, z, and a are 0 <x <1, 0 <y <1, 0 <a <1, x (n−4) + a (1−yz), respectively. (M−2) = y + 2z (where m is the valence of A and n is the valence of M). In this basic composition formula, the coefficient a of the element A preferably satisfies 0 <a ≦ 0.1, more preferably satisfies a ≦ 0.05, and satisfies 0.025 ≦ a ≦ 0.05. Is more preferable. When the coefficient a satisfies 0 <a ≦ 0.1, the electrical conductivity is further improved, which is preferable. The element A preferably substitutes Sr in a range of 2 at% to 10 at% with respect to the whole of Sr and the element A, and more preferably substitutes Sr in a range of 5 at% or less. Preferably, Sr is more preferably substituted in the range of 2.5 at% or more and 5 at% or less. This perovskite ion conductive oxide has a basic composition of Li 3/83/16 Sr (7 (1-a) / 16) Ca 7a / 16 Zr 1/4 Ta 3/4 O 3 (where □ Is an atomic vacancy, and may be represented by 0 <a ≦ 0.1. This perovskite type ion conductive oxide has a basic composition of Li 3/83/16 Sr (7 (1-a) / 16) La 7a / 16 Zr (1/4 + 7a / 16) Ta (3 / 4-7a / 16) O 3 (wherein □ is an atomic vacancy and satisfies 0 <a ≦ 0.1).

ここで、ペロブスカイト型イオン伝導性酸化物は、主としてペロブスカイト型の構造を有していればよく、例えば、酸化物に他の構造が一部含まれていたり、例えばX線回折のピーク位置がシフトしている、回折の主相が正方晶、立方晶、斜方晶などペロブスカイトからみて歪んだ構造を含むものとする。また、組成式で示しているが、酸化物には他の元素や構造などが一部含まれていてもよい。なお、「基本組成」とは、A,Mにはそれぞれ主成分の元素と1以上の副成分の元素を含んでいてもよい趣旨である。   Here, the perovskite type ion conductive oxide only needs to have mainly a perovskite type structure. For example, the oxide may include a part of other structure, or the peak position of X-ray diffraction may be shifted, for example. It is assumed that the main phase of diffraction includes a distorted structure as seen from the perovskite, such as tetragonal, cubic and orthorhombic. In addition, although shown in the composition formula, the oxide may partially include other elements, structures, and the like. The “basic composition” means that each of A and M may contain a main component element and one or more subcomponent elements.

本発明のペロブスカイト型イオン伝導性酸化物は、電気伝導度σ(25℃)が7.0×10-5(S/cm)以上であることが好ましく、1.0×10-4(S/cm)以上であることがより好ましく、2.0×10-4(S/cm)以上であることが更に好ましい。また、本発明のペロブスカイト型イオン伝導性酸化物は、粒界部での電気伝導度σgb(25℃)が2.0×10-4(S/cm)以上であることが好ましく、5.0×10-4(S/cm)以上であることがより好ましく、6.0×10-4(S/cm)以上であることが更に好ましい。また、本発明のペロブスカイト型イオン伝導性酸化物は、粒内(バルク)での電気伝導度σb(25℃)が8.0×10-5(S/cm)以上であることが好ましく、3.0×10-4(S/cm)以上であることがより好ましく、4.0×10-4(S/cm)以上であることが更に好ましい。これらの電気伝導度σ,σb,σgbは、Li、元素A,元素Mの添加割合(a,x,y,z)や、焼成温度を調整することにより、適宜変更することができる。 The perovskite ion conductive oxide of the present invention preferably has an electric conductivity σ (25 ° C.) of 7.0 × 10 −5 (S / cm) or more, and 1.0 × 10 −4 (S / cm). cm) or more, more preferably 2.0 × 10 −4 (S / cm) or more. The perovskite type ion conductive oxide of the present invention preferably has an electric conductivity σgb (25 ° C.) at the grain boundary portion of 2.0 × 10 −4 (S / cm) or more. It is more preferably at least 10 −4 (S / cm) and even more preferably at least 6.0 × 10 −4 (S / cm). In the perovskite type ion conductive oxide of the present invention, the electrical conductivity σb (25 ° C.) in the grains (bulk) is preferably 8.0 × 10 −5 (S / cm) or more. .0 × 10 -4 more preferably (S / cm) or more, more preferably 4.0 × 10 -4 (S / cm ) or more. These electrical conductivities σ, σb, and σgb can be appropriately changed by adjusting the addition ratio (a, x, y, z) of Li, element A, and element M, and the firing temperature.

本発明のペロブスカイト型イオン伝導性酸化物は、活性化エネルギーEaが40(kJ/mol)より小さいことが好ましく、35(kJ/mol)以下であることがより好ましく、33(kJ/mol)以下であることが更に好ましい。活性化エネルギーEaが40(kJ/mol)より小さいと、イオン伝導性がより好ましい。この活性化エネルギーEaは、Li、元素A,元素Mの添加割合(a,x,y,z)や、焼成温度を調整することにより、適宜変更することができる。   In the perovskite type ion conductive oxide of the present invention, the activation energy Ea is preferably less than 40 (kJ / mol), more preferably 35 (kJ / mol) or less, and 33 (kJ / mol) or less. More preferably. When the activation energy Ea is smaller than 40 (kJ / mol), ion conductivity is more preferable. This activation energy Ea can be appropriately changed by adjusting the addition ratio (a, x, y, z) of Li, element A, and element M, and the firing temperature.

本発明のペロブスカイト型イオン伝導性酸化物は、1500℃以下で焼成されていることが好ましく、1400℃以下で焼成されていることがより好ましく、1350℃以下で焼成されていることが更に好ましい。1500℃以下の焼成では、焼成エネルギーの低減をより図ることができる。ペロブスカイト型構造を形成する観点から、ペロブスカイト型イオン伝導性酸化物は、900℃以上で焼成されていることが好ましい。   The perovskite ion conductive oxide of the present invention is preferably fired at 1500 ° C. or less, more preferably 1400 ° C. or less, and still more preferably 1350 ° C. or less. In firing at 1500 ° C. or lower, the firing energy can be further reduced. From the viewpoint of forming a perovskite structure, the perovskite ion conductive oxide is preferably fired at 900 ° C. or higher.

本発明のペロブスカイト型イオン伝導性酸化物は、リチウム二次電池に利用することができる。リチウムイオン伝導度がより高められているからである。このペロブスカイト型イオン伝導性酸化物は、例えば、リチウム二次電池の固体電解質として利用するものとしてもよいし、リチウム二次電池のセパレータとして利用するものとしてもよい。こうしたリチウム二次電池は、リチウムを吸蔵・放出しうる正極活物質を有する正極と、リチウムを吸蔵・放出しうる負極活物質を有する負極との間に、本発明のペロブスカイト型イオン伝導性酸化物を介在させた構成とすることができる。正極に用いる正極活物質としては、遷移金属元素を含む硫化物や、リチウムと遷移金属元素とを含む酸化物などを用いることができる。具体的には、TiS2、TiS3、MoS3、FeS2などの遷移金属硫化物、基本組成式をLi(1-m)MnO2(0<m<1など、以下同じ)やLi(1-m)Mn24などとするリチウムマンガン複合酸化物、基本組成式をLi(1-m)CoO2などとするリチウムコバルト複合酸化物、基本組成式をLi(1-m)NiO2などとするリチウムニッケル複合酸化物、基本組成式をLi(1-m)NiaMnb2(a+b=1)などとするリチウムニッケルマンガン複合酸化物、基本組成式をLi(1-m)NiaCobMnc2(a+b+c=1)などとするリチウムニッケルコバルトマンガン複合酸化物、基本組成式をLiV23などとするリチウムバナジウム複合酸化物、V25などの遷移金属酸化物などを用いることができる。これらのうち、リチウムの遷移金属複合酸化物、例えば、LiCoO2、LiNiO2、LiMnO2、LiV23などが好ましい。また、負極に用いる負極活物質としては、リチウム、リチウム合金、スズ化合物などの無機化合物、リチウムイオンを吸蔵・放出可能な炭素質材料、基本組成式をLi4Ti512などとするリチウムチタン複合酸化物及び導電性ポリマーなどが挙げられる。炭素質材料は、特に限定されるものではないが、コークス類、ガラス状炭素類、グラファイト類、難黒鉛化性炭素類、熱分解炭素類、炭素繊維などが挙げられる。このうち、人造黒鉛、天然黒鉛などのグラファイト類が、金属リチウムに近い作動電位を有し、高い作動電圧での充放電が可能であるため、好ましい。 The perovskite type ion conductive oxide of the present invention can be used for a lithium secondary battery. This is because the lithium ion conductivity is further increased. This perovskite type ion conductive oxide may be used, for example, as a solid electrolyte of a lithium secondary battery, or may be used as a separator of a lithium secondary battery. Such a lithium secondary battery includes a perovskite ion conductive oxide according to the present invention between a positive electrode having a positive electrode active material capable of inserting and extracting lithium and a negative electrode having a negative electrode active material capable of inserting and extracting lithium. It can be set as the structure which intervened. As a positive electrode active material used for the positive electrode, a sulfide containing a transition metal element, an oxide containing lithium and a transition metal element, or the like can be used. Specifically, transition metal sulfides such as TiS 2 , TiS 3 , MoS 3 , and FeS 2, and the basic composition formula are Li (1-m) MnO 2 (0 <m <1, etc., the same shall apply hereinafter) and Li (1 -m) Lithium-manganese composite oxides such as Mn 2 O 4, lithium cobalt composite oxides whose basic composition formula is Li (1-m) CoO 2, etc., basic composition formulas such as Li (1-m) NiO 2 Lithium-nickel composite oxide, with a basic composition formula of Li (1-m) Ni a Mn b O 2 (a + b = 1), etc., and a basic composition formula of Li (1-m) Ni a Co b Mn c O 2 ( a + b + c = 1) lithium-nickel-cobalt-manganese composite oxide, and the like, lithium vanadium composite oxide, and the like LiV 2 O 3 the basic formula, the transition metal oxide such as V 2 O 5 Etc. can be used. Of these, lithium transition metal composite oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , and LiV 2 O 3 are preferable. Moreover, as a negative electrode active material used for a negative electrode, lithium titanium which uses inorganic compounds, such as lithium, a lithium alloy, a tin compound, a carbonaceous material which can occlude / release lithium ions, and a basic composition formula such as Li 4 Ti 5 O 12 Examples include composite oxides and conductive polymers. The carbonaceous material is not particularly limited, and examples thereof include cokes, glassy carbons, graphites, non-graphitizable carbons, pyrolytic carbons, and carbon fibers. Of these, graphites such as artificial graphite and natural graphite are preferable because they have an operating potential close to that of metallic lithium and can be charged and discharged at a high operating voltage.

また、本発明のリチウム二次電池は、複合体を備えているものとしてもよい。複合体は、固体電解質層と活物質層とが積層されているものとしてもよいし、固体電解質層と有機電解質とを有するものとしてもよい。この有機電解質の表面には、固体電解質層が隣接されているものとしてもよい。有機電解質は、例えば、リチウムを含む支持塩と有機物とを含むものとしてもよい。支持塩としては、例えば、LiPF6、LiBF4、LiAsF6、LiCF3SO3、LiN(CF3SO22、LiC(CF3SO23、LiSbF6、LiSiF6、LiAlF4、LiSCN、LiClO4、LiCl、LiF、LiBr、LiI、LiAlCl4などが挙げられる。また、有機物は、有機溶媒などの液体としてもよいし、有機高分子化合物などの固体としてもよい。有機溶媒としては、例えば、カーボネート類、エステル類、エーテル類、ニトリル類、フラン類、スルホラン類及びジオキソラン類などが挙げられ、これらを単独又は混合して用いることができる。カーボネート類としては、例えば、エチレンカーボネートやプロピレンカーボネートなどの環状カーボネート類や、ジメチルカーボネート、エチルメチルカーボネートなどの鎖状カーボネート類が挙げられる。また、γ−ブチルラクトンなどの環状エステル類、酢酸メチルなどの鎖状エステル類、ジメトキシエタンなどのエーテル類、アセトニトリルなどのニトリル類、テトラヒドロフランなどのフラン類、テトラメチルスルホランなどのスルホラン類、1,3−ジオキソランなどのジオキソラン類などが挙げられる。有機高分子化合物としては、例えば、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリアセトニトリル、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリメチルメタクリレート、ポリビニルアセテート、ポリビニルピロリドンなどが挙げられる。有機電解質は、ポリマーと支持塩とで構成されるポリマーゲルが好ましい。 Moreover, the lithium secondary battery of the present invention may include a composite. The composite may be formed by laminating a solid electrolyte layer and an active material layer, or may have a solid electrolyte layer and an organic electrolyte. A solid electrolyte layer may be adjacent to the surface of the organic electrolyte. The organic electrolyte may include, for example, a supporting salt containing lithium and an organic substance. Examples of the supporting salt include LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiSbF 6 , LiSiF 6 , LiAlF 4 , LiSCN, Examples include LiClO 4 , LiCl, LiF, LiBr, LiI, and LiAlCl 4 . Further, the organic substance may be a liquid such as an organic solvent or a solid such as an organic polymer compound. Examples of the organic solvent include carbonates, esters, ethers, nitriles, furans, sulfolanes and dioxolanes, and these can be used alone or in combination. Examples of the carbonates include cyclic carbonates such as ethylene carbonate and propylene carbonate, and chain carbonates such as dimethyl carbonate and ethyl methyl carbonate. In addition, cyclic esters such as γ-butyllactone, chain esters such as methyl acetate, ethers such as dimethoxyethane, nitriles such as acetonitrile, furans such as tetrahydrofuran, sulfolanes such as tetramethylsulfolane, 1, And dioxolanes such as 3-dioxolane. Examples of the organic polymer compound include polyethylene oxide, polypropylene oxide, polyacetonitrile, polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate, polyvinyl acetate, and polyvinylpyrrolidone. The organic electrolyte is preferably a polymer gel composed of a polymer and a supporting salt.

リチウム二次電池の構造は、特に限定されないが、例えば図2に示す構造が挙げられる。図2は、全固体型リチウム二次電池10の構造の一例を示す説明図である。この全固体型リチウム二次電池は、上述したペロブスカイト型イオン伝導性酸化物を含む固体電解質層11と、この固体電解質層11の一方の面に形成されリチウムを吸蔵放出する正極活物質を含む正極活物質層13と、この固体電解質層11の他方の面に形成されリチウムを吸蔵放出する負極活物質を含む負極活物質層16とを有する。正極活物質層13の表面には、集電体14が形成されており、負極活物質層16の表面には、集電体17が形成されている。この全固体型リチウム二次電池10は、固体電解質層11及び正極活物質層13が複合体20であり、固体電解質層11及び負極活物質層16が複合体21であるものとしてもよい。あるいは、リチウム二次電池の構造は、図3に示すように、固体電解質層11及び有機電解質層18を有する複合体22と、固体電解質層11及び有機電解質層19を有する複合体23と、を備えたものとしてもよい。図3は、全固体型リチウム二次電池10Bの構造の一例を示す説明図である。有機電解質層18には、正極活物質層13が隣接され、有機電解質層19には負極活物質層16が隣接されている。この有機電解質層18,19はセパレータとして機能するものとしてもよい。   Although the structure of a lithium secondary battery is not specifically limited, For example, the structure shown in FIG. 2 is mentioned. FIG. 2 is an explanatory diagram showing an example of the structure of the all solid-state lithium secondary battery 10. This all solid-state lithium secondary battery includes a solid electrolyte layer 11 containing the perovskite ion conductive oxide described above, and a positive electrode containing a positive electrode active material that is formed on one surface of the solid electrolyte layer 11 and occludes and releases lithium. It has an active material layer 13 and a negative electrode active material layer 16 that is formed on the other surface of the solid electrolyte layer 11 and contains a negative electrode active material that absorbs and releases lithium. A current collector 14 is formed on the surface of the positive electrode active material layer 13, and a current collector 17 is formed on the surface of the negative electrode active material layer 16. In the all solid-state lithium secondary battery 10, the solid electrolyte layer 11 and the positive electrode active material layer 13 may be a composite 20, and the solid electrolyte layer 11 and the negative electrode active material layer 16 may be a composite 21. Alternatively, as shown in FIG. 3, the structure of the lithium secondary battery includes a composite 22 having the solid electrolyte layer 11 and the organic electrolyte layer 18 and a composite 23 having the solid electrolyte layer 11 and the organic electrolyte layer 19. It may be provided. FIG. 3 is an explanatory diagram showing an example of the structure of the all solid-state lithium secondary battery 10B. The organic electrolyte layer 18 is adjacent to the positive electrode active material layer 13, and the organic electrolyte layer 19 is adjacent to the negative electrode active material layer 16. The organic electrolyte layers 18 and 19 may function as a separator.

以上詳述したペロブスカイト型イオン伝導性酸化物は、イオン伝導性をより向上することができる。このような効果が得られる理由は、例えば、異種元素に置換されることにより、粒界の構造がイオン伝導を阻害しにくい構造になり、粒界での伝導度がより向上するためであると推察される。また、異種元素により置換されることにより、より最適化された格子定数を有する構造になり、粒内伝導度も上昇するためであると推察される。   The perovskite type ion conductive oxide described in detail above can further improve the ion conductivity. The reason why such an effect is obtained is that, for example, by substituting with a different element, the structure of the grain boundary becomes a structure that does not hinder ion conduction, and the conductivity at the grain boundary is further improved. Inferred. Further, it is presumed that by substituting with a different element, the structure has a more optimized lattice constant and the intragranular conductivity increases.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

以下では、Srサイトを他の元素で置換したペロブスカイト型イオン伝導性酸化物を具体的に合成した例を、実験例として説明する。   Below, the example which specifically synthesize | combined the perovskite type ion conductive oxide which substituted the Sr site with the other element is demonstrated as an experiment example.

[ペロブスカイト型酸化物の作製]
SrサイトをCa、Y、Mg、La及びBaで置換したペロブスカイト型イオン伝導性酸化物Li3/83/16Sr(7(1-a)/16)7a/16Zr1/4Ta3/43(□は原子空孔であり、AはCa、Y、Mg、La及びBaのいずれか、a=0.025)を合成した。このペロブスカイト型イオン伝導性酸化物は、Li2CO3、SrCO3、ZrO2、Ta25及びA原料を出発原料に用いて合成を行った。A原料は、CaCO3、Y23、MgO、La23及びBaCO3とした。はじめに、出発原料を化学量論比になるように秤量し、エタノール中にてボールミル(300rpm/ジルコニアボール)で300分、混合・粉砕を行った。出発原料の混合粉末をボールとエタノールから分離したのち、Al23製のるつぼ中にて、1100℃、12時間、大気雰囲気で仮焼を行った。次に、仮焼した粉体をペレット状に300MPaでCIP成型し、パウダーベッドを用いて本焼成した。本焼成は、仮焼粉体をパウダーベッドとして入れたAl23製のるつぼ中にこのペレット成形体を入れ、固相反応法により、1300℃、15時間、大気中の条件下で行った。Srサイトを置換しないものを実験例1とし、Srサイトを置換して得られた試料をそれぞれ実験例2〜6とした。
[Preparation of perovskite oxide]
Perovskite-type ion conductive oxide with Sr site substituted by Ca, Y, Mg, La and Ba Li 3/83/16 Sr (7 (1-a) / 16) A 7a / 16 Zr 1/4 Ta 3/4 O 3 (□ is an atomic vacancy, A is any one of Ca, Y, Mg, La and Ba, a = 0.025) was synthesized. The perovskite ion conductive oxide was synthesized using Li 2 CO 3 , SrCO 3 , ZrO 2 , Ta 2 O 5 and A raw materials as starting materials. The A raw material was CaCO 3 , Y 2 O 3 , MgO, La 2 O 3 and BaCO 3 . First, starting materials were weighed so as to have a stoichiometric ratio, and mixed and pulverized in ethanol in a ball mill (300 rpm / zirconia balls) for 300 minutes. After the mixed powder of the starting material was separated from the balls and ethanol, it was calcined in an air atmosphere at 1100 ° C. for 12 hours in an Al 2 O 3 crucible. Next, the calcined powder was CIP-molded into a pellet at 300 MPa and subjected to main firing using a powder bed. The main calcination was performed by placing the pellet compact in an Al 2 O 3 crucible containing a calcined powder as a powder bed, and at 1300 ° C. for 15 hours under atmospheric conditions by a solid phase reaction method. . Samples obtained by substituting the Sr sites were those obtained by substituting the Sr sites for Experimental Examples 1 and 6, respectively.

SrサイトをCaで置換したペロブスカイト型イオン伝導性酸化物Li3/83/16Sr(7(1-a)/16)Ca7a/16Zr1/4Ta3/43(□は原子空孔であり、0≦a≦0.2)を合成した。このペロブスカイト型イオン伝導性酸化物は、Li2CO3、SrCO3、ZrO2、Ta25及びCaCO3を出発原料に用いて合成を行った。ここで、実験例1、2、7〜10は、それぞれa=0、0.025、0.0375、0.05、0.1、0.2とし(表1参照)、実験例1と同様の工程を行い作製した。 Perovskite-type ion-conductive oxide with Sr site substituted by Ca Li 3/83/16 Sr (7 (1-a) / 16) Ca 7a / 16 Zr 1/4 Ta 3/4 O 3 (□ is Atomic vacancies, 0 ≦ a ≦ 0.2) were synthesized. The perovskite type ion conductive oxide was synthesized using Li 2 CO 3 , SrCO 3 , ZrO 2 , Ta 2 O 5 and CaCO 3 as starting materials. Here, in Experimental Examples 1, 2, 7 to 10, a = 0, 0.025, 0.0375, 0.05, 0.1, and 0.2 (see Table 1), respectively, and the same as Experimental Example 1 This process was performed.

SrサイトをLaで置換したペロブスカイト型イオン伝導性酸化物Li3/83/16Sr(7(1-a)/16)La7a/16Zr(1/4+7a/16)Ta(3/4-7a/16)3(式中、□は原子空孔であり、0≦a≦0.1を満たす)を合成した。このペロブスカイト型イオン伝導性酸化物は、Li2CO3、SrCO3、ZrO2、Ta25及びLa23を出発原料に用いて合成を行った。ここで、実験例5、11、12は、それぞれa=0.025、0.05、0.1とし(表2参照)、実験例1と同様の工程を行い作製した。 Perovskite type ion conductive oxide with Sr site substituted by La 3/83/16 Sr (7 (1-a) / 16) La 7a / 16 Zr (1/4 + 7a / 16) Ta (3 / 4-7a / 16) O 3 (wherein □ is an atomic vacancy and satisfies 0 ≦ a ≦ 0.1) was synthesized. This perovskite type ion conductive oxide was synthesized using Li 2 CO 3 , SrCO 3 , ZrO 2 , Ta 2 O 5 and La 2 O 3 as starting materials. Here, in Experimental Examples 5, 11, and 12, a = 0.025, 0.05, and 0.1 were set, respectively (see Table 2), and the same steps as in Experimental Example 1 were performed.

(X線回折測定)
X線回折測定(XRD)は、XRD測定器(リガク製、Smart−Lab)を用いて、集中法型光学系で試料粉末をCuKα、2θ:10〜80°,5°/minの条件で測定した。結晶構造解析は、結晶構造解析用プログラム:Rietan−2000(Mater. Sci. Forum, p321−324(2000),198)を用いて解析を行った。。図2は、実験例1〜6のX線回折測定結果である。図3は、実験例1、2、8〜10のX線回折測定結果である。図2に示すように、いくつかの試料では異相(LiTaO3)が認められたものの、実験例1〜6では、回折線がシフトしており、LSTZのSrサイトに各元素が置換されているものと認められた。また、図3に示すように、SrをCaで置換した実験例2、8〜10は、おおむね単相であった。また、Caの置換量を増加させるのに従い、ペロブスカイト構造由来の回折線が高角側にシフトした。ペロブスカイト構造のSr(イオン半径=1.44Å)にCa(イオン半径=1.34Å)が置換されて入り込んだものと推察された。
(X-ray diffraction measurement)
X-ray diffraction measurement (XRD) is performed by using a XRD measuring device (manufactured by Rigaku, Smart-Lab) and measuring the sample powder under the conditions of CuKα, 2θ: 10 to 80 °, 5 ° / min with a concentrated optical system. did. Crystal structure analysis was performed using a crystal structure analysis program: Rietan-2000 (Matter. Sci. Forum, p321-324 (2000), 198). . FIG. 2 shows the X-ray diffraction measurement results of Experimental Examples 1 to 6. FIG. 3 shows the X-ray diffraction measurement results of Experimental Examples 1, 2, and 8 to 10. As shown in FIG. 2, although a heterogeneous phase (LiTaO 3 ) was observed in some samples, the diffraction lines were shifted in Experimental Examples 1 to 6, and each element was substituted at the Sr site of LSTZ. It was accepted. Moreover, as shown in FIG. 3, Experimental Examples 2 and 8 to 10 in which Sr was replaced with Ca were generally single phase. Further, as the Ca substitution amount was increased, the diffraction lines derived from the perovskite structure shifted to the high angle side. It was inferred that Ca (ion radius = 1.34Å) was substituted for Sr (ion radius = 1.44Å) of the perovskite structure.

(電気伝導度測定)
伝導度は、恒温槽中にてACインピーダンスアナライザー(Agilent4294A)を用い、周波数40Hz〜110MHz、振幅電圧100mVの条件で、ナイキストプロットの円弧より抵抗値を求め、この抵抗値から算出した。伝導度σは、σ=1/RTotal,RTotal=Rb+Rgbの式から算出した。試料は、直径11.7mm×厚さ0.2mmのサイズとした。ACインピーダンスアナライザーで測定する際のブロッキング電極にはAu電極を用いた。Au電極は市販のAuペーストを850℃、30分の条件で焼き付けることで形成した。図4は、実験例1〜6のナイキストプロットである。図5は、実験例2、8〜10のナイキストプロットである。実験例1、2、7〜10の25℃での伝導度を表1に示す。実験例1、5、11、12の25℃での伝導度を表2に示す。図6は、実験例1、2、7〜10のアレニウスプロット及びCaドープ量に対する伝導度の関係図である。図7は、実験例1、5、11、12のアレニウスプロット及びLaドープ量に対する伝導度の関係図である。
(Electrical conductivity measurement)
The conductivity was calculated from a resistance value obtained from an arc of the Nyquist plot using an AC impedance analyzer (Agilent 4294A) in a thermostatic chamber under conditions of a frequency of 40 Hz to 110 MHz and an amplitude voltage of 100 mV. The conductivity σ was calculated from the equation: σ = 1 / R Total and R Total = R b + R gb . The sample had a size of diameter 11.7 mm × thickness 0.2 mm. An Au electrode was used as a blocking electrode when measuring with an AC impedance analyzer. The Au electrode was formed by baking a commercially available Au paste at 850 ° C. for 30 minutes. FIG. 4 is a Nyquist plot of Experimental Examples 1-6. FIG. 5 is a Nyquist plot of Experimental Examples 2 and 8-10. Table 1 shows the conductivities of Experimental Examples 1, 2, and 7 to 10 at 25 ° C. Table 2 shows the conductivities of Experimental Examples 1, 5, 11, and 12 at 25 ° C. FIG. 6 is an Arrhenius plot of Experimental Examples 1, 2, and 7 to 10 and a relationship diagram of conductivity with respect to the Ca doping amount. FIG. 7 is an Arrhenius plot of Experimental Examples 1, 5, 11, and 12, and a relationship diagram of conductivity with respect to the La doping amount.

図4に示すように、実験例1〜6では、ドープ量の関係で粒内(バルク)の電気伝導度σbは大きな変化がなかった。また、SrをCaやLaで置換したものは、粒界部での電気伝導度σgbが顕著に低くなることがわかった。図5及び表1に示すように、Srを一部Caに置換した実験例2〜4(0<a(at%)≦10)では、粒界部での電気伝導度σgb(25℃)がCaに置換しない実験例1(a=0であるLi3/8Sr7/16Zr1/4Ta3/43)に対して向上していることがわかった。また、Caに置換した実験例2、3では、粒内の電気伝導度σb(25℃)が実験例1以上の値を示した。各試料の相対密度は96〜99%であったことから、伝導度がa値に応じて変化するのは、密度による影響ではないと考えられた。また、表2に示すように、Srを一部Laに置換した実験例5、11、12(0<a(at%)≦10)では、粒界部での電気伝導度σgb(25℃)が実験例1(a=0であるLi3/8Sr7/16Zr1/4Ta3/43)に対して向上していることがわかった。また、Laに置換した実験例5、11、12では、粒内の電気伝導度σb(25℃)が実験例1と同等の値を示した。 As shown in FIG. 4, in Experimental Examples 1 to 6, the intra-granular (bulk) electrical conductivity σb did not change greatly due to the doping amount. Further, it was found that when Sr was substituted with Ca or La, the electrical conductivity σgb at the grain boundary portion was remarkably lowered. As shown in FIG. 5 and Table 1, in Experimental Examples 2 to 4 (0 <a (at%) ≦ 10) in which Sr is partially replaced with Ca, the electrical conductivity σgb (25 ° C.) at the grain boundary part is It turned out that it is improving with respect to Experimental example 1 which does not substitute for Ca (Li 3/8 Sr 7/16 Zr 1/4 Ta 3/4 O 3 where a = 0). Further, in Experimental Examples 2 and 3 in which Ca was substituted, the electrical conductivity σb (25 ° C.) in the grains showed a value higher than that of Experimental Example 1. Since the relative density of each sample was 96 to 99%, it was considered that the change in conductivity according to the a value was not an influence of the density. Further, as shown in Table 2, in Experimental Examples 5, 11, and 12 (0 <a (at%) ≦ 10) in which Sr is partially replaced with La, the electrical conductivity σgb (25 ° C.) at the grain boundary part Was found to be improved over Experimental Example 1 (Li 3/8 Sr 7/16 Zr 1/4 Ta 3/4 O 3 where a = 0). Further, in Experimental Examples 5, 11, and 12 in which La was substituted, the intra-grain electrical conductivity σb (25 ° C.) showed a value equivalent to that of Experimental Example 1.

(活性化エネルギー(Ea))
活性化エネルギーEa(kJ/mol)はアレニウス(Arrhenius)の式:σ=Aexp(−Ea/kT)(σ:伝導度、A:頻度因子、k:ボルツマン定数、T:絶対温度)を用い、アレニウスプロットの傾きより求めた。求めた結果を表1、2に示す。Ca置換量a(at%)が2以上10以下の範囲では、より低い活性化エネルギー(Ea)を示し、5at%以下では更に低い値を示した。また、La置換量a(at%)が2以上10以下の範囲では、より低い活性化エネルギー(Ea)を示し、好ましいことがわかった。
(Activation energy (Ea))
The activation energy Ea (kJ / mol) is calculated using the Arrhenius equation: σ = Aexp (−Ea / kT) (σ: conductivity, A: frequency factor, k: Boltzmann constant, T: absolute temperature) Obtained from the slope of the Arrhenius plot. The obtained results are shown in Tables 1 and 2. When the Ca substitution amount a (at%) was in the range of 2 or more and 10 or less, lower activation energy (Ea) was shown, and when it was 5 at% or less, a lower value was shown. Further, it was found that when the La substitution amount a (at%) is in the range of 2 or more and 10 or less, lower activation energy (Ea) is exhibited, which is preferable.

CaやLaを適量添加することで、伝導度が向上し、活性化エネルギーEaが低下する理由については、例えば、適量のCaやLaをSrと置換すると、伝導するリチウムイオン周りの構造がより好適なものとなり、リチウムイオンの移動が容易になるためであると考えられた。なお、Srと置換する元素は、Ca以外の元素、例えばBa、Sc、Y、Na、K、Rb、Cs及びLn(原子番号57〜71のランタノイド)などであっても、同様の構造変化が見込まれることから、同様の効果が得られるものと推察された。   The reason why the conductivity is improved and the activation energy Ea is reduced by adding an appropriate amount of Ca or La is, for example, when the appropriate amount of Ca or La is replaced with Sr, the structure around the conductive lithium ion is more preferable. It was thought that this was because the movement of lithium ions was facilitated. It should be noted that even if the element that substitutes Sr is an element other than Ca, such as Ba, Sc, Y, Na, K, Rb, Cs, and Ln (lanthanoids having an atomic number of 57 to 71), the same structural change occurs. It was speculated that similar effects could be obtained from the expected.

(活物質との反応性の検討)
SrサイトをCaで置換したペロブスカイト型イオン伝導性酸化物であるLi3/8Sr7(1-a)/16Ca7a/16Ta3/4Zr1/43(a=0.0375の実験例7,LSTZ−Caとも称する)に活物質を混合して焼結させ、その反応性を検討した。焼結温度は、400℃〜900℃とした。図10は、実験例7のペロブスカイト型イオン伝導性酸化物の粉末にLiNi0.5Mn1.54(LNMとも称する)の粉末を混合して焼成した試料のX線回折測定結果である。図11は、実験例7のペロブスカイト型イオン伝導性酸化物の粉末にLi4Ti512(LTOとも称する)を混合して焼成した試料のX線回折測定結果である。図10、11に示すように、SrサイトをCaで置換したペロブスカイト型イオン伝導性酸化物は、正極活物質(LNM)や負極活物質(LTO)と焼成しても、副相は生じず、反応性が低く化学的に安定であることがわかった。
(Examination of reactivity with active material)
Li 3/8 Sr 7 (1-a) / 16 Ca 7a / 16 Ta 3/4 Zr 1/4 O 3 (a = 0.0375 ) , which is a perovskite type ion conductive oxide in which the Sr site is substituted with Ca Experimental Example 7, also referred to as LSTZ-Ca) was mixed with an active material and sintered, and the reactivity was examined. The sintering temperature was 400 ° C to 900 ° C. FIG. 10 shows the result of X-ray diffraction measurement of a sample obtained by mixing LiNi 0.5 Mn 1.5 O 4 (also referred to as LNM) powder with the perovskite ion conductive oxide powder of Experimental Example 7 and firing it. FIG. 11 shows the result of X-ray diffraction measurement of a sample obtained by mixing Li 4 Ti 5 O 12 (also referred to as LTO) with the perovskite type ion conductive oxide powder of Experimental Example 7 and firing it. As shown in FIGS. 10 and 11, the perovskite ion conductive oxide in which the Sr site is replaced with Ca does not generate a subphase even when fired with a positive electrode active material (LNM) or a negative electrode active material (LTO). It was found that the reactivity was low and it was chemically stable.

(有機電解質との複合体の検討)
固体電解質の板状体の両面に有機電解質を積層した複合体を作製し、抵抗値(Ω)を検討した。SrサイトをCaで置換したペロブスカイト型イオン伝導性酸化物(実験例7,LSTZ−Ca)からなる固体電解質と、有機電解質としてポリエチレンオキサイド(PEO)と、Li金属箔とを表裏に積層した、Li/PEO/LSTZ−Ca/PEO/Liを実験例13の評価複合体とした。また、Li0.35La0.55TiO3(LLTとも称する)を固体電解質とした以外は実験例13と同様の構成とした複合体を実験例14とした。表3に実験例13、14の構成及び抵抗値(Ω)をまとめた。LLTは、25℃において伝導度が7×10-5(S/cm)であり、電池の内部抵抗を下げるには十分でない。一方、LSTZ−Caは、25℃において伝導度が4×10-4(S/cm)であり、実験例14に比して低い抵抗値を示し、電池の内部抵抗をより下げられることがわかった。
(Examination of complex with organic electrolyte)
A composite was prepared by laminating an organic electrolyte on both sides of a solid electrolyte plate, and the resistance value (Ω) was examined. Li layer in which a solid electrolyte composed of a perovskite ion conductive oxide (Experimental Example 7, LSTZ-Ca) in which Sr sites are substituted with Ca, polyethylene oxide (PEO) as an organic electrolyte, and a Li metal foil are laminated on both sides. / PEO / LSTZ-Ca / PEO / Li was used as the evaluation composite of Experimental Example 13. In addition, Experimental Example 14 was a composite having the same configuration as Experimental Example 13 except that Li 0.35 La 0.55 TiO 3 (also referred to as LLT) was used as the solid electrolyte. Table 3 summarizes the configurations and resistance values (Ω) of Experimental Examples 13 and 14. LLT has a conductivity of 7 × 10 −5 (S / cm) at 25 ° C. and is not sufficient to lower the internal resistance of the battery. On the other hand, LSTZ-Ca has a conductivity of 4 × 10 −4 (S / cm) at 25 ° C., shows a lower resistance value than that of Experimental Example 14, and can lower the internal resistance of the battery. It was.

(試験セル(半電池)の作製)
次に、全固体リチウム二次電池について試験セル(半電池)を作製し検討した。図12は、試験セル30の説明図である。SrサイトをCaで置換したペロブスカイト型イオン伝導性酸化物(LSTZ−Ca,実験例7)からなる固体電解質層31のペレットを作製し、その一方の面に活物質層33(薄膜)を形成した(複合体40)。また、固体活物質層31の他方の面に有機電解質層39を介してリチウム金属の対極36を貼り合わせた。正極活物質として、LiCoO2(LCOとも称する)と、LNMとを用い、負極活物質としてLTOを用いた。有機電解質層39としてポリエチレンオキサイド(PEO)を用いた。試験セルは、Li/PEO/LSTZ−Ca/LCO半電池(実験例15)と、Li/PEO/LSTZ−Ca/LNM半電池(実験例16)と、Li/PEO/LSTZ−Ca/LTO半電池(実験例17)とした。
(Production of test cell (half-cell))
Next, a test cell (half battery) was prepared and examined for an all solid lithium secondary battery. FIG. 12 is an explanatory diagram of the test cell 30. A pellet of the solid electrolyte layer 31 made of a perovskite ion conductive oxide (LSTZ-Ca, Experimental Example 7) in which the Sr site was replaced with Ca was produced, and an active material layer 33 (thin film) was formed on one surface thereof. (Composite 40). Further, a counter electrode 36 made of lithium metal was bonded to the other surface of the solid active material layer 31 through an organic electrolyte layer 39. LiCoO 2 (also referred to as LCO) and LNM were used as the positive electrode active material, and LTO was used as the negative electrode active material. Polyethylene oxide (PEO) was used as the organic electrolyte layer 39. The test cells were Li / PEO / LSTZ-Ca / LCO half-cell (Experimental Example 15), Li / PEO / LSTZ-Ca / LNM half-cell (Experimental Example 16), and Li / PEO / LSTZ-Ca / LTO half-cell. A battery (Experimental Example 17) was obtained.

(電池評価)
電池評価として、サイクリックボルタモグラム(CV)を測定した。CV測定は、電気化学測定システム(北斗電工社製、HZ−3000)を用いて行った。CV測定は、実験例15では、25℃、0.1mV/sec、Li+/Li基準で3.0V〜4.2Vの範囲で行った。実験例16では、25℃、0.1mV/secで、Li+/Li基準で3.5V〜5.0Vの範囲で行った。実験例17では、25℃、0.1mV/secで、Li+/Li基準で1.0V〜3.0Vの範囲で行った。図13は、LCO(LiCoO2)試験セル(実験例15)のサイクリックボルタモグラムである。図14は、LNM(LiNi0.5Mn1.54)試験セル(実験例16)のサイクリックボルタモグラムである。図15は、LTO(Li4Ti512)試験セル(実験例17)のサイクリックボルタモグラムである。図13〜15に示すように、SrサイトをCaで置換したペロブスカイト型イオン伝導性酸化物では、全ての半電池で酸化還元電流を確認した。したがって、これらの活物質を用いて充放電ができることがわかった。特に、5V級の高電位活物質であり、固体電解質との組み合わせで充放電が困難であるLNMとの組み合わせにおいて充放電できることがわかった。これらの結果より、SrサイトをCaで置換したペロブスカイト型イオン伝導性酸化物を用いて作製した全固体リチウム二次電池は、有効に充放電することができることが明らかとなった。
(Battery evaluation)
As a battery evaluation, a cyclic voltammogram (CV) was measured. CV measurement was performed using an electrochemical measurement system (HZ-3000, manufactured by Hokuto Denko). In Experimental Example 15, CV measurement was performed in a range of 3.0 V to 4.2 V on the basis of 25 ° C., 0.1 mV / sec, and Li + / Li. In Experimental Example 16, the measurement was performed at 25 ° C. and 0.1 mV / sec in the range of 3.5 V to 5.0 V on the basis of Li + / Li. In Experimental Example 17, the measurement was performed at 25 ° C. and 0.1 mV / sec in a range of 1.0 V to 3.0 V on the basis of Li + / Li. FIG. 13 is a cyclic voltammogram of an LCO (LiCoO 2 ) test cell (Experimental Example 15). FIG. 14 is a cyclic voltammogram of an LNM (LiNi 0.5 Mn 1.5 O 4 ) test cell (Experimental Example 16). FIG. 15 is a cyclic voltammogram of an LTO (Li 4 Ti 5 O 12 ) test cell (Experimental Example 17). As shown in FIGS. 13 to 15, in the perovskite type ion conductive oxide in which the Sr site was substituted with Ca, the redox current was confirmed in all the half-cells. Therefore, it was found that charging and discharging can be performed using these active materials. In particular, it has been found that charging and discharging can be performed in combination with LNM, which is a high potential active material of 5 V class and is difficult to charge and discharge in combination with a solid electrolyte. From these results, it became clear that the all-solid-state lithium secondary battery manufactured using the perovskite type ion conductive oxide in which the Sr site is replaced with Ca can be charged and discharged effectively.

なお、本発明は上述した実施例に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   In addition, this invention is not limited to the Example mentioned above at all, and as long as it belongs to the technical scope of this invention, it cannot be overemphasized that it can implement with a various aspect.

本発明は、イオン伝導性を用いる技術分野、例えば、固体電解質に利用可能である。   The present invention is applicable to a technical field using ionic conductivity, for example, a solid electrolyte.

10,10B 全固体型リチウム二次電池、11 固体電解質層、13 正極活物質層、14 集電体、16 負極活物質層、17 集電体、18,19 有機電解質層、20〜23 複合体、30 試験セル、31 固体電解質層、33 正極活物質層、36 対極、39 有機電解質層、40,43 複合体。   10, 10B All-solid-state lithium secondary battery, 11 Solid electrolyte layer, 13 Positive electrode active material layer, 14 Current collector, 16 Negative electrode active material layer, 17 Current collector, 18, 19 Organic electrolyte layer, 20-23 Composite , 30 Test cell, 31 Solid electrolyte layer, 33 Positive electrode active material layer, 36 Counter electrode, 39 Organic electrolyte layer, 40, 43 Composite.

Claims (12)

Liと、Srと、Zrとを含み、
Ca、Ba、Mg、Sc、Y、Rb、Cs及びLn(原子番号57〜71のランタノイド)のうち1種以上を含む元素Aと、
Ta、Nb、W、Mo、Re、Ru及びOsのうち1種以上を含む元素Mと、
を含むペロブスカイト型イオン伝導性酸化物。
Li, Sr, and Zr,
An element A containing at least one of Ca, Ba, Mg, Sc, Y, Rb, Cs and Ln (lanthanoids having an atomic number of 57 to 71);
An element M containing one or more of Ta, Nb, W, Mo, Re, Ru and Os;
Perovskite ion-conducting oxide containing
基本組成LiyzSr((1-y-z)(1-a))a(1-y-z)Zr(1-x+a(m-2))(x-a(m-2))3(式中、Aは、Ca、Ba、Mg、Sc、Y、Rb、Cs及びLn(原子番号57〜71のランタノイド)のうち1種以上の元素であり、元素Mは、Ta、Nb、W、Mo、Re、Ru及びOsのうち1種以上の元素であり、□は原子空孔であり、0<x<1、0<y<1、0<a<1、x(n−4)+a(1−y−z)(m−2)=y+2z(但し、mはAの価数であり、nはMの価数)を満たす)で表される、請求項1に記載のペロブスカイト型イオン伝導性酸化物。 Basic composition Li yz Sr ((1-yz) (1-a)) A a (1-yz) Zr (1-x + a (m-2)) M (xa (m-2)) O 3 (In the formula, A is one or more elements of Ca, Ba, Mg, Sc, Y, Rb, Cs, and Ln (lanthanoids having an atomic number of 57 to 71), and the element M is Ta, Nb, W , Mo, Re, Ru, and Os, □ is an atomic vacancy, 0 <x <1, 0 <y <1, 0 <a <1, x (n−4) The perovskite type according to claim 1, represented by + a (1-yz) (m-2) = y + 2z (where m is the valence of A and n is the valence of M). Ion conductive oxide. Srと前記元素Aとの全体に対して該元素Aが2at%以上10at%以下の範囲で前記Srを置換している、請求項1又は2に記載のペロブスカイト型イオン伝導性酸化物。   3. The perovskite ion conductive oxide according to claim 1, wherein the element A substitutes the Sr in a range of 2 at% to 10 at% with respect to the entire Sr and the element A. 4. 電気伝導度σ(25℃)が7.0×10-5(S/cm)以上であり、
活性化エネルギーEaが40(kJ/mol)より小さい、請求項1〜3のいずれか1項に記載のペロブスカイト型イオン伝導性酸化物。
The electrical conductivity σ (25 ° C.) is 7.0 × 10 −5 (S / cm) or more,
The perovskite type ion conductive oxide according to any one of claims 1 to 3, wherein the activation energy Ea is smaller than 40 (kJ / mol).
粒界部での電気伝導度σgb(25℃)が2.0×10-4(S/cm)以上である、請求項1〜4のいずれか1項に記載のペロブスカイト型イオン伝導性酸化物。 The perovskite ion-conductive oxide according to any one of claims 1 to 4, wherein the electric conductivity σgb (25 ° C) at the grain boundary is 2.0 x 10 -4 (S / cm) or more. . 前記元素Aは、Ca、Ba及びLaのうち1以上である、請求項1〜5のいずれか1項に記載のペロブスカイト型イオン伝導性酸化物。   The perovskite ion conductive oxide according to any one of claims 1 to 5, wherein the element A is one or more of Ca, Ba, and La. 基本組成Li3/83/16Sr(7(1-a)/16)Ca7a/16Zr1/4Ta3/43(式中、□は原子空孔であり、0<a≦0.1を満たす)で表される、請求項1〜6のいずれか1項に記載のペロブスカイト型イオン伝導性酸化物。 Basic composition Li 3/83/16 Sr (7 (1-a) / 16) Ca 7a / 16 Zr 1/4 Ta 3/4 O 3 (where □ is an atomic vacancy and 0 <a The perovskite type ion conductive oxide according to any one of claims 1 to 6, represented by: &lt; 0.1. 基本組成Li3/83/16Sr(7(1-a)/16)La7a/16Zr(1/4+7a/16)Ta(3/4-7a/16)3(式中、□は原子空孔であり、0<a≦0.1を満たす)で表される、請求項1〜6のいずれか1項に記載のペロブスカイト型イオン伝導性酸化物。 Basic composition Li 3/83/16 Sr (7 (1-a) / 16) La 7a / 16 Zr (1/4 + 7a / 16) Ta (3 / 4-7a / 16) O 3 The perovskite type ion conductive oxide according to any one of claims 1 to 6, wherein □ and □ are atomic vacancies and are represented by 0 <a ≦ 0.1. 請求項1〜8のいずれか1項に記載のペロブスカイト型イオン伝導性酸化物を含む固体電解質層と、
前記固体電解質層に隣接しリチウムを吸蔵放出する活物質を含む活物質層と、を備えた複合体。
A solid electrolyte layer comprising the perovskite type ion conductive oxide according to any one of claims 1 to 8;
An active material layer including an active material that adsorbs and releases lithium adjacent to the solid electrolyte layer.
前記活物質層は、前記活物質として、リチウムマンガン複合酸化物、リチウムコバルト複合酸化物、リチウムニッケル複合酸化物、リチウムニッケルマンガン複合酸化物、リチウムニッケルコバルトマンガン複合酸化物、リチウムバナジウム複合酸化物及びリチウムチタン複合酸化物のうち1以上を含む、請求項9に記載の複合体。   The active material layer includes, as the active material, lithium manganese composite oxide, lithium cobalt composite oxide, lithium nickel composite oxide, lithium nickel manganese composite oxide, lithium nickel cobalt manganese composite oxide, lithium vanadium composite oxide, and The composite according to claim 9, comprising at least one of lithium titanium composite oxides. 請求項1〜8のいずれか1項に記載のペロブスカイト型イオン伝導性酸化物を含む固体電解質層と、
前記固体電解質層に隣接しリチウムイオンを伝導する有機電解質と、を備えた複合体。
A solid electrolyte layer comprising the perovskite type ion conductive oxide according to any one of claims 1 to 8;
An organic electrolyte adjacent to the solid electrolyte layer and conducting lithium ions.
請求項9〜11のいずれか1項に記載の複合体、を備えたリチウム二次電池。   The lithium secondary battery provided with the composite_body | complex of any one of Claims 9-11.
JP2016043447A 2015-03-09 2016-03-07 Perovskite type ion conductive oxide, composite and lithium secondary battery Expired - Fee Related JP6451672B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015045733 2015-03-09
JP2015045733 2015-03-09

Publications (2)

Publication Number Publication Date
JP2016169145A true JP2016169145A (en) 2016-09-23
JP6451672B2 JP6451672B2 (en) 2019-01-16

Family

ID=56983044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016043447A Expired - Fee Related JP6451672B2 (en) 2015-03-09 2016-03-07 Perovskite type ion conductive oxide, composite and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP6451672B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045274A (en) * 2018-09-12 2020-03-26 日立金属株式会社 Ion conductive oxide, and battery including the same, and method for producing ion conductive oxide
JP2020045273A (en) * 2018-09-12 2020-03-26 日立金属株式会社 Ion conductive oxide, and battery including the same, and method for producing ion conductive oxide
JP2020136123A (en) * 2019-02-21 2020-08-31 株式会社豊田中央研究所 Perovskite ion-conducting oxide, composite, and lithium secondary battery
JP2020164399A (en) * 2019-03-27 2020-10-08 日立金属株式会社 Ion conductive oxide and method for producing the same
JP2021004155A (en) * 2019-06-27 2021-01-14 日立金属株式会社 Method for producing ion-conductive oxide
WO2021039834A1 (en) 2019-08-30 2021-03-04 昭和電工株式会社 Lithium ion-conducting oxide
WO2021039835A1 (en) 2019-08-30 2021-03-04 昭和電工株式会社 Lithium-ion-conductive oxide
WO2021132582A1 (en) 2019-12-27 2021-07-01 昭和電工株式会社 Lithium-ion-conductive oxide sintered body and use thereof
WO2021132581A1 (en) 2019-12-27 2021-07-01 昭和電工株式会社 Lithium ion–conductive oxide and use for same
JP2021136223A (en) * 2020-02-28 2021-09-13 三井金属鉱業株式会社 Lithium ion conductor, and electrode mixture and battery including the same
JP2022061217A (en) * 2020-10-06 2022-04-18 トヨタ自動車株式会社 Negative active material, method for manufacturing negative active material, and lithium ion battery
US11909028B2 (en) * 2019-10-23 2024-02-20 Samsung Electronics Co., Ltd. Cathode for metal-air battery, preparing method thereof, and metal-air battery comprising the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11955597B2 (en) 2019-12-02 2024-04-09 Samsung Electronics Co., Ltd. Solid electrolyte, preparation method thereof, metal air battery including the same, and electrochemical device including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006500311A (en) * 2002-09-24 2006-01-05 コーニング・インコーポレーテッド Electrolyte perovskite
JP2013032259A (en) * 2011-06-29 2013-02-14 Toyota Central R&D Labs Inc Garnet type ionic conductivity oxide and manufacturing method of the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006500311A (en) * 2002-09-24 2006-01-05 コーニング・インコーポレーテッド Electrolyte perovskite
JP2013032259A (en) * 2011-06-29 2013-02-14 Toyota Central R&D Labs Inc Garnet type ionic conductivity oxide and manufacturing method of the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SOLID STATE IONICS, vol. 167, JPN6018021909, 2004, pages 263 - 272, ISSN: 0003815665 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045273A (en) * 2018-09-12 2020-03-26 日立金属株式会社 Ion conductive oxide, and battery including the same, and method for producing ion conductive oxide
JP2020045274A (en) * 2018-09-12 2020-03-26 日立金属株式会社 Ion conductive oxide, and battery including the same, and method for producing ion conductive oxide
JP7267154B2 (en) 2018-09-12 2023-05-01 三井金属鉱業株式会社 Ion-conducting oxide, battery using the same, and method for producing ion-conducting oxide
JP7267155B2 (en) 2018-09-12 2023-05-01 三井金属鉱業株式会社 Ion-conducting oxide, battery using the same, and method for producing ion-conducting oxide
JP2020136123A (en) * 2019-02-21 2020-08-31 株式会社豊田中央研究所 Perovskite ion-conducting oxide, composite, and lithium secondary battery
JP7281296B2 (en) 2019-02-21 2023-05-25 株式会社豊田中央研究所 Perovskite-type ion-conducting oxides, composites and lithium secondary batteries
JP7267156B2 (en) 2019-03-27 2023-05-01 三井金属鉱業株式会社 Ion-conducting oxide and method for producing the same
JP2020164399A (en) * 2019-03-27 2020-10-08 日立金属株式会社 Ion conductive oxide and method for producing the same
JP2021004155A (en) * 2019-06-27 2021-01-14 日立金属株式会社 Method for producing ion-conductive oxide
JP7319844B2 (en) 2019-06-27 2023-08-02 三井金属鉱業株式会社 Ion-conducting oxide and method for producing the same
WO2021039835A1 (en) 2019-08-30 2021-03-04 昭和電工株式会社 Lithium-ion-conductive oxide
KR20220028114A (en) 2019-08-30 2022-03-08 쇼와 덴코 가부시키가이샤 Lithium Ion Conductive Oxide
WO2021039834A1 (en) 2019-08-30 2021-03-04 昭和電工株式会社 Lithium ion-conducting oxide
KR20220032583A (en) 2019-08-30 2022-03-15 쇼와 덴코 가부시키가이샤 Lithium Ion Conductive Oxide
US11909028B2 (en) * 2019-10-23 2024-02-20 Samsung Electronics Co., Ltd. Cathode for metal-air battery, preparing method thereof, and metal-air battery comprising the same
KR20220122604A (en) 2019-12-27 2022-09-02 쇼와 덴코 가부시키가이샤 Lithium ion conductive oxide and uses thereof
EP4082971A1 (en) 2019-12-27 2022-11-02 Showa Denko K.K. Lithium-ion-conductive oxide sintered body and use thereof
WO2021132581A1 (en) 2019-12-27 2021-07-01 昭和電工株式会社 Lithium ion–conductive oxide and use for same
WO2021132582A1 (en) 2019-12-27 2021-07-01 昭和電工株式会社 Lithium-ion-conductive oxide sintered body and use thereof
KR20220122603A (en) 2019-12-27 2022-09-02 쇼와 덴코 가부시키가이샤 Lithium ion conductive oxide sintered compact and uses thereof
JP2021136223A (en) * 2020-02-28 2021-09-13 三井金属鉱業株式会社 Lithium ion conductor, and electrode mixture and battery including the same
JP7349935B2 (en) 2020-02-28 2023-09-25 三井金属鉱業株式会社 Lithium ion conductor, electrode mixture and battery containing the same
JP2022061217A (en) * 2020-10-06 2022-04-18 トヨタ自動車株式会社 Negative active material, method for manufacturing negative active material, and lithium ion battery
JP7435394B2 (en) 2020-10-06 2024-02-21 トヨタ自動車株式会社 Negative electrode active material, method for producing negative electrode active material, and lithium ion battery

Also Published As

Publication number Publication date
JP6451672B2 (en) 2019-01-16

Similar Documents

Publication Publication Date Title
JP6451672B2 (en) Perovskite type ion conductive oxide, composite and lithium secondary battery
US20200411850A1 (en) Battery
KR101234965B1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery including the same
US9960418B2 (en) Cathode active material, preparation method thereof, and lithium secondary battery comprising the same
JP5381640B2 (en) Lithium secondary battery
JP5115891B2 (en) Non-aqueous secondary battery comprising a positive electrode active material and a positive electrode including the same
JP5471527B2 (en) Lithium secondary battery and electrode for lithium secondary battery
CN112154565A (en) Composite particle, method for producing composite particle, electrode for lithium ion secondary battery, and lithium ion secondary battery
US20150155554A1 (en) Active material of lithium ion secondary battery and lithium ion secondary battery using the same
JPWO2019135342A1 (en) Solid electrolyte material and battery
JP2018056114A (en) Cathode active material for battery, and battery
Ette et al. Mo3Nb2O14: A high-rate intercalation electrode material for Li-ion batteries with liquid and garnet based hybrid solid electrolytes
JP2017152369A (en) Positive electrode active material and battery
US20230307702A1 (en) Solid-state electrolyte, solid-state battery including the electrolyte, and method of making the same
JP5644083B2 (en) Negative electrode active material for lithium secondary battery, lithium secondary battery using the same, and method for producing negative electrode active material for lithium secondary battery
JPWO2020110479A1 (en) Negative electrode material and battery
JP2012089441A (en) Positive electrode active material, and nonaqueous secondary battery with positive electrode containing the same
JP5417978B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2018008843A (en) Solid electrolyte, all-solid battery and manufacturing method thereof
JP5147951B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the same
JP2021082420A (en) Negative electrode active material, negative electrode and battery cell
JP2020077571A (en) Composite structure, lithium battery, and method for manufacturing composite structure
WO2010146776A1 (en) Negative electrode active material for lithium ion secondary battery, and lithium ion secondary battery using same
JP7193315B2 (en) Lithium-manganese composite oxide, lithium secondary battery, and method for producing lithium-manganese composite oxide
JP2012038508A (en) Positive electrode active material and nonaqueous secondary battery with positive electrode containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181126

R150 Certificate of patent or registration of utility model

Ref document number: 6451672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees