JPH08268756A - Production of ferroelectric ceramics - Google Patents

Production of ferroelectric ceramics

Info

Publication number
JPH08268756A
JPH08268756A JP7418695A JP7418695A JPH08268756A JP H08268756 A JPH08268756 A JP H08268756A JP 7418695 A JP7418695 A JP 7418695A JP 7418695 A JP7418695 A JP 7418695A JP H08268756 A JPH08268756 A JP H08268756A
Authority
JP
Japan
Prior art keywords
pbo
zro
powder
raw material
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7418695A
Other languages
Japanese (ja)
Inventor
Tatsuya Hatanaka
達也 畑中
Kazumasa Takatori
一雅 鷹取
Nobuo Kamiya
信雄 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP7418695A priority Critical patent/JPH08268756A/en
Publication of JPH08268756A publication Critical patent/JPH08268756A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE: To easily produce PZT having high mechanical strength. CONSTITUTION: Powders of PbO, TiO2 and ZrO2 as starting materials are prepd. so as to give a compsn. deficient in Pb in anticipation of the deposition of ZrO2 . The powders are mixed and this powdery mixture is calcined under conditions not causing scattering due to the sublimation of PbO. The resultant calcined product is fired at 900-1,200 deg.C under conditions not causing scattering due to the sublimation of PbO and fine ZrO2 is dispersed and deposited in Pb(Zrx Ti1-x )O3 (0.4<=x<=0.6) during the firing to obtain the objective ferroelectric ceramics contg. ZrO2 of <=1μm average particle diameter dispersed and deposited in the Pb(Zrx Ti1-x )O3 matrix.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高い機械的負荷がかか
るアクチュエータ等に使用することが可能な強誘電性セ
ラミックスの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a ferroelectric ceramic which can be used in an actuator or the like which is subjected to a high mechanical load.

【0002】[0002]

【従来技術】圧電素子に用いられる圧電材料として、P
ZT系酸化物よりなるセラミックスが知られている。こ
のPZT(Pb(Zrx Ti1-x )O3 ;0≦x≦1)
は、特にx=0.53付近の組成で高い電気機械変換効
率を示す特性を有し、センサー、アクチュエータなどと
して広く用いられている。
As a piezoelectric material used for a piezoelectric element, P
Ceramics made of ZT-based oxide are known. This PZT (Pb (Zr x Ti 1-x ) O 3 ; 0 ≦ x ≦ 1)
Has a characteristic of exhibiting a high electromechanical conversion efficiency particularly in the composition around x = 0.53, and is widely used as a sensor, an actuator and the like.

【0003】PZTは、誘電率、圧電定数等の電気的特
性が良好であるが、機械的強度が弱いため、アクチュエ
ータとして使用する場合に問題となる。この機械的強度
を向上する方法として、結晶粒径を微細化する方法や、
他の高強度セラミックス材料と複合する方法(特開平3
−109263号等)があるが、いずれも電気的特性が
低下するデメリットがある。
PZT has good electrical characteristics such as a dielectric constant and a piezoelectric constant, but its mechanical strength is weak, which causes a problem when it is used as an actuator. As a method of improving this mechanical strength, a method of refining the crystal grain size,
Method of compounding with other high strength ceramics material
No. 109263, etc.), but all of them have a demerit that electrical characteristics are deteriorated.

【0004】電気的特性を低下させない従来の技術とし
て、PZT粉末に微細なAl2 3 粉末を混合し焼成
する方法(特開平4−124887号)や、PZT表
面にAl2 3 ゾルを浸透させる方法(特開平5−90
54号)がある。の方法は、PZT粉末にAl2 3
粉末を0.5〜20重量%混合し、1100℃で焼成す
る方法である。この方法は、nmオーダーの微粉末を必
要とするため、コストが高い等の問題がある。
As a conventional technique that does not deteriorate the electrical characteristics
Fine PZT powder2O 3Mix powder and fire
Method (Japanese Patent Application Laid-Open No. 4-1284887) and PZT table
Al on the surface2O3Method of permeating sol (Japanese Patent Laid-Open No. 5-90)
54). The method of PZT powder is Al2O3
The powder is mixed in an amount of 0.5 to 20% by weight and baked at 1100 ° C.
Method. This method requires fine powder of nm order.
Therefore, there is a problem that the cost is high.

【0005】また、の方法は、PZTの表面よりAl
2 3 ゾルを浸透させて、表面強化層を形成する方法で
ある。この方法はAl2 3 ゾルを浸透させる工程が加
わるため、製造工程が複雑であること等の問題点があ
る。
In addition, the method (1) uses Al from the surface of PZT.
This is a method of forming a surface-strengthening layer by permeating 2 O 3 sol. This method has a problem that the manufacturing process is complicated because a step of infiltrating the Al 2 O 3 sol is added.

【0006】[0006]

【発明が解決しようとする課題】本発明は、機械的強度
の高いPZTを容易に製造できる製造方法を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a manufacturing method capable of easily manufacturing PZT having high mechanical strength.

【0007】[0007]

【課題を解決するための手段】PZTは、PbO、Ti
2 およびZrO2 各粉末を混合し、この混合粉末を電
気炉によって加熱・焼成して製造する。加熱・焼成の際
の反応は以下のようであると推定される。 (i)PbOの一部とTiO2 が反応し、PbTiO3
が生成、(ii)ついで、PbOの一部とZrO2 が反応
し、PbZrO3 が生成、(iii)PbTiO3 とPb
ZrO3 が反応し、Pb(Zrx Ti1-x )O3 が生成
する。
[Means for Solving the Problems] PZT is composed of PbO, Ti
The powders of O 2 and ZrO 2 are mixed, and the mixed powder is heated and fired in an electric furnace to manufacture. The reaction during heating / baking is presumed to be as follows. (I) Part of PbO reacts with TiO 2 to form PbTiO 3
And (ii) then a part of PbO reacts with ZrO 2 to produce PbZrO 3 , (iii) PbTiO 3 and Pb
ZrO 3 reacts to produce Pb (Zr x Ti 1-x ) O 3 .

【0008】これらの反応では、雰囲気のPbO分圧が
低い場合には、反応が進行する前にPbOが昇華してP
b不足状態になるので、例えば、次に示す反応式(1)
のように、ZrO2 が析出し、組成がずれて電気的特性
が低下する問題点があった。 PbO+0.530ZrO2 +0.470TiO2 →0.950Pb(Zr0. 505 Ti0.495 )O3 +0.05ZrO2 +0.05PbO↑──(1) そこで、通常はPbOが昇華しないように、炉中にPb
ZrO3 等を配置し、雰囲気のPbO分圧を高めて焼成
する等の工夫がなされている。
In these reactions, when the partial pressure of PbO in the atmosphere is low, PbO is sublimated and P
b Insufficient state, so for example, reaction formula (1) shown below
As described above, there is a problem that ZrO 2 is deposited, the composition is shifted, and the electrical characteristics are deteriorated. PbO + 0.530ZrO 2 + 0.470TiO 2 → 0.950Pb (Zr 0. 505 Ti 0.495) O 3 + 0.05ZrO 2 + 0.05PbO ↑ ── (1) Thus, as normally no sublimation of PbO, Pb into the furnace
It has been devised to arrange ZrO 3 or the like and increase the partial pressure of PbO in the atmosphere to perform firing.

【0009】本発明者等は、PbOが昇華しないように
工夫するとともに、電気的特性を低下させずに機械的強
度を向上させるため、自己発生的にマトリックスからZ
rO 2 を析出させ、マトリックス中にZrO2 を微細に
分散させるアイデアを考え本発明をなすに至ったもので
ある。すなわち、本発明の強誘電性セラミックスの製造
方法は、ZrO2 の析出分を見込んでPb量を不足とし
た組成になるように、PbO、TiO2 およびZrO 2
の原料粉末を調製する工程と、原料粉末を混合し、Pb
Oの昇華による離散がない条件で、混合粉末を仮焼する
仮焼工程と、PbOの昇華による離散がない条件で、仮
焼生成物を900〜1200℃の温度で焼成すると同時
に、微細なZrO2 をPb(Zrx Ti1-x )O
3 (0.4≦x≦0.6)中に分散析出させる本焼成工
程と、からなることを特徴とする。
The present inventors have made sure that PbO does not sublime.
Ingenuity and mechanical strength without deteriorating electrical characteristics
From the matrix in a self-generated manner to improve
rO 2To precipitate ZrO in the matrix2Finely
It came to the invention of the idea of dispersion
is there. That is, the production of the ferroelectric ceramics of the present invention
The method is ZrO2The amount of Pb was deficient in consideration of the precipitation amount of
PbO, TiO2And ZrO 2
And the step of preparing the raw material powder of
Calcining the mixed powder under the condition that there is no separation due to sublimation of O
The calcination process and the condition that there is no separation due to sublimation of PbO
Simultaneously with baking the baked product at a temperature of 900 to 1200 ° C.
And fine ZrO2To Pb (ZrxTi1-x) O
3Main firing process to disperse and precipitate in (0.4 ≦ x ≦ 0.6)
It is characterized by consisting of

【0010】ZrO2 の析出分を見込んでPb量を不足
とした組成になるように、PbO、TiO2 およびZr
2 の原料粉末を調製するとは、製造される強誘電性セ
ラミックスの組成が析出したZrO2 と反応生成したP
b(Zrx Ti1-x )O3 (0.4≦x≦0.6)との
混合体となるように、析出するZrO2 と反応すべきP
bOが不足している状態に原料粉末を調製することをい
う。言葉を変えると、原料粉末のTiO2 のモル数とZ
rO2 のモル数を加えたTiO2 とZrO2 の合計モル
数よりPbOのモル数が少ない状態となるように原料粉
末を調製するものである。
The composition of PbO, TiO 2 and Zr should be adjusted so that the amount of Pb is deficient in consideration of the precipitation amount of ZrO 2.
To prepare a raw material powder of O 2 means that the composition of the ferroelectric ceramic to be produced reacts with ZrO 2 precipitated
b (Zr x Ti 1-x ) O 3 (0.4 ≦ x ≦ 0.6) P to be reacted with the precipitated ZrO 2 so as to form a mixture with
It means to prepare a raw material powder in a state where bO is deficient. In other words, the number of moles of TiO 2 in the raw material powder and Z
The raw material powder is prepared so that the number of moles of PbO is smaller than the total number of moles of TiO 2 and ZrO 2 to which the number of moles of rO 2 is added.

【0011】具体的には、例えば、x=0.525のP
ZTを得たい場合には、反応式(2)のような出発組成
とすればよい。 0.950PbO+0.550ZrO2 +0.450TiO2 →0.950P b(Zr0.525 Ti0.475 )O3 +0.05ZrO2 ──反応式(2) すなわち、モル比で、PbO:TiO2 :ZrO2
0.950:0.550:0.450となる配合とすれ
ばよいことになる。
Specifically, for example, P of x = 0.525
When it is desired to obtain ZT, the starting composition shown in reaction formula (2) may be used. 0.950PbO + 0.550ZrO 2 + 0.450TiO 2 → 0.950P b (Zr 0.525 Ti 0.475) O 3 + 0.05ZrO 2 ── Scheme (2) That is, in molar ratio, PbO: TiO 2: ZrO 2 =
The composition should be 0.950: 0.550: 0.450.

【0012】仮焼工程は調製された原料粉末を混合し、
PbOの昇華による離散がない条件で、加熱し、少なく
とも一部の原料粉末を反応させPbTiO3 、PbZr
3あるいはPb(Zrx Ti1-x )O3 とする工程で
ある。通常仮焼工程は750〜850℃で2〜6時間加
熱してなされる。なお、仮焼工程で、原料粉末の全ての
ZrO2 と一部のPbOとを仮焼してPbZrO3 とす
るかもしくは市販等の既にPbZrO3 となっているも
のを使用し、その後得られたPbZrO3 と残されたT
iO2 および残部のPbOとを混合し仮焼してもよい。
In the calcination step, the prepared raw material powders are mixed,
PbO 3 , PbZr and PbZr
This is a step of using O 3 or Pb (Zr x Ti 1-x ) O 3 . Usually, the calcination step is performed by heating at 750 to 850 ° C. for 2 to 6 hours. In the calcination step, all ZrO 2 of the raw material powder and a part of PbO were calcinated to obtain PbZrO 3 , or a commercially available product which was already PbZrO 3 was used, and then obtained. PbZrO 3 and the remaining T
It is also possible to mix iO 2 and the balance PbO and calcine.

【0013】仮焼して得られた仮焼物は再度粉砕混合す
るのが望ましい。これにより組成分布がより均一とな
る。粉砕された粉末はプレス成形され、所定形状のグリ
ーンコンパクトとなる。本焼成工程は、仮焼物を900
〜1200℃で1〜8時間加熱する工程である。この工
程で全てのPbO成分がPb(Zrx Ti1-x )O3
なり、一部のZrO2 がPb(Zrx Ti1-x )O3
マトリックス中に均一に析出する。この析出するZrO
2 は1μm以下の微細な結晶として析出するものが良
い。
The calcined product obtained by calcining is preferably pulverized and mixed again. This makes the composition distribution more uniform. The crushed powder is press-molded into a green compact having a predetermined shape. In the main firing process, the calcined product is 900
It is a step of heating at ~ 1200 ° C for 1 to 8 hours. All PbO component Pb (Zr x Ti 1-x ) O 3 becomes in this process, a part of the ZrO 2 is uniformly precipitated in the matrix of Pb (Zr x Ti 1-x ) O 3. This precipitated ZrO
2 is preferably precipitated as fine crystals of 1 μm or less.

【0014】900℃より低い温度、あるいは1時間未
満の焼成では、反応が十分進まず、電気的特性が低下す
るので好ましくない。1200℃より高い温度、あるい
は8時間以上の焼成では、粒成長が進み、機械的強度が
低下するので好ましくない。
Firing at a temperature lower than 900 ° C. or for less than 1 hour is not preferable because the reaction does not proceed sufficiently and the electrical characteristics deteriorate. Baking at a temperature higher than 1200 ° C. or for 8 hours or more is not preferable because the grain growth proceeds and the mechanical strength decreases.

【0015】[0015]

【作用】本発明の強誘電セラミックスの製造方法によっ
て、電気的特性が従来のPZTと同等以上で機械的強度
に優れた強誘電性セラミックスが製造できる理由は以下
の通りであると推定される。PbO、TiO2 およびZ
rO2 を混合した混合粉末を仮焼した段階で、一部のZ
rO2 はPbOと反応してPbZrO3 が生成し、焼成
の段階で組成の均一化が進む際には、PbZrO3 から
過剰のZrが、ZrO2 (正方晶)となって析出する。
そのため緻密な構造となる。
The reason why the ferroelectric ceramics manufacturing method of the present invention can manufacture the ferroelectric ceramics having the electrical characteristics equal to or higher than those of the conventional PZT and excellent in mechanical strength is presumed as follows. PbO, TiO 2 and Z
At the stage where the mixed powder mixed with rO 2 was calcined, a part of Z
rO 2 reacts with PbO to form PbZrO 3 , and when the composition becomes uniform in the firing step, excess Zr is precipitated from PbZrO 3 as ZrO 2 (tetragonal crystal).
Therefore, it has a precise structure.

【0016】析出したZrO2 は、正方晶(高温)−単
斜相(低温)の相転移(冷却中〜500℃)に伴う体積
膨張により、PZTに圧縮応力を付与する。圧縮応力を
受けながら、PZTは立方晶(高温)−正方晶(低温)
の相転移(冷却中〜350℃)をおこし、応力を緩和す
るような分域構造を形成する。このように内部応力場が
複雑に影響して、電気的特性が従来のPZTと同等以上
で機械的強度に優れたPZTが製造されると推定され
る。
The precipitated ZrO 2 imparts compressive stress to PZT due to volume expansion accompanying a tetragonal (high temperature) -monoclinic phase (low temperature) phase transition (during cooling to 500 ° C.). While receiving compressive stress, PZT is cubic (high temperature) -tetragonal (low temperature)
Phase transition (during cooling to 350 ° C.) to form a domain structure that relieves stress. In this way, it is estimated that the internal stress field is complicatedly affected to produce a PZT having electrical characteristics equal to or higher than that of the conventional PZT and excellent in mechanical strength.

【0017】[0017]

【発明の効果】本発明の強誘電性セラミックスの製造方
法によって、電気的特性が従来のPZTと同等以上で機
械的強度に優れた強誘電性セラミックスが、簡便かつ安
価に製造できる利点がある。
According to the method for producing a ferroelectric ceramic of the present invention, there is an advantage that a ferroelectric ceramic having electric characteristics equal to or higher than that of the conventional PZT and excellent in mechanical strength can be easily produced at low cost.

【0018】[0018]

【実施例】【Example】

(1)試料の作成 以下に一例として、5mol%のZrO2 が分散析出し
たx=0.525の組成のPZTの製造方法を示す。P
bO、ZrO2 およびTiO2 の各粉末(粒度1〜5μ
m)を、総量250g、モル比で、Pb:Zr:Ti=
0.950:0.550:0.450となるように秤量
した。
(1) Preparation of Sample A method for producing PZT having a composition of x = 0.525 in which 5 mol% of ZrO 2 is dispersed and deposited will be shown below as an example. P
Each powder of bO, ZrO 2 and TiO 2 (particle size 1 to 5 μ
m) in a total amount of 250 g in a molar ratio of Pb: Zr: Ti =
Weighed to be 0.950: 0.550: 0.450.

【0019】上記の各粉末を家庭用ミキサーで混合後、
MgO容器に入れ、800℃で5時間仮焼を行った。こ
の仮焼粉末をZrO2 ボールとともにポリエチレンポッ
トにいれ、エタノールを加えて、24時間のボールミリ
ングを行った。ZrO2 ボールを取り去った後、エタノ
ールを湯浴蒸発させ、さらに80℃の恒温槽で20時間
乾燥した。
After mixing the above powders with a household mixer,
It was put in a MgO container and calcined at 800 ° C. for 5 hours. This calcined powder was put in a polyethylene pot together with ZrO 2 balls, ethanol was added, and ball milling was performed for 24 hours. After removing the ZrO 2 balls, ethanol was evaporated in a hot water bath and further dried in a thermostat at 80 ° C. for 20 hours.

【0020】この仮焼粉末を家庭用ミキサーで粉砕後、
ポリビニルアルコールを0.25wt%加えて造粒粉末
とした。造粒粉末を2g秤量し、キャビティの直径がφ
18mmの金型に1tonの圧力を加えてプレス成形し
た。この成形体を600℃4時間の脱脂処理後、Al2
3 容器中で、同組成の仮焼粉末を詰め粉とし、115
0℃で、1、2、4、8時間の各時間で焼成した(以
下、順に試料C1、C2、C3、C4とする)。
After crushing the calcined powder with a household mixer,
0.25 wt% of polyvinyl alcohol was added to obtain a granulated powder. 2g of granulated powder is weighed and the diameter of the cavity is φ
A pressure of 1 ton was applied to an 18 mm die for press molding. This molded body was degreased at 600 ° C. for 4 hours and then Al 2
In an O 3 container, the calcined powder of the same composition was used as the filling powder, and 115
Firing was performed at 0 ° C. for 1, 2, 4, and 8 hours (hereinafter, referred to as Samples C1, C2, C3, and C4 in order).

【0021】比較材として、モル比Pb:Zr:Ti=
1.00:0.525:0.475となるように秤量し
た混合粉末を出発組成とし、同じプロセスで作製した試
料(試料A)と、この組成の仮焼粉末に、ZrO2 粉末
を5mol%さらに加えて混合した後に、同じプロセス
で焼成した試料(試料B)を作製した。 2)試験試料の作製と評価 前記のようにして作製された各試料は、φ12mm、厚
さ0.5mmに研削加工(表面仕上げ#600)した
後、化学分析、X線回折による格子定数測定、化学分析
およびZrO2 からのX線回折強度の検量による析出Z
rO2 の定量分析、SEM観察による平均粒径の測定
(インターセプト法)、および、密度測定に供した。
As a comparative material, the molar ratio Pb: Zr: Ti =
A mixed powder that was weighed to be 1.00: 0.525: 0.475 was used as a starting composition, and a sample (Sample A) produced by the same process and a calcinated powder of this composition were mixed with 5 mol% of ZrO 2 powder. After further adding and mixing, a sample (Sample B) was fired in the same process. 2) Preparation and evaluation of test sample Each sample prepared as described above was ground (surface finish # 600) to a diameter of 12 mm and a thickness of 0.5 mm, and then subjected to chemical analysis, lattice constant measurement by X-ray diffraction, Precipitation Z by chemical analysis and calibration of X-ray diffraction intensity from ZrO 2
It was subjected to quantitative analysis of rO 2 , measurement of average particle diameter by SEM observation (intercept method), and density measurement.

【0022】電気的性質を代表して、誘電率とその温度
依存性、および、周期電界下での圧電変位量の測定をお
こなった。誘電率は、上記の研削加工の後、スパッタ法
により金電極を形成し、インピーダンスアナライザで1
kHzの測定をおこなった。温度依存性は、高温炉中で
100℃/hで昇温して測定した。変位量の測定は、電
極形成後、110℃のシリコンオイル中、2kV/mm
の電界下で10分間分極処理を行い、1日以上放置して
から、レーザー変位計を用いて、0.1Hz、−0.4
〜1.2kV/mmの電界下での変位量を、20MPa
の応力下で測定した。
As a representative of the electrical properties, the dielectric constant and its temperature dependence, and the amount of piezoelectric displacement under a periodic electric field were measured. The dielectric constant was measured by the impedance analyzer after forming the gold electrode by the sputtering method after the above grinding process.
The measurement of kHz was performed. The temperature dependence was measured by raising the temperature at 100 ° C./h in a high temperature furnace. The amount of displacement is 2 kV / mm in silicon oil at 110 ° C after electrode formation.
Polarization for 10 minutes under an electric field of 10 minutes, and after leaving for 1 day or longer, 0.1Hz, -0.4 using a laser displacement meter.
The displacement amount under an electric field of up to 1.2 kV / mm is 20 MPa.
Was measured under the stress of.

【0023】機械的特性は、上記の研削加工した試料を
2軸曲げ試験をおこなうことで評価した。 3)評価結果 表1に化学分析、X線回折による格子定数測定、化学分
析およびZrO2 からのX線回折強度の検量による析出
ZrO2 の定量分析、SEM観察による平均粒径の測定
(インターセプト法)、および、密度測定の各結果を示
す。試料Aと比較して、他の試料のTiの分析値がほぼ
等しいことと格子定数がほぼ等しいことから、PZTの
組成としてPb(Zr0.525 Ti0.475 )O3 が得られ
ていることがわかる。
The mechanical properties were evaluated by carrying out a biaxial bending test on the above-ground sample. 3) Evaluation results In Table 1, chemical analysis, lattice constant measurement by X-ray diffraction, chemical analysis and quantitative analysis of precipitated ZrO 2 by calibration of X-ray diffraction intensity from ZrO 2 , measurement of average particle diameter by SEM observation (intercept method) ), And each result of a density measurement are shown. Compared with the sample A, since the analyzed values of Ti of other samples are almost the same and the lattice constants are almost the same, it is understood that Pb (Zr 0.525 Ti 0.475 ) O 3 is obtained as the composition of PZT.

【0024】一方、化学分析およびX線回折によるZr
2 からの回折線強度の検量結果を併せて考えると、試
料BおよびC1〜C4では約5mol%のZrO2 が析
出し、所望の試料が得られていることがわかる。実際に
これらの試料では、SEM観察によって、粒径1μm以
下の微細なZrO2 が確認された。また、平均粒径は焼
結時間とともにわずかに増加するが、密度と同様、大差
なかった。
On the other hand, Zr by chemical analysis and X-ray diffraction
Considering the calibration results of the diffraction line intensity from O 2 together, it can be seen that in Samples B and C1 to C4, about 5 mol% of ZrO 2 was precipitated and the desired sample was obtained. In fact, in these samples, fine ZrO 2 having a particle size of 1 μm or less was confirmed by SEM observation. Also, the average particle size slightly increased with the sintering time, but there was no great difference like the density.

【0025】表2に、各試料の誘電率の測定結果を示
す。室温および相転移温度での誘電率は、試料Bのみ小
さく、ZrO2 が複合された結果として理解できるが、
試料C1〜C4ではその低下が見られなかった。一方、
試料C1〜C4は、相転移温度が数℃低下している。P
ZTの実験結果によれば、圧縮応力下では相転移温度が
低下することが知られている。したがって、電気的性質
の違いが圧縮応力によるものであることが推定される。
Table 2 shows the measurement results of the dielectric constant of each sample. The dielectric constant at room temperature and the phase transition temperature is small only in Sample B, which can be understood as a result of the combination of ZrO 2 .
The decrease was not seen in the samples C1 to C4. on the other hand,
Samples C1 to C4 have a phase transition temperature lowered by several degrees Celsius. P
According to the ZT experimental results, it is known that the phase transition temperature decreases under compressive stress. Therefore, it is estimated that the difference in electrical properties is due to compressive stress.

【0026】図1に変位量の測定結果を示す。本発明に
よる実施例の試料C1〜C4は、比較例の試料Aと比べ
て、比較例の試料Bほどの変位量の低下は見られず、ほ
ぼ同等あるいはそれ以上の性能を示すことがわかる。図
2に2軸曲げ強度の測定結果を示す。本発明による実施
例の試料C1〜C4は、比較例の試料Aよりも強度が向
上し、最大で約10%の向上が認められた。
FIG. 1 shows the measurement result of the displacement amount. It can be seen that the samples C1 to C4 of the examples according to the present invention do not show a decrease in displacement amount as much as the sample B of the comparative example as compared with the sample A of the comparative example, and show substantially the same or higher performance. FIG. 2 shows the measurement results of biaxial bending strength. The samples C1 to C4 of the examples according to the present invention had higher strength than the sample A of the comparative example, and it was recognized that the maximum improvement was about 10%.

【0027】図3に2軸曲げ強度と変位量との相関を示
す。アクチュエータ等に求められる特性は矢印で示した
右上の方向であるが、本発明で得られた実施例のC1〜
C4が、比較例のA、Bを凌駕していることがわかる。
以上のように、電気的特性が従来のPZTと同等以上で
機械的強度に優れた強誘電性セラミックスを、簡便かつ
安価に製造できることがわかる。 表 1 測定に用いた試料の特性 ──────────────────────────────────── 特性 A B C1 C2 C3 C4 ──────────────────────────────────── 化学組成 ZrO2(mol 比) 52.7 57.5 58.5 58.2 58.5 58.2 TiO2(mol 比) 47.3 47.3 47.4 47.4 47.4 47.4 PbO (mol 比) 100.0 100.0 100.0 100.0 100.0 100.0 格子定数 a(Å) 4.044 4.040 4.044 4.044 4.044 4.044 c(Å) 4.144 4.140 4.140 4.144 4.140 4.140 過剰ZrO2(mol%) 化学分析より ─ 4.8 5.8 5.5 5.8 5.7 X線回折より ─ 6.5 5.7 5.4 5.9 6.3 平均粒径( μm) 3.3 3.3 3.1 3.5 3.8 4.1 密度(g/cm3) 7.84 7.82 7.86 7.86 7.86 7.82 ─────────────────────────────────── 表 2 各試料の誘電率の測定結果 ──────────────────────────────────── 特性 A B C1 C2 C3 C4 ──────────────────────────────────── 相転移温度 349.5 348.7 346.6 347.0 345.0 345.0 誘電率 室温 1230 1140 1220 1240 1230 1240 相転移温度 25600 16700 25100 27000 27500 28800 ────────────────────────────────────
FIG. 3 shows the correlation between biaxial bending strength and displacement. The characteristic required for the actuator or the like is in the upper right direction indicated by the arrow, and C1 of the embodiment obtained in the present invention
It can be seen that C4 exceeds A and B of the comparative example.
As described above, it can be seen that a ferroelectric ceramic having electrical characteristics equal to or higher than that of the conventional PZT and excellent in mechanical strength can be easily manufactured at low cost. Table 1 Characteristics of samples used for measurement ──────────────────────────────────── Characteristics A B C1 C2 C3 C4 ──────────────────────────────────── Chemical composition ZrO 2 (mol ratio) 52.7 57.5 58.5 58.2 58.5 58.2 TiO 2 (mol ratio) 47.3 47.3 47.4 47.4 47.4 47.4 PbO (mol ratio) 100.0 100.0 100.0 100.0 100.0 100.0 Lattice constant a (Å) 4.044 4.040 4.044 4.044 4.044 4.044 c (Å) 4.144 4.140 4.140 4.144 4.140 4.140 Excess ZrO 2 (mol%) From chemical analysis ─ 4.8 5.8 5.5 5.8 5.7 From X-ray diffraction ─ 6.5 5.7 5.4 5.9 6.3 Average particle size (μm) 3.3 3.3 3.1 3.5 3.8 4.1 Density (g / cm 3 ) 7.84 7.82 7.86 7.86 7.86 7.82 ─ ─ ───────────────────────────────── Table 2 Measurement results of the dielectric constant of each sample ─────── ───────────────────────────── AB C1 C2 C3 C4 ──────────────────────────────────── Phase transition temperature 349.5 348.7 346.6 347.0 345.0 345.0 Dielectric constant Room temperature 1230 1140 1220 1240 1230 1240 Phase transition temperature 25600 16700 25100 27000 27500 28800 ──────────────────────────────── ─────

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例および比較例の各試料の変位量の測定結
果を示す図である。
FIG. 1 is a diagram showing measurement results of displacement amounts of samples of Examples and Comparative Examples.

【図2】実施例および比較例の各試料の2軸曲げ強度の
測定結果を示す図である。
FIG. 2 is a diagram showing measurement results of biaxial bending strength of samples of Examples and Comparative Examples.

【図3】実施例および比較例の各試料の2軸曲げ強度と
変位量との相関を示す図である。
FIG. 3 is a diagram showing a correlation between biaxial bending strength and displacement of each sample of Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

A…比較例の試料 B…比較例の試
料 C1…実施例の試料 C2…実施例の
試料 C3…実施例の試料 C4…実施例の
試料
A ... Sample of Comparative Example B ... Sample of Comparative Example C1 ... Sample of Example C2 ... Sample of Example C3 ... Sample of Example C4 ... Sample of Example

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ZrO2 の析出分を見込んでPb量を不足
とした組成になるように、PbO、TiO2 およびZr
2 の原料粉末を調製する工程と、 原料粉末を混合し、PbOの昇華による離散がない条件
で、混合粉末を仮焼する仮焼工程と、 PbOの昇華による離散がない条件で、仮焼生成物を9
00〜1200℃の温度で焼成すると同時に、微細なZ
rO2 をPb(Zrx Ti1-x )O3 (0.4≦x≦
0.6)中に分散析出させる本焼成工程と、 からなることを特徴とする強誘電性セラミックスの製造
方法。
1. A composition comprising PbO, TiO 2 and Zr so as to have a composition in which the amount of Pb is deficient in anticipation of a precipitation amount of ZrO 2.
Preparing a raw material powder of O 2, the raw material powder were mixed, in the absence discrete by sublimation of PbO, the mixed powder and calcining step of calcining, in the absence discrete by sublimation of PbO, calcined 9 products
At the same time as firing at a temperature of 00 to 1200 ° C., a fine Z
rO 2 is replaced with Pb (Zr x Ti 1-x ) O 3 (0.4 ≦ x ≦
0.6) A main calcination step of dispersing and precipitating in a ceramic material, and a method for producing a ferroelectric ceramics.
【請求項2】Pb(Zrx Ti1-x )O3 (0.4≦x
≦0.6)に分散析出するZrO2 の平均粒径は1μm
以下であることを特徴とする請求項1記載の強誘電性セ
ラミックスの製造方法。
2. Pb (Zr x Ti 1-x ) O 3 (0.4 ≦ x
≦ 0.6) The average particle size of ZrO 2 dispersed and precipitated is 1 μm
The method for producing a ferroelectric ceramic according to claim 1, wherein:
【請求項3】仮焼工程は原料粉末のZrO2 と一部のP
bOとを仮焼してPbZrO2 とし、その後得られたP
bZrO3 と残されたTiO2 および残部のPbOとを
混合し仮焼する工程であることを特徴とする請求項1記
載の強誘電性セラミックスの製造方法。
3. The calcining step comprises ZrO 2 as a raw material powder and a part of P
bO was calcined to PbZrO 2 and then P
2. The method for producing a ferroelectric ceramic according to claim 1, wherein the step is a step of mixing bZrO 3 with the remaining TiO 2 and the remaining PbO and calcining.
【請求項4】仮焼工程は原料粉末を混合し加熱してPb
1-a (Zr1-b Tib)O3 (ここでaおよびbはcそ
れぞれ1未満の正数)とする工程であり、本焼成工程は
得られたPb1-a (Zr1-b Tib )O3 よりaZrO
2 をPb1-a (Zr1-b Tib-a )O3 マトリックス中
に分散析出させる工程である請求項1記載の強誘電性セ
ラミックスの製造方法。
4. In the calcination step, the raw material powders are mixed and heated to obtain Pb.
1-a (Zr 1-b Ti b ) O 3 (where a and b are positive numbers less than 1 each for c), and the main firing step is to obtain Pb 1-a (Zr 1-b Ti b ) O 3 to aZrO
The method for producing a ferroelectric ceramic according to claim 1, which is a step of dispersing and precipitating 2 in a Pb 1-a (Zr 1-b Ti ba ) O 3 matrix.
JP7418695A 1995-03-30 1995-03-30 Production of ferroelectric ceramics Pending JPH08268756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7418695A JPH08268756A (en) 1995-03-30 1995-03-30 Production of ferroelectric ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7418695A JPH08268756A (en) 1995-03-30 1995-03-30 Production of ferroelectric ceramics

Publications (1)

Publication Number Publication Date
JPH08268756A true JPH08268756A (en) 1996-10-15

Family

ID=13539898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7418695A Pending JPH08268756A (en) 1995-03-30 1995-03-30 Production of ferroelectric ceramics

Country Status (1)

Country Link
JP (1) JPH08268756A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002009204A1 (en) * 2000-07-24 2002-01-31 Matsushita Electric Industrial Co., Ltd. Thin-film piezoelectric element
JP2002299714A (en) * 2001-03-30 2002-10-11 Seiko Epson Corp Piezoelectric element and electric equipment using the same
JP2007157910A (en) * 2005-12-02 2007-06-21 Denso Corp Piezoelectric ceramics, laminated piezoelectric ceramic element, and manufacturing method therefor
CN114736015A (en) * 2022-04-26 2022-07-12 信阳师范学院 Intercalation barium calcium zirconate titanate based leadless piezoelectric ceramic prepared by adopting vacuum hot-pressing sintering furnace and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002009204A1 (en) * 2000-07-24 2002-01-31 Matsushita Electric Industrial Co., Ltd. Thin-film piezoelectric element
US6900579B2 (en) 2000-07-24 2005-05-31 Matsushita Electric Industrial Co., Ltd. Thin film piezoelectric element
CN100347872C (en) * 2000-07-24 2007-11-07 松下电器产业株式会社 Thin-film piezoelectric element
JP2002299714A (en) * 2001-03-30 2002-10-11 Seiko Epson Corp Piezoelectric element and electric equipment using the same
JP4629896B2 (en) * 2001-03-30 2011-02-09 セイコーエプソン株式会社 Piezoelectric element and electric device using the same
JP2007157910A (en) * 2005-12-02 2007-06-21 Denso Corp Piezoelectric ceramics, laminated piezoelectric ceramic element, and manufacturing method therefor
CN114736015A (en) * 2022-04-26 2022-07-12 信阳师范学院 Intercalation barium calcium zirconate titanate based leadless piezoelectric ceramic prepared by adopting vacuum hot-pressing sintering furnace and preparation method thereof
CN114736015B (en) * 2022-04-26 2022-12-23 信阳师范学院 Intercalation barium calcium zirconate titanate based lead-free piezoelectric ceramic prepared by adopting vacuum hot-pressing sintering furnace and preparation method thereof

Similar Documents

Publication Publication Date Title
Takenaka et al. Grain orientation and electrical properties of hot-forged Bi4Ti3O12 ceramics
US8034250B2 (en) Piezoelectric material
KR20110014225A (en) Piezoelectric ceramic, process for producing the piezoelectric ceramic, and piezoelectric device
CN112457007B (en) Method for preparing high-performance piezoelectric ceramic by pre-synthesizing and co-firing mixed bicrystal phase
Texier et al. Powder process influence on the characteristics of Mn, W, Sb, Ni-doped PZT
KR100475348B1 (en) Method for making lead zirconate titanate-based ceramic powder, piezoelectric ceramic and method for making same, and piezoelectric ceramic element
US6627104B1 (en) Mechanochemical fabrication of electroceramics
JPH08268756A (en) Production of ferroelectric ceramics
Moure et al. Microstructural and piezoelectric properties of fine grained PZT ceramics doped with donor and/or acceptor cations
JP2000272963A (en) Piezoelectric ceramic composition
JP3629285B2 (en) Production method of piezoelectric ceramic
JPH09315860A (en) Piezoelectric porcelain composition
Winfield et al. DiP224: Neodymium titanate (Nd2Ti2O7) ceramics
Khalid et al. Strontium doped lead zirconate titanate ceramics: study of calcination and sintering process to improve piezo effect
JP2000264727A (en) Piezoelectric ceramics
JP2003020274A (en) Piezoelectric paste, and piezoelectric film and piezoelectric parts using the same
KR100663971B1 (en) Nio-doped pnn-pzt piezoelectric ceramics and method for producing the same
JP2000143340A (en) Piezoelectric ceramic
Tunkasiri Properties of PZT ceramics prepared from aqueous solutions
JP3236641B2 (en) Manufacturing method of composite ferroelectric ceramics
JPH0433383A (en) Manufacture of piezoelectric ceramics
JPH05139828A (en) Production of piezoelectric ceramic
JP2768068B2 (en) Manufacturing method of PZT piezoelectric plate
KR20070000124A (en) Low temperature sintering pmw-pnn-pzt ceramics and manufacturing method thereof
Goel et al. Structural and dielectric properties of phosphorous-doped PLZT ceramics