JPH02127417A - Epoxy resin composition - Google Patents

Epoxy resin composition

Info

Publication number
JPH02127417A
JPH02127417A JP28046588A JP28046588A JPH02127417A JP H02127417 A JPH02127417 A JP H02127417A JP 28046588 A JP28046588 A JP 28046588A JP 28046588 A JP28046588 A JP 28046588A JP H02127417 A JPH02127417 A JP H02127417A
Authority
JP
Japan
Prior art keywords
silicone
epoxy resin
weight
modified epoxy
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28046588A
Other languages
Japanese (ja)
Inventor
Masaru Ota
賢 太田
Kenichi Yanagisawa
健一 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP28046588A priority Critical patent/JPH02127417A/en
Publication of JPH02127417A publication Critical patent/JPH02127417A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

PURPOSE:To provide the subject composition composed of a specified silicone- modified epoxy resin, phenolic novolak resin and inorganic filler, excellent in moldability, marking properties, moisture resistance, thermal shock resistance and solderability, having high reliability and suitable for sealing of semiconductors. CONSTITUTION:An objective composition composed of (A) a silicone-modified epoxy resin (hereinafter represented as modified resin) with 95-100 silicone- modification ratio (R) of the formula [A is S/T (S is peak area of silicone compound separated at a position of 0.7-0.9 Rf value in the thin layer chromatography method developed by using organic solvent with <=0.25 solvent strength and silica gel absorbent; T is peak area of cholesterol acetate as standard substance separated at a position of 0.4-0.6 Rf value); B is weight of modified resin in sample solution/weight of standard substance in sample solution; C is silicone component content in modified resin; K is weight of silicone compound corresponding to S/weight of cholesterol acetate corresponding to T] and (B) phenolic novolak resin and (C) an inorganic filler.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は成形加工性(型汚れ、樹脂パリ、成形ボイド、
離聾性)、捺印性、耐湿性、耐熱衝撃性および半田耐熱
性に優れた半導体封止用樹脂組成物に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is characterized by improved molding processability (mold stains, resin particles, molding voids,
The present invention relates to a resin composition for semiconductor encapsulation that has excellent properties (deafness), imprintability, moisture resistance, thermal shock resistance, and soldering heat resistance.

(従来技術) 近年IC,LSI、hランシスター、ダイオードなどの
半導体素子や電子回路の樹脂封止には特性、コスト等の
点からエポキシ樹脂組成物が多量にかつ最も一般的に用
いられている。
(Prior art) In recent years, epoxy resin compositions have been used in large quantities and most commonly for resin encapsulation of semiconductor elements and electronic circuits such as ICs, LSIs, h-run sisters, and diodes due to their characteristics, cost, etc. .

しかし電子部品の量産性指向、軽薄短小化、集積度の増
大等に伴い封止樹脂に対する要求は厳しくなってきてお
り、成形加工性、捺印性、耐湿性、耐熱衝撃性や半田耐
熱性の向上が今まで以上に強く要求されるようになって
きた。
However, as electronic components become more mass-producible, become lighter, thinner, shorter, and more integrated, demands on sealing resins are becoming stricter. has become more strongly demanded than ever before.

耐湿性や耐熱衝撃性の改良のため、シリコーンオイル、
シリコーンゴム等のシリコーン化合物、合成ゴム熱可塑
性樹脂等の添加が一般におこなわれてきている。
Silicone oil, to improve moisture resistance and thermal shock resistance.
Additions of silicone compounds such as silicone rubber, synthetic rubber thermoplastic resins, etc. have generally been carried out.

通常の、改質剤を添加しないエポキシ樹脂組成物であっ
ても型汚れ、樹脂パリの発生、成形ボイドの発生や捺印
性の不良が発生し易い傾向にあるが、耐湿性、耐熱衝撃
性や半田耐熱性を向上させるために改質剤を添加すれば
型汚れ、樹脂パリの発生、成形ボイドの発生や捺印性の
不良発生がより一層悪化する方向となってしまう。
Even with ordinary epoxy resin compositions that do not contain modifiers, mold stains, resin flakes, molding voids, and poor marking properties tend to occur, but moisture resistance, thermal shock resistance, If a modifier is added to improve solder heat resistance, mold stains, resin flakes, molding voids, and poor marking properties will become worse.

これらの成形加工性(型汚れ、樹脂パリ、成形ボイド、
離型性)、捺印性不良が発生するのは、成形加工時にこ
れらの改質剤成分が成形品表面に浮き出すためであり、
これらの改質剤成分とエポキシ樹脂、フェノール樹脂と
の相溶性が悪いことに起因している。
These molding processability (mold stains, resin cracks, molding voids,
The reason why poor mold releasability and marking properties occur is that these modifier components stand out on the surface of the molded product during the molding process.
This is due to poor compatibility between these modifier components and epoxy resins and phenol resins.

これらを改良するためにシリコーン化合物とエポキシ樹
脂あるいはフェノール樹脂をあらかじめ反応させたもの
を用いるということが提案されている(例えば特開昭6
1−73725号公報、特開昭62−174222号公
報、特開昭62−212417号公報等)。
In order to improve these problems, it has been proposed to use silicone compounds reacted with epoxy resins or phenol resins (for example, in Japanese Patent Laid-Open No. 6
1-73725, JP-A-62-174222, JP-A-62-212417, etc.).

これらのシリコーン変性樹脂を用いることにより、シリ
コーン化合物の浮き出しがある程度抑えられるために成
形加工性、捺印性が向上し耐湿性、耐熱衝撃性や半田耐
熱性がある程度改良さnたエポキシ樹脂組成物が得られ
るがいまだ満足出来うるものではなかった。
By using these silicone-modified resins, the embossment of the silicone compound can be suppressed to some extent, resulting in improved moldability and imprintability, and an epoxy resin composition with improved moisture resistance, thermal shock resistance, and soldering heat resistance to some extent. Although I was able to obtain it, I was still not satisfied with it.

この理由はシリコーン化合物とエポキシ樹脂とは互いに
相溶性の悪い化合物どうしであるため反応性が悪く高反
応率のシリコーン変性エポキシ樹脂が得られていなかっ
たことによる。
The reason for this is that silicone compounds and epoxy resins are compounds that are poorly compatible with each other, and therefore have poor reactivity and have not been able to obtain silicone-modified epoxy resins with high reaction rates.

このため従来得られているシリコーン変性エポキシ樹脂
中には未反応シリコーン化合物が多量に含有されていた
ために成形加工性、捺印性を満足するものが得られず、
更に耐湿性、耐熱衝撃性や半田耐熱性の改良効果も不十
分であった。
For this reason, conventionally available silicone-modified epoxy resins contained a large amount of unreacted silicone compounds, making it impossible to obtain one that satisfied moldability and stampability.
Furthermore, the effects of improving moisture resistance, thermal shock resistance, and soldering heat resistance were also insufficient.

これらの点について鋭意研究した結果、シリコーン変性
エポキシ樹脂のもたらす利点を最大限に引き出す為には
シリコーン化合物とエポキシ樹脂との反応率がある一定
値以上のものを選択的に使用することによって非常に優
れた、従来では得られなかった半導体封止用樹脂組成物
が得られることを見いだしてなされたものである。
As a result of intensive research on these points, we have found that in order to maximize the benefits of silicone-modified epoxy resins, it is necessary to selectively use silicone compounds whose reaction rate with epoxy resins is above a certain value. This invention was made based on the discovery that an excellent resin composition for semiconductor encapsulation, which could not be obtained conventionally, could be obtained.

(発明が解決しようとする課題) 本願発明の目的とするところは成形加工性(型汚れ、樹
脂パリ、成形ボイド、離形性)、捺印性、耐湿性、耐熱
衝撃性および半田耐熱性に優れ、バランスのとれた信頼
性に非常に優れた半導体封止用のエポキシ樹脂組成物を
提供することにある。
(Problems to be Solved by the Invention) The purpose of the present invention is to provide excellent molding processability (mold stains, resin flakes, molding voids, mold releasability), stamping properties, moisture resistance, thermal shock resistance, and soldering heat resistance. The object of the present invention is to provide an epoxy resin composition for semiconductor encapsulation that is well-balanced and has excellent reliability.

(課題を解決するI;めの手段) 本発明者らは、これらの問題を解決するため、鋭意研究
を進め、溶媒強度0.25以下の有機溶媒を用いシリカ
ゲルを吸着剤として展開するクロマトグラフィーにより
下記式〔I〕で求められるシリコーンオイルが95≦R
≦lOOであるシリコーン変性エポキシ樹脂が半導体封
止用エポキシ樹脂として最適であることを見い出して本
願発明を完成するに至ったものである。
(Means for Solving the Problems) In order to solve these problems, the present inventors have conducted intensive research and developed chromatography using silica gel as an adsorbent using an organic solvent with a solvent strength of 0.25 or less. The silicone oil obtained by the following formula [I] is 95≦R.
The inventors have completed the present invention by discovering that a silicone-modified epoxy resin in which ≦lOO is optimal as an epoxy resin for semiconductor encapsulation.

R−(1−KA/BC)XI OO・・・ (I)A:
 S/T (溶媒強度0.25以下の有機溶媒を用いシ
リカゲルを吸着剤にして展開する 薄層クロマトグラフ
ィーによりRf値0.7〜0.9の範囲に分離されるシ
リコーン化合物のピーク面積SとRf値0.4〜0.6
の範囲に分離される標準物質コレステロールアセテート
のピーク面積Tとの比) B:試料溶液中のシリコーン変性エポキシ樹脂の重量/
試料溶液中の標準物質の重量 C:シリコーン変性エポキシ樹脂中のシリコーン成分含
有量(シリコーン変性エポキシ樹脂生成反応時における
シリコーン化合物の添加重量)K:シリコーン化合物ピ
ークの単位面積に対応するシリコーン化合物重量/標準
物質の単位面積に対するコレステロールアセテート重量
本願発明の半導体封止用エポキシ樹脂組成物に用いるシ
リコーン変性エポキシ樹脂は、シリコーン変性率Rが9
5≦R≦100であることが必要であり、これらのシリ
コーン変性エポキシ樹脂は、未反応シリコーン化合物が
少ないために、これらの未反応シリコーン化合物の成形
品表面への浮き出しが少なく、成形加工性や捺印性を悪
化させることがなくくその上に殆どのシリコーン化合物
がエポキシ樹脂の三次元架橋構造に取り込まれているた
めにシリコーンの粒径は極めて小さくなり、耐熱衝撃性
、半田耐熱性が向上するという効果を示す。
R-(1-KA/BC)XI OO... (I)A:
S/T (peak area S of silicone compounds separated into Rf values in the range of 0.7 to 0.9 by thin layer chromatography developed using an organic solvent with a solvent strength of 0.25 or less and silica gel as an adsorbent) Rf value 0.4-0.6
B: Weight of silicone-modified epoxy resin in sample solution /
Weight of standard substance in sample solution C: Silicone component content in silicone-modified epoxy resin (weight of silicone compound added during silicone-modified epoxy resin production reaction) K: Weight of silicone compound corresponding to unit area of silicone compound peak/ Cholesterol acetate weight per unit area of standard substance The silicone-modified epoxy resin used in the epoxy resin composition for semiconductor encapsulation of the present invention has a silicone modification rate R of 9.
It is necessary that 5≦R≦100, and since these silicone-modified epoxy resins have a small amount of unreacted silicone compounds, there is little protrusion of these unreacted silicone compounds on the surface of the molded product, which improves molding processability. In addition, since most of the silicone compound is incorporated into the three-dimensional crosslinked structure of the epoxy resin, the particle size of the silicone becomes extremely small, improving thermal shock resistance and soldering heat resistance. This shows the effect.

又未反応シリコーン化合物が少ないためシリコーン化合
物の鎖長、構造によりシリコーンの粒径を非常に正確に
コントロールすることができるため材料設計が極めて容
易で正確に出来るという非常に優れた特徴がある。
In addition, since there is little unreacted silicone compound, the particle size of silicone can be controlled very accurately depending on the chain length and structure of the silicone compound, so material design can be made extremely easily and accurately.

以下発明の詳細な説明する。The invention will be explained in detail below.

■シリコーン変性率Rの測定 薄層クロマトグラフィーとしてダイヤトロン(株)製薄
層クロマトグラフ自動検出装置tTH−10を用い、T
LCとしてはシリカゲル、展開溶媒としはベンゼン、ト
ルエン、ヘキサン等の溶媒強度0.25以下の非極性有
機溶媒を用いた。未反応のシリコーン化合物は非極性で
あるため非極性の溶媒で展開分離できるのである。
■Measurement of silicone modification rate R Using a thin layer chromatography automatic detection device tTH-10 manufactured by Diatron Co., Ltd.,
Silica gel was used as the LC, and a nonpolar organic solvent with a solvent strength of 0.25 or less, such as benzene, toluene, or hexane, was used as the developing solvent. Since the unreacted silicone compound is non-polar, it can be developed and separated using a non-polar solvent.

標準物質としてコレステロールアセテートを加えたシリ
コーン変性エポキシ樹脂の有機溶媒溶液をTLCに数μ
g〜100μgをスポットし、それを上記の展開溶媒で
5〜15cmはど展開する。
A solution of a silicone-modified epoxy resin in an organic solvent to which cholesterol acetate was added as a standard substance was added to TLC in a few microns.
g ~ 100 μg is spotted and developed with the above developing solvent over a distance of 5 ~ 15 cm.

展開溶媒を乾燥除去したあと、薄層クロマトグラフ自動
検出装置により、未反応シリコーン化合物のピーク面積
、コレステロールアセテートのピーク面積を得る。
After drying and removing the developing solvent, the peak area of unreacted silicone compound and the peak area of cholesterol acetate are obtained using a thin layer chromatograph automatic detection device.

これらの面積比を用いて式〔I〕によりシリコーン変性
エポキシ樹脂の変性率Rを算出する。
Using these area ratios, the modification rate R of the silicone-modified epoxy resin is calculated by formula [I].

尚、従来の文献等により得られる一般のシリコーン変性
エポキシ樹脂の変性率Rをこれらの方法で測定すれば、
変性率Rは5〜80%であった。
In addition, if the modification rate R of a general silicone-modified epoxy resin obtained from conventional literature etc. is measured by these methods,
The modification rate R was 5 to 80%.

■高変性率シリコーン変性エポキシ樹脂の合成本発明で
用いるシリコーン変性エポキシ樹脂の原料として用いる
エポキシ樹脂は1分子中に2個以上のエポキシ基を有す
るものであればいかなるものでも良く、例えばビスフェ
ノールA型エポキシ樹脂、ビスフェノールF梨エポキシ
樹脂、フェノールノポラックかたエポキシ*m、タレゾ
ールノボラック型エポキシ樹脂、脂環式エポキシ樹脂お
よびこれらの変性樹脂等が挙げられ、これらのエポキシ
樹脂は1種又は2種以上混合して用いることが出来る。
■ Synthesis of high modification rate silicone-modified epoxy resin The epoxy resin used as a raw material for the silicone-modified epoxy resin used in the present invention may be any resin as long as it has two or more epoxy groups in one molecule, such as bisphenol A type. Examples include epoxy resin, bisphenol F epoxy resin, phenol novolak epoxy*m, Talezol novolak type epoxy resin, alicyclic epoxy resin, and modified resins thereof, and these epoxy resins can be used in one or two types. The above can be used in combination.

これらのエポキシ樹脂の中でもエポキシ当量150〜2
50、軟化点60〜130℃でNa”、CI−等のイオ
ン性不純物を出来る限り除いたものが好ましい。
Among these epoxy resins, those with an epoxy equivalent of 150 to 2
50, a softening point of 60 to 130 DEG C., and from which ionic impurities such as Na'' and CI- are removed as much as possible.

又本発明のシリコーン変性エポキシ樹脂の一方の原料と
して用いられるオルガノシロキサンは上述のエポキシ樹
脂と反応しうる官能基を有するもので、官能基としては
例えばエポキシ基、アルコキシ基、水酸基、アミ7基、
ヒドロシル基等が挙げられ、分子構造は直鎖状、分枝鎖
状のいずれであっても良い。
Furthermore, the organosiloxane used as one of the raw materials for the silicone-modified epoxy resin of the present invention has a functional group that can react with the above-mentioned epoxy resin, and the functional groups include, for example, an epoxy group, an alkoxy group, a hydroxyl group, an amide group,
Examples include hydrosyl groups, and the molecular structure may be either linear or branched.

又本発明におけるシリコーン変性エポキシ樹脂の合成方
法は特に限定されるものではないが、例として挙げれば
2ヶ以上のアミノ基を有するオルガノポリシロキサンと
エポキシ樹脂の一部のエポキシ基を反応せしめてブロッ
ク付加体となすとか、アルケニル基含有エポキシ樹脂と
2ヶ以上のハイドロシリル基を有するオルガノポリシロ
キサンを塩化白金酸触媒下、溶媒存在下でハイドロシリ
ル化反応によりブロック付加体を得るなどの合成方法が
ある。要はいずれの方法を用いても未反応オルガノポリ
シロキサンの少ないものとすることが本発明においては
肝要であり、必要に応じて得られた反応物から洗浄、抽
出等の方法でこれらの未反応オルガノポリシロキサンを
除去する等の方法も適宜可能である。
Further, the method for synthesizing the silicone-modified epoxy resin in the present invention is not particularly limited, but for example, blocking is performed by reacting an organopolysiloxane having two or more amino groups with some epoxy groups of an epoxy resin. Alternatively, a block adduct can be obtained by a hydrosilylation reaction of an alkenyl group-containing epoxy resin and an organopolysiloxane having two or more hydrosilyl groups under a chloroplatinic acid catalyst in the presence of a solvent. be. In short, no matter which method is used, it is important in the present invention to minimize the amount of unreacted organopolysiloxane, and if necessary, remove these unreacted organopolysiloxanes by washing, extraction, etc. from the obtained reactant. Methods such as removing organopolysiloxane can also be used as appropriate.

これらのシリコーン変性エポキシ樹脂は反応率Rが95
≦R≦100であることが必要であり、変性率Rが95
未満の場合、未反応オルガノシロキサン成分はエポキシ
樹脂組成物と相溶性が悪く、しかも表面張力が低く、一
般に粘度も低いために、エポキシ樹脂組成物を高温・高
圧で成形すると成形品表面から未反応オルガノシロキサ
ン成分かにじみだし、成形品の油汚れ、型汚れ、捺印性
の不良、樹脂パリ等の不良モードを発生させる。しかも
未反応オルガノシロキサン成分は、エポキシ樹脂組成物
中のシリコーンのドメイン部にも集中して集まるため、
シリコーンドメインの径が大きくなってしまう。一般に
ハードポリマーの海にソフトポリマーの島というモルホ
ロジーを有する樹脂系においては、ソフトポリマーの島
の粒径が小さいほど系の弾性率は低下し低応力効果は大
となるが、未反応オルガノシロキサンのためシリコーン
粒径が大きくなることにより、エポキシ樹脂組成物の弾
性率は上がり低応力効果は小さくなってしまい、電子部
品封止用樹脂組成物としての性能(耐熱衝撃性)は低下
してしまう。
These silicone-modified epoxy resins have a reaction rate R of 95
It is necessary that ≦R≦100, and the denaturation rate R is 95
If the epoxy resin composition is less than 10%, the unreacted organosiloxane component has poor compatibility with the epoxy resin composition, has a low surface tension, and generally has a low viscosity, so when the epoxy resin composition is molded at high temperature and high pressure, unreacted parts may appear on the surface of the molded product. This causes failure modes such as oozing of organosiloxane components, oil stains on molded products, mold stains, poor marking properties, and resin flakes. Moreover, unreacted organosiloxane components are also concentrated in the silicone domain in the epoxy resin composition.
The diameter of the silicone domain becomes large. In general, in a resin system that has a morphology of soft polymer islands in a sea of hard polymers, the smaller the particle size of the soft polymer islands, the lower the elastic modulus of the system and the greater the stress reduction effect. Therefore, as the silicone particle size increases, the elastic modulus of the epoxy resin composition increases and the low stress effect decreases, resulting in a decrease in performance (thermal shock resistance) as a resin composition for encapsulating electronic components.

反応率Rが95≦R<100の範囲内であるならば、こ
れらの欠点は大幅に改善され成形性、捺印性、耐熱衝撃
性が向上する。又エポキシ/シリコーンの界面の結合力
が向上するために機械的強度、耐湿性も向上する。さら
にエポキシ樹脂の組成、オルガノシロキサンの組成(特
に分子鎖長)をコントロールすることによりエポキシと
シリコーンの相溶性をコントロールしてシリコーン粒径
ヲカなり正確にコントロールすることが可能となるため
、製品のばらつきは最小限に押さえられ、しかも材料設
計が非常にし易い系となる。
If the reaction rate R is within the range of 95≦R<100, these drawbacks will be greatly improved, and moldability, stampability, and thermal shock resistance will be improved. In addition, mechanical strength and moisture resistance are also improved because the bonding strength at the epoxy/silicone interface is improved. Furthermore, by controlling the composition of the epoxy resin and the composition of the organosiloxane (particularly the molecular chain length), it is possible to control the compatibility between the epoxy and silicone, and to precisely control the silicone particle size. This results in a system that is kept to a minimum and material design is extremely easy.

■高変性率シリコーン変性エポキシ樹脂を用いたエポキ
シ樹脂組成物 上記高変性率シリコーン変性エポキシ樹脂と硬化剤、無
機充填剤、この他必要に応じてBDMA等の第三級アミ
ン類、イミダゾール類、l、8−ジアザビシクロ(5,
4,0)ウンデセン、トリフェニルホスフィン等の有機
リン化合物等の硬化促進剤、天然ワックス類、合成ワッ
クス類等の離を剤、ヘキサブロムベンゼン、デカブロム
ビフェニルエーテル、三酸化等の難燃剤、カーボンブラ
ック、ベンガラ等の着色剤、シランカップリング剤その
他合成ゴム、シリコーン化合物、熱可塑性樹脂等を適宜
添加配合し、これらの原料をミキサー等によって十分に
混合した後、さらにニーダ−やロール等で加熱熔融混合
し、次いで冷却固化後粉砕処理をしてエポキシ樹脂組成
物とする。
■Epoxy resin composition using high modification rate silicone-modified epoxy resin The above high modification rate silicone-modified epoxy resin, curing agent, inorganic filler, tertiary amines such as BDMA, imidazole, etc. as required. , 8-diazabicyclo(5,
4,0) Hardening accelerators such as organic phosphorus compounds such as undecene and triphenylphosphine, release agents such as natural waxes and synthetic waxes, flame retardants such as hexabromobenzene, decabromo biphenyl ether, and trioxide, carbon Coloring agents such as black and red iron, silane coupling agents, other synthetic rubbers, silicone compounds, thermoplastic resins, etc. are appropriately added and blended, and after these raw materials are sufficiently mixed using a mixer, etc., they are further heated using a kneader, rolls, etc. The mixture is melt-mixed, cooled and solidified, and then pulverized to obtain an epoxy resin composition.

(ロ)の成分としての硬化剤としてはフェノールノポラ
ック、クレゾールノボラックおよびこれらの変性樹脂等
が挙げられ、これらは単独又は2種以上混合して用いら
れる。これらのフェノール樹脂の中でも水酸基当量が8
0〜150、軟化点が60〜120°OでNa3.Cド
等のイオン性不純物を出来るだけ取り除いたものが好ま
しい。
Examples of the curing agent as the component (b) include phenol nopolak, cresol novolak, and modified resins thereof, which may be used alone or in combination of two or more. Among these phenolic resins, the hydroxyl equivalent is 8.
0-150, softening point 60-120°O, Na3. It is preferable to remove ionic impurities such as carbon as much as possible.

又(ハ)の成分としての無機充填剤としては結晶シリカ
、熔融シリカ、アルミナ、炭酸カルシウム、タルク、マ
イカ、ガラス繊維等が挙げられ、これらは単独又は2種
以上混合して使用される。これらの中で特に結晶シリカ
又は熔融シリカが好適に使用される。
Examples of the inorganic filler as the component (c) include crystalline silica, fused silica, alumina, calcium carbonate, talc, mica, and glass fiber, which may be used alone or in combination of two or more. Among these, crystalline silica or fused silica is particularly preferably used.

(実施例) シリコーン変性エポキシ樹脂(A) 0−タレゾールノボラックエポキシ樹脂とo−アリルフ
ェノールの反応物に両末端HSi基を有するシリコーン
化合物を反応させて得られた構造式(1)で示されるシ
リコーン変性エポキシ樹脂(シリコーン変性率R:97
゜エポキシ当量250.軟化点75°C)m/m+ n
すi wa QΩB 、  i/ff1M1+imQQ
5 、  k=190シリコーン変性エポキシ樹脂(B
) 下記構造式〔2〕で示されるシリコーン変性エポキシ樹
脂(シリコーン変性率R:99゜エポキシ当量252.
軟化点78°0)m/m+n+1−002i/m+n+
1−0011095シリコーン変性エポキシ樹脂(C) 下記構造式〔3〕で示されるシリコーン変性エポキシ樹
脂(シリコーン変性率R:95゜エポキシ当量260.
軟化点78°C)m/m+n+imo、02 、  i
/I’n+n−n−4i、Of  、  k@95実施
例1 シリコーン変性エポキシ樹脂(A) 100重量部 フェノールノポラック樹脂 (OH当量105.軟化点100℃) 40重量部 臭素化フェノールノポラックエポキシ樹脂(臭素含有率
30重量%、エポキシ当量280、軟化点71″O) 
  10重量部熔融シリカ        530重量
部三酸化アンチモン      20重量部シランカッ
プリング剤     3重量部トリフェニルホスフィン
    4重量部カルナバワックス       5を
置部カーボンブラック       5重量部を常温で
十分混合し、更に95〜100℃で混練し、冷却後粉砕
しタブレット化して本発明の半導体封止用エポキシ樹脂
組成物を得た。
(Example) Silicone-modified epoxy resin (A) Shown by structural formula (1) obtained by reacting a reaction product of 0-talesol novolac epoxy resin and o-allylphenol with a silicone compound having HSi groups at both ends. Silicone modified epoxy resin (silicone modification rate R: 97
゜Epoxy equivalent weight 250. Softening point 75°C) m/m+n
Sui wa QΩB, i/ff1M1+imQQ
5, k=190 silicone modified epoxy resin (B
) A silicone-modified epoxy resin represented by the following structural formula [2] (silicone modification rate R: 99°, epoxy equivalent: 252.
Softening point 78°0) m/m+n+1-002i/m+n+
1-0011095 Silicone-modified epoxy resin (C) Silicone-modified epoxy resin represented by the following structural formula [3] (silicone modification rate R: 95°, epoxy equivalent: 260.
Softening point 78°C) m/m+n+imo, 02, i
/I'n+n-n-4i, Of, k@95 Example 1 Silicone-modified epoxy resin (A) 100 parts by weight Phenol nopolak resin (OH equivalent 105. Softening point 100°C) 40 parts by weight Brominated phenol nopolak epoxy Resin (bromine content 30% by weight, epoxy equivalent 280, softening point 71″O)
10 parts by weight Fused silica 530 parts by weight Antimony trioxide 20 parts by weight Silane coupling agent 3 parts by weight triphenylphosphine 4 parts by weight Carnauba wax The mixture was kneaded, cooled, and then crushed into tablets to obtain the epoxy resin composition for semiconductor encapsulation of the present invention.

この材料の塁汚れ性、樹脂パリをトランスファー成形機
(成形条件:金型温度175℃、硬化時間2分)を用い
て判定すると共に、得られた成形品を17560.4時
間後硬化しパッケージの内部ボイド、捺印性、耐熱衝撃
性、耐湿性、半田耐熱性を評価した。
The stain resistance and resin spacing of this material were determined using a transfer molding machine (molding conditions: mold temperature 175°C, curing time 2 minutes), and the resulting molded product was cured after 17560.4 hours to form a package. Internal voids, imprintability, thermal shock resistance, moisture resistance, and soldering heat resistance were evaluated.

その結果を第1表に示す。The results are shown in Table 1.

実施例2 実施例1においてシリコーン変性エポキシ樹脂(A)を
シリコーン変性エポキシ樹脂(B)に変えた以外は実施
例1と同様にして半導体封止用エポキシ樹脂組成物を得
、実施例1と同様の評価を行った。
Example 2 An epoxy resin composition for semiconductor encapsulation was obtained in the same manner as in Example 1 except that the silicone-modified epoxy resin (A) in Example 1 was changed to silicone-modified epoxy resin (B). was evaluated.

結果を第1表に示す。The results are shown in Table 1.

実施例3 実施例1においてシリコーン変性エポキシ樹脂(A)を
シリコーン変性エポキシ樹脂(C)に変えた以外は実施
例1と同様にして半導体封止用エポキシ樹脂組成物を得
、実施例1と同様の評価を行った。
Example 3 An epoxy resin composition for semiconductor encapsulation was obtained in the same manner as in Example 1, except that the silicone-modified epoxy resin (A) in Example 1 was changed to silicone-modified epoxy resin (C), and the same procedure as in Example 1 was carried out. was evaluated.

結果を第1表に示す。The results are shown in Table 1.

比較例1 実施例1においてシリコーン変性率Rが79のものを用
いた以外は実施例1と全く同様にして半導体封止用エポ
キシ樹脂組成物を得、同様の評価を行いその結果を第1
表に示す。
Comparative Example 1 An epoxy resin composition for semiconductor encapsulation was obtained in exactly the same manner as in Example 1 except that one with a silicone modification rate R of 79 was used in Example 1, and the same evaluation was performed.
Shown in the table.

比較例2 実施例1においてシリコーン変性率Rが52のものを用
いた以外は実施例1と全く同様にして半導体封止用エポ
キシ樹脂組成物を得、同様の評価を行いその結果を第1
表に示す。
Comparative Example 2 An epoxy resin composition for semiconductor encapsulation was obtained in exactly the same manner as in Example 1, except that one with a silicone modification rate R of 52 was used in Example 1, and the same evaluation was performed.
Shown in the table.

比較例3 実施例2においてシリコーン変性率Rが74のものを用
いた以外は実施例2と全く同様にして半導体封止用エポ
キシ樹脂組成物を得、同様の評価を行いその結果を第1
表に示す。
Comparative Example 3 An epoxy resin composition for semiconductor encapsulation was obtained in exactly the same manner as in Example 2, except that one with a silicone modification rate R of 74 was used in Example 2, and the same evaluation was performed.
Shown in the table.

比較例4 実施例3においてシリコーン変性率Rが32のものを用
いた以外は実施例3と全く同様にして半導体封止用エポ
キシ樹脂組成物を得、同様の評価を行いその結果を第1
表に示す。
Comparative Example 4 An epoxy resin composition for semiconductor encapsulation was obtained in exactly the same manner as in Example 3, except that one with a silicone modification rate R of 32 was used in Example 3, and the same evaluation was performed.
Shown in the table.

(以 下 余 白) *l 零2 *3 *4 *5 *6 型曇りが発生するまでの成形ショツト数にて判定。(Hereafter under The rest White) *l Zero 2 *3 *4 *5 *6 Judgment is based on the number of molded shots until mold fogging occurs.

得られた成形品のベント部分の樹脂パリの長さを測定。Measure the length of the resin pad at the bent part of the molded product obtained.

lOショット目の成形品を使用し、捺印後セロテープを
貼る。このセロテープを剥がしたとき捺印が取られた数
で判定。表中には成形品50個中捺印の剥がれた成形品
個数を示す。
Use the molded product of the 10th shot, and after stamping it, stick cellophane tape on it. Judgment is made by the number of stamps removed when the cellophane tape is removed. The table shows the number of molded products whose seals were peeled off out of 50 molded products.

成形品20個(後硬化175℃+ 8Hrs)を温度サ
イクルテスト(150〜−65℃)にかけ、500サイ
クルのテストを行いクラックの発生した個数で判定。表
中には成形品20個中のクラックの発生した個数を示す
20 molded products (post-cured at 175°C + 8 hours) were subjected to a temperature cycle test (150 to -65°C), 500 cycles were performed, and the number of cracks was determined. The table shows the number of cracks in 20 molded products.

成形品100個(後硬化175℃+ 8Hrs)につい
て120℃の高圧水蒸気下で1000時間の耐湿テスト
を行い不良個数を調べた。表中は100個中の不良個数
を示す。
A moisture resistance test was conducted for 1000 molded products (post-cured at 175°C + 8 hours) under high-pressure steam at 120°C for 1000 hours to determine the number of defective products. The table shows the number of defective pieces out of 100 pieces.

成形品16個(後硬化175°0.8 Hrs)につい
て85°085%の蒸気下で72Hrs処理後、280
℃の半田浴に10秒間浸漬し、クラックの発生した成形
品の数で判定。表中には成形品16個中のクラックの発
生した個数を示す。
After processing 16 molded products (post-curing 175° 0.8 Hrs) under 85° 085% steam for 72 Hrs, 280
The molded product was immersed in a solder bath at ℃ for 10 seconds and determined by the number of molded products that developed cracks. The table shows the number of cracks among 16 molded products.

(発明の効果) 本発明の半導体封止用エポキシ樹脂組成物は、耐ヒート
サイクル性、耐半田ストレス性及び耐湿性に非常に優れ
、かつ低応力の組成物であり、電子・電気部品の封止用
、被覆用、絶縁用等に用いた場合、特に表面実装パッケ
ージに搭載された高集積大型チップICにおいてはM頓
挫が非常に高い製品を得ることができる。
(Effects of the Invention) The epoxy resin composition for semiconductor encapsulation of the present invention has excellent heat cycle resistance, solder stress resistance, and moisture resistance, and is a low stress composition. When used for stopping, covering, insulating, etc., it is possible to obtain products with extremely high M failure, especially in highly integrated large chip ICs mounted on surface mount packages.

Claims (1)

【特許請求の範囲】[Claims] (1)(イ)下記式〔 I 〕から求められるシリコーン
変性率Rが95≦R≦100であるシリコーン変性エポ
キシ樹脂 R=(1−KA/BC)×100・・・〔 I 〕A:S
/T(溶媒強度0.25以下の有機溶媒を用いシリカゲ
ルを吸着剤にして展開す る薄層クロマトグラフィーによりRf値0.7〜0.9
の範囲に分離されるシリコーン 化合物のピーク面積SとRf値0.4〜0.6の範囲に
分離される標準物質コレステロ ールアセテートのピーク面積Tとの比) B:試料溶液中のシリコーン変性エポキシ樹脂の重量/
試料溶液中の標準物質の重量 C:シリコーン変性エポキシ樹脂中のシリコーン成分含
有量(シリコーン変性エポキシ樹 脂生成反応時におけるシリコーン化合物の 添加重量) K:シリコーン化合物ピークの単位面積に対応するシリ
コーン化合物重量/標準物質の単 位面積に対するコレステロールアセテート 重量 (ロ)フェノールノポラック樹脂 (ハ)無機充填剤 を必須成分とするエポキシ樹脂組成物。
(1) (A) A silicone-modified epoxy resin whose silicone modification rate R calculated from the following formula [I] is 95≦R≦100 = (1-KA/BC)×100... [I] A:S
/T (Rf value 0.7 to 0.9 by thin layer chromatography using an organic solvent with a solvent strength of 0.25 or less and developing with silica gel as an adsorbent)
Ratio of the peak area S of the silicone compound separated into the range of Rf value and the peak area T of the standard substance cholesterol acetate separated into the range of Rf value 0.4 to 0.6) B: Silicone modified epoxy resin in the sample solution Weight of /
Weight of standard substance in sample solution C: Silicone component content in silicone-modified epoxy resin (weight of silicone compound added during silicone-modified epoxy resin production reaction) K: Weight of silicone compound corresponding to unit area of silicone compound peak/ Cholesterol acetate weight per unit area of standard substance (b) Phenol noporac resin (c) Epoxy resin composition containing an inorganic filler as an essential component.
JP28046588A 1988-11-08 1988-11-08 Epoxy resin composition Pending JPH02127417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28046588A JPH02127417A (en) 1988-11-08 1988-11-08 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28046588A JPH02127417A (en) 1988-11-08 1988-11-08 Epoxy resin composition

Publications (1)

Publication Number Publication Date
JPH02127417A true JPH02127417A (en) 1990-05-16

Family

ID=17625444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28046588A Pending JPH02127417A (en) 1988-11-08 1988-11-08 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JPH02127417A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02173034A (en) * 1988-12-26 1990-07-04 Sumitomo Bakelite Co Ltd Epoxy resin
US5804351A (en) * 1995-11-02 1998-09-08 Fuji Xerox Co., Ltd. Toner for electrostatic-image development, developer for electrostatic image, and image forming process using the same
JP2003073483A (en) * 2001-09-03 2003-03-12 Toray Ind Inc Method for producing thermosetting resin composition and semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238125A (en) * 1987-03-26 1988-10-04 Shin Etsu Chem Co Ltd Epoxy resin composition
JPH01249825A (en) * 1988-03-31 1989-10-05 Toshiba Chem Corp Resin composition for sealing and production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238125A (en) * 1987-03-26 1988-10-04 Shin Etsu Chem Co Ltd Epoxy resin composition
JPH01249825A (en) * 1988-03-31 1989-10-05 Toshiba Chem Corp Resin composition for sealing and production thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02173034A (en) * 1988-12-26 1990-07-04 Sumitomo Bakelite Co Ltd Epoxy resin
US5804351A (en) * 1995-11-02 1998-09-08 Fuji Xerox Co., Ltd. Toner for electrostatic-image development, developer for electrostatic image, and image forming process using the same
JP2003073483A (en) * 2001-09-03 2003-03-12 Toray Ind Inc Method for producing thermosetting resin composition and semiconductor device

Similar Documents

Publication Publication Date Title
KR100191744B1 (en) Epoxy resin compositions and semiconductor devices encapsulated therewith
JPH02127417A (en) Epoxy resin composition
KR100429363B1 (en) Epoxy resin composition for semiconductor device sealing
JP2000044774A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JPH11130936A (en) Epoxy resin composition and semiconductor device
JPH02147619A (en) Epoxy resin composition
JP2834460B2 (en) Epoxy resin composition
JP2642966B2 (en) Epoxy resin composition
JPH04198211A (en) Resin composition
JP2983613B2 (en) Epoxy resin composition
JPH02173025A (en) Silicone-modified phenolic resin
JPH04120126A (en) Resin composition
JP3255376B2 (en) Epoxy resin composition
JP3192315B2 (en) Epoxy resin composition
JP3568654B2 (en) Epoxy resin composition
JP2823658B2 (en) Resin composition
JPH02147620A (en) Epoxy resin composition
JPH02251519A (en) Epoxy resin composition
JPH03195725A (en) Resin composition
WO2005054331A1 (en) Epoxy resin composition and semiconductor device using the same
JP2004155841A (en) Sealing resin composition, and semiconductor sealing device
JPH03719A (en) Resin composition
JPH03167250A (en) Epoxy resin composition
JP2004083662A (en) Epoxy resin composition and semiconductor device
JPH02202914A (en) Resin composition