JPH04198211A - Resin composition - Google Patents

Resin composition

Info

Publication number
JPH04198211A
JPH04198211A JP32124990A JP32124990A JPH04198211A JP H04198211 A JPH04198211 A JP H04198211A JP 32124990 A JP32124990 A JP 32124990A JP 32124990 A JP32124990 A JP 32124990A JP H04198211 A JPH04198211 A JP H04198211A
Authority
JP
Japan
Prior art keywords
compound
epoxy
molecule
resin composition
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32124990A
Other languages
Japanese (ja)
Inventor
Akihiro Hirata
平田 明広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP32124990A priority Critical patent/JPH04198211A/en
Publication of JPH04198211A publication Critical patent/JPH04198211A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain an epoxy resin composition for semiconductor sealing excellent in heat shock resistance, soldering-heat resistance, low viscosity and moldability by mixing a diepoxy compound with a diphenol compound, a polyepoxy compound, a cure accelerator, and an inorganic filler. CONSTITUTION:A resin composition essentially consisting of a diepoxy compound (A) having two epoxy groups in the molecule, a diphenol compound (B) having two phenolic hydroxyl groups in the molecule, a polyepoxy compound (C) having at least three epoxy groups in the molecule, a cure accelerator (D) and an inorganic filler (E). The mixing ratio between component A and component C is such that C/(A+C)=25-75wt.%. As component D, any cure accelerator that can accelerate a reaction between epoxy and phenolic hydroxyl can be used, and one generally used in a sealing material can be extensively used. As component E, crystalline silica or fused silica is particularly desirable.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高集積度IC封圧用樹脂組成物に適する耐熱衝
撃性と半田耐熱性および低粘度性に優れたエポキシ樹脂
組成物に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an epoxy resin composition with excellent thermal shock resistance, soldering heat resistance, and low viscosity, which is suitable for a resin composition for sealing high-density ICs. .

〔従来の技術〕[Conventional technology]

従来、ダイオード、トランノスタ、集積回路等の電子部
品を熱硬化性樹脂で封止しているか、特に集積回路では
耐熱性、耐湿性に優れた0−クレゾールノボラックエポ
キン樹脂をノボラック型フェノール樹脂で硬化させたエ
ボキン樹脂か用いられている。
Traditionally, electronic components such as diodes, transnostars, and integrated circuits have been sealed with thermosetting resins, or, especially for integrated circuits, 0-cresol novolac-epochene resin, which has excellent heat resistance and moisture resistance, has been cured with novolac-type phenolic resin. Evokin resin is used.

ところか近年、集積回路の高集積化に伴いチップかたん
たん大型化し、かつパッケージは従来のDIPタイプか
ら表面実装化された小型、薄型のフラットパッケージ、
5OPSSOJ、PLCCに変わってきている。
However, in recent years, as integrated circuits have become more highly integrated, chips have become larger and larger, and packages have changed from the conventional DIP type to surface-mounted smaller, thinner flat packages.
5OPSSOJ is changing to PLCC.

即ち大型チップを小型て薄いパッケージに封入すること
により、応力によりクラック発生、これらのクラックに
よる耐湿性の低下等の問題か大きくクローズアップされ
てきている。
That is, when a large chip is enclosed in a small and thin package, problems such as the occurrence of cracks due to stress and a decrease in moisture resistance due to these cracks are attracting attention.

特に耐熱衝撃性と半田耐熱性の2点をクリアーてきる封
止樹脂か必要とされている。
In particular, there is a need for a sealing resin that meets two requirements: thermal shock resistance and soldering heat resistance.

耐熱衝撃性の向上に対しては、シリコーンオイル、シリ
コーンゴム等のシリコーン化合物や合成ゴム等の添加か
行われてきた。しかしこれらの添加は、成形時の型汚れ
、樹脂パリの発生等不都合な現象か生しるため、シリコ
ーンとエポキシ樹脂又は硬化剤とを反応させたシリコー
ン変性レジンが開発されてきた。(例えば特開昭58−
21417号公報)。現在の封止樹脂は、この活用によ
りかなり耐熱衝撃性か向上している。しかし、これらは
マトリック樹脂中に低弾性率ドメインを導入して全体を
低弾性率化しようとする手法であるかドメンとマトリッ
クスとの接着性に問題かあり、弾性率と同時に強度も低
下してしまう等、いまだ十分てはないし、しかも半田耐
熱性か低下する傾向があり問題となっている。そこで、
上記のような低応力賦与剤を添加せずにマトリックス樹
脂そのものの耐熱衝撃性を向上する必要かでてくる。
In order to improve thermal shock resistance, silicone compounds such as silicone oil and silicone rubber, and synthetic rubbers have been added. However, since these additions cause inconvenient phenomena such as mold staining during molding and generation of resin flakes, silicone-modified resins have been developed in which silicone is reacted with epoxy resins or curing agents. (For example, JP-A-58-
21417). Current sealing resins have considerably improved thermal shock resistance through the use of this technology. However, these methods either introduce a low elastic modulus domain into the matrix resin to lower the overall elastic modulus, or there is a problem with the adhesion between the domain and the matrix, resulting in a decrease in elastic modulus and strength. It is still insufficient, and the soldering heat resistance tends to decrease, which is a problem. Therefore,
It becomes necessary to improve the thermal shock resistance of the matrix resin itself without adding the above-mentioned low stress imparting agent.

半田耐熱性の向上に対しては、ポリイミド樹脂やフィラ
ーの検討および3官能樹脂の活用(例えば特開昭6l−
16862Cj号公報)か有望とされているか、いずれ
も耐熱衝撃性に劣り、しかも樹脂組成物粘度か増加する
ことによるダイパッドシフト等の不良かおきやすく、こ
れらの手法の単独使用ではバランスのとれた樹脂組成物
系を得ることは難しい。
To improve soldering heat resistance, we investigated polyimide resins and fillers, and utilized trifunctional resins (e.g.,
16862Cj Publication) is considered promising, but both have poor thermal shock resistance and are prone to defects such as die pad shift due to increased resin composition viscosity. Composition systems are difficult to obtain.

そこで樹脂の架橋点間距離、主鎖構造等の組成構造を自
在に変化させ諸物性のバランスをとりつつ半田耐熱性を
向上する方法か有効であると考えられる。
Therefore, it is thought that an effective method is to freely change the compositional structure such as the distance between crosslinking points and the main chain structure of the resin to balance various physical properties while improving the soldering heat resistance.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

耐熱衝撃性、半田耐熱性、低粘度性および成形性のいず
れも優れた半導体封止用エポキシ樹脂組成物を提供する
ことにある。
The object of the present invention is to provide an epoxy resin composition for semiconductor encapsulation that has excellent thermal shock resistance, soldering heat resistance, low viscosity, and moldability.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らはこれらの問題を解決するために鋭意研究を
進め、つきの組成を持つ樹脂組成物を見い出した。
The present inventors conducted extensive research to solve these problems and discovered a resin composition having the following composition.

(A)エポキシ基を分子内に2ケ含有する2官能工ポキ
シ化合物 (B)フェノール性水酸基を分子内に2ケ含有する2官
能フェノール系化合物 (C)エポキシ基を分子内に3ケ以上 含有する多官能
エボキン化合物 (D)硬化促進剤および (E)無機充填材 を必須成分とし、(B)と(C)の配合割合か(C)/
(B)+ (C)= 25〜75重量%とした組成物を
用いることにより耐熱衝撃性、半田耐熱性、低粘度性、
さらに成形性にも優れた半導体封止用樹脂組成物か得ら
れることを見い出して本願発明を完成するに至ったもの
である。
(A) Bifunctional phenolic compound containing two epoxy groups in the molecule (B) Bifunctional phenol compound containing two phenolic hydroxyl groups in the molecule (C) Containing three or more epoxy groups in the molecule A polyfunctional Evoquin compound containing (D) a curing accelerator and (E) an inorganic filler as essential components, and a blending ratio of (B) and (C) or (C)/
By using a composition in which (B) + (C) = 25 to 75% by weight, thermal shock resistance, soldering heat resistance, low viscosity,
Furthermore, the present invention was completed by discovering that a resin composition for semiconductor encapsulation having excellent moldability can be obtained.

〔作  用〕[For production]

本発明において用いられるエポキシ基を分子内に2ケ含
有する2官能工ポキシ化合物としては2官能フェノール
系化合物である4、4′−ジヒドロキンジフェニルメタ
ン、4.4′−ジヒドロキシジフェニルプロパン、4,
4′−ジビフェノール、3.3’、5.5’−テトラメ
チル−4,4′−ジビフェノール、1,6−シヒドロキ
ンナフタレン、ンクロヘキシリデンヒスフェノールA、
3.3′−ジアリル−4,4′〜ノヒトロキンメタン、
カテコール、レゾルノン、ハイドロキノン等をジグリン
ジルエーテル化したものの他にブロム化ヒスフェノール
A型エポキン樹脂、脂環式エポキノ化合物か挙げられる
The bifunctional poxy compounds containing two epoxy groups in the molecule used in the present invention include bifunctional phenolic compounds such as 4,4'-dihydroquine diphenylmethane, 4,4'-dihydroxydiphenylpropane, 4,4'-dihydroxydiphenylpropane, and
4'-dibiphenol, 3.3', 5.5'-tetramethyl-4,4'-dibiphenol, 1,6-cyhydroquinaphthalene, cyclohexylidenehisphenol A,
3.3'-diallyl-4,4'-nohytroquinemethane,
In addition to diglyndyl ethers of catechol, resolnones, hydroquinone, etc., brominated hisphenol A type epochine resins and alicyclic epochino compounds may be mentioned.

これらのものは単独又は2種以上を併用してもよい。These materials may be used alone or in combination of two or more.

フェノール性水酸基を分子内に2ケ含有する2官能フェ
ノール系化合物は上述のフェノール系化合物の他に、フ
ェノール性水酸基を1ケ有するモノマー、又はオリゴマ
ーとホルムアルデヒド、又はサリチルアルデヒド等のア
ルデヒド類と、又は必要により各種芳香環、脂肪環を有
する化合物を加えて、仕込比や反応条件を調節してフェ
ノール性水酸基か分子内に2ケのみ含有されるように調
整された共縮合物等が挙げられる。これらのものは単独
又は2種以上を併用してもよい。
Bifunctional phenolic compounds containing two phenolic hydroxyl groups in the molecule include, in addition to the above-mentioned phenolic compounds, monomers or oligomers containing one phenolic hydroxyl group and aldehydes such as formaldehyde or salicylaldehyde, or Examples include cocondensates prepared by adding compounds having various aromatic rings or alicyclic rings as necessary and adjusting the charging ratio and reaction conditions so that only two phenolic hydroxyl groups are contained in the molecule. These materials may be used alone or in combination of two or more.

これらの2官能エポキシ化合物及び2官能フェノール化
合物は成形温度(165〜185°C)に於いて、数セ
ンチボイズという低粘度を示すものか多く、樹脂組成物
の粘度を著しく低下させることか可能であり、成形時に
は高流動性を賦与し、更にICパノケーノではリードフ
レーム、チップ、アイランド界面で高濡れ性、高密着性
を与え耐半田クラック性か向上する。又、無機充填剤の
含有量を大幅に増加することか可能なため、熱時強度、
耐熱衝撃性、耐半田クラック性か更に向上する。
These difunctional epoxy compounds and difunctional phenol compounds often exhibit a low viscosity of several centimeters at the molding temperature (165 to 185°C), and are capable of significantly lowering the viscosity of the resin composition. It provides high fluidity during molding, and also provides high wettability and high adhesion at the interface between the lead frame, chip, and island in IC panocheno, improving solder crack resistance. In addition, since it is possible to significantly increase the content of inorganic fillers, the heat strength and
Thermal shock resistance and solder crack resistance are further improved.

本発明に用いられるエポキン基を分子内に3ヶ以上含有
する多官能エポキシ化合物としては例えば多官能フェノ
ール系化合物であるフェノールノボラック、オルソクレ
ゾールノホラック、トリス(ビトロキンアルキルフェニ
ル)メタン等の他にフェノール性水酸基を有するモノマ
ー、又はオリゴマー、前記した2官能性フェノール化合
物とホルムアルデヒド、又はサリチルアルデヒド等のア
ルデヒド類と、又は必要により各種芳香環、脂脂環を有
する化合物を加え反応させた共縮合物等をグリシジルエ
ーテル化したもの、多官能脂環式エポキシ化合物か挙げ
られる。
Examples of the polyfunctional epoxy compound containing three or more epoxy groups in the molecule used in the present invention include polyfunctional phenolic compounds such as phenol novolac, orthocresol novolac, and tris(vitroquine alkylphenyl)methane. Monomers or oligomers having a phenolic hydroxyl group, cocondensates made by reacting the bifunctional phenol compound described above with aldehydes such as formaldehyde or salicylaldehyde, or, if necessary, with compounds having various aromatic rings or alialicyclic rings. and polyfunctional alicyclic epoxy compounds.

これらのものは単独又は2種以上併用してもよい。These compounds may be used alone or in combination of two or more.

この多官能エポキシ化合物は2官能工ポキン化合物、2
官能フェノール系化合物との3次元架橋をもたらすもの
である。
This polyfunctional epoxy compound is a difunctional poquin compound, 2
It brings about three-dimensional crosslinking with a functional phenolic compound.

2官能間士のエポキシ化合物/フェノール化合物では通
常の反応では直線状高分子量体しか生成しないか、多官
能エポキシ化合物を添加することにより3次元的に架橋
点を生成し、熱硬化高分子量体を生成する。更に、この
多官能フェノール系化合物の配合量を調節することによ
り硬化特性、架橋密度、架橋点間距離の調節か自在であ
り流動性、硬化性等の作業性、強度、弾性率、靭性等の
硬化物特性を望み通りに調節可能である。
With bifunctional epoxy compounds/phenol compounds, only linear polymers are produced in normal reactions, or by adding polyfunctional epoxy compounds, crosslinking points are generated three-dimensionally to form thermosetting polymers. generate. Furthermore, by adjusting the blending amount of this polyfunctional phenolic compound, it is possible to freely adjust the curing characteristics, crosslinking density, and distance between crosslinking points, and it is possible to freely adjust the curing characteristics, crosslinking density, and distance between crosslinking points. Cured product properties can be adjusted as desired.

これら多官能エポキシ化合物の配合割合は(多官能エポ
キシ化合物)/(2官能工ポンキ化合物÷多官能エボキ
ン化合物)で25〜75重量%か適切であり、25重量
%未満たと硬化性か大幅に劣り、又熱時諸物性も非常に
低下する。75重量%を超えると架橋点間距離の延長効
果か低下し低弾性効果と強靭性化か得られず好ましくな
い。
The blending ratio of these polyfunctional epoxy compounds is (polyfunctional epoxy compound)/(bifunctional polyfunctional epoxy compound ÷ polyfunctional epoxy compound), which is 25 to 75% by weight, which is appropriate.If it is less than 25% by weight, the curability will be significantly inferior. Also, various physical properties when heated are greatly reduced. If it exceeds 75% by weight, the effect of extending the distance between crosslinking points will decrease, and the effect of lowering elasticity and increasing toughness will not be obtained, which is not preferable.

エポキシ化合物とフェノール系化合物の配合割合は当量
比で0.7〜1.3の範囲か好ましい。
The mixing ratio of the epoxy compound and the phenol compound is preferably in the range of 0.7 to 1.3 in terms of equivalent ratio.

本発明で用いられる無機充填材としては結晶性シリカ、
溶融シリカ、アルミナ、炭酸カルシウム、タルク、マイ
カ、ガラス繊維等が挙げられ、これらは1種又は2種以
上混合して使用される。これらの中で特に結晶性ソリ力
または溶融シリカか好適に用いられる。
Inorganic fillers used in the present invention include crystalline silica,
Examples include fused silica, alumina, calcium carbonate, talc, mica, glass fiber, etc., and these may be used alone or in combination of two or more. Among these, crystalline silica or fused silica is particularly preferably used.

また、本発明に使用される硬化促進剤はエポキン基とフ
ェノール性水酸基との反応を促進するもてあれば良く、
一般に封止用材料に使用されているものを広く使用する
ことかでき、例えばBDM八等の第3級アミン類、イミ
ダゾール類、1.8−ジアザビシクロ〔5,4,0〕ウ
ンデセン−7、トリフェニルホスフィン等の有機リン化
合物等か単独もしくは2種以上混合して用いられる。
Further, the curing accelerator used in the present invention only needs to be one that promotes the reaction between the Epoquine group and the phenolic hydroxyl group.
A wide range of materials commonly used for sealing can be used, such as tertiary amines such as BDM 8, imidazoles, 1,8-diazabicyclo[5,4,0]undecene-7, Organic phosphorus compounds such as phenylphosphine can be used alone or in combination of two or more.

その他必要に応してワックス類等の離型剤、ヘキサブロ
ムペンセン、デカブロムビフェニルエーテル、三酸化ア
ンチモン等の!#燃剤、カーボンブラック、ベンガラ等
の着色剤、シランカップリング剤その地熱可塑性樹脂等
を適宜添加配合することかできる。
If necessary, mold release agents such as waxes, hexabromo pentene, decabromo biphenyl ether, antimony trioxide, etc. #Fuel agent, coloring agent such as carbon black, red iron oxide, silane coupling agent, geothermal plastic resin, etc. may be added and blended as appropriate.

本発明の半導体封止用エポキシ樹脂組成物を製造するに
は一般的な方法としては、所定の配合比の原料をミキサ
ー等によって十分に混合した後、更にロールやニーダ−
等により溶融混線処理し、次いて冷却固化させて適当な
大きさに粉砕することにより容易に製造することか出来
る。
The general method for producing the epoxy resin composition for semiconductor encapsulation of the present invention is to thoroughly mix raw materials in a predetermined blending ratio using a mixer, etc., and then further mix them using a roll or kneader.
It can be easily produced by carrying out a melt mixing treatment using a method such as the above, followed by cooling and solidifying the powder and pulverizing it to an appropriate size.

〔実施例〕〔Example〕

以下、本発明を実施例で示す。 The present invention will be illustrated below with examples.

実施例1〜6.比較例1.2 第1表に示したそれぞれの配合割合の組成物を常温にて
十分に混合し、更に95〜100℃で2軸ロールにより
混練し、冷却後粉砕して成形材料とし、これをタブレッ
ト化して半導体封止用エポキシ樹脂組成物を得た。
Examples 1-6. Comparative Example 1.2 The compositions having the respective compounding ratios shown in Table 1 were thoroughly mixed at room temperature, further kneaded at 95 to 100°C with a twin-screw roll, cooled and crushed to obtain a molding material. was tableted to obtain an epoxy resin composition for semiconductor encapsulation.

この材料をトランスファー成形機(成形条件二金型温度
175°C1硬化時間2分)を用いて成形し、得られた
成形品を175℃、8時間て後硬化し評価した。結果を
第1表に示す。
This material was molded using a transfer molding machine (molding conditions: 2 mold temperatures: 175° C., 1 curing time: 2 minutes), and the resulting molded products were post-cured at 175° C. for 8 hours and evaluated. The results are shown in Table 1.

評価方法 ※1.スパイラルフロー FMM4−1−66に準じたスパイラルフロー測定用金
型を用い、試料を20g、成形温度175℃、成形圧カ
フ、0MPa、成形時間2分て成形した時の成形品の長
さ。
Evaluation method *1. Length of a molded product when 20 g of sample was molded using a spiral flow measurement mold according to Spiral Flow FMM4-1-66 at a molding temperature of 175°C, a molding pressure cuff of 0 MPa, and a molding time of 2 minutes.

※2.高化式フロー粘度 175℃時の高化式フロー粘度(ボイズ)※3.耐熱衝
撃性試験 成形品(チップサイズ36InIn2、パッケージ厚2
.05mm1後硬化175°Cl8Hrs)20個を温
度サイクルのテスト(+ 150°C〜−196℃)に
かけ、500サイクルのテストを行ないクラックの発生
した個数を示す。
*2. Koka type flow viscosity Koka type flow viscosity at 175℃ (voids) *3. Thermal shock resistance test molded product (chip size 36InIn2, package thickness 2
.. A temperature cycle test (+150°C to -196°C) was performed on 20 pieces of 05 mm 1 post-cured 175°Cl8Hrs), and the number of cracks generated after 500 cycles was shown.

※4.半田耐熱性試験 成形品(チップサイズ36tun2、パッケージ厚2.
05叩)20個について85℃、85%RHの水蒸気下
で72時間処理後、240℃の半田槽に10秒間浸漬し
、クラックの発生した成形品の個数を示す。
*4. Solder heat resistance test molded product (chip size 36tun2, package thickness 2.
After treating 20 molded products under steam at 85°C and 85% RH for 72 hours, they were immersed in a solder bath at 240°C for 10 seconds, and the number of molded products with cracks is shown.

※5.ンヨア尋硬度 175℃で成形し、離型後10秒後に測定。*5. hardness Molded at 175°C and measured 10 seconds after release from the mold.

〔発明の効果〕〔Effect of the invention〕

本発明の2官能工ポキシ化合物、2官能フェノール系化
合物、多官能エボキン化合物、無機充填剤および硬化促
進剤を必須成分とする半導体封止用樹脂組成物は耐熱衝
撃性と半田耐熱性に極めて優れ、低粘度であり、このた
め金線変形性おび充填性に優れ、さらに成形加工性(樹
脂)くり)にも優れ、極めてバランスのとれた樹脂組成
物であるため高集積度IC封止用樹脂組成物として非常
に信頼性の高いものである。
The semiconductor encapsulating resin composition of the present invention, which contains a bifunctional poxy compound, a bifunctional phenolic compound, a polyfunctional evoquin compound, an inorganic filler, and a curing accelerator as essential components, has extremely excellent thermal shock resistance and soldering heat resistance. , has low viscosity, has excellent gold wire deformability and filling properties, and is also excellent in molding processability (resin processing), and is an extremely well-balanced resin composition, making it an excellent resin for high-integration IC encapsulation. The composition is extremely reliable.

Claims (1)

【特許請求の範囲】[Claims] (1)(A)エポキシ基を分子内に2ヶ含有する2官能
エポキシ化合物 (B)フェノール性水酸基を分子内に2ヶ含有する2官
能フェノール系化合物 (C)エポキシ基を分子内に3ヶ以上含有する多官能エ
ポキシ化合物 (D)硬化促進剤および (E)無機充填材 を必須成分とし、(A)と(C)の配合割合か(C)/
(A)+(C)=25〜75重量%であることを特徴と
する半導体封止用エポキシ樹脂組成物。
(1) (A) Bifunctional epoxy compound containing two epoxy groups in the molecule (B) Bifunctional phenolic compound containing two phenolic hydroxyl groups in the molecule (C) Three epoxy groups in the molecule The polyfunctional epoxy compound containing the above (D) curing accelerator and (E) inorganic filler are essential components, and the blending ratio of (A) and (C) is (C)/
An epoxy resin composition for semiconductor encapsulation, characterized in that (A)+(C)=25 to 75% by weight.
JP32124990A 1990-11-27 1990-11-27 Resin composition Pending JPH04198211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32124990A JPH04198211A (en) 1990-11-27 1990-11-27 Resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32124990A JPH04198211A (en) 1990-11-27 1990-11-27 Resin composition

Publications (1)

Publication Number Publication Date
JPH04198211A true JPH04198211A (en) 1992-07-17

Family

ID=18130474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32124990A Pending JPH04198211A (en) 1990-11-27 1990-11-27 Resin composition

Country Status (1)

Country Link
JP (1) JPH04198211A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994029363A1 (en) * 1993-06-08 1994-12-22 Nippon Steel Chemical Co., Ltd. Epoxy resin composition
WO1996004329A1 (en) * 1994-08-04 1996-02-15 Hokuriku Toryo Kabushiki Kaisya Flowable sealing resin composition
US5834570A (en) * 1993-06-08 1998-11-10 Nippon Steel Chemical Co., Ltd. Epoxy resin composition
US6255409B1 (en) 1998-03-13 2001-07-03 Sumitomo Chemical Co., Ltd. Epoxy resin composition and resin-encapsulated semiconductor device
JP2009173728A (en) * 2008-01-23 2009-08-06 Nippon Steel Chem Co Ltd Epoxy resin composition and cured product

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994029363A1 (en) * 1993-06-08 1994-12-22 Nippon Steel Chemical Co., Ltd. Epoxy resin composition
US5834570A (en) * 1993-06-08 1998-11-10 Nippon Steel Chemical Co., Ltd. Epoxy resin composition
WO1996004329A1 (en) * 1994-08-04 1996-02-15 Hokuriku Toryo Kabushiki Kaisya Flowable sealing resin composition
US6255409B1 (en) 1998-03-13 2001-07-03 Sumitomo Chemical Co., Ltd. Epoxy resin composition and resin-encapsulated semiconductor device
JP2009173728A (en) * 2008-01-23 2009-08-06 Nippon Steel Chem Co Ltd Epoxy resin composition and cured product

Similar Documents

Publication Publication Date Title
KR101081619B1 (en) Epoxy resin composition and semiconductor device
JPH04198211A (en) Resin composition
JP2004307545A (en) Epoxy resin composition and sealed semiconductor device
JP2933705B2 (en) Resin composition
JP3008983B2 (en) Resin composition
JP2933706B2 (en) Resin composition for semiconductor encapsulation
JPH09235353A (en) Resin composition for semiconductor sealing use
JPH02147619A (en) Epoxy resin composition
JPH03195725A (en) Resin composition
JP2002194064A (en) Resin composition for encapsulating semiconductor and semiconductor device using the same
JP2744500B2 (en) Resin composition
JP2823634B2 (en) Resin composition
JPH02155915A (en) Epoxy resin composition
JP2823658B2 (en) Resin composition
JPH0582675A (en) Semiconductor device
JP2004256648A (en) Epoxy resin composition and sealed semiconductor device
JPH04224859A (en) Resin composition
JP2986900B2 (en) Resin composition
JPH05105739A (en) Resin composition for sealing semiconductor
JPH02274719A (en) Resin composition
JP3279084B2 (en) Epoxy resin composition for sealing
JPH0379623A (en) Epoxy resin composition
JPH04277518A (en) Thermosetting resin composition and its cured product
JPH03718A (en) Resin composition
JPH0952939A (en) Epoxy resin composition