JPH0212674B2 - - Google Patents
Info
- Publication number
- JPH0212674B2 JPH0212674B2 JP56198056A JP19805681A JPH0212674B2 JP H0212674 B2 JPH0212674 B2 JP H0212674B2 JP 56198056 A JP56198056 A JP 56198056A JP 19805681 A JP19805681 A JP 19805681A JP H0212674 B2 JPH0212674 B2 JP H0212674B2
- Authority
- JP
- Japan
- Prior art keywords
- welding
- wedge shape
- apex
- electric resistance
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000003466 welding Methods 0.000 claims description 130
- 238000000034 method Methods 0.000 claims description 23
- 238000009826 distribution Methods 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 10
- 239000007789 gas Substances 0.000 description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K28/00—Welding or cutting not covered by any of the preceding groups, e.g. electrolytic welding
- B23K28/02—Combined welding or cutting procedures or apparatus
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
Description
本発明は電気エネルギによつて生ずるジユール
熱によつて物体を溶接する電気抵抗溶接法に関す
る。 物体を溶接することは広範囲な分野で必要とさ
れる技術で各種の方法が用いられているが、その
中で電気抵抗溶接法は最もよく使われている技術
の1つである。例えば溶接管の製造分野において
は、一般に電縫管と呼ばれる管の溶接速度の速
い、即ち生産性の高い溶接法として用いられてい
る。 電縫管の製造方法、例えば従来の高周波接触溶
接法による溶接造管工程の1例を第1図により説
明する。 まず図には示していない成形ロール群によつて
管状に成形された鋼帯(以下管状体という)1の
エツジ部2はスクイズロール3によつて突合わせ
られ衝合部を頂点とするクサビ形状を呈する。ス
クイズロール3の上流に配設された接触子4,4
には高周波電圧が印加され、1つの接触子4から
他の接触子4への高周波電流回路がクサビ形状を
なすエツジ部2に沿つて形成される。この高周波
電流によつてエツジ部2が加熱されクサビ形状の
頂点すなわち溶接点において溶接温度に達しスク
イズロール3により加圧溶接される。 電縫管の溶接品質には溶接電力の大小が大きく
影響する。例えば溶接電力が過少であればエツジ
部2は低入熱状態となり冷接と呼ばれる溶接欠陥
が発生する。溶接電力が過大になりエツジ部2が
高入熱状態となるとペネトレータと呼ばれる溶接
欠陥が発生する場合がある。低入熱造管で発生す
る冷接はエツジ部2の加熱不足が主原因であり、
高入熱造管で発生するペネトレータはエツジ部2
が溶融し溶融金属が電磁力によつて溶接面から排
出されるために溶接点が管軸方向に周期的位置変
動を繰返すことが主原因である。 一般に電縫溶接造管に用いる高周波電力として
は10〜500kHzの周波数帯が用いられ、高周波特
有の「表皮効果」と「近接効果」の2つの現象の
相乗効果により周波数が高くなるほど電気的溶接
効率は大きくなる。これが電縫溶接造管に広く高
周波電力が用いられる理由である。 ところが、この高周波特有の現象は第2図に示
す如きエツジ部2の肉厚方向の温度不均一をもた
らす。即ちエツジ部2のコーナ部21の高周波電
流密度が肉厚中央部22の高周波電流密度より高
くなり肉厚方向で温度不均一となる。 このエツジ部2の肉厚方向の温度不均一は肉厚
が厚くなるほど(例えば電縫造管においては6mm
以上)助長される傾向にある。この肉厚方向の温
度不均一が助長されると溶接点に至つても溶接温
度に達しない低入熱部分が生じ冷接の原因とな
る。この冷接の発生を防止するために接触子4へ
の印加電圧をあげ溶接電力を大きくするとコーナ
部21が過入熱状態になりペネトレータなどの溶
接欠陥が発生する場合がある。従つて電縫溶接造
管においては肉厚になるほど無欠陥溶接は困難と
なる。 これらの現象はストレートシームの電縫管に限
らずスパイラル管やIビームなどの形鋼の電気抵
抗溶接においても見られる。 一方溶接時の熱影響が少なく優れた溶接品質が
得られる溶接法としてレーザ、電子ビームなどの
エネルギビームを用いる溶接法があり、特開昭56
−114590においてこれらエネルギビームを溶接さ
れるべきクサビ形状の頂点すなわち溶接点に投射
する溶接法が提案されている。この方法によれば
従来の突合せ面上からエネルギビームを投射する
方法にくらべ熱影響の極めて少ない、従つてエネ
ルギ効率の良い溶接が行える。 しかしこれらエネルギビームを用いる溶接法は
例えばレーザ溶接では大出力溶接機がないことか
ら電気抵抗溶接のような高速溶接が出来ず、従つ
て電気抵抗溶接にくらべ生産性が低く、電子ビー
ム溶接では真空中で溶接する必要があるなどの制
約があり、主として溶接時の熱影響を避ける場合
や難溶接材料の溶接など特殊用途に用いられてい
る。 本発明は溶接品質が優れて且つ高能率のエネル
ギビーム併用電気抵抗溶接方法を提供することを
目的とする。 本発明は、相向い合う溶接面が漸近し溶接点を
頂点とするクサビ形状をなす被溶接物へ電気エネ
ルギを供給しクサビ形状の頂点を溶接温度まで加
熱し溶接する電気抵抗溶接法において、該溶接法
に併用して溶接面がなすクサビ形状の開放側から
頂点方向へ肉厚方向の温度分布が均一となるよう
にエネルギビームを投射して溶接することを特徴
とするエネルギビーム併用電気抵抗溶接法であ
る。 以下本発明の構成を図面により詳細に説明す
る。 第3図は電縫管の溶接における本発明の実施例
を示す図である。 管状体1のエツジ部2は接触子4から供給され
る高周波電力によつて発生するジユール熱および
レーザ照射装置5から照射されるレーザビームに
よつて全肉厚範囲に亘つて溶接温度に均一的に加
熱される。 即ち1つの接触子4から溶接点を通り他の接触
子4に達する高周波電流によつてエツジ部2が加
熱されそのコーナ部21は溶接点において溶接温
度に達する。このとき肉厚中央部22は加熱はさ
れているが溶接温度には達しておらず低入熱状態
であり、従来の電縫溶接造管においては冷接とな
る状態にある。 レーザ照射装置5から照射されるレーザビーム
は既知の手段であるミラー6,7,8,9を用い
てエツジ部2,2が形成するクサビ形状の開放側
から溶接点に矢印Fで示されるように照射され
る。このときレーザビームの強度、および溶接点
での光学的吸収が溶接品質および溶接熱効率に影
響する。レーザビームの形状は第4図a,b,c
に示すようなブロードフオーカスビーム、シヤー
プフオーカスビーム、ラインフオーカスビームの
いずれでもよくa,cの場合はレーザビームは高
周波電流による加熱で低入熱となつている肉厚中
央部22をカバーする大きさになつているが、b
の場合は例えばミラー7を振動させることにより
レーザビームを肉厚方向に走査させ、その振動振
幅が高周波電流の加熱で低入熱状態となつている
肉厚中央部22をカバーするようにすることが必
要である。これにより全肉厚範囲において溶接温
度に均一的に加熱できる。 第5図に示す例は第3図の構成においてクサビ
形状の頂点の直前の空隙へ、ヘリウム、アルゴ
ン、チツソなどのガスを供給する手段を附加した
他の実施例である。クサビ形状の頂点の直前の空
隙へアルゴンなどの電離しやすいガスを供給する
ことによりクサビ形状の頂点の直前の空隙にプラ
ズマが発生する。これはクサビ形状の頂点の直前
の空隙に供給された電離し易いガスが、クサビ形
状の頂点へ収束してくるレーザビームによつて、
クサビ形状の頂点の直前で電離し、プラズマが発
生するのである。このプラズマはレーザビームの
反射を防止すると同時にプラズマそのものが溶接
点の加熱に寄与するのでレーザビーム単独の加熱
よりも効率よく且つ均一な加熱が行える。 第6図は更に本発明の他の実施例を示すもので
ある。 この例では高周波電力およびレーザビームの出
力を一定とした場合に管状体1のエツジ部2の温
度を変動させる要因、すなわち溶接入熱変動要因
として管状体1の肉圧を板厚計11で、管状体1
の移動速度を速度計12で測定し、又管状体1の
エツジ部2に与えられた加熱エネルギの結果とし
ての溶接直後の温度を温度計13で測定し、得ら
れたそれぞれの信号を演算制御装置14へ送る。
演算制御装置14は送られたこれらの信号と既知
のデータを加え管状体1のエツジ部2の温度が溶
接点において溶接温度に達するよう高周波電力と
レーザビームの出力を制御する。 次に本発明の作用、効果を説明する。 本発明においては電気抵抗溶接とエネルギビー
ムを併用するために高周波電力による加熱はその
高周波特有の現象を利用することにより特に溶接
面のコーナ部を溶接温度まで効率よく加熱し、エ
ネルギビームは溶接面の中央部を溶接温度まで加
熱する。従つて溶接面は過入熱状態とはならない
ので溶接点が管軸方向に移動することがないため
ペネトレータは発生せず、又高周波電力だけでは
加熱が不充分な溶接面の中央部も溶接に必要な加
熱を受けるため全溶接面に亘つて溶接温度に達し
冷接も発生せず常に安定して高品質の溶接が行え
る。 また、本発明においては、溶接点の直前の空隙
へ電離し易いガスを供給することにより、このガ
スが溶接点へ収束してくるエネルギビームのエネ
ルギによつて電離し、プラズマを発生させる。こ
のプラズマが溶接点の加熱に寄与するとともに、
エネルギビームの溶接点への収束を助長するとい
う、レーザビームとプラズマの相互作用によつて
溶接点が効率よく均一に加熱される。 又第4図a,cに示すような形状のエネルギビ
ームは第4図bに示す形状のエネルギビームより
もエネルギ密度が低いため通常の平面にエネルギ
ビームを照射する場合には加熱効率が著しく低下
するが、本発明においてはクサビ形状の開放側か
ら頂点方向にエネルギビームを投射することによ
り溶接点は恰も光学的な黒体のように作用し、す
なわちエネルギビームは反射しながら溶接点に収
束してゆくので溶接点でのエネルギ吸収率は著し
く向上するので加熱効率も向上する。 更に溶接入熱の変動要因となる因子を測定しこ
の信号と結果としての溶接後の温度を測定して得
た信号を既知のデータと併せて演算し高周波電力
および又はエネルギビームの出力を制御すること
により常に安定して優れた溶接品質が得られる。 本発明の効果を実施例により従来法と比較して
説明する。 実施内容は第1表の如くである。
熱によつて物体を溶接する電気抵抗溶接法に関す
る。 物体を溶接することは広範囲な分野で必要とさ
れる技術で各種の方法が用いられているが、その
中で電気抵抗溶接法は最もよく使われている技術
の1つである。例えば溶接管の製造分野において
は、一般に電縫管と呼ばれる管の溶接速度の速
い、即ち生産性の高い溶接法として用いられてい
る。 電縫管の製造方法、例えば従来の高周波接触溶
接法による溶接造管工程の1例を第1図により説
明する。 まず図には示していない成形ロール群によつて
管状に成形された鋼帯(以下管状体という)1の
エツジ部2はスクイズロール3によつて突合わせ
られ衝合部を頂点とするクサビ形状を呈する。ス
クイズロール3の上流に配設された接触子4,4
には高周波電圧が印加され、1つの接触子4から
他の接触子4への高周波電流回路がクサビ形状を
なすエツジ部2に沿つて形成される。この高周波
電流によつてエツジ部2が加熱されクサビ形状の
頂点すなわち溶接点において溶接温度に達しスク
イズロール3により加圧溶接される。 電縫管の溶接品質には溶接電力の大小が大きく
影響する。例えば溶接電力が過少であればエツジ
部2は低入熱状態となり冷接と呼ばれる溶接欠陥
が発生する。溶接電力が過大になりエツジ部2が
高入熱状態となるとペネトレータと呼ばれる溶接
欠陥が発生する場合がある。低入熱造管で発生す
る冷接はエツジ部2の加熱不足が主原因であり、
高入熱造管で発生するペネトレータはエツジ部2
が溶融し溶融金属が電磁力によつて溶接面から排
出されるために溶接点が管軸方向に周期的位置変
動を繰返すことが主原因である。 一般に電縫溶接造管に用いる高周波電力として
は10〜500kHzの周波数帯が用いられ、高周波特
有の「表皮効果」と「近接効果」の2つの現象の
相乗効果により周波数が高くなるほど電気的溶接
効率は大きくなる。これが電縫溶接造管に広く高
周波電力が用いられる理由である。 ところが、この高周波特有の現象は第2図に示
す如きエツジ部2の肉厚方向の温度不均一をもた
らす。即ちエツジ部2のコーナ部21の高周波電
流密度が肉厚中央部22の高周波電流密度より高
くなり肉厚方向で温度不均一となる。 このエツジ部2の肉厚方向の温度不均一は肉厚
が厚くなるほど(例えば電縫造管においては6mm
以上)助長される傾向にある。この肉厚方向の温
度不均一が助長されると溶接点に至つても溶接温
度に達しない低入熱部分が生じ冷接の原因とな
る。この冷接の発生を防止するために接触子4へ
の印加電圧をあげ溶接電力を大きくするとコーナ
部21が過入熱状態になりペネトレータなどの溶
接欠陥が発生する場合がある。従つて電縫溶接造
管においては肉厚になるほど無欠陥溶接は困難と
なる。 これらの現象はストレートシームの電縫管に限
らずスパイラル管やIビームなどの形鋼の電気抵
抗溶接においても見られる。 一方溶接時の熱影響が少なく優れた溶接品質が
得られる溶接法としてレーザ、電子ビームなどの
エネルギビームを用いる溶接法があり、特開昭56
−114590においてこれらエネルギビームを溶接さ
れるべきクサビ形状の頂点すなわち溶接点に投射
する溶接法が提案されている。この方法によれば
従来の突合せ面上からエネルギビームを投射する
方法にくらべ熱影響の極めて少ない、従つてエネ
ルギ効率の良い溶接が行える。 しかしこれらエネルギビームを用いる溶接法は
例えばレーザ溶接では大出力溶接機がないことか
ら電気抵抗溶接のような高速溶接が出来ず、従つ
て電気抵抗溶接にくらべ生産性が低く、電子ビー
ム溶接では真空中で溶接する必要があるなどの制
約があり、主として溶接時の熱影響を避ける場合
や難溶接材料の溶接など特殊用途に用いられてい
る。 本発明は溶接品質が優れて且つ高能率のエネル
ギビーム併用電気抵抗溶接方法を提供することを
目的とする。 本発明は、相向い合う溶接面が漸近し溶接点を
頂点とするクサビ形状をなす被溶接物へ電気エネ
ルギを供給しクサビ形状の頂点を溶接温度まで加
熱し溶接する電気抵抗溶接法において、該溶接法
に併用して溶接面がなすクサビ形状の開放側から
頂点方向へ肉厚方向の温度分布が均一となるよう
にエネルギビームを投射して溶接することを特徴
とするエネルギビーム併用電気抵抗溶接法であ
る。 以下本発明の構成を図面により詳細に説明す
る。 第3図は電縫管の溶接における本発明の実施例
を示す図である。 管状体1のエツジ部2は接触子4から供給され
る高周波電力によつて発生するジユール熱および
レーザ照射装置5から照射されるレーザビームに
よつて全肉厚範囲に亘つて溶接温度に均一的に加
熱される。 即ち1つの接触子4から溶接点を通り他の接触
子4に達する高周波電流によつてエツジ部2が加
熱されそのコーナ部21は溶接点において溶接温
度に達する。このとき肉厚中央部22は加熱はさ
れているが溶接温度には達しておらず低入熱状態
であり、従来の電縫溶接造管においては冷接とな
る状態にある。 レーザ照射装置5から照射されるレーザビーム
は既知の手段であるミラー6,7,8,9を用い
てエツジ部2,2が形成するクサビ形状の開放側
から溶接点に矢印Fで示されるように照射され
る。このときレーザビームの強度、および溶接点
での光学的吸収が溶接品質および溶接熱効率に影
響する。レーザビームの形状は第4図a,b,c
に示すようなブロードフオーカスビーム、シヤー
プフオーカスビーム、ラインフオーカスビームの
いずれでもよくa,cの場合はレーザビームは高
周波電流による加熱で低入熱となつている肉厚中
央部22をカバーする大きさになつているが、b
の場合は例えばミラー7を振動させることにより
レーザビームを肉厚方向に走査させ、その振動振
幅が高周波電流の加熱で低入熱状態となつている
肉厚中央部22をカバーするようにすることが必
要である。これにより全肉厚範囲において溶接温
度に均一的に加熱できる。 第5図に示す例は第3図の構成においてクサビ
形状の頂点の直前の空隙へ、ヘリウム、アルゴ
ン、チツソなどのガスを供給する手段を附加した
他の実施例である。クサビ形状の頂点の直前の空
隙へアルゴンなどの電離しやすいガスを供給する
ことによりクサビ形状の頂点の直前の空隙にプラ
ズマが発生する。これはクサビ形状の頂点の直前
の空隙に供給された電離し易いガスが、クサビ形
状の頂点へ収束してくるレーザビームによつて、
クサビ形状の頂点の直前で電離し、プラズマが発
生するのである。このプラズマはレーザビームの
反射を防止すると同時にプラズマそのものが溶接
点の加熱に寄与するのでレーザビーム単独の加熱
よりも効率よく且つ均一な加熱が行える。 第6図は更に本発明の他の実施例を示すもので
ある。 この例では高周波電力およびレーザビームの出
力を一定とした場合に管状体1のエツジ部2の温
度を変動させる要因、すなわち溶接入熱変動要因
として管状体1の肉圧を板厚計11で、管状体1
の移動速度を速度計12で測定し、又管状体1の
エツジ部2に与えられた加熱エネルギの結果とし
ての溶接直後の温度を温度計13で測定し、得ら
れたそれぞれの信号を演算制御装置14へ送る。
演算制御装置14は送られたこれらの信号と既知
のデータを加え管状体1のエツジ部2の温度が溶
接点において溶接温度に達するよう高周波電力と
レーザビームの出力を制御する。 次に本発明の作用、効果を説明する。 本発明においては電気抵抗溶接とエネルギビー
ムを併用するために高周波電力による加熱はその
高周波特有の現象を利用することにより特に溶接
面のコーナ部を溶接温度まで効率よく加熱し、エ
ネルギビームは溶接面の中央部を溶接温度まで加
熱する。従つて溶接面は過入熱状態とはならない
ので溶接点が管軸方向に移動することがないため
ペネトレータは発生せず、又高周波電力だけでは
加熱が不充分な溶接面の中央部も溶接に必要な加
熱を受けるため全溶接面に亘つて溶接温度に達し
冷接も発生せず常に安定して高品質の溶接が行え
る。 また、本発明においては、溶接点の直前の空隙
へ電離し易いガスを供給することにより、このガ
スが溶接点へ収束してくるエネルギビームのエネ
ルギによつて電離し、プラズマを発生させる。こ
のプラズマが溶接点の加熱に寄与するとともに、
エネルギビームの溶接点への収束を助長するとい
う、レーザビームとプラズマの相互作用によつて
溶接点が効率よく均一に加熱される。 又第4図a,cに示すような形状のエネルギビ
ームは第4図bに示す形状のエネルギビームより
もエネルギ密度が低いため通常の平面にエネルギ
ビームを照射する場合には加熱効率が著しく低下
するが、本発明においてはクサビ形状の開放側か
ら頂点方向にエネルギビームを投射することによ
り溶接点は恰も光学的な黒体のように作用し、す
なわちエネルギビームは反射しながら溶接点に収
束してゆくので溶接点でのエネルギ吸収率は著し
く向上するので加熱効率も向上する。 更に溶接入熱の変動要因となる因子を測定しこ
の信号と結果としての溶接後の温度を測定して得
た信号を既知のデータと併せて演算し高周波電力
および又はエネルギビームの出力を制御すること
により常に安定して優れた溶接品質が得られる。 本発明の効果を実施例により従来法と比較して
説明する。 実施内容は第1表の如くである。
【表】
以上電気抵抗溶接とエネルギビームを併用した
本発明の方法によれば従来法による電縫管にくら
べその溶接品質は格段にすぐれ冷接およびペネト
レータなどの溶接欠陥の発生は激減する。又従来
の電縫管においては困難であつた厚肉管を高品質
かつ高能率で造管できるものである。
本発明の方法によれば従来法による電縫管にくら
べその溶接品質は格段にすぐれ冷接およびペネト
レータなどの溶接欠陥の発生は激減する。又従来
の電縫管においては困難であつた厚肉管を高品質
かつ高能率で造管できるものである。
第1図は従来の高周波接触式溶接法による造管
工程の概要を示す斜視図、第2図は第1図中A−
A断面におけるエツジ部の温度分布を示す図、第
3図、第5図、第6図は本発明の実施態様例を示
す図、第4図a,b,cはレーザビームの形状お
よび照射部を示す図である。 1……管状体、2……エツジ部、3……溶接ロ
ール、4……接触子、5……レーザ照射装置、
6,7,8,9……ミラー、10……ガス供給
管、11……板厚計、12……速度計、13……
温度計、14……演算制御装置、15……成形ロ
ール、21……エツジ部のコーナ部、22……エ
ツジ部の肉厚中央部、第2図中のa,b,c……
等温線、F……エネルギビーム、LBa,LBb,
LBc……レーザビーム、Aa,Ab,Ac……レー
ザ照射部。
工程の概要を示す斜視図、第2図は第1図中A−
A断面におけるエツジ部の温度分布を示す図、第
3図、第5図、第6図は本発明の実施態様例を示
す図、第4図a,b,cはレーザビームの形状お
よび照射部を示す図である。 1……管状体、2……エツジ部、3……溶接ロ
ール、4……接触子、5……レーザ照射装置、
6,7,8,9……ミラー、10……ガス供給
管、11……板厚計、12……速度計、13……
温度計、14……演算制御装置、15……成形ロ
ール、21……エツジ部のコーナ部、22……エ
ツジ部の肉厚中央部、第2図中のa,b,c……
等温線、F……エネルギビーム、LBa,LBb,
LBc……レーザビーム、Aa,Ab,Ac……レー
ザ照射部。
Claims (1)
- 【特許請求の範囲】 1 相向かい合う溶接面が漸近し溶接点を頂点と
するクサビ形状をなす被溶接物へ電気エネルギを
供給し、発生するジユール熱クサビ形状の頂点の
温度を溶接温度まで加熱し溶接する電気抵抗溶接
法において、該クサビ形状の開放側から溶接点と
なるべき頂点方向へ肉厚方向の温度分布が均一と
なるようにエネルギビームを投射して、電気抵抗
溶接と併用することを特徴とするエネルギビーム
併用電気抵抗溶接法。 2 相向かい合う溶接面が漸近し溶接点を頂点と
するクサビ形状をなす被溶接物へ電気エネルギを
供給し、発生するジユール熱でクサビ形状の頂点
の温度を溶接温度まで加熱し溶接する電気抵抗溶
接法において、該クサビ形状の頂点の直前の空〓
に電離性の良いガスを供給し、さらに該クサビ形
状の開放側から溶接点となるべき頂点方向へ肉厚
方向の温度分布が均一になるようにエネルギビー
ムを投射して、電気抵抗溶接と併用することを特
徴とするエネルギビーム併用電気抵抗溶接法。 3 相向かい合う溶接面が漸近し溶接点を頂点と
するクサビ形状をなす被溶接物へ電気エネルギを
供給し、発生するジユール熱でクサビ形状の頂点
の温度を溶接温度まで加熱し溶接する電気抵抗溶
接法において、該クサビ形状の開放側から溶接点
となるべき頂点方向へ肉厚方向の温度分布が均一
となるようにエネルギビームを投射して電気抵抗
溶接と併用し、溶接入熱制御手段として、溶接入
熱変動要因および溶接温度を測定し、その信号と
既知のデータとを加えて演算し、その結果により
高周波電力および/またはエネルギビーム出力を
調節することを特徴とするエネルギビーム併用電
気抵抗溶接法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56198056A JPS58100982A (ja) | 1981-12-09 | 1981-12-09 | エネルギビ−ム併用電気抵抗溶接法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56198056A JPS58100982A (ja) | 1981-12-09 | 1981-12-09 | エネルギビ−ム併用電気抵抗溶接法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58100982A JPS58100982A (ja) | 1983-06-15 |
JPH0212674B2 true JPH0212674B2 (ja) | 1990-03-23 |
Family
ID=16384790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56198056A Granted JPS58100982A (ja) | 1981-12-09 | 1981-12-09 | エネルギビ−ム併用電気抵抗溶接法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58100982A (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59191577A (ja) * | 1983-04-14 | 1984-10-30 | Nippon Steel Corp | エネルギ−ビ−ム併用電気抵抗溶接法 |
JPS6046890A (ja) * | 1983-08-23 | 1985-03-13 | Shinko Electric Co Ltd | 金属パイプの製造方法 |
JPS6137385A (ja) * | 1984-07-28 | 1986-02-22 | Nippon Steel Corp | レ−ザビ−ム併用の電気抵抗溶接法 |
JPS6152997A (ja) * | 1984-08-14 | 1986-03-15 | アマダ エンジニアリング アンド サ−ビス カンパニ− インコ−ポレ−テツド | シーム溶接装置 |
JPS61182887A (ja) * | 1985-02-12 | 1986-08-15 | Nippon Steel Corp | レ−ザ−ビ−ム併用高周波電気抵抗溶接法 |
JPS61162281A (ja) * | 1985-01-10 | 1986-07-22 | Nippon Steel Corp | エネルギ−ビ−ム併用電気抵抗溶接法 |
JPS61162279A (ja) * | 1985-01-10 | 1986-07-22 | Nippon Steel Corp | レ−ザビ−ムを併用した高周波電縫溶接方法 |
JPH0753317B2 (ja) * | 1985-12-06 | 1995-06-07 | 新日本製鐵株式会社 | レ−ザビ−ム併用高周波電縫溶接の入熱制御方法 |
EP0306036B1 (en) * | 1987-09-04 | 1993-03-24 | Nippon Steel Corporation | A high-power-density beam welding method in combination with upset welding and apparatus therefor |
JPH02160189A (ja) * | 1988-12-09 | 1990-06-20 | Sumitomo Metal Ind Ltd | 電縫管の製造方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4945866A (ja) * | 1972-09-08 | 1974-05-01 | ||
JPS56114590A (en) * | 1980-02-15 | 1981-09-09 | Nippon Steel Corp | Joining method of material |
JPS5816781A (ja) * | 1981-07-24 | 1983-01-31 | Sumitomo Metal Ind Ltd | 溶接管の製造方法 |
-
1981
- 1981-12-09 JP JP56198056A patent/JPS58100982A/ja active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4945866A (ja) * | 1972-09-08 | 1974-05-01 | ||
JPS56114590A (en) * | 1980-02-15 | 1981-09-09 | Nippon Steel Corp | Joining method of material |
JPS5816781A (ja) * | 1981-07-24 | 1983-01-31 | Sumitomo Metal Ind Ltd | 溶接管の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPS58100982A (ja) | 1983-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR900002482B1 (ko) | 레이저 비임을 병용한 고주파 저항 용접법 | |
US4471204A (en) | Method for joining of articles by energy beam and apparatus for controlling said method | |
KR960037157A (ko) | 고밀도 에너지빔의 사용에 의한 강관의 제조방법 | |
US3872279A (en) | Laser-radio frequency energy beam system | |
JPH0212674B2 (ja) | ||
JPH07185836A (ja) | 薄板の縁を溶接するための方法と装置 | |
US4187408A (en) | Method for laser seam welding of moving workpieces | |
US4560855A (en) | Method for joining of articles by energy beam and apparatus for controlling said method | |
CN105618933B (zh) | 一种高效高质的激光‑微弧等离子复合焊接方法 | |
JP2002144064A (ja) | 金属部材の溶接方法及び装置 | |
JPS59191577A (ja) | エネルギ−ビ−ム併用電気抵抗溶接法 | |
Willgoss et al. | Laser welding of steels for power plant | |
JPH0214155B2 (ja) | ||
JPS59232676A (ja) | エネルギ−ビ−ム併用電気抵抗溶接法 | |
JP2871404B2 (ja) | 複合熱源溶接製管方法 | |
JP3260690B2 (ja) | レーザー溶接方法 | |
Hayashi et al. | Development of high power laser welding process for pipe | |
JPH0829425B2 (ja) | レーザ溶接方法 | |
CN112025092B (zh) | 一种柔性导电结构的激光焊接方法 | |
JPS61253186A (ja) | 電気エネルギ−併用エネルギ−ビ−ム溶接法 | |
JPH0753317B2 (ja) | レ−ザビ−ム併用高周波電縫溶接の入熱制御方法 | |
JPS6384788A (ja) | レ−ザビ−ムの照射制御方法および装置 | |
JP2743699B2 (ja) | レーザ溶接方法 | |
JPH0371947B2 (ja) | ||
Inaba et al. | The present status and applications of laser processing: a hybrid manufacturing process for laser welding of stainless steel pipes |