JPH02124412A - Position measuring apparatus - Google Patents
Position measuring apparatusInfo
- Publication number
- JPH02124412A JPH02124412A JP17514689A JP17514689A JPH02124412A JP H02124412 A JPH02124412 A JP H02124412A JP 17514689 A JP17514689 A JP 17514689A JP 17514689 A JP17514689 A JP 17514689A JP H02124412 A JPH02124412 A JP H02124412A
- Authority
- JP
- Japan
- Prior art keywords
- light
- measured
- light beam
- scanning
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 claims abstract description 50
- 238000006073 displacement reaction Methods 0.000 claims abstract description 18
- 230000001678 irradiating effect Effects 0.000 claims abstract 4
- 238000005259 measurement Methods 0.000 abstract description 25
- 108091008695 photoreceptors Proteins 0.000 abstract 3
- 239000000284 extract Substances 0.000 abstract 1
- 230000003287 optical effect Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 7
- 239000000758 substrate Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000004441 surface measurement Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、指向性の良い光ビームを被測定物体に向けて
照射し、その反射光を積出して被測定物体の位置、変位
を測定する位置測定装置、特に凹凸面を呈する被測定物
体の表面輪郭などを測定するのに好適な位置測定装置に
関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention measures the position and displacement of an object to be measured by emitting a light beam with good directionality toward an object to be measured and emitting the reflected light. The present invention relates to a position measuring device, and particularly to a position measuring device suitable for measuring the surface contour of an object to be measured having an uneven surface.
この種の位置測定装置として、投光光学系から出射した
光ビームを被測定物体に向けて照射し、その反射光を投
光光学系と異なる光軸上に配置した受光光学系の受光素
子の受光面に結像させ、被測定物体の位置、変位を受光
素子での結像位置の変化として検出するようにした方式
のものが、例えば特開昭55−119006号公報に開
示されて公知である。In this type of position measuring device, a light beam emitted from a projecting optical system is irradiated toward the object to be measured, and the reflected light is sent to the light receiving element of the receiving optical system, which is placed on a different optical axis from that of the projecting optical system. A system in which an image is formed on a light-receiving surface and the position and displacement of the object to be measured are detected as a change in the image-forming position on a light-receiving element is disclosed in, for example, Japanese Patent Application Laid-Open No. 119006/1983. be.
次に前記した位置測定装置の光学系の構成を第5図に示
す0図において、1は指向性の良い照射光2を出射する
レーザ発振器等を用いた光源であり、光源lから出射し
た照射光2は投光レンズ3を透過し集束した光ビーム4
となって被測定物体5の表面5bに照射され、その照射
地点5aで反射散乱した一部の反射光7は集光レンズ6
を通じて集束光8になり、−次元位置検出素子としての
受光素子9に入射される。また、図における2oは受光
素子9からの出力信号を基に所定の演算を行って位置検
出信号20aを出力する演算部であり、前記受光素子9
と組合せて一次元位置検出部21を構成している。さら
に、22は位置検出信号20aについて所定の信号値補
正演算を行って測定信号22aを出力する信号値補正部
であり、これらを組合せで位置測定装置23を構成して
いる。Next, in Fig. 5 which shows the configuration of the optical system of the position measuring device described above, 1 is a light source using a laser oscillator or the like that emits illumination light 2 with good directionality, and the irradiation light emitted from light source l is Light 2 passes through a projection lens 3 and becomes a focused light beam 4
A part of the reflected light 7 that is irradiated onto the surface 5b of the object to be measured 5 and reflected and scattered at the irradiation point 5a is reflected by the condenser lens 6.
The light becomes focused light 8 through the light, and is incident on a light receiving element 9 as a -dimensional position detecting element. Further, 2o in the figure is a calculation unit that performs a predetermined calculation based on the output signal from the light receiving element 9 and outputs the position detection signal 20a.
In combination, the one-dimensional position detection section 21 is configured. Furthermore, 22 is a signal value correction section that performs a predetermined signal value correction calculation on the position detection signal 20a and outputs a measurement signal 22a, and a combination of these components constitutes the position measuring device 23.
一方、受光素子9は第6図に示すような拡散形PINホ
トダイオード10であり、11はn形半導体基板、12
はp形半導体領域で、両者間のpn接合部13は紙面と
垂直な面に形成されている。また、14はpn接合部1
3の中心位置Aに対向して基板11の外面に設けた電極
、15.16はpn接合部13の両端部に対向してp形
半導体領域12の外面部分に設けた電極である。また、
17.18は一端が電極15゜16に接続された抵抗器
、19は電源である。かかる構成により、第5図に示し
た被測定物体5から反射した集束光8がp形半導体領域
12の側からpn接合部13に入射するようになる。On the other hand, the light receiving element 9 is a diffused type PIN photodiode 10 as shown in FIG.
is a p-type semiconductor region, and a pn junction 13 between the two is formed in a plane perpendicular to the plane of the paper. In addition, 14 is the pn junction 1
Electrodes 15 and 16 are provided on the outer surface of the substrate 11 facing the center position A of 3, and electrodes 15 and 16 are provided on the outer surface of the p-type semiconductor region 12 facing both ends of the p-n junction 13. Also,
17 and 18 are resistors whose one ends are connected to the electrodes 15 and 16, and 19 is a power source. With this configuration, the focused light 8 reflected from the object to be measured 5 shown in FIG. 5 enters the pn junction 13 from the p-type semiconductor region 12 side.
かかる受光素子9に対し、外方より集束光8がpn接合
部13上の位WBに入射すると、この入射位置Bに対応
して電極Is、 16に光電流11+ tsが発生する
。また、入射位置Bと中心位置Aとの間の距離をDとす
れば決起の+1)式が成立する。When the focused light 8 enters the light receiving element 9 from the outside onto the WB above the pn junction 13, a photocurrent 11+ts is generated in the electrodes Is, 16 corresponding to the incident position B. Further, if the distance between the incident position B and the center position A is D, then the formula +1) of Kiki holds true.
D−L−’−(i r −1d/ (l + + is
) −−(tlなお、II+ 1mはそれぞれ抵抗器1
7.18を流れる光電流、に、は比例定数である。そし
て、先記した演算部20が(1)式の演算を行い、決起
の(21式で表す値2に対応した検出信号20aを出力
する。D−L−′−(ir −1d/ (l + + is
) --(tl Note that II+ 1m is each resistor 1
7.18 The photocurrent flowing through , , is a proportionality constant. Then, the above-mentioned calculation unit 20 calculates the equation (1) and outputs the detection signal 20a corresponding to the value 2 expressed by the equation (21) of the rise.
2− Kl −(D −K1)−Kl −D −・−(
21なお、(2)式におけるKm、 Lはいずれも比例
定数である。すなわち、被測定物体5で反射した集束光
8が受光素子9に入射すると、1jlX部20は前記し
た光電流1+t itを基に演算を行い、集束光8の入
射位1Bに対応した位1座標の情報を持つ検出信号20
aを出力する。2- Kl -(D -K1)-Kl -D -・-(
21 Note that Km and L in equation (2) are both proportionality constants. That is, when the focused light 8 reflected by the object to be measured 5 enters the light receiving element 9, the 1jlX section 20 performs calculation based on the photocurrent 1+t it, and calculates the position 1 coordinate corresponding to the incident position 1B of the focused light 8. detection signal 20 having information of
Output a.
そして、第7図で表すように、測定時に被測定物体5が
光ビーム4の光軸に沿っ前後に変位すると、この変位量
に対応して受光素子9に入射する集束光8の結像位置(
入射位2B)がホトダイオード10のpn接合部13上
で変位するようになる。As shown in FIG. 7, when the object to be measured 5 is displaced back and forth along the optical axis of the light beam 4 during measurement, the imaging position of the focused light 8 incident on the light receiving element 9 corresponds to the amount of displacement. (
The incident position 2B) is now displaced on the pn junction 13 of the photodiode 10.
ここで、pn接合部13上の点A、Bと光学的共役点の
関係にある光ビーム4の軸線上の各点を^。Here, each point on the axis of the light beam 4 that has an optical conjugate relationship with points A and B on the pn junction 13 is ^.
Bいこれら両点^、、B1間の距離をLとすれば、距j
lLと先記(2)式のDとの間には決起の(3)式の関
係が成立する。If the distance between these two points B^,, B1 is L, then the distance j
The relationship expressed by equation (3) holds true between lL and D in equation (2) above.
D−f(L) −−−・−・・−・(3)なお、(
3)式でfは単調関数である。したがって、前記した(
2)式と+31式とから決起の(41式が求められる。D-f(L) ---・-・・・(3) Furthermore, (
In equation 3), f is a monotone function. Therefore, as mentioned above (
From the equation 2) and the +31 equation, the equation (41) of Kiki is obtained.
L=f (z/Kt) ・−・−(4)な
お、(4)武の演算は第5図に示した信号値補正部22
が検出信号20aを基に行い、測定信号22aとして出
力する。L=f (z/Kt) ・−・−(4) Note that (4) Take’s calculation is performed by the signal value correction unit 22 shown in FIG.
is performed based on the detection signal 20a and output as a measurement signal 22a.
したがって、前記の位置調定vt置23で求めた測定信
号22aから、PI!測定物体5の基準点As (第7
図参照)に対する変位量りを測定することができること
になる。また、例えば凹凸面のある被測定物体5に対し
ては、前記した位置へ、を基準として、被測定物体5に
おける光ビーム4の照射位置位置B、に対応する凹凸高
さを位置へ〇との対比で測定することができる。Therefore, from the measurement signal 22a obtained by the position adjustment VT position 23, PI! Reference point As of measurement object 5 (7th
(see figure) can be used to measure displacement. For example, for a measured object 5 having an uneven surface, the height of the unevenness corresponding to the irradiation position position B of the light beam 4 on the measured object 5 is moved to the position 〇, using the above-mentioned position as a reference. It can be measured by comparing
ところで、前記した従来の位置測定装置23を用いて被
測定物体5の表面の状態(凹凸面1表面輪郭など)を測
定、検査する場合には、決起のような手順が必要となる
。By the way, when measuring and inspecting the state of the surface of the object to be measured 5 (the surface contour of the uneven surface 1, etc.) using the conventional position measuring device 23 described above, a series of steps are required.
すなわち、被測定物体5の表面状態を測定する場合には
、位置測定装置23と被測定物体5とを相対的、かつ二
次元的に移動させながら被測定物体の表面を光ビームを
照射して連続的に測定する必要がある。そのために、従
来では被測定物体をX−Yテーブル等に搭載して位置測
定装置に対向させ、X−Yテーブルの移動操作により測
定装置から出射した光ビームで被測定物体の表面上を走
査するような方法で測定を行っている。That is, when measuring the surface state of the object to be measured 5, the surface of the object to be measured is irradiated with a light beam while the position measuring device 23 and the object to be measured 5 are moved relatively and two-dimensionally. It is necessary to measure continuously. To do this, conventionally, the object to be measured is mounted on an X-Y table, etc., and faced to a position measuring device, and the surface of the object to be measured is scanned with a light beam emitted from the measuring device by moving the X-Y table. Measurements are made in this way.
しかしながら、この方法では測定、検査に長時間を要す
る問題のある他、被測定物5がX−Yテーブルに搭載す
ることができず、かつ特定の方向にしか移動できないも
のである場合には、このままでは面の測定が実施できな
い、そこで、第8図で示すように被測定物体5に対して
v1敗個の位置測定装置23をアレー状に並べて表面測
定装置24を構成し、被測定物体5を矢印P方向に直線
移動させながら測定を行うことにより、被測定物体5の
二次元的な表面の測定が可能となるが、この測定方式で
は多数の位置測定装置23を必要とするので表面測定装
Ft24が大形になり、かつ装置のコストも高(なる他
、隣接する位置測定値[23の相互間には測定不能な測
定空白部分が残る欠点もある。However, this method has the problem of requiring a long time for measurement and inspection, and if the object to be measured 5 cannot be mounted on an X-Y table and can only be moved in a specific direction, Surface measurement cannot be carried out in this state. Therefore, as shown in FIG. By performing measurements while linearly moving in the direction of arrow P, it is possible to measure the two-dimensional surface of the object to be measured 5. However, this measurement method requires a large number of position measuring devices 23, so surface measurement is not possible. The device Ft24 is large in size and the cost of the device is high (in addition, there is a drawback that measurement blank areas remain between adjacent position measurement values [23]).
つまり、従来の位置測定装置23では、光源から被測定
物体に向けて出射する光ビームの光軸が固定的であるた
めに、被測定物体の表面凹凸1表面輪郭などの面の測定
を行うには掻めて厄介な手順が必要となり、測定を能率
よく行うことが困難であった。In other words, in the conventional position measuring device 23, since the optical axis of the light beam emitted from the light source toward the object to be measured is fixed, it is difficult to measure surfaces such as surface irregularities 1 and contours of the object to be measured. However, this method required many complicated procedures, making it difficult to carry out measurements efficiently.
本発明は上記の点にかんがみなされたものであり、投光
部に光ビーム走査手段を組合せることにより、被測定物
体を一次元的に定方向へ相対移動させるだけで被測定物
体の凹凸面1表面輪郭などの面状態が容易に測定できる
ようにした位置測定装置を提供することを目的とする。The present invention has been made in consideration of the above points, and by combining a light beam scanning means with a light projecting section, the uneven surface of the object to be measured can be easily moved by moving the object to be measured one-dimensionally in a fixed direction. An object of the present invention is to provide a position measuring device that can easily measure surface conditions such as surface contours.
(!l1fiを解決するための手段〕
上記課題を解決するために、本発明の位5を測定装置は
、光源と光ビーム走査手段との組合せがらなり、光源か
ら出射した指向性の高い光ビームを被測定物体に向けて
一次元状に走査する投光部と、被測定物体に照射された
走査光ビームの反射光を!バ光して一次元位置検出部の
受光素子に入射させる受光部と、投光部から出射する走
査光ビームの方向に対応した光方向信号を出力する光方
向検出部と、前記の一次元位置)食出部、光方向検出部
よりそれぞれ出力する位置検出信号、光方向信号を基に
所定の演算を行って被測定物体上の光ビーム照射位置の
基準位置に対する変位量を出力する信号処理部とから構
成するものとする。(Means for Solving !l1fi) In order to solve the above problems, the fifth aspect of the present invention is to provide a measuring device which consists of a combination of a light source and a light beam scanning means, and a highly directional light beam emitted from the light source. a light projecting section that scans the light beam one-dimensionally toward the object to be measured, and a light receiving section that deflects the reflected light of the scanning light beam irradiated onto the object to be measured and makes it enter the light receiving element of the one-dimensional position detection section. a light direction detection section that outputs a light direction signal corresponding to the direction of the scanning light beam emitted from the light projection section; and a position detection signal that is outputted from the one-dimensional position) and light direction detection section, respectively. and a signal processing section that performs a predetermined calculation based on the light direction signal and outputs the amount of displacement of the light beam irradiation position on the object to be measured with respect to the reference position.
また、別な手段として、前記構成における一次元位置検
出部、光方向渣出部を、被測定物体に照射する光ビーム
の走査軌跡に対応する位置座標の情報、および被測定物
体の変位に対応する位置座標の情報を含む2種類の位置
検出信号を出力する二次元値′11検出部に置き換えて
構成することもできる。In addition, as another means, the one-dimensional position detection section and the light direction extraction section in the above configuration can be used to detect information on position coordinates corresponding to the scanning locus of the light beam irradiated onto the object to be measured, and to correspond to the displacement of the object to be measured. It is also possible to replace it with a two-dimensional value '11 detection section that outputs two types of position detection signals including information on position coordinates.
上記の構成において、光ビーム走査手段としては例えば
ポリゴンミラーが用いれら、該ポリゴンミラーを回転操
作することにより、光源から出射した光ビームをミラー
面に反射させて被測定物体の表面上を一次元状に走査す
る。また、投光部と受光部とで構成される光学系は、シ
ャインプルーグ条件を満足し、かつ少なくとも前記した
光ビームの走査範囲内において被測定物体が変位した場
合でも被測定物体で反射した光スボ7)の軌跡が位置検
出部の受光面上に入射されるように配置されている。In the above configuration, for example, a polygon mirror is used as the light beam scanning means, and by rotating the polygon mirror, the light beam emitted from the light source is reflected on the mirror surface to one-dimensionally scan the surface of the object to be measured. scan in a straight line. In addition, the optical system consisting of the light emitting part and the light receiving part satisfies the Scheimpflug condition and at least reflects light from the object to be measured even if the object to be measured is displaced within the scanning range of the light beam described above. The light beam 7) is arranged so that its trajectory is incident on the light-receiving surface of the position detection section.
かかる構成により、測定時には投光部から出射した光ビ
ームが被測定物体の表面を一次元状に走査し、受光部で
は被測定物体の表面を走査する光ビームの照射位置に対
応して位置検出部から出力する位置検出信号の値が変化
する。さらに、前記の位置検出13号は信号処理部で光
ビームの走査方向に対応した変換演算が行われ、光ビー
ム照射位置の基準位置に対する変位に比例した測定信号
として出力される。したがって、被測定物体の表面を光
ビームで一次元状に走査しつつ、同時に被測定物体を位
ff1N定装置に灯し相対的に一次元的に移動させるこ
とにより、例えば凹凸面を呈する被測定物体の面につい
ての表面輪郭、ないしは表面上の点の位置、変位の測定
を連続的に行うことができる。With this configuration, during measurement, the light beam emitted from the light projecting section scans the surface of the object to be measured in a one-dimensional manner, and the light receiving section detects the position corresponding to the irradiation position of the light beam scanning the surface of the object to be measured. The value of the position detection signal output from the unit changes. Further, in the position detection unit 13, a conversion calculation corresponding to the scanning direction of the light beam is performed in the signal processing section, and the result is output as a measurement signal proportional to the displacement of the light beam irradiation position with respect to the reference position. Therefore, by scanning the surface of the object to be measured one-dimensionally with a light beam and at the same time moving the object to be measured relatively one-dimensionally by illuminating the positioning device, it is possible to scan the surface of the object to be measured with a light beam. It is possible to continuously measure the surface contour of an object, or the position and displacement of points on the surface.
第1図、第2図、および第3図、第4図はそれぞれ異な
る本発明の実施例を示すものであり、第5図に対応する
同一部材には同じ符号が付しである。1, 2, 3, and 4 show different embodiments of the present invention, and the same members corresponding to FIG. 5 are given the same reference numerals.
まず、第1図、第2図の実施例において、25は光a1
から出射した光ビーム4を反射し、かつモータ26の回
転により光ビーム4を走査光ビーム27として被測定物
体5の表面5bを一次元状に操り返して走査するように
したポリゴンミラー、28は光s1.投光レンズ3.ポ
リゴンミラー25.駆動モータ26との組合せからなる
投光部である。また、29はポリゴンミラー25の駆動
モータ26の軸に結合し、投光部28から被測定物体5
に向けて照射される走査光ビーム27の照射角αを検出
して光方向信号29aを出力するようにした光方向検出
部である。First, in the embodiments of FIGS. 1 and 2, 25 is the light a1
A polygon mirror 28 is configured to reflect the light beam 4 emitted from the mirror, and to manipulate the surface 5b of the object to be measured 5 one-dimensionally to scan the surface 5b of the object to be measured 5 by using the light beam 4 as a scanning light beam 27 by rotating the motor 26. light s1. Projection lens 3. Polygon mirror 25. This is a light projecting unit that is combined with a drive motor 26. Further, 29 is coupled to the shaft of the drive motor 26 of the polygon mirror 25, and is connected to the shaft of the drive motor 26 of the polygon mirror 25, so that the object to be measured is
This is a light direction detection section that detects the irradiation angle α of the scanning light beam 27 irradiated toward the light direction and outputs a light direction signal 29a.
なお、照射角αは被測定物体5の表面5bに立てた垂直
仮想線と走査光ビーム27とのなす角度を表す。Note that the irradiation angle α represents the angle between the scanning light beam 27 and a vertical imaginary line erected on the surface 5b of the object to be measured 5.
かかる構成により、ポリゴンミラー25の回転操作によ
り被測定物体50表面が走査光と−ム27で一次元状に
走査されるようになる。With this configuration, the surface of the object to be measured 50 is one-dimensionally scanned by the scanning beam 27 by rotating the polygon mirror 25.
一方、受光部30は、被測定物体5からの反射光7を集
束して集束光8に変える受光レンズ6、および−次元位
置検出素子としての受光素子9と受光素子9の出力信号
を演算処理する演算部20とからなる一次元位置検出部
21とを含む、また、31は信号処理部であり、−次元
位置検出部21が出力する検出信号20aと光方向検出
部29からの光方向信号29aとを取り込み、これらの
両入力(8号を基に後述する所定の演算を行って、被測
定物体5の所定の基準位置に対する変位量を表す測定信
号31aを出力するものであり、これらを組合せて(立
置測定装置32を構成している。On the other hand, the light receiving unit 30 includes a light receiving lens 6 that focuses the reflected light 7 from the object to be measured 5 and converts it into a focused light 8, a light receiving element 9 as a -dimensional position detecting element, and arithmetic processing of the output signal of the light receiving element 9. 31 is a signal processing section, which detects the detection signal 20a outputted by the -dimensional position detection section 21 and the light direction signal from the light direction detection section 29. 29a, performs predetermined calculations to be described later based on these two inputs (No. 8), and outputs a measurement signal 31a representing the amount of displacement of the object to be measured 5 with respect to a predetermined reference position. In combination, a vertical measuring device 32 is configured.
次に前記構成の位置測定装置32による測定動作につい
て説明する。まず、図示の測定状態でポリゴンミラー2
5を回転すると、被測定物体5の表面5bが実線状態に
あれば、走査光ビーム27の光スポットが表面5b上で
点Q、、 Slを通る走査軌跡に沿って走査され、その
反射光7が集光レンズ6を透過して受光そし9に入射し
、その受光面上に結像される。ここで、前記の点Q、、
S、に形成された光スポットの像は受光素子9の受光
面上で点Q、、 Q□と光学的共役の関係にある位置Q
++ Slに結像される。Next, a measurement operation by the position measuring device 32 having the above configuration will be explained. First, in the measurement state shown in the figure, the polygon mirror 2
5, if the surface 5b of the object to be measured 5 is in a solid line state, the light spot of the scanning light beam 27 is scanned on the surface 5b along a scanning locus passing through points Q, , Sl, and the reflected light 7 The light passes through the condenser lens 6 and enters the light receiving surface 9, where it is imaged on the light receiving surface. Here, the above point Q,
The image of the light spot formed at S is located at a position Q on the light-receiving surface of the light-receiving element 9, which is in an optical conjugate relationship with points Q,, Q□.
++ Imaged on Sl.
また、前記の地点Q+、 Stで被測定物体5の表面が
tI線で表すように凸状に膨出しているとすれば、走査
光ビーム27によりこれらの膨出部上の点Ql+58に
形成された光スポットの像が受光素子9の受光面上での
位置Q!131に結像するようになる。Furthermore, if the surface of the object to be measured 5 is bulged in a convex shape as shown by the tI line at the points Q+ and St, then the scanning light beam 27 forms a convex surface at a point Ql+58 on these bulges. The image of the light spot is located at the position Q! on the light-receiving surface of the light-receiving element 9! It comes to be imaged at 131.
このようにして、被測定物体5の表面に照射された光ス
ポットの像が受光素子9の受光面上に結像されると、演
算部20を通じて前記の結像位置q++Qx+ 5++
sjに対応した位置座標の情輻を表す検出信号20a
が出力される。なお、この場合に先記の(31式、(4
)式に示した関数fは走査光ビーム27の照射角度αご
とに異なることは明らかである。また、上述においては
(4)式に示したに8が定数であるとしたが、実際には
、このに、は受光素子9及び演算器20の各々における
信号変換特性の非直線性の故に2の関数となっている。In this way, when the image of the light spot irradiated onto the surface of the object to be measured 5 is formed on the light receiving surface of the light receiving element 9, the image forming position q++Qx+ 5++ is determined through the arithmetic unit 20.
Detection signal 20a representing information of position coordinates corresponding to sj
is output. In addition, in this case, the above (31 formula, (4
) It is clear that the function f shown in the equation differs depending on the irradiation angle α of the scanning light beam 27. In addition, in the above, it was assumed that 8 shown in equation (4) is a constant, but in reality, this is 2 due to the nonlinearity of the signal conversion characteristics in each of the light receiving element 9 and the arithmetic unit 20. It is a function of
一方、信号処理部31に対し、前記した検出信号20a
、および光方向信号29aが入力されると、信号処理部
31は検出信号20aの値2を基に前記の定数に8を算
出すると共に、光方向信号29aを基に各角度αごとに
予め信号処理部31のメモリ内に格納されている関数f
を抽出して(4)式の演算を行い、被測定物体5の表面
上における走査光ビーム27の各照射地点に対応した測
定4g号31aを出力する。On the other hand, the signal processing unit 31 receives the detection signal 20a described above.
, and the optical direction signal 29a are input, the signal processing unit 31 calculates 8 for the above-mentioned constant based on the value 2 of the detection signal 20a, and also calculates a signal for each angle α in advance based on the optical direction signal 29a. Function f stored in the memory of the processing unit 31
is extracted, the calculation of equation (4) is performed, and a measurement 4g number 31a corresponding to each irradiation point of the scanning light beam 27 on the surface of the object to be measured 5 is output.
したがって、第1図に実線で示した被測定物体5の表面
5bを基準位置とすれば、測定信号31aを基に、走査
光ビーム27で照射された被測定物体5上の点Qよ、S
、の変位り、 (点Q、、 Q、間の距離)、L8−1
1Jl+ s、間の距m> を含む走査光ビーム27の
走査軌跡に沿った被測定物体5の表面状M(凹凸面。Therefore, if the surface 5b of the object to be measured 5 shown by the solid line in FIG.
Displacement of , (distance between points Q, , Q), L8-1
The surface condition M (uneven surface) of the object to be measured 5 along the scanning locus of the scanning light beam 27 including the distance m> 1Jl+s.
輪郭)を連続的に測定できる。そして、前記したポリゴ
ンミラー25の回転による光ビームの走査に加えて、被
側定物体5を第2[1のように矢印P方向へ相対移動さ
せることにより、被dl!l定物体5の表面5bの状態
、つまり表面の凹凸1表面輪郭を二次元的に測定するこ
とができる。contour) can be measured continuously. In addition to the scanning of the light beam by the rotation of the polygon mirror 25 described above, by relatively moving the target fixed object 5 in the direction of the arrow P as shown in the second [1], the target dl! The state of the surface 5b of the constant object 5, that is, the surface irregularities 1 and the surface contour can be measured two-dimensionally.
次に第3図、第4図に本発明の別な実施例を示す、この
実施例は、基本的には先記した実施例と同様であるが、
第1U4における一次元位置検出素子としての受光素子
9.および光方向渣出部29の代わりに、走査光ビーム
の走査軌跡に対応した位置座標の情報、および被測定物
体の変位に対応した位置座標の情報が同時に得れるよう
にした二次元位置検出部を採用して構成の簡略化を図っ
たものである。すなわち、第3図において、符号33が
二次元位置1食出素子(受光素子)を示し、その後段に
接続した演算部34とで受光部30の二次元位置検出部
35を構成し、さらに第1図と同様な投光部28と組合
せて位置測定装置36の要部を構成している。なお、第
1図の実施例と同一部品には同じ符号が付しである。Next, FIGS. 3 and 4 show another embodiment of the present invention. This embodiment is basically the same as the previously described embodiment, but
Light receiving element 9 as a one-dimensional position detecting element in the first U4. and a two-dimensional position detection section that can simultaneously obtain information on position coordinates corresponding to the scanning locus of the scanning light beam and information on position coordinates corresponding to the displacement of the object to be measured, in place of the light direction extraction section 29. The structure was simplified by adopting the following. That is, in FIG. 3, reference numeral 33 indicates a two-dimensional position detection element (light-receiving element), and a two-dimensional position detection unit 35 of the light-receiving unit 30 is constituted by a calculation unit 34 connected at the subsequent stage, and a second In combination with the light projecting section 28 similar to that shown in FIG. 1, the main part of the position measuring device 36 is configured. Note that the same parts as in the embodiment shown in FIG. 1 are given the same reference numerals.
一方、前記した二次元位置検出素子33は第4図に示す
構造の拡散型PINホトダイオードが採用されている0
図において、11.12はそれぞれn型半導体基板、p
型半導体領域であり、両者の間にpn接合部13が方形
状に形成されている。また、14はpn接合部13の中
央位置Aに対向して基板11の外面に設けた電極、15
a、 15b、および16a、 16bはそれぞれpn
接合部13に対してその周辺部に直交して互いに向かい
合うよう配置したtiであり、かつ前記の各型115a
、 15b、および16a、 16bにはそれぞれ抵抗
17a、 17b、および18a、 18bが接続され
、中央の電極14との間に電源19が接続されている。On the other hand, the aforementioned two-dimensional position detection element 33 employs a diffused PIN photodiode having the structure shown in FIG.
In the figure, 11 and 12 are an n-type semiconductor substrate and a p-type semiconductor substrate, respectively.
type semiconductor region, and a pn junction 13 is formed in a rectangular shape between the two. Reference numeral 14 denotes an electrode provided on the outer surface of the substrate 11 facing the center position A of the pn junction 13;
a, 15b, and 16a, 16b are pn
ti arranged so as to face each other perpendicularly to the periphery of the joint 13, and each of the molds 115a described above.
, 15b, and 16a, 16b are connected to resistors 17a, 17b, and 18a, 18b, respectively, and a power source 19 is connected between them and the center electrode 14.
つまり第6図に示したホトダイオードの構造を基本に、
p型半導体領域12の周辺部に2組の電極15a、6a
と15’b、 16bを直交するように設置した構造と
してなる。In other words, based on the structure of the photodiode shown in Figure 6,
Two sets of electrodes 15a and 6a are provided around the p-type semiconductor region 12.
15'b and 16b are installed perpendicularly to each other.
かかる構成で、受光面上での中央位′:It、Aを原点
として電極15a、 16aが対向する方向をX軸、電
極15b、 16bが対向する方向をY軸としたX−Y
直交座標系で、(D x、 D y)の位置Bに第6図
で述べた受光素子と同様に外部から光ビームが入射する
と、座標値(D x、 D y)と素子に発生する光電
流との間には決起の弐が成立する。With such a configuration, an X-Y axis with the central position ':It,A on the light receiving surface as the origin, the direction in which the electrodes 15a and 16a face each other as the X axis, and the direction in which the electrodes 15b and 16b face each other as the Y axis.
In the orthogonal coordinate system, when a light beam is incident from the outside at position B of (D x, D y) in the same way as the light receiving element described in Fig. 6, the coordinate values (D x, D y) and the light generated in the element are There is a revolt between the current and the current.
Dx −KIi= (++ −Its) / (1+a
+ 1ta)・−−−(51
oy ’ K+b= (f+b−1zb) / (i+
b+ 1zJなお、上式で’la+ f2m +’l
b+ lzbはそれぞれ抵抗17a、 17b、 1
8a、 18bを流れる光?It流、K la+Klk
は比例定数である。Dx −KIi= (++ −Its) / (1+a
+ 1ta)・---(51 oy 'K+b= (f+b-1zb)/(i+
b+ 1zJ In addition, in the above formula, 'la+ f2m +'l
b+ lzb are resistors 17a, 17b, 1, respectively
Light flowing through 8a and 18b? It style, Kla+Klk
is a proportionality constant.
また、前記の二次元位置検出素子33から出力した光信
号’1m+ ’□a+llk+ 11には第3図に
示した後段の演算部34に取り込まれ、第5図に示した
演算部20と同様な演算を行って次式のza、 zbで
表す位置検出信号34a、 34bを出力する。Further, the optical signal '1m+ '□a+llk+ 11 outputted from the two-dimensional position detecting element 33 is taken into the arithmetic unit 34 at the subsequent stage shown in FIG. The calculation is performed to output position detection signals 34a and 34b represented by za and zb in the following equations.
Za”Koa’ (DX ’に+a) =に!+1・I
)x−−(71zb=Kob・(DY ・K+b) =
Kzb・Dy”−’ [slなお、上式でKta+Kx
hは比例定数である。Za"Koa' (+a to DX') = to! +1・I
)x−-(71zb=Kob・(DY・K+b)=
Kzb・Dy"-' [slIn addition, in the above formula, Kta+Kx
h is a proportionality constant.
一方、二次元位置検出素子33は、被側定物体5の表面
5bを走査光ビーム27で走査する際に、表面上に定め
た基準位置A、を遣る走査軌跡37に沿って移動(Xo
力方向する走査光ビーム27の反射光スポットが二次元
位置検出素子33の受光面における直交座標系のX軸上
を移動するように配置されている。したがって走査軌跡
37上で基準位置A6から距離し×だけ隔てた照射位置
5aは、前記式(61,T7+の関係から二次元位置検
出部35において照射位置5aが次式(9)で求められ
、被測定物体に照射する光ビームの走査軌跡に対応する
位1座標の情報が検出信号34aとして演算部34より
出力される。On the other hand, when scanning the surface 5b of the fixed object 5 with the scanning light beam 27, the two-dimensional position detection element 33 moves along a scanning trajectory 37 using a reference position A defined on the surface (Xo
The reflected light spot of the scanning light beam 27 traveling in the force direction is arranged so as to move on the X-axis of the orthogonal coordinate system on the light receiving surface of the two-dimensional position detection element 33. Therefore, the irradiation position 5a, which is distanced by x from the reference position A6 on the scanning locus 37, is determined by the following equation (9) in the two-dimensional position detection unit 35 from the relationship of the above equation (61, T7+). Information on the first coordinate corresponding to the scanning locus of the light beam irradiated onto the object to be measured is output from the calculation unit 34 as a detection signal 34a.
L x =Ka −D x =Ka ・(za−Kta
”) −・−19+また、第3図において、走査光ビー
ム27の走査軌跡37と直交する方向(Yo力方向に被
測定物体5の表面が変位(鎖線)したとすると、この位
15aに照1・すした走査光ビーム27の反射光スポッ
トは、二次元位置検出素子33の受光面上で先記した直
交座標系のY軸方向に移動する。したがって被測定物体
5の照射位置5aが基準面からYo方向へ距離Lyだけ
変位している状態では、前記した+61. (8)弐の
関係から照射位置5aが次式〇傳により求められ、被測
定物体の変位に対応した位置座標の情報が検出信号34
bとして演算部34より出力される。L x = Ka - D x = Ka ・(za-Kta
”) −・−19+In addition, in FIG. 3, if the surface of the object to be measured 5 is displaced (dashed line) in the direction perpendicular to the scanning locus 37 of the scanning light beam 27 (Yo force direction), then the 1. The reflected light spot of the scanned light beam 27 moves in the Y-axis direction of the above-mentioned orthogonal coordinate system on the light receiving surface of the two-dimensional position detection element 33.Therefore, the irradiation position 5a of the object to be measured 5 is the reference point. In a state where the distance Ly is displaced from the surface in the Yo direction, the irradiation position 5a is determined by the following equation based on the above-mentioned relationship (8) 2, and information on the position coordinates corresponding to the displacement of the object to be measured is obtained. is the detection signal 34
It is output from the arithmetic unit 34 as b.
Ly = fb(Dy)=Kb ・(zb−K、) −
−Qlなお、上式でrbは所定の関数である。Ly=fb(Dy)=Kb・(zb−K,)−
-Ql Note that in the above equation, rb is a predetermined function.
したがって、上記構成の位置測定装置36において、被
測定物体5の表面5bを走査光ビーム27で走査すると
、表面5b上での照射位置5aの軌跡は被測定物体5を
Xo−Yoと平行な面で断面した輪郭と一致することに
なる。そして、表面の基準位置Aoを原点とするXo−
Yo座標系で任意の照射位置5aに対応する座標値(L
x、 L y)が、二次元位置検出素子33の受光面
上での座標(1(Dx、Dy)と一対一で対応する。し
たがって、演算部34から出力した検出信号34a、
34bを基にして走査光ビーム27の走査軌跡37に沿
った被測定物体5の表面輪郭が測定される。しかも、前
記した走査光ビーム27の走査は、ポリゴンミラー25
の回転により繰り返し行われるので、被測定物体5を図
示の矢印P方向へ相対的に移動させることにより、被測
定物体5の表面状態、つまり凹凸面2表面輪郭の測定、
ないしは表面上における点の位置測定を連続的に行うこ
とができる。Therefore, in the position measuring device 36 having the above configuration, when the surface 5b of the object to be measured 5 is scanned with the scanning light beam 27, the locus of the irradiation position 5a on the surface 5b is the object to be measured 5 in a plane parallel to Xo-Yo. This will match the cross-sectional contour. Then, Xo− with the origin at the reference position Ao on the surface
The coordinate value (L
x, Ly) have a one-to-one correspondence with the coordinates (1(Dx, Dy) on the light-receiving surface of the two-dimensional position detection element 33. Therefore, the detection signal 34a output from the calculation unit 34,
34b, the surface contour of the object to be measured 5 along the scanning locus 37 of the scanning light beam 27 is measured. Moreover, the scanning of the scanning light beam 27 described above is performed by the polygon mirror 25.
By moving the object to be measured 5 relatively in the direction of the arrow P shown in the figure, the surface condition of the object to be measured 5, that is, the surface contour of the uneven surface 2 can be measured.
Alternatively, position measurements of points on the surface can be carried out continuously.
本発明による位置測定装置は、以上説明したように構成
されているので、決起の効果を奏する。Since the position measuring device according to the present invention is configured as described above, it exhibits an excellent effect.
(1)位置検出装置に光ビームの走査手段を組み込み、
測定に際して投光部から出射した光ビームを被測定物体
の表面上で一次元的に走査することにより、測定装置、
被測定物体を相対的に移動することな(、この状態で走
査光ビームの走査軌跡に沿った被測定物体の表面状態が
測定できる。(1) Incorporating a light beam scanning means into the position detection device,
By scanning the light beam emitted from the light projector one-dimensionally over the surface of the object to be measured during measurement, the measuring device,
In this state, the surface condition of the object to be measured along the scanning locus of the scanning light beam can be measured without relatively moving the object to be measured.
(2)また、前記の光ビーム走査に加えて被測定物体を
測定¥tffと相対的に定方向へ直線移動させることに
より、1台の測定装置を用いて被測定物体の面域につい
て、その表面の凹凸9表面輪郭ないしは表面上の点の位
置を連続的、かつ短時間で測定することができる。(2) In addition to the above-mentioned light beam scanning, by linearly moving the object to be measured in a fixed direction relative to the measurement Surface Roughness 9 The surface contour or the position of a point on the surface can be measured continuously and in a short time.
(3)シたがって、従来の測定方式のように被測定物体
をX−Yテーブルに搭載したり、被測定物体に対し複数
台の測定装置をアレー状に配置して測定するといった設
備面での制約がなく、かつ被測定面上での測定空白の発
生を招(こともないなど、機能、使用面で実用的価値の
高い位置測定装置が得られる。(3) Therefore, in terms of equipment, such as mounting the object to be measured on an X-Y table or arranging multiple measuring devices in an array to measure the object as in conventional measurement methods A position measuring device with high practical value in terms of function and use can be obtained, since there are no restrictions on the measurement area, and there is no occurrence of measurement blanks on the surface to be measured.
第1図は本発明の位置測定装置の一実施例の構成図、第
2図は第1図に示した実施例の動作説明図、第3図は本
発明の異なる実施例の構成図、第4図は第3図における
二次元位置検出素子の詳細構造図、第5図は従来の位置
測定装置の構成図、第6図は第5図における受光素子の
詳細構造図、第7図は第5図の測定動作説明図、第8図
は従来の表面測定装置の構成図である。
1:光源、2:照射光、3:投光レンズ、4:光ビーム
、5;被測定物体、6:集光レンズ、7:反射光、8:
集0束光、9ニ一次元位置検出受光素子、20:演算部
、20a二検出信号、21ニ一次元位置検出部、25:
ポリゴンミラ−(光ビーム走査手段)、27:走査光ビ
ーム、28:投光部、29:光方向検出部、30:受光
部、31:信号処理部、31a:測定信号、33:二次
元位置検出素子、34:演算部、35:二次元位置検出
部。
Ao
13図
第4図
第6図FIG. 1 is a block diagram of one embodiment of the position measuring device of the present invention, FIG. 2 is an explanatory diagram of the operation of the embodiment shown in FIG. 1, and FIG. 3 is a block diagram of a different embodiment of the present invention. Fig. 4 is a detailed structural diagram of the two-dimensional position detection element in Fig. 3, Fig. 5 is a structural diagram of a conventional position measuring device, Fig. 6 is a detailed structural diagram of the light receiving element in Fig. 5, and Fig. 7 is a detailed structural diagram of the light receiving element in Fig. 5. FIG. 5 is an explanatory diagram of the measurement operation, and FIG. 8 is a configuration diagram of a conventional surface measuring device. 1: Light source, 2: Irradiation light, 3: Projection lens, 4: Light beam, 5: Measured object, 6: Condensing lens, 7: Reflected light, 8:
0 focused beam, 9 1-dimensional position detection light receiving element, 20: calculation section, 20a 2 detection signal, 21 2 1-dimensional position detection section, 25:
Polygon mirror (light beam scanning means), 27: scanning light beam, 28: light projecting section, 29: light direction detecting section, 30: light receiving section, 31: signal processing section, 31a: measurement signal, 33: two-dimensional position Detection element, 34: calculation section, 35: two-dimensional position detection section. Ao 13Figure 4Figure 6
Claims (1)
して被測定物体の位置、変位を測定する位置測定装置で
あって、光源と光ビーム走査手段との組合せからなり、
光源から出射した指向性の高い光ビームを被測定物体に
向けて一次元状に走査する投光部と、被測定物体に照射
された走査光ビームの反射光を集光して一次元位置検出
部の受光素子に入射させる受光部と、投光部から出射す
る走査光ビームの方向に対応した光方向信号を出力する
光方向検出部と、前記の一次元位置検出部、光方向検出
部よりそれぞれ出力する位置検出信号、光方向信号を基
に所定の演算を行って被測定物体上の光ビーム照射位置
の基準位置に対する変位量を出力する信号処理部とから
構成したことを特徴とする位置測定装置。 2)被測定物体に光ビームを照射し、その反射光を検出
して被測定物体の位置、変位を測定する位置測定装置で
あって、光源と光ビーム走査手段との組合せからなり、
光源から出射した指向性の高い光ビームを被測定物体に
向けて一次元状に走査する投光部と、被測定物体に照射
された走査光ビームの反射光を集光して位置検出部の受
光素子に入射させる受光部と、位置検出器より出力する
位置検出信号を基に所定の演算を行って被測定物体上の
光ビーム照射位置の基準位置に対する変位量を出力する
信号処理部とからなり、かつ前記位置検出部の受光素子
が、被測定物体に照射する光ビームの走査軌跡に対応す
る位置座標の情報、および被測定物体の変位に対応する
位置座標の情報を含む2種類の位置検出信号を出力する
二次元位置検出素子であることを特徴とする位置測定装
置。[Claims] 1) A position measuring device that measures the position and displacement of an object to be measured by irradiating a light beam onto the object to be measured and detecting the reflected light, the device comprising a light source and a light beam scanning means. Consisting of a combination,
A light projection unit that scans a highly directional light beam emitted from a light source toward the object to be measured in a one-dimensional manner, and one-dimensional position detection by condensing the reflected light of the scanning light beam irradiated on the object to be measured. a light receiving section that makes the light enter the light receiving element of the section; a light direction detecting section that outputs a light direction signal corresponding to the direction of the scanning light beam emitted from the light projecting section; and the one-dimensional position detecting section and the light direction detecting section. and a signal processing section that performs predetermined calculations based on the position detection signal and the light direction signal that are output, respectively, and outputs the amount of displacement of the light beam irradiation position on the object to be measured with respect to the reference position. measuring device. 2) A position measuring device that measures the position and displacement of an object to be measured by irradiating a light beam onto the object to be measured and detecting the reflected light, comprising a combination of a light source and a light beam scanning means,
There is a light projection part that scans a highly directional light beam emitted from a light source toward the object to be measured in a one-dimensional manner, and a position detection part that focuses the reflected light of the scanning light beam irradiated on the object to be measured. A light receiving section that makes the light enter the light receiving element, and a signal processing section that performs predetermined calculations based on the position detection signal output from the position detector and outputs the amount of displacement of the light beam irradiation position on the object to be measured with respect to the reference position. and the light receiving element of the position detection unit detects two types of positions, including information on position coordinates corresponding to the scanning locus of the light beam irradiated onto the object to be measured, and information on position coordinates corresponding to the displacement of the object to be measured. A position measuring device characterized by being a two-dimensional position detecting element that outputs a detection signal.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18250988 | 1988-07-21 | ||
JP63-182509 | 1988-07-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02124412A true JPH02124412A (en) | 1990-05-11 |
Family
ID=16119545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17514689A Pending JPH02124412A (en) | 1988-07-21 | 1989-07-06 | Position measuring apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02124412A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04279806A (en) * | 1991-03-08 | 1992-10-05 | Nippon Telegr & Teleph Corp <Ntt> | Light beam scanning type distance measuring device |
-
1989
- 1989-07-06 JP JP17514689A patent/JPH02124412A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04279806A (en) * | 1991-03-08 | 1992-10-05 | Nippon Telegr & Teleph Corp <Ntt> | Light beam scanning type distance measuring device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7701592B2 (en) | Method and apparatus for combining a targetless optical measurement function and optical projection of information | |
JP3206843B2 (en) | 3D image measurement device | |
US4875777A (en) | Off-axis high accuracy structured light profiler | |
KR101273094B1 (en) | The measurement method of PCB bump height by using three dimensional shape detector using optical triangulation method | |
US5090811A (en) | Optical radius gauge | |
JP2510786B2 (en) | Object shape detection method and apparatus | |
JP2657505B2 (en) | Mark position detecting device and mark arrangement method | |
JPH0812127B2 (en) | Curvature radius measuring device and method | |
JPH02124412A (en) | Position measuring apparatus | |
JP2987540B2 (en) | 3D scanner | |
JP2995238B2 (en) | A scanning device that optically scans a surface along a line | |
JPH0483133A (en) | Three-dimensional scanner | |
JPS6355641B2 (en) | ||
JPH10267624A (en) | Measuring apparatus for three-dimensional shape | |
CN101320218B (en) | Three scanning type silicon slice focusing and leveling measurement apparatus, system and method | |
JPH06258040A (en) | Laser displacement meter | |
US5631738A (en) | Laser ranging system having reduced sensitivity to surface defects | |
JP2839059B2 (en) | 3D shape measuring device | |
JPH0334563B2 (en) | ||
JPS62291512A (en) | Distance measuring apparatus | |
JP2509776B2 (en) | Three-dimensional shape measuring device | |
JPH0240506A (en) | Distance measuring apparatus | |
CA2013337C (en) | Optical radius gauge | |
JP2675051B2 (en) | Optical non-contact position measuring device | |
JP4031124B2 (en) | Optical hole shape measuring method and measuring apparatus |