JPH0212264A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH0212264A
JPH0212264A JP16337388A JP16337388A JPH0212264A JP H0212264 A JPH0212264 A JP H0212264A JP 16337388 A JP16337388 A JP 16337388A JP 16337388 A JP16337388 A JP 16337388A JP H0212264 A JPH0212264 A JP H0212264A
Authority
JP
Japan
Prior art keywords
layer
region
residual potential
content
photosensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16337388A
Other languages
Japanese (ja)
Other versions
JP2668242B2 (en
Inventor
Takao Kawamura
河村 孝夫
Naooki Miyamoto
宮本 直興
Hiroshi Ito
浩 伊藤
Hitoshi Takemura
仁志 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP16337388A priority Critical patent/JP2668242B2/en
Publication of JPH0212264A publication Critical patent/JPH0212264A/en
Application granted granted Critical
Publication of JP2668242B2 publication Critical patent/JP2668242B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To enhance photosensitivity and to reduce residual potential by forming an amorphous silicon carbide photoconductive layer having a specified layer region rich in carbon content in contact with an organic semiconductor layer. CONSTITUTION:The electrophotographic sensitive body is formed by successively laminating on a conductive substrate 1 the a-SiC photoconductive layer 2 and the organic semiconductor layer 3, and the layer 2 is composed of the first layer region 2a in contact with the layer 3 containing carbon in high concentration, and a second layer region 2b containing carbon in comparatively low concentration. The region 2a has a thickness of 10-2,000Angstrom , and its atomic composition is expressed by Si1-xCx, where x is set to 0.2<x<0.5, and the region 2a contains at least one of 0 and N in an amount of 0.01-30 atomic %, thus permitting high sensitivity to be obtained and residual potential to be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアモルファスシリコンカーバイド光導電層と有
機光半導体層を積層して成る電子写真感光体に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrophotographic photoreceptor comprising a laminated layer of an amorphous silicon carbide photoconductive layer and an organic photoconductor layer.

〔従来技術及びその問題点〕[Prior art and its problems]

電子写真感光体の光導電材料には、Se、5e−Te。 Photoconductive materials for electrophotographic photoreceptors include Se and 5e-Te.

^szS *s+ZnO,CdS、アモルファスシリコ
ンなどの無機材料と各種有機材料がある。そのなかで最
初に実用化されたものはSeであり、そして、ZnO,
CdS、アモルファスシリコンも実用化された。他方、
有機材料ではPVK−TNFが最初に実用化され、その
後、電荷の発生並びに電荷の輸送という機能を別々の有
機材料に分担させるという機能分離型感光体が提案され
、この機能分離型感光体によって有機材料の開発が飛躍
的に発展している。
^szS *s+There are inorganic materials such as ZnO, CdS, and amorphous silicon, and various organic materials. Among them, Se was the first to be put into practical use, and then ZnO,
CdS and amorphous silicon have also been put into practical use. On the other hand,
Among organic materials, PVK-TNF was first put into practical use, and later, a functionally separated photoreceptor was proposed in which the functions of charge generation and charge transport were shared between separate organic materials. The development of materials is progressing rapidly.

一方、上記無機光導電層の上に有機光半導体層を積層し
た電子写真感光体も提案された。
On the other hand, an electrophotographic photoreceptor in which an organic photoconductive layer is laminated on the inorganic photoconductive layer has also been proposed.

例えばSe層と有機光半導体層の積層型感光体があり、
既に実用化されたが、この感光体においては、Se自体
有害であり、しかも、長波長側の感度に劣るという欠点
もあった。
For example, there is a laminated photoreceptor with a Se layer and an organic optical semiconductor layer.
Although it has already been put into practical use, this photoreceptor has the disadvantage that Se itself is harmful and has poor sensitivity on the long wavelength side.

そこで、特開昭56−14241号公報にはアモルファ
スシリコンカーバイド光導電層と有機光半導体層から成
る積層型感光体が提案されており、この怒光体によれば
、上記問題点を解消して無公害性並びに高光感度な特性
が得られた。
Therefore, JP-A-56-14241 proposes a laminated photoreceptor consisting of an amorphous silicon carbide photoconductive layer and an organic photoconductor layer. According to this photoreceptor, the above-mentioned problems can be solved. The properties of pollution-free property and high light sensitivity were obtained.

しかし乍ら、本発明者等がこのような電子写真感光体を
製作し、その光感度と残留電位を測定したところ、両者
とも未だ満足し得るような特性が得られず、更に改善を
要することが判明した。
However, when the present inventors manufactured such an electrophotographic photoreceptor and measured its photosensitivity and residual potential, it was found that both characteristics were still unsatisfactory, and further improvements were needed. There was found.

従って、本発明は叙上に迄みて完成されたものであり、
その目的は高い光感度が得られ且つ残留電位を低減させ
た電子写真感光体を提供することにある。
Therefore, the present invention has been completed up to the point described above,
The purpose is to provide an electrophotographic photoreceptor that has high photosensitivity and reduced residual potential.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、導電性基板上にアモルファスシリコン
カーバイド光導電層(以下、アモルファスシリコンカー
バイドをa−StCと略す)と有機光半導体層を順次積
層した電子写真感光体において、前記a−SiC光導電
層の内部に両層の界面に接してC元素を多く含有する層
領域を形成し、この層領域の厚みが10〜2000人の
範囲内にあり且つ該層領域のSi元素とC元素の原子組
成比を5it−*c 。
According to the present invention, in an electrophotographic photoreceptor in which an amorphous silicon carbide photoconductive layer (hereinafter amorphous silicon carbide is abbreviated as a-StC) and an organic photoconductive layer are sequentially laminated on a conductive substrate, the a-SiC A layer region containing a large amount of C element is formed inside the conductive layer in contact with the interface between both layers, and the thickness of this layer region is within the range of 10 to 2000, and the Si element and C element in the layer region are The atomic composition ratio is 5it-*c.

で表わした場合、x値を0.2< x < 0.5の範
囲内に設定し、更に上記層領域に酸素及び窒素の少な(
とも一種の元素を0.01〜30原子%含有させたこと
を特徴とする電子写真感光体が提供される。 以下、本
発明の詳細な説明する。
When expressed as , the x value is set within the range of 0.2 <
Provided is an electrophotographic photoreceptor characterized by containing 0.01 to 30 atom % of one type of element. The present invention will be explained in detail below.

第1図は本発明電子写真感光体の層構成を示しており、
同図によれば、導電性基板(1)の上にa−3iC光導
電層(2)及び有機光半導体層(3)が順次積層されて
いる。そして、a−SiC光導電N(2)には電荷発生
という機能があり、他方の有機光半導体層(3)には電
荷輸送という機能がある。
FIG. 1 shows the layer structure of the electrophotographic photoreceptor of the present invention.
According to the figure, an a-3iC photoconductive layer (2) and an organic photo-semiconductor layer (3) are sequentially laminated on a conductive substrate (1). The a-SiC photoconductive layer (2) has a function of charge generation, and the other organic optical semiconductor layer (3) has a function of charge transport.

本発明は上記a−SiC光導電層(2)の内部に両層(
2) (3)の界面と接するようにC元素を多く含有す
る層領域を形成し、しかも、この層領域に酸素及び/又
は窒素の元素を含有させ、これにより、光感度及び残留
電位の両特性を改善したことが特徴である。
The present invention provides both layers (
2) A layer region containing a large amount of C element is formed so as to be in contact with the interface in (3), and this layer region also contains oxygen and/or nitrogen elements, thereby improving both photosensitivity and residual potential. It is characterized by improved characteristics.

第1図によれば、a−SiC光導電層(2)はC元素高
含有の第1のN領域(2a)、並びにC元素が比較的少
なく含有された第2の層領域(2b)から成り、このよ
うな層領域を形成した場合、a−SiC光導電層(2)
と有機光半導体層(3)の間の暗導電率の差が顕著に小
さくなり、これにより、両Fi (2) (3)の界面
でキャリアがトラップされなくなる。
According to FIG. 1, the a-SiC photoconductive layer (2) is formed from a first N region (2a) with a high content of C element and a second layer region (2b) with a relatively low content of C element. When such a layer region is formed, the a-SiC photoconductive layer (2)
The difference in dark conductivity between the Fi (2) (3) and the organic optical semiconductor layer (3) becomes significantly smaller, and thereby carriers are no longer trapped at the interface of both Fi (2) (3).

即ち、a−SiC光導11(2)の暗導電率は約101
〜10−”(Ω・cIll)−’であり、他方の有機光
半導体層(3)の暗導電率は約10−” 〜10−”(
Ω・clI)−1であり、そのためにa−3iC光導電
N(2)で発生したキャリアは暗導電率の大きな差によ
り有機光半導体層(3)へスムーズに流れなくなる。従
って、本発明者等はC元素高含有の第1のN N域(2
a)を形成し、これにより、その層領域(2a)の暗導
電率が小さくなり、両層(2) (3)の界面で暗導電
率の差を小さ(できることを見い出した。
That is, the dark conductivity of the a-SiC light guide 11(2) is approximately 101
~10-''(Ω・cIll)-', and the dark conductivity of the other organic optical semiconductor layer (3) is approximately 10-''~10-''(
Ω·clI)−1, and therefore carriers generated in the a-3iC photoconductor N(2) do not flow smoothly to the organic photoconductor layer (3) due to the large difference in dark conductivity. Therefore, the present inventors have developed a first N N region (2
a), thereby reducing the dark conductivity of the layer region (2a) and reducing the difference in dark conductivity at the interface between both layers (2) and (3).

また、本発明者等は第1のN領域(2a)に酸素及び窒
素の少なくとも一種の元素(以下、酸素・窒素元素と略
す)を含有させた場合、表面電位を一層高めることがで
きるという点も見い出した。
In addition, the present inventors have found that when the first N region (2a) contains at least one element of oxygen and nitrogen (hereinafter abbreviated as oxygen/nitrogen element), the surface potential can be further increased. I also found out.

このように第1のMSM域(2a)はC元素含有比率と
厚み並びに酸素・窒素元素含有量により表わされる。
In this way, the first MSM region (2a) is represented by the C element content ratio and thickness, as well as the oxygen and nitrogen element contents.

C元素含有比率はSi、□Cxのx値で0.2< x 
<0.5、好適には0.3 < y < 0.5の範囲
内に設定するとよ<、x値が0.2以下の場合には両I
W(2) (3)の間で暗導電率の差を所要通りに小さ
くできず、これによって光感度及び残留電位のそれぞれ
の特性を改善できず、また、x値が0.5以上の場合に
は、a=sic光導電層でキャリアがトラップされ易く
なり、光感度特性が低下する。
The C element content ratio is 0.2 < x in the x value of Si and □Cx.
<0.5, preferably within the range of 0.3 < y < 0.5. If the x value is 0.2 or less, both I
If the difference in dark conductivity between W(2) and (3) cannot be reduced as required, and as a result, the respective characteristics of photosensitivity and residual potential cannot be improved, and the x value is 0.5 or more. In this case, carriers are likely to be trapped in the a=sic photoconductive layer, resulting in a decrease in photosensitivity.

また、厚みは10〜2000人、好適には500〜lo
o。
In addition, the thickness is 10 to 2000, preferably 500 to 2000.
o.

人の範囲内に設定するとよく、10人未満の場合には光
感曖及び残留電位のそれぞれの特性を改善できず、20
00人を超えた場合には残留電位が大きくなる傾向にあ
る。
It is best to set it within the range of 20 people; if the number of people is less than 10, the characteristics of optical ambiguity and residual potential cannot be improved.
When the number of people exceeds 00, the residual potential tends to increase.

酸素・窒素元素の含有量は0.01〜3o原子%、好適
には0.1−10原子%の範囲内に設定するとよく、こ
れが0.01原子%未溝の場合には表面電位、光感度又
は残留電位を一層高めることができず、また、30原子
%を超えた場合には残rg!電位が顕著に大きくなる。
The content of oxygen and nitrogen elements is preferably set within the range of 0.01 to 30 at%, preferably 0.1 to 10 at%, and if the content is 0.01 at%, the surface potential and light If the sensitivity or residual potential cannot be further increased and the residual potential exceeds 30 at%, the residual rg! The potential increases significantly.

他方の第2の層領域(2b)は実質上の光キャリア発生
層であり、その元素比率は下記の通りの範囲内に設定す
るとよい。
The other second layer region (2b) is substantially a photocarrier generation layer, and the element ratio thereof is preferably set within the following range.

第2の層領域(2b)はアモルファス化したSi元素と
C元素から成り、更に両者の元素のダングリングボンド
を終端させるための水素(Iり元素やハロゲン元素(こ
の終端用元素を、以下、へ元素と略す)から成り、そし
て、これらの元素の組成式を(Si+−−Cx)  +
−y^、として表わした場合、X値は0.05 < x
 < 0.5、好適には0.1 < x < 0.4の
範囲内に、y値は0.1 < y < 0.5 、好適
には0.2〈yく0.5、最適には0.25 < y 
< 0.45の範囲内に設定するとよい。X値又はy値
が上記範囲内に設定された場合には優れた光導電特性並
びに高い光感度特性が得られる。
The second layer region (2b) is made of amorphous Si element and C element, and hydrogen (I element and halogen element) for terminating the dangling bonds of both elements (this terminating element is hereinafter referred to as The compositional formula of these elements is (Si+--Cx) +
-y^, the X value is 0.05 < x
< 0.5, preferably 0.1 < x < 0.4, the y value is in the range 0.1 < y < 0.5, preferably 0.2 is 0.25 < y
It is preferable to set it within the range of <0.45. When the X value or the y value is set within the above range, excellent photoconductive properties and high photosensitivity properties can be obtained.

第2の層領域(2b)の厚みは0.05〜5μm1好適
には0.1〜3μmの範囲内に設定すればよく、この範
囲内であれば、高い光感度が得られ、残留電位が低くな
る。
The thickness of the second layer region (2b) may be set within the range of 0.05 to 5 μm, preferably 0.1 to 3 μm; within this range, high photosensitivity can be obtained and residual potential can be reduced. It gets lower.

このような第1の層領域(2a)並びに第20層領域(
2b)のそれぞれのC元素含有量と酸素・窒素元素の含
有量は層厚方向に亘って変化させてもよい、C元素含有
量を変化させた場合には例えば第6図〜第11図に示す
例があり、また、酸素・窒素元素含有量を変化させた場
合には第12図〜第16図に示す例があり、これらの図
において、横軸は層厚方向であり、aは第2の層領域(
2b)と基板(1)の界面、bは第1の層領域(2a)
と第2のN領域(2b)の界面、そして、Cは第1のN
 領域(2a)と有機光半導体層(3)の界面を表わし
、また、縦軸はC元素含有量又は酸素・窒素含有量を表
わす。
Such a first layer region (2a) and a 20th layer region (
The C element content and the oxygen/nitrogen element content in 2b) may be varied in the layer thickness direction. When the C element content is varied, for example, as shown in FIGS. 6 to 11. In addition, there are examples shown in Figures 12 to 16 when the oxygen and nitrogen element contents are changed. In these figures, the horizontal axis is the layer thickness direction, and a is the thickness direction. 2 layer area (
2b) and the interface between substrate (1), b is the first layer region (2a)
and the interface of the second N region (2b), and C is the interface of the first N region (2b).
It represents the interface between the region (2a) and the organic optical semiconductor layer (3), and the vertical axis represents the C element content or the oxygen/nitrogen content.

尚、第1の層領域(2a)又は第2の層領域(2b)の
内部で層厚方向に亘ってC元素含有量又は酸素・窒素元
素含有量を変えた場合、各元素含有比率はそれぞれN 
wI域(2a) (2b)全体当たりの平均含有比率に
対応する。
In addition, when the C element content or the oxygen/nitrogen element content is changed in the layer thickness direction inside the first layer region (2a) or the second layer region (2b), the content ratio of each element is N
wI range (2a) (2b) Corresponds to the overall average content ratio.

前記基板(1)には銅、黄銅、SO5、At等の金属導
電体、或いはガラス、セラミックス等の絶縁体の表面に
導電体薄膜をコーティングしたものがあり、就中、A1
がコスト面並びにa−SiCFiとの密着性という点で
有利である。
The substrate (1) includes a metal conductor such as copper, brass, SO5, At, or an insulator such as glass or ceramics coated with a conductor thin film on the surface.
is advantageous in terms of cost and adhesion to a-SiCFi.

また、本発明の電子写真感光体は有機光半導体層(3)
の材料選択により負帯電型又は正帯電型に設定すること
ができる。即ち、負帯電型電子写真感光体の場合、有機
光半導体層(3)に電子供与性化合物が選ばれ、一方、
正帯電型電子写真感光体の場合には有機光半導体層(3
)に電子吸引性化合物が選ばれる。
Further, the electrophotographic photoreceptor of the present invention has an organic photoconductor layer (3).
It can be set to a negatively charged type or a positively charged type by selecting the material. That is, in the case of a negatively charged electrophotographic photoreceptor, an electron-donating compound is selected for the organic optical semiconductor layer (3);
In the case of a positively charged electrophotographic photoreceptor, an organic optical semiconductor layer (3
) is selected as an electron-withdrawing compound.

電子供与性化合物には高分子量のものとして、ポリ−N
−ビニルカルバゾール、ポリビニルピレン、ポリビニル
アントラセン、ピレン〜ホルムアルデヒド縮重合体など
があり、また、低分子量のものとしてオキサジアゾール
、オキサゾール、ピラゾリン、トリフェニルメタン、ヒ
ドラゾン、トリアリールアミン、N−フェニルカルバゾ
ール、スチルベンなどがあり、この低分子物質は、ポリ
カーボネート、ポリエステル、メタアクリル樹脂、ポリ
アミド、アクリルエポキシ、ポリエチレン、フェノール
、ポリウレタン、ブチラール樹脂、ポリ酢酸ビニル、ユ
リア樹脂などのバインダに分散されて用いられる。
As an electron donating compound, poly-N is used as a high molecular weight compound.
-Vinylcarbazole, polyvinylpyrene, polyvinylanthracene, pyrene-formaldehyde condensation polymer, etc., and low molecular weight ones include oxadiazole, oxazole, pyrazoline, triphenylmethane, hydrazone, triarylamine, N-phenylcarbazole, Examples include stilbene, and this low-molecular substance is used after being dispersed in a binder such as polycarbonate, polyester, methacrylic resin, polyamide, acrylic epoxy, polyethylene, phenol, polyurethane, butyral resin, polyvinyl acetate, or urea resin.

電子吸引性化合物には2.4.7−ドリニトロフルオレ
ンなどがある。
Examples of electron-withdrawing compounds include 2,4,7-dolinitrofluorene.

かくして本発明の電子写真感光体によれば、酸素・窒素
元素を含有したC元素高含有層領域を形成したことによ
り光感度を高め、しかも、残留電位が低減できた。
Thus, according to the electrophotographic photoreceptor of the present invention, by forming the C element high content layer region containing oxygen and nitrogen elements, the photosensitivity can be increased and the residual potential can be reduced.

また・、本発明の電子写真感光体においては、a−9i
C光導電層(2)に周期律表第nla族元素(以下、n
la族元素と略す)をl 〜500ppm、好適には2
〜200ppm含有させるとよい。
In addition, in the electrophotographic photoreceptor of the present invention, a-9i
The C photoconductive layer (2) contains an element of group NLA of the periodic table (hereinafter referred to as n
1 to 500 ppm, preferably 2
It is preferable to contain up to 200 ppm.

このma族元素含有量については、a−5iC層全体当
たりの平均値によって表わされ、その平均含有量がlp
pm以下の場合には暗導電率が太き(なる傾向にあり、
しかも、光感度の低下が認められ一方、500ppn+
以上の場合には暗導電率が著しく大きくなり、更に光導
電率の暗導電率に対する比率が小さくなり、所望通りの
光感度を得るのが難しくなる。
This ma group element content is expressed by the average value for the entire a-5iC layer, and the average content is lp
When the temperature is below pm, the dark conductivity tends to be thicker.
Moreover, a decrease in photosensitivity was observed, while 500ppn+
In these cases, the dark conductivity becomes significantly large, and the ratio of photoconductivity to dark conductivity becomes small, making it difficult to obtain the desired photosensitivity.

a−SiC光導電層(2)にma族元素を含有させるに
当たり、そのドーピング分布は層厚方向に亘って均−又
は不均一のいずれでもよい。不均一にドーピングさせた
場合、この層(2)の一部にma族元素が含有されない
N領域があってもよく、その場合にはma族元素含有の
a−SiC層領域並びに■族元素が含有されていないa
−3iC1JsIf域の両者から成るa−SiCN全体
に対するma族元素平均含有量が1〜500ppmでな
くてはならない。
When incorporating the Ma group element into the a-SiC photoconductive layer (2), the doping distribution may be either uniform or non-uniform over the layer thickness direction. In the case of non-uniform doping, there may be a part of this layer (2) in which there is an N region in which no Ma group element is contained. a that does not contain
-3iC1JsIf region, the average content of Ma group elements in the entire a-SiCN consisting of both regions must be 1 to 500 ppm.

このma族元素にはB、AI+Ga+ In等があるが
、Bが共有結合性に優れて半導体特性を敏感に変え得る
点で、その上、優れた帯電能並びに光感度が得られると
いう点で望ましい。
This MA group element includes B, AI + Ga + In, etc., but B is desirable because it has excellent covalent bonding properties and can sensitively change semiconductor properties, and also because it can provide excellent charging ability and photosensitivity. .

次に本発明電子写真感光体の製法を述べる。Next, a method for manufacturing the electrophotographic photoreceptor of the present invention will be described.

a−SiC層を形成するにはグロー放電分解法、イオン
ブレーティング法、反応性スパッタリング法、真空蒸着
法、CVD法などの薄膜形成方法がある。
To form the a-SiC layer, there are thin film forming methods such as glow discharge decomposition method, ion blating method, reactive sputtering method, vacuum evaporation method, and CVD method.

グロー放電分解法を用いる場合、Si元素含有ガスとC
元素含有ガスを組合せ、この混合ガスをプラズマ分解し
て成膜形成する。このSi元素含有ガスにはSiH4+
hJi+513H11+SxF*4iC1*+5tHC
1s等々があり、また、C元素含有ガスにはCHa=C
tHa、CtH2+C3HI1等々があり、就中、cz
ozは高速成膜性が得られるという点で望ましい。
When using the glow discharge decomposition method, Si element-containing gas and C
A film is formed by combining element-containing gases and plasma decomposing the mixed gas. This Si element-containing gas contains SiH4+
hJi+513H11+SxF*4iC1*+5tHC
1s, etc., and the C element-containing gas has CHa=C
There are tHa, CtH2+C3HI1, etc., especially cz
oz is desirable in that high-speed film formation can be achieved.

本実施例に用いられるグロー放電分解装置を第2図によ
り説明する。
The glow discharge decomposition device used in this example will be explained with reference to FIG.

図中、第1タンク(4)、第2タンク(5)、第3タン
ク(6)、第4タンク(7)、第5タンク(8)にはそ
れぞれ5iH41C,II、、 BZI16. (B、
II6が40ppm ?農度で水素希釈されている)、
11□及びNOが密封され、これらのガスは各々対応す
る第1調整弁(9)、第2調整弁(10) 、第3調整
弁(11)、第4調製弁(12)及び第5調整弁(13
)の開放により放出する。その放出ガスの流量はそれぞ
れマスフローコントローラ(14) (15) (16
) (17) (18)により制御され、各々のガスは
混合されて主管(19) (20)へ送られる。尚、(
21)(22)は止め弁である。
In the figure, 5iH41C, II, BZI16. (B,
II6 is 40ppm? Hydrogen is diluted by agriculture),
11□ and NO are sealed, and these gases are supplied to the corresponding first regulating valve (9), second regulating valve (10), third regulating valve (11), fourth regulating valve (12) and fifth regulating valve, respectively. Valve (13
) is released by opening. The flow rate of the released gas is determined by the mass flow controller (14) (15) (16), respectively.
) (17) and (18), each gas is mixed and sent to the main pipes (19) and (20). still,(
21) (22) are stop valves.

主管(19)を通じて流れるガスは反応管(23)へ流
入するが、この反応管(23)の内部には容量結合型放
電用電極(24)が設置され、また、筒状の成膜用基板
(25)が基板支持体く26)の上に載置され、基板支
持体(26)がモータ(27)により回転駆動され、こ
れに伴って基板(25)が回転する。そして、電極(2
4)に電力50W 〜3 Kw、周波数1〜50MHz
の高周波電力が印加され、しかも、基板(25)が適当
な加熱手段により約200〜400℃、好適には約20
0〜350℃の温度に加熱される。また、反応管(23
)は回転ポンプ(28)と拡散ポンプ(29)に連結さ
れており、これによってグロー放電による成膜形成時に
所要な真空状B(放電時のガス圧0.1〜2.0Tor
r)が設定できる。
Gas flowing through the main pipe (19) flows into the reaction tube (23), and a capacitively coupled discharge electrode (24) is installed inside this reaction tube (23), and a cylindrical film-forming substrate is installed inside the reaction tube (23). (25) is placed on a substrate support (26), the substrate support (26) is rotationally driven by a motor (27), and the substrate (25) rotates accordingly. Then, the electrode (2
4) Power 50W ~ 3 Kw, frequency 1 ~ 50MHz
high-frequency power is applied, and the substrate (25) is heated to about 200-400°C, preferably about 20°C by suitable heating means.
Heated to a temperature of 0-350°C. In addition, a reaction tube (23
) is connected to a rotary pump (28) and a diffusion pump (29), which provide the necessary vacuum state B (gas pressure during discharge of 0.1 to 2.0 Torr) during film formation by glow discharge.
r) can be set.

このような構成のグロー放電分解装置を用いて基板(2
5)の上にa−5iCqを形成する場合、第111整弁
(9)、第2調整弁(10) 、第3調整弁(11)、
第4調整弁(12)及び第5調整弁(13)を開いて5
xl14.CJ2、B□H& 、 It□、NOの各々
のガスを放出し、その放出量をマスフローコントローラ
(14) (15) (16) (17) (18)に
より制御し、各々のガスは混合されて主管(19)(2
0)を介して反応管(23)へ流入する。そして、反応
管内部の真空状態、基板温度、電極印加用高周波電力を
それぞれ所定の条件に設定するとグロー放電が発生し、
ガスの分解に伴ってB、N、0の各元素含有のa−5i
C膜が基板上に高速に形成する。
The substrate (2
When forming a-5iCq on 5), the 111th regulating valve (9), the second regulating valve (10), the third regulating valve (11),
Open the fourth regulating valve (12) and the fifth regulating valve (13) and
xl14. Each of the gases CJ2, B□H&, It□, and NO is released, and the release amount is controlled by a mass flow controller (14) (15) (16) (17) (18), and each gas is mixed. Main manager (19) (2
0) into the reaction tube (23). Then, when the vacuum state inside the reaction tube, the substrate temperature, and the high-frequency power applied to the electrodes are set to predetermined conditions, a glow discharge occurs.
With the decomposition of gas, a-5i containing each element of B, N, and 0
A C film is formed on the substrate at high speed.

上述した通りの薄膜形成方法によりa−3iC層を形成
すると、次に有機光半導体層を形成する。
After forming the a-3iC layer by the thin film forming method as described above, an organic optical semiconductor layer is then formed.

有機光半導体層は浸漬塗工方法又はコーティング法によ
り形成する。前者は感光材が溶媒中に分散された塗工液
の中に浸漬し、次いで、一定な速度で引上げ、そして、
自然乾燥及び熱エージング(約150℃、約1時間)を
行うという方法であり、また、後者のコーティング法に
よれば、コーター(塗機)を用いて、溶媒に分散された
感光材を塗布し、次いで熱風乾燥を行う。
The organic optical semiconductor layer is formed by a dip coating method or a coating method. In the former method, the photosensitive material is immersed in a coating solution in which it is dispersed in a solvent, then pulled up at a constant speed, and then
This method involves natural drying and heat aging (approximately 150°C, approximately 1 hour), and the latter coating method involves applying a photosensitive material dispersed in a solvent using a coater. , followed by hot air drying.

〔実施例〕〔Example〕

次に本発明の実施例を述べる。 Next, examples of the present invention will be described.

(例1) 第2図のグロー放電分解装置を用いて、S i II 
、ガスを200secmの流量で、+12ガスを270
secmの流量で、そして、c Z i Zガスの流量
を変化させ、また、ガス圧をQ、5Torr 、高周波
電力を150W、基板温度を250℃に設定し、グロー
放電によってa−3iCIl!(膜厚約1μm)を形成
した。
(Example 1) Using the glow discharge decomposition device shown in Fig. 2, S i II
, gas at a flow rate of 200 sec, +12 gas at 270 sec
The flow rate of c Z i Z gas was changed, the gas pressure was set to Q, 5 Torr, the high frequency power was set to 150 W, and the substrate temperature was set to 250° C., and a-3iCIl! was generated by glow discharge. (film thickness approximately 1 μm) was formed.

このようにしてa−3iC膜のカーボン含有比率を変え
、そして、膜中のカーボン量をXMA法により測定し、
また、光導電率及び暗導電率を測定したところ、第3図
に示す通りの結果が得られた。
In this way, the carbon content ratio of the a-3iC film was changed, and the amount of carbon in the film was measured by the XMA method.
Further, when the photoconductivity and dark conductivity were measured, the results shown in FIG. 3 were obtained.

第3図中、横軸はカーボン含有比率、即ちSi。In FIG. 3, the horizontal axis represents the carbon content ratio, that is, Si.

XCXのX値であり、縦軸は導電率を表わし、○印は発
光波長550r+n+ (光量50μw/cm2)の光
に対する光導電率のプロットであり、・印は暗導電率の
プロットであり、また、a、bはそれぞれの特性曲線で
ある。
It is the X value of XCX, the vertical axis represents the conductivity, the ○ mark is a plot of photoconductivity for light with an emission wavelength of 550r+n+ (light intensity 50 μw/cm2), the mark is a plot of dark conductivity, and , a, b are respective characteristic curves.

更に上記各a−3iC膜について、その水素含有量を赤
外吸収測定法により求めたところ、第4図に示す通りの
結果が得られた。
Furthermore, when the hydrogen content of each of the above a-3iC films was determined by infrared absorption measurement, the results shown in FIG. 4 were obtained.

第4図中、横軸は5il−XCXのX値であり、縦軸は
水素含有量、即ち(Sil□CX)+−yHyのy値で
あり、O印はSi原子に結合した水素量のプロットであ
り、・印はC原子に結合した水素量のプロットであり、
また、c、dはそれぞれの特性曲線である。
In Fig. 4, the horizontal axis is the X value of 5il-XCX, the vertical axis is the hydrogen content, that is, the y value of (Sil□CX)+-yHy, and the O symbol indicates the amount of hydrogen bonded to the Si atom. It is a plot, and the mark is a plot of the amount of hydrogen bonded to the C atom,
Moreover, c and d are respective characteristic curves.

第4図より明らかな通り、本例のa−3iC膜はいずれ
もy値が0.3〜0.4の範囲内にあることが判る。
As is clear from FIG. 4, it can be seen that the a-3iC films of this example all have y values within the range of 0.3 to 0.4.

また、第3図より明らかな通り、カーボン含有比率Xが
0.05 < x < 0.5の範囲内であれば、光導
電率と暗導電率の比率が顕著に大きくなり、優れた光感
度が得られることが判る。
Furthermore, as is clear from Fig. 3, if the carbon content ratio X is within the range of 0.05 < It turns out that is obtained.

(例2) 次に本例においては、5il14ガスを200secm
の流量で、C,lhガスを20secmの流量で、I+
2ガスを0〜101000scの流量で4人し、そして
、高周波電力を50〜300W、ガス圧を0.3〜1.
2Torrに設定し、グロー放電によりa−3iC膜(
膜厚約1μm )を形成した。
(Example 2) Next, in this example, 5il14 gas is
C, lh gas at a flow rate of 20 sec, I+
2 gases at a flow rate of 0 to 101,000 sc by 4 people, high frequency power of 50 to 300 W, and gas pressure of 0.3 to 1.
The a-3iC film (
A film thickness of about 1 μm) was formed.

かくして、カーボン含有比率Xを0.3に設定し、水素
含有量yを変化させた種々のa−SiC膜を形成し、各
々の膜について光導電率及び暗導電率を測定したところ
、第5図に示す通りの結果が得られた。
In this way, various a-SiC films were formed with the carbon content ratio X set to 0.3 and the hydrogen content y varied, and the photoconductivity and dark conductivity of each film were measured. The results shown in the figure were obtained.

第5図中、横軸は水素含有量、即ち(Si+−x C+
i)+−y)Iyのy値であり、縦軸は導電率を表わし
、O印は発光波長550ns (光量50μ−/cm”
)の光に対する光導電率のプロットであり、・印は暗導
電率のプロットであり、また、e、fはそれぞれの特性
曲線である。
In Fig. 5, the horizontal axis represents the hydrogen content, that is, (Si+-x C+
i) + - y) It is the y value of Iy, the vertical axis represents the conductivity, and the O mark indicates the emission wavelength of 550 ns (light intensity 50 μ-/cm)
) is a plot of photoconductivity against light, the * mark is a plot of dark conductivity, and e and f are respective characteristic curves.

第5図より明らかな通り、y値が0.2を超えた場合、
高い光導電率並びに低い暗導電率が得られることが判る
As is clear from Figure 5, when the y value exceeds 0.2,
It can be seen that high photoconductivity as well as low dark conductivity are obtained.

(例3) 第1表に示す成膜条件によりa−5iC光導電1(2)
を形成した。
(Example 3) A-5iC photoconductive 1 (2) was formed using the film forming conditions shown in Table 1.
was formed.

そして、第1の1!領域の酸素・窒素元素の含有1を測
定したところ、約2原子%であった。
And the first one! When the content of oxygen and nitrogen elements in the region was measured, it was approximately 2 at.%.

〔以下余白〕[Margin below]

このようにして形成したa−SiC光導電層の上にポリ
カーボネートにヒドラゾン系化合物を分散させた有機光
半導電体層(膜厚約15μm)を形成し、電子写真感光
体とした。
On the thus formed a-SiC photoconductive layer, an organic photoconductor layer (about 15 μm in thickness) consisting of polycarbonate and a hydrazone compound dispersed therein was formed to obtain an electrophotographic photoreceptor.

かくして得られた電子写真感光体の特性評価を電子写真
特性測定装置により測定したところ、優れた光感度が得
られ、しかも、低い残留電位が得られた。
When the properties of the thus obtained electrophotographic photoreceptor were measured using an electrophotographic property measuring device, it was found that excellent photosensitivity and low residual potential were obtained.

(例4) 本発明者等は(例3)の電子写真感光体に係る第1のN
 Su域を形成するに当たって、NOガスの流量を変化
させ、しかも、その成膜時間を変え、これにより、第1
の層領域の酸素・窒素元素含有量並びに膜厚を第2表に
示す通りに変え、かくして9種類の電子写真感光体(感
光体A −1)を製作した。
(Example 4) The present inventors have discovered that the first N related to the electrophotographic photoreceptor of (Example 3)
In forming the Su region, the flow rate of NO gas is changed and the film formation time is also changed.
Nine types of electrophotographic photoreceptors (photoreceptor A-1) were manufactured by changing the oxygen and nitrogen element contents and film thicknesses of the layer regions as shown in Table 2.

また、これらの電子写真感光体の表面電位、光感度及び
残留電位を測定したところ、第2表に示す通りの結果が
得られた。
Furthermore, when the surface potential, photosensitivity and residual potential of these electrophotographic photoreceptors were measured, the results shown in Table 2 were obtained.

表面電位は◎印、○印及びΔ印の3段階で相対評価を行
っており、■印は最も優れた表面電位が得られた場合で
あり、O印は幾分優れた表面電位が得られた場合であり
、Δ印は他に比べて表面電位が幾分劣った場合である。
Surface potential is evaluated relative to three levels: ◎ mark, ○ mark, and Δ mark. ■ mark indicates that the best surface potential was obtained, and O mark indicates that somewhat better surface potential was obtained. The Δ mark indicates a case where the surface potential is somewhat inferior compared to the others.

光感度も相対評価により◎印、○印及びΔ印の3段階に
区分し、■印は最も優れた光感度が得られた場合であり
、○印は幾分優れた光感度が得られた場合であり、Δ印
は他に比べてわずかに劣る光感度になった場合である。
Photosensitivity was also classified into three levels based on relative evaluation: ◎, ○, and Δ. ■: The best photosensitivity was obtained, and ○: slightly better photosensitivity. The Δ mark indicates a case where the photosensitivity is slightly inferior to the others.

また、残留電位についても三段階に相対評価しており、
◎印は残留電位が小さくなった場合であり、○印は残留
電位の低下が幾分認められた場合であり、Δ印は他に比
べて残留電位の低減が認められなかった場合である。
In addition, the residual potential is also evaluated relative to three levels.
The mark ◎ indicates a case where the residual potential became small, the mark ○ indicates a case where a slight decrease in residual potential was observed, and the mark Δ indicates a case where a reduction in residual potential was not observed compared to the others.

〔以下余白〕[Margin below]

第 表 *印の感光体は本発明の範囲外のものである。 No. table Photoreceptors marked with * are outside the scope of the present invention.

第2表より明らかな通り、感光体B並びに感光体D−G
は優れた光感度が得られ、表面電位が高く、しかも、残
留電位の低減が認められた。
As is clear from Table 2, photoconductor B and photoconductor D-G
Excellent photosensitivity was obtained, the surface potential was high, and a reduction in residual potential was observed.

然るに感光体A及びHは第1の層領域の厚みが、感光体
C及びIは第1の層領域の酸素・窒素元素含有量がそれ
ぞれ本発明より外れており、そのために−表面電位、光
感度又は残留電位の改善が認められなかった。
However, the thickness of the first layer region of photoreceptors A and H and the content of oxygen and nitrogen elements in the first layer region of photoreceptors C and I are respectively different from those of the present invention. No improvement in sensitivity or residual potential was observed.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明の電子写真感光体によれば、a−S
iC光導電層の内部に酸素・窒素元素を含むC元素高含
有1’!!%J1域を形成したことにより優れた光感度
が得られ、高い表面電位となり、しかも、残留電位を低
減させることができた。
As described above, according to the electrophotographic photoreceptor of the present invention, a-S
High C element content 1' containing oxygen and nitrogen elements inside the iC photoconductive layer! ! By forming the %J1 region, excellent photosensitivity was obtained, a high surface potential was obtained, and the residual potential was able to be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明電子写真感光体の層構成を表わす断面図
、第2図は実施例に用いられるグロー放電分解装置の概
略図、第3図はカーボン含有量と導電率の関係を示す線
図、第4図はカーボン含有量と水素含有量の関係を示す
線図、第5図は水素含有量と導電率の関係を示す線図で
あり、また、第6図、第7図、第8図、第9図、第10
図及び第11図はアモルファスシリコンカーバイド光導
電層の層厚方向に亘るカーボン含有量を表わす線図、第
12図、第13図、第14図、第15図及び第16図は
アモルファスシリコンカーバイド光導電層の層厚方向に
亘る酸素・窒素元素含有量を表わす線図である。 l ・ 2a・ 2b・ 3 ・ 導電性基板 アモルファスシリコンカーバイド光導電層筒1の層領域 第2の層領域 有機光半導体層 特許出願人 (663)京セラ株式会社代表者安城欽寿 同   河村孝夫
FIG. 1 is a cross-sectional view showing the layer structure of the electrophotographic photoreceptor of the present invention, FIG. 2 is a schematic diagram of a glow discharge decomposition device used in Examples, and FIG. 3 is a line showing the relationship between carbon content and electrical conductivity. 4 is a diagram showing the relationship between carbon content and hydrogen content, FIG. 5 is a diagram showing the relationship between hydrogen content and electrical conductivity, and FIGS. Figure 8, Figure 9, Figure 10
11 and 11 are diagrams showing the carbon content in the layer thickness direction of the amorphous silicon carbide photoconductive layer, and FIGS. FIG. 2 is a diagram showing the content of oxygen and nitrogen elements in the thickness direction of a conductive layer. l ・ 2a ・ 2b ・ 3 ・ Conductive substrate amorphous silicon carbide photoconductive layer Layer region of tube 1 Second layer region Organic optical semiconductor layer Patent applicant (663) Kyocera Corporation Representative Kinju Anjo Takao Kawamura

Claims (1)

【特許請求の範囲】[Claims] 導電性基板上にアモルファスシリコンカーバイド光導電
層と有機光半導体層を順次積層した電子写真感光体にお
いて、前記アモルファスシリコンカーバイド光導電層の
内部に両層の界面に接してカーボン元素を多く含有する
層領域を形成し、この層領域の厚みが10〜2000Å
の範囲内にあり且つ該層領域のシリコン元素とカーボン
元素の原子組成比をSi_1_−_xC_xで表わした
場合、x値を0.2<x<0.5の範囲内に設定し、更
に上記層領域に酸素及び窒素の少なくとも一種の元素を
0.01〜30原子%含有させたことを特徴とする電子
写真感光体。
In an electrophotographic photoreceptor in which an amorphous silicon carbide photoconductive layer and an organic photoconductive layer are successively laminated on a conductive substrate, a layer containing a large amount of carbon element is provided inside the amorphous silicon carbide photoconductive layer and in contact with an interface between both layers. The thickness of this layer region is 10 to 2000 Å.
and the atomic composition ratio of silicon element and carbon element in the layer region is expressed as Si_1_−_xC_x, the x value is set within the range of 0.2<x<0.5, and the above layer is further An electrophotographic photoreceptor characterized in that a region contains 0.01 to 30 at % of at least one element of oxygen and nitrogen.
JP16337388A 1988-06-30 1988-06-30 Electrophotographic photoreceptor Expired - Fee Related JP2668242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16337388A JP2668242B2 (en) 1988-06-30 1988-06-30 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16337388A JP2668242B2 (en) 1988-06-30 1988-06-30 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPH0212264A true JPH0212264A (en) 1990-01-17
JP2668242B2 JP2668242B2 (en) 1997-10-27

Family

ID=15772648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16337388A Expired - Fee Related JP2668242B2 (en) 1988-06-30 1988-06-30 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2668242B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7157197B2 (en) * 2004-11-05 2007-01-02 Canon Kabushiki Kaisha Electrophotographic photosensitive member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7157197B2 (en) * 2004-11-05 2007-01-02 Canon Kabushiki Kaisha Electrophotographic photosensitive member

Also Published As

Publication number Publication date
JP2668242B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
JPH0212264A (en) Electrophotographic sensitive body
JPS5915940A (en) Photoreceptor
JPH0212263A (en) Electrophotographic sensitive body
JPH01239563A (en) Electrophotographic sensitive body
JP2668240B2 (en) Electrophotographic photoreceptor
JPH01315761A (en) Electrophotographic sensitive body
JPH01315759A (en) Electrophotographic sensitive body
JPH01238670A (en) Electrophotographic sensitive body
JPH02213853A (en) Electrophotographic sensitive body
JPH01315765A (en) Electrophotographic sensitive body
JP2789100B2 (en) Electrophotographic photoreceptor
JPH0293655A (en) Electrophotographic sensitive body
JPH02146054A (en) Electrophotographic sensitive body
JPH02140754A (en) Electrophotographic sensitive body
JPH01315764A (en) Electrophotographic sensitive body
JPH01232353A (en) Electrophotographic sensitive body
JPH02167555A (en) Electrophotographic sensitive body
JPH01315760A (en) Electrophotographic sensitive body
JPH02144548A (en) Electrophotographic sensitive body
JPH01315763A (en) Electrophotographic sensitive body
JPH02181155A (en) Electrophotographic sensitive body
JPS58100135A (en) Photoreceptor
JPH03126040A (en) Electrophotographic sensitive body
JPH01315762A (en) Electrophotographic sensitive body
JPH03231254A (en) Electrophotographic sensitive body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees