JPH0212263A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH0212263A
JPH0212263A JP16337288A JP16337288A JPH0212263A JP H0212263 A JPH0212263 A JP H0212263A JP 16337288 A JP16337288 A JP 16337288A JP 16337288 A JP16337288 A JP 16337288A JP H0212263 A JPH0212263 A JP H0212263A
Authority
JP
Japan
Prior art keywords
layer
region
layer region
thickness
photosensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16337288A
Other languages
Japanese (ja)
Other versions
JP2668241B2 (en
Inventor
Takao Kawamura
河村 孝夫
Naooki Miyamoto
宮本 直興
Hiroshi Ito
浩 伊藤
Hitoshi Takemura
仁志 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP16337288A priority Critical patent/JP2668241B2/en
Publication of JPH0212263A publication Critical patent/JPH0212263A/en
Application granted granted Critical
Publication of JP2668241B2 publication Critical patent/JP2668241B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To enhance photosensitivity and surface potential and to reduce residual potential by forming a specified amorphous silicon carbide photoconductive layer composed of first, second, and third layer regions laminated successively. CONSTITUTION:The electrophotographic sensitive body is formed by successively laminating on a conductive substrate 1 the a-SiC photoconductive layer 2 composed of the 3 layer regions 2a, 2b, 2c laminated successively, and an organic semiconductor layer 3. The first layer region 2a and the third layer region 2c contain more C than the layer region 2b, and have each an atomic composition Si1-xCx, where 0.2<x<0.5, and the region 2a has a thickness of 0.01-1mum, and the region 2b has a thickness of 0.05-5mum, and the region 2c has a thickness of 10-2,000Angstrom , thus permitting all the characteristics of photosensitivity, residual potential resistance, and surface potential to be enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアモルファスシリコンカーバイド先導電層と有
機光半導体層を積層して成る電子写真感光体に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrophotographic photoreceptor comprising a laminated layer of an amorphous silicon carbide conductive layer and an organic optical semiconductor layer.

〔従来技術及びその問題点〕[Prior art and its problems]

電子写真感光体の光導電材料には、Se、 5e−Te
Photoconductive materials for electrophotographic photoreceptors include Se, 5e-Te,
.

^st” ax+Zno+cas、、アモルファスシリ
コンなどの無機材料と各種有機材料がある。そのなかで
最初に実用化されたものはSeであり、そして、ZnO
,CdS、アモルファスシリコンも実用化された。他方
、有機材料ではPVK−TNFが最初に実用化され、そ
の後、電荷の発生並びに電荷の輸送という機能を別々の
有機材料に分担させるという機能分離型感光体が提案さ
れ、この機能分離型感光体によって有機材料の開発が飛
躍的に発展している。
There are inorganic materials such as amorphous silicon and various organic materials. Among them, Se was the first to be put into practical use, and ZnO
, CdS, and amorphous silicon have also been put into practical use. On the other hand, among organic materials, PVK-TNF was first put into practical use, and later, a functionally separated photoreceptor was proposed in which the functions of charge generation and charge transport were shared between separate organic materials, and this functionally separated photoreceptor The development of organic materials is progressing dramatically.

一方、上記無機光導電層の上に有機光半導体層を積層し
た電子写真感光体も提案された。
On the other hand, an electrophotographic photoreceptor in which an organic photoconductive layer is laminated on the inorganic photoconductive layer has also been proposed.

例えば5eWJと有機光半導体層の積層型感光体があり
、既に実用化されたが、この感光体においては、Se自
体有害であり、しかも、長波長側の感度に劣るという欠
点もあった。
For example, there is a laminated photoreceptor made of 5eWJ and an organic optical semiconductor layer, which has already been put into practical use, but this photoreceptor has the disadvantage that Se itself is harmful and has poor sensitivity on the long wavelength side.

そこで、特開昭56−14241号公報には7モルファ
スシリコンカーバイド光導電層と有機光半導体層から成
る積層型感光体が提案されており、この感光体によれば
、上記問題点を解消して無公害性並びに高光感度な特性
が得られた。
Therefore, Japanese Unexamined Patent Publication No. 14241/1983 proposes a laminated photoconductor consisting of a 7-morphous silicon carbide photoconductive layer and an organic photoconductor layer, and this photoconductor solves the above problems. The properties of pollution-free property and high light sensitivity were obtained.

しかし乍ら、本発明者等がこのような電子写真感光体を
製作し、その光感度、残留電位及び表面電位を測定した
ところ、いずれも未だ満足し得るような特性が得られず
、更に改善を要することが判明した。
However, when the present inventors manufactured such an electrophotographic photoreceptor and measured its photosensitivity, residual potential, and surface potential, satisfactory characteristics were still not obtained, and further improvements are needed. It turned out that it required.

従って本発明は叙上に鑑みて完成されたものであり、そ
の目的は光感度、残留電位及び表面電位のいずれの特性
も改善できた電子写真感光体を提供することにある。
Therefore, the present invention has been completed in view of the above, and its object is to provide an electrophotographic photoreceptor that can improve all of the characteristics of photosensitivity, residual potential, and surface potential.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、導電性基板上にアモルファスシリコン
カーバイド光導電II!(以下、アモルファスシリコン
カーバイドをa−3iCと略す)と有機光半導体層を順
次積層した電子写真感光体において、前記a−SiC光
導電層が第1のi領域、第2の層領域及び第3のN S
M域を順次形成した層構成であり、第1の層領域と第3
の層領域は第2の層領域に比べてカーボンを多く含むと
ともに元素比率が組成比Si、、 C、のx値として表
わされた場合、0.2 < x < 0.5の範囲内に
設定され、更に第1の層領域の厚みが0.01〜lIJ
m、第2の層領域の厚みが0.05〜5μm1第3の層
領域の厚みが10〜2000人の範囲内に設定されてい
ることを特徴とする電子写真感光体が提供される。
According to the present invention, amorphous silicon carbide photoconductive II! In an electrophotographic photoreceptor in which amorphous silicon carbide (amorphous silicon carbide is abbreviated as a-3iC hereinafter) and an organic photoconductive layer are sequentially laminated, the a-SiC photoconductive layer forms a first i region, a second layer region, and a third layer region. N S
It has a layer structure in which M regions are sequentially formed, and the first layer region and the third layer region are formed sequentially.
The layer region contains more carbon than the second layer region, and when the elemental ratio is expressed as the x value of the composition ratio Si, C, it falls within the range of 0.2 < x < 0.5. The thickness of the first layer region is set to 0.01 to lIJ.
There is provided an electrophotographic photoreceptor characterized in that the thickness of the second layer region is set within the range of 0.05 to 5 μm, and the thickness of the third layer region is set within the range of 10 to 2000 μm.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

第1図は本発明電子写真感光体の層構成を示しており、
同図によれば、導電性基板(1)の上にトSiC光導電
N(2)及び有機光半導体層(3)が順次積層されてい
る。そして、a−5iC光導電層(2)には電荷発生と
いう機能があり、他方の有機光半導体層(3)には電荷
輸送という機能がある。
FIG. 1 shows the layer structure of the electrophotographic photoreceptor of the present invention.
According to the figure, a SiC photoconductive layer (2) and an organic photo-semiconductor layer (3) are sequentially laminated on a conductive substrate (1). The a-5iC photoconductive layer (2) has a function of charge generation, and the other organic photoconductive layer (3) has a function of charge transport.

本発明は上記a−SiC光4電N(2)の内部に上記の
通りに第1の層領域(2a)、第2の層領域(2b)及
び第3の1i?iI域(2c)を順次形成し、これによ
り、光感度、残留電位及び表面電位を改善したことが特
徴である。
The present invention provides a first layer region (2a), a second layer region (2b) and a third layer region (1i?) as described above inside the a-SiC optical 4D N (2). It is characterized in that the iI region (2c) is sequentially formed, thereby improving photosensitivity, residual potential, and surface potential.

カーボンが比較的多く含有された第3の1! 81域(
2c)を形成した場合、a−3iC光導電層(2)と有
機光半導体層(3)の間の暗導電率の差が顕著に小さく
なり、これにより、両Ji! (2) (3)の界面で
キャリアがトラップされなくなる。
The third one that contains a relatively large amount of carbon! Area 81 (
2c), the difference in dark conductivity between the a-3iC photoconductive layer (2) and the organic photo-semiconductor layer (3) becomes significantly smaller, and thereby both Ji! (2) Carriers are no longer trapped at the interface in (3).

即ち、a−SiC光導電層(2)の暗導電率は約10日
’−10−”(Ω・cw)−’であり、他方の有機光半
導体層(3)の暗導電率は約IQ−14〜10− ” 
(Ω・CIm)−1であり、そのためにa−SiC光導
電層(2)で発生したキャリアは暗導電率の大きな差に
より有機光半導体層(3)へスムーズに流れなくなる。
That is, the dark conductivity of the a-SiC photoconductive layer (2) is about 10 days'-10-''(Ω・cw)-', and the dark conductivity of the other organic photoconductive layer (3) is about IQ. -14~10-”
(Ω·CIm) −1, and therefore carriers generated in the a-SiC photoconductive layer (2) cannot smoothly flow to the organic photoconductive layer (3) due to the large difference in dark conductivity.

従って、本発明者等はC元素高含有の第3のN jI域
(2C)を形成し、これにより、その層領域(2C)の
暗導電率が小さくなり、両@ (2) (3)の界面で
暗導電率の差を小さくできることを見い出した。
Therefore, the present inventors formed a third N jI region (2C) with a high content of C element, thereby reducing the dark conductivity of the layer region (2C) and reducing both @ (2) (3) We found that the difference in dark conductivity at the interface can be reduced.

このような第3の層領域(2c)は下記の通りC元素含
有比率と厚みにより表わされる。
Such a third layer region (2c) is expressed by the C element content ratio and thickness as shown below.

C元素含有比率はSi、、C、のx値で0.2< X 
<0.5、好適には0.3 < x < 0.5の範囲
内に設定するとよ<、x値が0.2以下の場合には両層
(2) (3)の間で暗導電率の差を所要通りに小さく
できず、これによって光感度及び残留電位のそれぞれの
特性を改善できず、また、x値が0.5以上の場合には
、a−3iC光導電層でキャリアがトラップされ易くな
り、光感度特性が低下する。
The C element content ratio is 0.2<X with the x value of Si, C,
< 0.5, preferably within the range of 0.3 < If the difference in ratio cannot be made as small as required, and therefore the characteristics of photosensitivity and residual potential cannot be improved, and if the x value is 0.5 or more, the carriers in the a-3iC photoconductive layer It becomes easy to be trapped and the photosensitivity characteristics deteriorate.

また、厚みは10〜2000人、好適には500〜10
00人の範囲内に設定するとよ<、10人未満の場合に
は光感度及び残留電位のそれぞれの特性を改善できず、
2000人を超えた場合には残留電位が大きくなる(噴
量にある。
Also, the thickness is 10 to 2000, preferably 500 to 10
If the number of people is less than 10, the characteristics of photosensitivity and residual potential cannot be improved.
If there are more than 2,000 people, the residual potential will increase (depending on the amount of injection).

第1の層領域(2a)もカーボンが比較的多(含有され
ており、これにより、暗導電率が小さ(なり、そのため
に基板(1)のキャリアがa−SiC光4光層電層)へ
流入するのを阻止でき、これにより、表面電位が高(な
る。
The first layer region (2a) also contains a relatively large amount of carbon, which causes the dark conductivity to be small (so that the carriers of the substrate (1) become a-SiC photo4 photolayer conductive layer). As a result, the surface potential becomes high.

このような第1の層領域(2a)は次の通りC元素含有
比率と厚みにより表わされる。
Such a first layer region (2a) is expressed by the C element content ratio and thickness as follows.

C元素含有比率は5iI−XCXのx値で0.2 < 
x< 0.5 、好適には0.3 < x < 0.5
の範囲内に設定するとよく、x値が0.2以下の場合に
は基板からのキャリアの注入を阻止して帯電能を高める
ことができず、一方、X値が0.5以上の場合には残留
電位が大きくなる。
The C element content ratio is 0.2 < x value of 5iI-XCX
x<0.5, preferably 0.3<x<0.5
If the x value is less than 0.2, it will not be possible to prevent the injection of carriers from the substrate and increase the charging ability; on the other hand, if the x value is more than 0.5, The residual potential becomes large.

また、厚みは0.01〜1 um 、好適には0.05
〜0゜5μmの範囲内に設定するとよ< 、0.01μ
m未満の場合には帯電能を高めることができず、1μm
を越えた場合には残留電位が大きくなる。
In addition, the thickness is 0.01 to 1 um, preferably 0.05
It is recommended to set it within the range of ~0°5μm<,0.01μm
If it is less than 1 μm, the charging ability cannot be increased, and
If it exceeds this, the residual potential will increase.

第2の層領域(2b)は、a−SiC光導電N(2)の
主たる光キヤリア発生層であり、その元素比率は下記の
通りの範囲内に設定するとよい。
The second layer region (2b) is the main photocarrier generating layer of the a-SiC photoconductive N (2), and its element ratio is preferably set within the following range.

第2の層領域(2b)はアモルファス化したSt元素と
C元素から成り、更に両者の元素のダングリングボンド
を終端させるための水素(H)元素やハロゲン元素(こ
の終端用元素を、以下、へ元素と略す)から成り、そし
て、これらの元素の組成式を(Si+−x  C11)
  +−y Ayとして表わした場合、X値は0.05
 < x < 0.5、好適には0.1 < x < 
0.4の範囲内に、y値は0.1 < V < 0.5
 、好適には0.2くy〈0.5、最適には0.25 
< y < 0.45の範囲内に設定するとよい。X値
又はy値が上記範囲内に設定された場合には優れた光4
電特性並びに高い光感度特性が得られる。
The second layer region (2b) is made of amorphous St element and C element, and hydrogen (H) element and halogen element for terminating the dangling bonds of both elements (this terminating element is hereinafter referred to as The compositional formula of these elements is (Si+-x C11).
When expressed as +-y Ay, the X value is 0.05
< x < 0.5, preferably 0.1 < x <
Within the range of 0.4, the y value is 0.1 < V < 0.5
, preferably 0.2×y<0.5, optimally 0.25
It is preferable to set it within the range of < y < 0.45. Excellent light 4 when the X value or y value is set within the above range
Electrical properties and high photosensitivity properties can be obtained.

第2の層領域(2b)の厚みは0.05〜5μm1好適
には0.1〜3μmの範囲内に設定すればよく、この範
囲内であれば、高い光感度が得られ、残留電位が低くな
る。
The thickness of the second layer region (2b) may be set within the range of 0.05 to 5 μm, preferably 0.1 to 3 μm; within this range, high photosensitivity can be obtained and residual potential can be reduced. It gets lower.

このような第1の層領域(2a)、第2の層領域(2b
)並びに第3の層領域(2c)のそれぞれのC元素含有
量は層厚方向に亘って変化させてもよい。例えば第6図
〜第1O図に示す例があり、これらの図において、横軸
は層厚方向であり、aは第1の層領域(2a)と基板(
1)の界面、bは第1のIJ R域(2a)と第2の層
領域(2b)の界面、Cは第2の層領域(2b)と第3
の層領域(2c)の界面、dは第3のN8N域(2c)
と有機光半導体層(3)の界面を表わし、また、縦軸は
C元素含有量を表わす。
Such a first layer region (2a) and a second layer region (2b
) and the third layer region (2c) may be varied in the layer thickness direction. For example, there are examples shown in FIGS. 6 to 1O, in which the horizontal axis is the layer thickness direction, and a is the distance between the first layer region (2a) and the substrate (
1), b is the interface between the first IJR region (2a) and the second layer region (2b), and C is the interface between the second layer region (2b) and the third layer region (2b).
interface of the layer region (2c), d is the third N8N region (2c)
and represents the interface between the organic optical semiconductor layer (3), and the vertical axis represents the C element content.

尚、第1の層領域(2a)、第2の層領域(2b)又は
第3の層領域(2c)の内部で層厚方向に亘ってC元素
含有量を変えた場合、そのC元素含有比率(X値)はそ
れぞれ層領域(2a) (2b) (2c)全体当たり
のC元素平均含有比率に対応する。
In addition, when the C element content is changed in the layer thickness direction inside the first layer region (2a), the second layer region (2b), or the third layer region (2c), the C element content The ratio (X value) corresponds to the average content ratio of C element in the entire layer regions (2a), (2b), and (2c), respectively.

前記基板(1)には銅、黄銅、sus 、 AI等の金
属導電体、或いはガラス、セラミックス等の絶縁体の表
面に導電体薄膜をコーティングしたものがあり、就中、
^lがコスト面並びにa−5iC層との密着性という点
で有利である。
The substrate (1) includes a metal conductor such as copper, brass, SUS, or AI, or an insulator such as glass or ceramics coated with a conductor thin film on the surface.
^l is advantageous in terms of cost and adhesion to the a-5iC layer.

また、本発明の電子写真感光体は有機光半導体N(3)
の材料選択により負帯電型又は正帯電型に設定すること
ができる。即ち、負帯電型電子写真感光体の場合、有機
光半導体N(3)に電子供与性化合物が選ばれ、一方、
正帯電型電子写真感光体の場合には有機光半導体N(3
)に電子吸引性化合物が選ばれる。
Further, the electrophotographic photoreceptor of the present invention is an organic photoconductor N(3).
It can be set to a negatively charged type or a positively charged type by selecting the material. That is, in the case of a negatively charged electrophotographic photoreceptor, an electron-donating compound is selected as the organic photosemiconductor N(3);
In the case of a positively charged electrophotographic photoreceptor, an organic optical semiconductor N(3
) is selected as an electron-withdrawing compound.

電子供与性化合物には高分子量のものとして、ポ17−
N−ビニルカルバゾール、ポリビニルピレン、ポリビニ
ルアントラセン、ピレン〜ホルムアルデヒド縮重合体な
どがあり、また、低分子量のものとしてオキサジアゾー
ル、オキサゾール、ビラプリン、トリフェニルメタン、
ヒドラゾン、トリアリールアミン、N−フェニルカルバ
ゾール、スチルベンなどがあり、この低分子物質は、ポ
リカーボネート、ポリエステル、メタアクリル樹脂、ポ
リアミド、アクリルエポキシ、ポリエチレン、フェノー
ル、ポリウレタン、ブチラール樹脂、ポリ酢酸ビニル、
ユリア樹脂などのバインダに分散されて用いられる。
Electron-donating compounds include poly-17-
N-vinylcarbazole, polyvinylpyrene, polyvinylanthracene, pyrene-formaldehyde condensation polymer, etc., and low molecular weight ones include oxadiazole, oxazole, birapurine, triphenylmethane,
These include hydrazone, triarylamine, N-phenylcarbazole, and stilbene.These low-molecular substances include polycarbonate, polyester, methacrylic resin, polyamide, acrylic epoxy, polyethylene, phenol, polyurethane, butyral resin, polyvinyl acetate,
It is used dispersed in a binder such as urea resin.

電子吸引性化合物には2.4.7− t−リニトロフル
オレンなどがある。
Electron-withdrawing compounds include 2.4.7-t-linitrofluorene.

かくして本発明の電子写真感光体によれば、C元素高含
有FJfiI域を形成したことにより光感度及び表面電
位を高め、しかも、残留電位を低減できた。
Thus, according to the electrophotographic photoreceptor of the present invention, by forming the FJfiI region containing a high content of C element, the photosensitivity and surface potential could be increased, and the residual potential could be reduced.

また、本発明の電子写真感光体においては、a−5iC
光導電層(2)に周期律表第ma族元素(以下、nla
族元素と略す)を1〜500ppm、好適には2〜20
0ppm含有させるとよい。
Further, in the electrophotographic photoreceptor of the present invention, a-5iC
The photoconductive layer (2) contains an element of Group Ma of the periodic table (hereinafter referred to as NLA).
group elements) in an amount of 1 to 500 ppm, preferably 2 to 20 ppm.
It is preferable to contain 0 ppm.

このma族元素含有量については、a−SiCJil全
体当たりの平均値によって表わされ、その平均含有量が
1 ppm以下の場合には暗導電率が大きくなる傾向に
あり、しかも、光感度の低下が認められ一方、500p
pm以上の場合には暗導電率が著しく大きくなり、更に
光導電率の暗導電率に対する比率が小さくなり、所望通
りの光感度を得ることが難しくなる。
This MA group element content is expressed as an average value for the entire a-SiCJil, and when the average content is 1 ppm or less, the dark conductivity tends to increase, and the photosensitivity decreases. However, 500p
If it exceeds pm, the dark conductivity becomes significantly large, and the ratio of photoconductivity to dark conductivity becomes small, making it difficult to obtain the desired photosensitivity.

a−SiC光導電層(2)にma族元素を含有させるに
当たり、そのドーピング分布はそのFJ厚方向に亘って
均−又は不均一のいずれでもよい、不均一にドーピング
させた場合、この層(2)の一部にma族元素が含有さ
れないHSR域があってもよく、その場合にはma族元
素含有のa−SiCP5領域並びに■族元素が含有され
ていないa−SiC層領域の両者から成るa−5iCN
全体に対するma族元素平均含有量が1〜500ppm
でなくてはならない。
When incorporating a Ma group element into the a-SiC photoconductive layer (2), the doping distribution may be either uniform or non-uniform throughout the thickness direction of the FJ. There may be a part of 2) in which there is an HSR region in which the Ma group element is not contained, and in that case, from both the a-SiCP5 region containing the Ma group element and the a-SiC layer region in which the group II element is not contained. Naru a-5iCN
The average content of Ma group elements in the whole is 1 to 500 ppm
Must be.

このma族元素にはB+AI+Ga、 In等があるが
、Bが共有結合性に優れて半導体特性を敏感に変え得る
点で、その上、優れた帯電能並びに光感度が得られると
いう点で望ましい。
The MA group elements include B+AI+Ga, In, etc., and B is desirable because it has excellent covalent bonding properties and can sensitively change semiconductor properties, and also because it provides excellent charging ability and photosensitivity.

次に本発明電子写真感光体の製法を述べる。Next, a method for manufacturing the electrophotographic photoreceptor of the present invention will be described.

a−3iCjiiを形成するにはグロー放電分解法、イ
オンブレーティング法、反応性スパッタリング法、真空
蒸着法、CVO法などの薄膜形成方法がある。
To form a-3iCjii, there are thin film forming methods such as glow discharge decomposition method, ion blating method, reactive sputtering method, vacuum evaporation method, and CVO method.

グロー放電分解法を用いる場合、Si元素含有ガスとC
元素含有ガスを組合せ、この混合ガスをプラズマ分解し
て成膜形成する。このSi元素含有ガスには5iHa、
 5jzH6+ 5iJa+ 5iFt、 5iC1t
、 5illC1s等々があり、また、C元素含有ガス
にはCHt、CJa、Czlz、C3H5等々があり、
就中、C211Kは高速成膜性が得られるという点で望
ましい。
When using the glow discharge decomposition method, Si element-containing gas and C
A film is formed by combining element-containing gases and plasma decomposing the mixed gas. This Si element-containing gas contains 5iHa,
5jzH6+ 5iJa+ 5iFt, 5iC1t
, 5illC1s, etc., and C element-containing gases include CHt, CJa, Czlz, C3H5, etc.
Among these, C211K is desirable in that it can provide high-speed film formation.

本実施例に用いられるグロー放電分解装置を第2図によ
り説明する。
The glow discharge decomposition device used in this example will be explained with reference to FIG.

図中、第1タンク(4)、第2タンク(5)、第3タン
ク(6)、第4タンク(7)にはそれぞれ5i11.、
C211□、BtHh、(3Jbが40ppm濃度で水
素希釈されている)及びH2が密封され、これらのガス
は各々対応する第1調整弁(8)、第2調整弁(9)、
第3 mJi整弁(10)及び第411製弁(11)の
開放により放出する。
In the figure, the first tank (4), second tank (5), third tank (6), and fourth tank (7) each have 5i11. ,
C211□, BtHh, (3Jb diluted with hydrogen at a concentration of 40 ppm), and H2 are sealed, and these gases are supplied to the corresponding first regulating valve (8), second regulating valve (9),
It is released by opening the 3rd mJi control valve (10) and the 411th valve (11).

その放出ガスの流量はそれぞれマスフローコントローラ
(12) (13) (14) (15)により制御さ
れ、各々のガスは混合されて主管(16)へ送られる。
The flow rates of the released gases are controlled by mass flow controllers (12), (13), (14), and (15), and each gas is mixed and sent to the main pipe (16).

尚、(17)(18)は止め弁である。Note that (17) and (18) are stop valves.

主管(16)を通じて流れるガスは反応管(19)へ流
入するが、この反応管(19)の内部には容量結合型放
電用電極(20)が設置され、また、筒状の成膜用基板
(21)が基板支持体(22)の上に載置され、基板支
持体(22)がモータ(23)により回転駆動され、こ
れに伴って基板(21)が回転する。そして、電極(2
0)に電力50−〜3に一1周波数1〜50MHzの高
周波電力が印加され、しかも、基板(21)が適当な加
熱手段により約200〜400℃、好適には約200〜
350℃の温度に加熱される。また、反応管(19)は
回転ポンプ(24)と拡散ポンプ(25)に連結されて
おり、これによってグロー放電による成膜形成時に所要
な真空状B(放電時のガス圧0.1〜2.0Torr)
を設定できる。
The gas flowing through the main pipe (16) flows into the reaction tube (19), and a capacitively coupled discharge electrode (20) is installed inside this reaction tube (19), and a cylindrical film-forming substrate is also installed. (21) is placed on a substrate support (22), the substrate support (22) is rotationally driven by a motor (23), and the substrate (21) rotates accordingly. Then, the electrode (2
A high frequency power having a frequency of 1 to 50 MHz is applied to 0) and 3, and the substrate (21) is heated to about 200 to 400° C., preferably about 200 to 400° C., by suitable heating means.
It is heated to a temperature of 350°C. In addition, the reaction tube (19) is connected to a rotary pump (24) and a diffusion pump (25), which provide a vacuum state B (gas pressure during discharge of 0.1 to 2 .0 Torr)
can be set.

このような構成のグロー放電分解装置を用いて基板(2
1)の上にa−SiC層を形成する場合、第1調整弁(
8)、第2調整弁(9)、第3調整弁(lO)及び第4
調整弁(11)を開いてSiH++CzHz+Bzll
a、Ilgの各々のガスを放出し、その放出量をマスフ
ローコントローラ(12) <13) (14) (1
5)により制御し、各々のガスは混合されて主管(16
)を介して反応管(19)へ流入する。そして、反応管
内部の真空状態、基板温度、電極印加用高周波電力をそ
れぞれ所定の条件に設定するとグロー放電が発生し、ガ
スの分解に伴ってB元素含有のa−SiC膜が基板上に
高速に形成する。
The substrate (2
When forming an a-SiC layer on 1), the first regulating valve (
8), second regulating valve (9), third regulating valve (lO) and fourth regulating valve
Open the adjustment valve (11) and set SiH++CzHz+Bzll
Release each of the gases a and Ilg, and measure the release amount using a mass flow controller (12) <13) (14) (1
5), each gas is mixed and sent to the main pipe (16
) into the reaction tube (19). Then, when the vacuum state inside the reaction tube, the substrate temperature, and the high-frequency power applied to the electrodes are set to predetermined conditions, a glow discharge occurs, and as the gas decomposes, an a-SiC film containing B element is rapidly spread on the substrate. to form.

上述した通りの薄膜形成方法によりa−5iCPIを形
成すると、次に有機光半導体層を形成する。
After forming the a-5iCPI using the thin film forming method described above, an organic optical semiconductor layer is then formed.

有機光半導体層は浸漬塗工方法又はコーティング法によ
り形成する。前者は感光材が溶媒中に分散された塗工液
の中に浸漬し、次いで、一定な速度で引上げ、そして、
自然乾燥及び熱エージング(約150℃、約1時間)を
行うという方法であり、また、後者のコーティング法に
よれば、コーター(、11)を用いて、溶媒に分散され
た感光材を塗布し、次いで熱風乾燥を行う。
The organic optical semiconductor layer is formed by a dip coating method or a coating method. In the former method, the photosensitive material is immersed in a coating solution in which it is dispersed in a solvent, then pulled up at a constant speed, and then
This method involves natural drying and heat aging (approximately 150°C, approximately 1 hour), and the latter coating method involves applying a photosensitive material dispersed in a solvent using a coater (11). , followed by hot air drying.

〔実施例〕〔Example〕

次に本発明の実施例を述べる。 Next, examples of the present invention will be described.

(例1) 第2図のグロー放電分解装置を用いて、5il14ガス
を200secmの流量で、N2ガスを270secm
の流量で、そして、c2n、ガスの流量を変化させ、ま
た、ガス圧を0,6Torr %高周波電力を150W
、基板温度を250℃に設定し、グロー放電によってa
−SiC膜(膜厚約1μm)を形成した。
(Example 1) Using the glow discharge decomposition device shown in Fig. 2, 5il14 gas was fed at a flow rate of 200 seconds, and N2 gas was fed at a flow rate of 270 seconds.
With a flow rate of , and c2n, change the gas flow rate, and also change the gas pressure to 0.6 Torr% and the high frequency power to 150 W.
, the substrate temperature was set at 250°C, and a
- A SiC film (film thickness of approximately 1 μm) was formed.

このようにしてa−5iC膜のカーボン含有比率を変え
、そして、膜中のカーボン量をXMA法により測定し、
また、光導電率及び暗導電率を測定したところ、第3図
に示す通りの結果が得られた。
In this way, the carbon content ratio of the a-5iC film was changed, and the amount of carbon in the film was measured by the XMA method.
Further, when the photoconductivity and dark conductivity were measured, the results shown in FIG. 3 were obtained.

第3図中、横軸はカーボン含有比率、即ちSi、−XC
イのX値であり、縦軸は導電率を表わし、○印は発光波
長550nm (光量50μm/cm”)の光に対する
光導電率のプロットであり、・印は暗導電率のプロット
であり、また、a、bはそれぞれの特性曲線である。
In Figure 3, the horizontal axis is the carbon content ratio, i.e., Si, -XC
The vertical axis represents the conductivity, the ○ mark is a plot of photoconductivity for light with an emission wavelength of 550 nm (light intensity 50 μm/cm"), and the mark is a plot of dark conductivity, Moreover, a and b are respective characteristic curves.

更に上記各a−SiC膜について、その水素含有量を赤
外吸収測定法により求めたところ、第4図に示す通りの
結果が得られた。
Furthermore, when the hydrogen content of each of the above a-SiC films was determined by infrared absorption measurement, the results shown in FIG. 4 were obtained.

第4図中、横軸は5i1−、 c 、のX値であり、縦
軸は水素含有量、即ち(Si+−x CX ) +−y
  Hyのy値であり、○印はSi原子に結合した水素
量のプロットであり、・印はC原子に結合した水素量の
プロットであり、また、c、dはそれぞれの特性曲線で
ある。
In Fig. 4, the horizontal axis is the X value of 5i1-, c, and the vertical axis is the hydrogen content, i.e. (Si+-x CX) +-y
This is the y value of Hy, the ◯ mark is a plot of the amount of hydrogen bonded to the Si atom, the * mark is the plot of the amount of hydrogen bonded to the C atom, and c and d are the respective characteristic curves.

第4図より明らかな通り、本例のa−SiC膜はいずれ
もy値が0.3〜0.4の範囲内にあることが判る。
As is clear from FIG. 4, it can be seen that the a-SiC films of this example all have y values within the range of 0.3 to 0.4.

また、第3図より明らかな通り、カーボン含有比率Xが
0.05 < x < 0.5の範囲内であれば、光感
電率と暗導電率の比率が顕著に大きくなり、優れた光感
度が得られることが判る。
Furthermore, as is clear from Fig. 3, if the carbon content ratio X is within the range of 0.05 < It turns out that is obtained.

(例2) 次に本例においては、5il14ガスを200sccm
の流量で、CzHzガスを20sec+sの流量で、N
2ガスを0〜101000seの流量で導入し、そして
、高周波電力を50〜300W、ガス圧を0.3〜1.
2Torrに設定し、グロー放電によりa−SiC膜(
膜厚約1μm)を形成した。
(Example 2) Next, in this example, 5il14 gas is pumped at 200sccm.
CzHz gas at a flow rate of 20 sec + s, N
2 gases were introduced at a flow rate of 0 to 101,000 se, and the high frequency power was set to 50 to 300 W and the gas pressure was set to 0.3 to 1.
The a-SiC film (
A film thickness of about 1 μm) was formed.

かくして、カーボン含有比率Xを0.3に設定し、水素
含有量yを変化させた種々のa−SiC膜を形成し、各
々の膜について光導電率及び暗導電率を測定したところ
、第5図に示す通りの結果が得られた。
In this way, various a-SiC films were formed with the carbon content ratio X set to 0.3 and the hydrogen content y varied, and the photoconductivity and dark conductivity of each film were measured. The results shown in the figure were obtained.

第5図中、横軸は水素含有量、即ち(Si+−x Cつ
)I−yH−のy値であり、縦軸は導電率を表わし、○
印は発光波長550rv+ (光1t50 u W/c
m”)の光に対する光導電率のプロットであり、・印は
暗導電率のプロットであり、また、e、fはそれぞれの
特性曲線である。
In Fig. 5, the horizontal axis is the hydrogen content, that is, the y value of (Si+-xC)I-yH-, and the vertical axis is the conductivity.
The mark indicates the emission wavelength of 550 rv+ (light 1t50 u W/c
Fig. 12 is a plot of photoconductivity against light of m''), . is a plot of dark conductivity, and e and f are respective characteristic curves.

第5図より明らかな通り、y値が0.2を超えた場合、
高い光導電率並びに低い暗導電率が得られることが判る
As is clear from Figure 5, when the y value exceeds 0.2,
It can be seen that high photoconductivity as well as low dark conductivity are obtained.

(例3) 次に本発明者等は第1表に示す成膜条件によりa−Si
C光導電N(2)を形成した。
(Example 3) Next, the present inventors developed a-Si film using the film forming conditions shown in Table 1.
C photoconductive N(2) was formed.

〔以下余白〕[Margin below]

このように形成したa−5iC光導電層の上にポリカー
ボネートにヒドラゾン系化合物を分散させた有機光半導
電体層(膜厚約15μm )を形成し、電子写真感光体
とした。
On the a-5iC photoconductive layer thus formed, an organic photoconductor layer (about 15 μm in thickness) made of polycarbonate with a hydrazone compound dispersed therein was formed to obtain an electrophotographic photoreceptor.

か(して得られた電子写真感光体の特性評価を電子写真
特性測定装置により測定したところ、優れた光感度が得
られ、表面電位が大きくなり、しかも、低い残留電位が
得られた。
When the characteristics of the electrophotographic photoreceptor thus obtained were measured using an electrophotographic property measuring device, it was found that excellent photosensitivity, high surface potential, and low residual potential were obtained.

(例4) 本発明者等は(例3)の電子写真感光体に係る第1の層
領域及び第3の層領域を形成するに当たって、SiH4
ガス、C211□ガス及びH2ガスのそれぞれの流量を
変化させ、しかも、その成膜時間を変え、これにより、
それぞれのNSM域の5il−、C、のX値並びに厚み
を変え、そして、第2の層領域を(例3)の電子写真感
光体と同じに設定し、かくして、13種類の電子写真感
光体(感光体A −M)を製作した。
(Example 4) In forming the first layer region and the third layer region of the electrophotographic photoreceptor of (Example 3), the present inventors used SiH4
By changing the respective flow rates of gas, C211□ gas, and H2 gas, and changing the film formation time,
The X value and thickness of 5il-, C, in each NSM region were changed, and the second layer area was set to be the same as that of the electrophotographic photoreceptor of (Example 3), thus 13 types of electrophotographic photoreceptors were obtained. (Photoreceptors A-M) were manufactured.

また、これらの感光体の光感度、残留電位及び表面電位
を測定したところ、第2表に示す通りの結果が得られた
Furthermore, when the photosensitivity, residual potential, and surface potential of these photoreceptors were measured, the results shown in Table 2 were obtained.

〔以下余白〕[Margin below]

同表中、光感度は相対評価により◎印、O印及びΔ印の
3段階に区分し、◎印は最も優れた光感度が得られた場
合であり、○印は幾分価れた光感度が得られた場合であ
り、Δ印は他に比べてわずかに劣る光感度になった場合
である。
In the same table, photosensitivity is classified into three levels based on relative evaluation: ◎, O, and Δ. ◎ indicates the best photosensitivity, and ○ indicates slightly more expensive light. This is the case where sensitivity was obtained, and the Δ mark is the case where the photosensitivity was slightly inferior to the others.

残留電位についても三段階に相対評価しており、◎印は
残留電位が小さくなった場合であり、○印は残留電位の
低下が幾分認められた場合であり畳 第2表より明らかな通り、感光体D−G並びに感光体J
、Mは優れた光感度が得られ、しかも、高い表面電位と
残留電位の低減が認められた。
Residual potential is also evaluated relative to three levels; ◎ indicates that the residual potential has decreased, and ○ indicates that the residual potential has decreased somewhat, as is clear from Table 2. , photoconductor D-G and photoconductor J
, M obtained excellent photosensitivity, and moreover, a high surface potential and a reduction in residual potential were observed.

然るに感光体^及びHは第1の層領域のX値が、感光体
りは第3の層領域のX値が、そして、感光体Cは第3の
層領域の厚みが、感光体B及びKは第1の層領域の厚み
がそれぞれ本発明より外れており、そのために光感度、
残留電位又は表面電位の改善が認められなかった。
However, the X value of the first layer region of the photoconductors ^ and H is the same as that of the third layer region of the photoconductor L, and the thickness of the third layer region of the photoconductor C is the same as that of the photoconductors B and H. In K, the thickness of the first layer region is different from that of the present invention, and therefore the photosensitivity and
No improvement in residual potential or surface potential was observed.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明の電子写真感光体によれば、a−S
iC光導電層の内部にC元素高含有のi領域を形成した
ことにより優れた光感度が得られ、しかも、表面電位を
高め、残留電位を低減させることができた。
As described above, according to the electrophotographic photoreceptor of the present invention, a-S
By forming an i region containing a high content of C element inside the iC photoconductive layer, excellent photosensitivity was obtained, and moreover, the surface potential was increased and the residual potential was reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明電子写真感光体の層構成を表わす断面図
、第2図は実施例に用いられるグロー放電分解装置の概
略図、第3図はカーボン含有量と導電率の関係を示す線
図、第4図はカーボン含有量と水素含有量の関係を示す
線図、第5図は水素含有量と導電率の関係を示す線図で
あり、また、第6図、第7図、第8図、第9図及び第1
0図はアモルファスシリコンカーバイド光導電層の層厚
方向に亘るカーボン含有量を表わす線図である。 1 ・ 2 ・ 2a・ 2b・ 2c・ 3 ・ 導電性基板 アモルファスシリコンカーバイド光i’ti第1のJ!
層領 域2の層領域 第3のi領域 有機光半導体層 特許出願人 (663)京セラ株式会社代表者安城欽寿 同   河村孝夫
FIG. 1 is a cross-sectional view showing the layer structure of the electrophotographic photoreceptor of the present invention, FIG. 2 is a schematic diagram of a glow discharge decomposition device used in Examples, and FIG. 3 is a line showing the relationship between carbon content and electrical conductivity. 4 is a diagram showing the relationship between carbon content and hydrogen content, FIG. 5 is a diagram showing the relationship between hydrogen content and electrical conductivity, and FIGS. Figure 8, Figure 9 and Figure 1
FIG. 0 is a diagram showing the carbon content in the layer thickness direction of an amorphous silicon carbide photoconductive layer. 1 ・ 2 ・ 2a ・ 2b ・ 2c ・ 3 ・ Conductive substrate amorphous silicon carbide light i'ti first J!
Layer region 2 layer region 3 i region organic optical semiconductor layer patent applicant (663) Kyocera Corporation representative Kinju Anjo Takao Kawamura

Claims (1)

【特許請求の範囲】[Claims] 導電性基板上にアモルファスシリコンカーバイド光導電
層と有機光半導体層を順次積層した電子写真感光体にお
いて、前記アモルファスシリコンカーバイド光導電層が
第1の層領域、第2の層領域及び第3の層領域を順次形
成した層構成であり、第1の層領域と第3の層領域は第
2の層領域に比べてカーボンを多く含むとともに元素比
率が組成比Si_1_−_xC_xのx値として表わさ
れた場合、0.2<x<0.5の範囲内に設定され、更
に第1の層領域の厚みが0.01〜1μm、第2の層領
域の厚みが0.05〜5μm、第3の層領域の厚みが1
0〜2000Åの範囲内に設定されていることを特徴と
する電子写真感光体。
In an electrophotographic photoreceptor in which an amorphous silicon carbide photoconductive layer and an organic photoconductive layer are sequentially laminated on a conductive substrate, the amorphous silicon carbide photoconductive layer is provided in a first layer region, a second layer region, and a third layer region. It has a layer structure in which regions are sequentially formed, and the first layer region and the third layer region contain more carbon than the second layer region, and the element ratio is expressed as the x value of the composition ratio Si_1_−_xC_x. , the thickness of the first layer region is 0.01 to 1 μm, the thickness of the second layer region is 0.05 to 5 μm, and The thickness of the layer area is 1
An electrophotographic photoreceptor characterized in that the thickness is set within a range of 0 to 2000 Å.
JP16337288A 1988-06-30 1988-06-30 Electrophotographic photoreceptor Expired - Fee Related JP2668241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16337288A JP2668241B2 (en) 1988-06-30 1988-06-30 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16337288A JP2668241B2 (en) 1988-06-30 1988-06-30 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPH0212263A true JPH0212263A (en) 1990-01-17
JP2668241B2 JP2668241B2 (en) 1997-10-27

Family

ID=15772629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16337288A Expired - Fee Related JP2668241B2 (en) 1988-06-30 1988-06-30 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2668241B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5735216A (en) * 1994-12-28 1998-04-07 Standard Car Truck Company Roller bearing adapter stabilizer bar

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5735216A (en) * 1994-12-28 1998-04-07 Standard Car Truck Company Roller bearing adapter stabilizer bar

Also Published As

Publication number Publication date
JP2668241B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
JPH0212263A (en) Electrophotographic sensitive body
JP2668242B2 (en) Electrophotographic photoreceptor
JP2668240B2 (en) Electrophotographic photoreceptor
JP2761741B2 (en) Electrophotographic photoreceptor
JP2775259B2 (en) Electrophotographic photoreceptor
JP2761734B2 (en) Electrophotographic photoreceptor
JP2789100B2 (en) Electrophotographic photoreceptor
JPH01315765A (en) Electrophotographic sensitive body
JP2722074B2 (en) Electrophotographic photoreceptor
JPH02213853A (en) Electrophotographic sensitive body
JPH02140754A (en) Electrophotographic sensitive body
JPH01315759A (en) Electrophotographic sensitive body
JPH01315761A (en) Electrophotographic sensitive body
JPH01315764A (en) Electrophotographic sensitive body
JPH02167555A (en) Electrophotographic sensitive body
JPH01232353A (en) Electrophotographic sensitive body
JPH02181155A (en) Electrophotographic sensitive body
JP2756569B2 (en) Electrophotographic photoreceptor
JP2562583B2 (en) Electrophotographic photoreceptor
JPH01315760A (en) Electrophotographic sensitive body
JPH01315763A (en) Electrophotographic sensitive body
JPH02144548A (en) Electrophotographic sensitive body
JP2756570B2 (en) Electrophotographic photoreceptor
JP2566762B2 (en) Electrophotographic photoreceptor
JPH03126040A (en) Electrophotographic sensitive body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees