JPH02119989A - Device for producing ultra pure water using ion-exchange resin - Google Patents

Device for producing ultra pure water using ion-exchange resin

Info

Publication number
JPH02119989A
JPH02119989A JP1246315A JP24631589A JPH02119989A JP H02119989 A JPH02119989 A JP H02119989A JP 1246315 A JP1246315 A JP 1246315A JP 24631589 A JP24631589 A JP 24631589A JP H02119989 A JPH02119989 A JP H02119989A
Authority
JP
Japan
Prior art keywords
exchange resin
pure water
ion exchange
ion
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1246315A
Other languages
Japanese (ja)
Other versions
JPH0516914B2 (en
Inventor
Harumi Matsuzaki
松崎 晴美
Masayoshi Kubota
昌良 久保田
Katsuya Ebara
江原 勝也
Sankichi Takahashi
燦吉 高橋
Minoru Kuroiwa
稔 黒岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1246315A priority Critical patent/JPH02119989A/en
Publication of JPH02119989A publication Critical patent/JPH02119989A/en
Publication of JPH0516914B2 publication Critical patent/JPH0516914B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)

Abstract

PURPOSE:To prevent the elution of org. matter into pure water trom the ion- exchange resin, etc., by connecting an ion-exchange resin preparing system for cleaning the resin with liquefied carbon dioxide to an ion-exchange resin desalting device to form the title device for producing ultra pure water. CONSTITUTION:Raw water is filtered by a filter 1 in the pure water producing system, hence relatively large suspende solid matter is removed, and the medium- sized suspended matter and some ion are removed by a reverse-osmosis device 3. The water is especially deoxygenated by a deaerator 4, and the residual ions are removed by the desalting device 5 to obtain primary pure water. The primary pure water is sterilized by a sterilizer 7, a trace amt. of metal ion is removed by a polisher 8, and the residual suspended solid matter is removed by an MF or UF device 9. The TOC of the obtained ultra pure water is controlled to 30ppb, and the water quality can complete with VISI. The obtained ultra pure water is used in the cleaning of semiconductors, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はイオン交換樹脂を用いた超純水製造装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ultrapure water production apparatus using an ion exchange resin.

〔発明の背景〕[Background of the invention]

半導体工業では、LSI(大規模集積回路)の市場が急
速に大きくなり、現在、64にビットまで集積度を高め
たLSIが大量生産体制に入っている。さらに、256
にビットの試作が進み1次世代超LSIであるIMビッ
ト級の研究が進んでいる。このように、LSI化が進む
と最小パターン寸法は減少する。LSIの最小パターン
寸法は2〜3μm、IMビット級のVLSIでは1.5
μm以下となる。
In the semiconductor industry, the market for LSIs (Large Scale Integrated Circuits) is rapidly expanding, and LSIs with increased integration density up to 64 bits are currently being mass-produced. In addition, 256
Prototyping of bits is progressing, and research on the IM bit class, which is the next generation of super LSIs, is progressing. In this way, as LSI technology progresses, the minimum pattern size decreases. The minimum pattern size for LSI is 2 to 3 μm, and for IM bit class VLSI it is 1.5 μm.
It becomes less than μm.

純水はLSI製造プロセスの各洗浄工程で使用される。Pure water is used in each cleaning step of the LSI manufacturing process.

ウェハを酸処理あるいは有機処理した後、ウェハ表面に
のこるこれらの薬品と微粒子を除去するのが目的である
。したがって、純水中に■イオン、■微粒子、■微生物
、■有機物などが存在すると、ウェハに組込まれる酸化
膜、多結晶膜、配線などに悪影響を及ぼし、LSIの電
気特性の不良を起したり、その信頼性をそこなうことに
なる。上記影響は集積度が高まるにしたがって大きくな
り、上記純水の水質に対する要求もきびしくなる。当然
のことながら現状の純水製造システムで得られた純水レ
ベルでは1〜4Mビットの半導体には対応できない。
The purpose is to remove these chemicals and fine particles that remain on the wafer surface after the wafer has been subjected to acid or organic treatment. Therefore, the presence of ■ions, ■fine particles, ■microorganisms, ■organic substances, etc. in pure water will adversely affect the oxide films, polycrystalline films, wiring, etc. incorporated into wafers, causing defects in the electrical characteristics of LSIs. , it will damage its reliability. The above-mentioned influence increases as the degree of accumulation increases, and the requirements for the quality of the pure water also become stricter. Naturally, the pure water level obtained by the current pure water production system cannot support semiconductors of 1 to 4 Mbits.

Φ〜■の影響を分析すると表1のようになる。Table 1 shows the analysis of the effects of Φ to ■.

すなわち、微生物の介在により、有機物は酸素と反応し
て、微生物を増殖させる。この結果、半導体製造分野で
は、微生物が流出し、ウェハ純度を低下させる。ちなみ
に、ショートの原因となる最大粒子径は最小パターンの
115以下が望ましい。微生物の大きさは1μm程度で
あるから、64にビット級でも問題がある。また、微量
有機物単独でも、有機物中に存在するCu、Fe、P等
の特定物質についてはi PPb以下の要求がある。
That is, with the intervention of microorganisms, organic matter reacts with oxygen, causing microorganisms to proliferate. As a result, microorganisms are released in the semiconductor manufacturing field, reducing wafer purity. Incidentally, the maximum particle diameter that causes short circuits is preferably 115 or less of the minimum pattern. Since the size of microorganisms is about 1 μm, there is a problem even with 64-bit size. Furthermore, even if only a trace amount of organic matter is used, specific substances such as Cu, Fe, and P present in the organic matter are required to be less than i PPb.

医薬、バイオの分野では、上記現象により、微生物が代
謝物を生成し、パイロジエンを増加させる。
In the fields of medicine and biology, the above phenomenon causes microorganisms to produce metabolites and increase pyrogens.

この結果、製品純度が低下し、発熱障害を起こす。As a result, product purity decreases and heat generation problems occur.

原子力の分野では、有機物が低分子化され、 C00H
−を生成する。これにより、CO錯体が形成し、イオン
交換除去能が低下し、プラントの放射能が増加する。
In the field of nuclear power, organic substances are reduced to low molecular weight, and C00H
− is generated. This forms CO complexes, reduces ion exchange removal capacity and increases plant radioactivity.

以上の分析結果より、純水中の有機物を除去することで
、他の因子の影響をも低減できることが分る。現在、6
4にビットの半導体製造に用いられる純水の有機物許容
濃度T OC(Total OrganicCarbo
n )で300 ppb以下であり、これが、IMビッ
ト級になると、50ppbにまできびしくなり。
The above analysis results show that removing organic matter from pure water can also reduce the effects of other factors. Currently, 6
4.Total Organic Carbo (Total Organic Carbo)
n) is less than 300 ppb, which increases to 50 ppb for IM bit class.

このような状態では、有機材料からの有機物の溶出が問
題となる。これが現状の純水製造技術がVLSIに対応
できない原因の1つと考えられる。
In such a state, elution of organic substances from the organic material becomes a problem. This is considered to be one of the reasons why the current pure water production technology is not compatible with VLSI.

現に、64にビット級純水製造プロセスにおいて、主要
機器である膜分離装置や脱塩器による多段の処理を施し
て製造した純水中にも有機物が存在し、この原因として
、上記主要機器で用いられる膜やイオン交換樹脂等の有
機材料からの有機物の溶出の可能性が指摘されている。
In fact, in the 64-bit grade pure water manufacturing process, organic substances are also present in pure water produced through multiple stages of treatment using membrane separators and demineralizers, which are the main equipment. It has been pointed out that organic substances may be leached from organic materials such as membranes and ion exchange resins used.

一方、純水製造には不可欠なイオン交換樹脂を用いた脱
塩処理においては、樹脂相互、樹脂と装置壁面との衝突
等により発生する樹脂の破片が樹脂群から微粒子として
流出する問題もある。
On the other hand, in desalination treatment using ion exchange resins, which are essential for producing pure water, there is also the problem that resin fragments generated by collisions between the resins or the resins and the walls of the device flow out of the resin group as fine particles.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高性能のイオン交換樹脂を用いた超純
水製造装置を提供することにある。
An object of the present invention is to provide an ultrapure water production apparatus using a high-performance ion exchange resin.

〔発明の概要〕[Summary of the invention]

上記目的は、比較的大きな懸濁固形物を除去する濾過装
置と、中程度の懸濁固形物とイオンを除去する逆浸透装
置と、酸素を除去する脱気装置と、残留イオンを除去す
るイオン交換樹脂脱塩装置と、雑菌を除去する殺菌装置
と、残留懸濁固形物を除去する限外濾過装置あるいは膜
濾過装置を具備する装置において、液化炭酸ガスあるい
は超臨界炭酌ガスによりイオン交換樹脂を洗浄するイオ
ン交換樹脂調製系統を前記イオン交換樹脂脱塩装置に接
続したことを特徴とする超純水の製造装置によって達成
される。
The above objectives include a filtration device to remove relatively large suspended solids, a reverse osmosis device to remove medium suspended solids and ions, a deaerator to remove oxygen, and an ion device to remove residual ions. In a device equipped with an exchange resin desalination device, a sterilization device to remove germs, and an ultrafiltration device or membrane filtration device to remove residual suspended solids, the ion exchange resin is removed using liquefied carbon dioxide gas or supercritical carbon dioxide gas. This is achieved by an ultrapure water production apparatus characterized in that an ion exchange resin preparation system for washing water is connected to the ion exchange resin desalting apparatus.

本発明者らは、イオン交換樹脂から有機物を溶出させる
イオン交換樹脂の洗浄に関し、液化炭酸ガス又は超臨界
炭酸ガスとイオン交換樹脂を接触させてイオン交換樹脂
粒子表面の突起部又は付着物(低強度マトリックス)を
脱落させることによりイオン交換樹脂からの有機物溶出
を未処理の樹脂に比べ1/10以下に低下することを見
出してなされたものである。
Regarding the cleaning of ion exchange resins to elute organic matter from the ion exchange resins, the present inventors have discovered that by contacting the ion exchange resins with liquefied carbon dioxide gas or supercritical carbon dioxide gas, the protrusions or deposits on the surfaces of ion exchange resin particles (lower This was made based on the discovery that by removing the strength matrix, the elution of organic substances from the ion exchange resin was reduced to 1/10 or less compared to untreated resin.

また外部からイオン交換樹脂に吸着した有機物の脱着も
行ない得る。さらに本発明に用いるイオン交換樹脂は、
表面の突起部(低強度マトリックス)を脱落させ、樹脂
表面の強度を均一化したものであるため、未処理のイオ
ン交換樹脂を用いた場合に観察される脱塩装置あるいは
ポリラシャ−の充填時等に起こる樹脂相互あるいは装置
壁面との衝突による樹脂破砕がなく、樹脂群からの微粒
子(樹脂の破片)の発生が防止でき、超純水製造におけ
る上述した4つの障害のうちの微粒子に関する障害も大
巾に改善できる。
It is also possible to desorb organic matter adsorbed onto the ion exchange resin from the outside. Furthermore, the ion exchange resin used in the present invention is
The surface projections (low-strength matrix) are removed and the strength of the resin surface is made uniform, so it may cause problems such as when filling a desalting device or polyrasher that is observed when untreated ion exchange resin is used. There is no resin fragmentation caused by collisions between the resins or the walls of the equipment, and the generation of fine particles (resin fragments) from the resin group can be prevented, and among the four problems mentioned above in ultrapure water production, problems related to fine particles are also avoided. It can be greatly improved.

このため、現状レベルのLSI製造においては。Therefore, at the current level of LSI manufacturing.

製品の信頼性、歩留り向上が可能であり、さらには1次
世代VLSIの量産を可能とする。
It is possible to improve product reliability and yield, and furthermore, it enables mass production of first-generation VLSI.

上記本発明の一実施例では、イオン交換樹脂調製装置6
で処理した樹脂を脱塩装置5及びポリラシャ−8に充填
する方法を説明したが、脱塩装置5及びポリラシャ−8
を耐圧構造とし、ここで。
In the above embodiment of the present invention, the ion exchange resin preparation device 6
Although the method of filling the desalination device 5 and the polylasha-8 with the resin treated with the
is a pressure-resistant structure, and here.

樹脂と液化炭酸ガスを接触させても良い、この場合、上
述した本発明の効果■をさらにアップすることができる
The resin and liquefied carbon dioxide gas may be brought into contact with each other. In this case, the above-mentioned effect (2) of the present invention can be further enhanced.

さらに液化炭酸ガスのかわりに超臨界炭酸ガスを用いて
調製しても良いが、この場合には、温度制御系を設ける
必要がある。炭酸ガスの臨界温度は約31℃、臨界圧力
は約73気圧である。したがって、液化炭酸ガスの最高
温度は31℃であり、この温度は、イオン交換樹脂の性
能が劣化する温度より低い温度にあるため、0℃以下で
操作しないかぎり、温度制御は不要である。超臨界炭酸
ガスは31”Cより高くなるため、その性能が劣化しな
い温度範囲に制御する必要がある。また、超臨界炭酸ガ
スの圧力は約73気圧以上と高圧となる。
Further, supercritical carbon dioxide gas may be used instead of liquefied carbon dioxide gas, but in this case, it is necessary to provide a temperature control system. The critical temperature of carbon dioxide gas is about 31°C, and the critical pressure is about 73 atmospheres. Therefore, the maximum temperature of liquefied carbon dioxide gas is 31°C, which is lower than the temperature at which the performance of the ion exchange resin deteriorates, so temperature control is not necessary unless the operation is performed at 0°C or lower. Since supercritical carbon dioxide gas has a temperature higher than 31''C, it is necessary to control the temperature within a temperature range that does not deteriorate its performance.Furthermore, the pressure of supercritical carbon dioxide gas is high, about 73 atmospheres or higher.

なお、超臨界ガスとは、圧力−温度の状態線図において
、臨界温度以上で、かつ、臨界圧力以上の状態にあるも
のを言う。また、液化ガスとは。
Note that the term "supercritical gas" refers to a gas that is in a state of not less than a critical temperature and not less than a critical pressure in a pressure-temperature state diagram. Also, what is liquefied gas?

圧力−温度の状態線図において、蒸気圧線以上の圧力状
態にあり、かつ、大気圧、常温下ではガスであるものを
言う。
In a pressure-temperature state diagram, a substance that is in a pressure state above the vapor pressure line and is a gas at atmospheric pressure and room temperature.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明を実施例により、具体的に説明する。 The present invention will be specifically explained below using examples.

第1図は本発明の一実施例を示す超純水製造フローを示
す6本フローは純水製造系(図中、実線で示す)と液化
炭酸ガス調製系(図中、破線で示す)からなる、純水製
造系は濾過器1.ポンプ2゜2′、逆浸透装置3.脱気
装置i!4.脱塩装置5゜殺菌装置7.ポリラシャ−8
,MF (膜濾過)あるいはUF(限外濾過)装置9等
からなる。液化炭酸ガス調製系は液化炭酸ガス用配管(
図中、破線で示す)とイオン交換樹脂調製装置6等から
なる。通常、常温で液化炭酸ガスを得るには50〜70
気圧の圧力を必要とするため、液化炭酸ガス用配管及び
イオン交換樹脂調製装置6は上記圧力に耐える構造ある
いは材料を使う、脱塩装置5及びポリラシャ−8に充填
するイオン交換樹脂10はあらかじめ、イオン交換樹脂
1[装@6で、イオン交換樹脂10と液化炭酸ガスを接
触し、調製した後、脱塩装置5及びポリラシャ−8内に
充填する。場合によっては、水洗後充填する。イオン交
換樹脂と接触し、樹脂等内の未重合有機物を溶解した液
化炭酸ガスは液化炭酸ガス調製系より取り出され、ガス
化される。場合によっては循環使用しても良い。
Figure 1 shows an ultrapure water production flow showing one embodiment of the present invention. The six flows are a pure water production system (indicated by a solid line in the figure) and a liquefied carbon dioxide gas preparation system (indicated by a broken line in the figure). The pure water production system consists of a filter 1. Pump 2゜2', reverse osmosis device 3. Deaerator i! 4. Desalination equipment 5゜sterilization equipment 7. Polilasha-8
, MF (membrane filtration) or UF (ultrafiltration) device 9, etc. The liquefied carbon dioxide gas preparation system uses liquefied carbon dioxide piping (
(indicated by a broken line in the figure), an ion exchange resin preparation device 6, etc. Usually, 50 to 70 to obtain liquefied carbon dioxide at room temperature.
Since atmospheric pressure is required, the liquefied carbon dioxide piping and the ion exchange resin preparation device 6 should be made of structures or materials that can withstand the above pressure. After preparing the ion exchange resin 1 by bringing the ion exchange resin 10 into contact with liquefied carbon dioxide gas in the container 6, it is filled into the desalting device 5 and the polyrasher 8. In some cases, fill after washing with water. The liquefied carbon dioxide that comes into contact with the ion exchange resin and dissolves unpolymerized organic matter in the resin is taken out from the liquefied carbon dioxide preparation system and gasified. Depending on the case, it may be used repeatedly.

上記、液化炭酸ガスによる調製終了後のイオン交換樹脂
を脱塩装置及びポリラシャ−へ充填した後、原水が純水
製造系に導入され、超純水が製造される。
After the ion exchange resin prepared with liquefied carbon dioxide is filled into the desalting device and polyurethane, the raw water is introduced into the pure water production system to produce ultrapure water.

純水製造系では、原水はまず濾過され、比較的大きな懸
濁固形物が除去される。つぎに、逆浸透処理され、中程
度の懸濁固形物とある程度イオンが除去さ九る。脱気装
置4では特に脱酸素され、微生物の介在により起こる酸
素と有機物の反応の一因子である酸素が除去される。つ
ぎに、脱塩装置5で残留イオンが除去される。一般に、
ここまで処理された純水を一次純水と呼称されている。
In water purification systems, raw water is first filtered to remove relatively large suspended solids. It is then treated with reverse osmosis to remove moderate suspended solids and some ions. The deaerator 4 is particularly deoxidized to remove oxygen, which is a factor in the reaction between oxygen and organic matter caused by microorganisms. Next, residual ions are removed in a desalination device 5. in general,
Pure water that has been treated up to this point is called primary pure water.

−次純水は殺菌装置にかけられ、ポリラシャ−8で微量
金属イオンを除去し、MFあるいはUF装置9で残留S
濁固形物が除去される。これにより得られる超純水の水
質はTOCで30ppbで、VLSIに対応できる0以
上により得られた超純水は半導体等の洗浄等に使用され
る。
-Next, the purified water is passed through a sterilizer, trace metal ions are removed with a Polylasha-8, and residual S is removed with a MF or UF device 9.
Turbid solids are removed. The quality of the ultrapure water thus obtained is 30 ppb in terms of TOC, and the ultrapure water obtained with a TOC of 0 or more is used for cleaning semiconductors and the like.

第2図は本発明の実施例に用いたイオン交換樹脂Aの有
機物溶出特性を示す。また、通常のイオン交換樹脂Bの
特性を破線で示した。樹脂Aは液化炭酸ガスと4時間接
触してもので、その表面には突起部が脱落して形成した
四部が多数観察された。反対に、樹脂Bの表面には、突
起部が多数観察される。
FIG. 2 shows the organic matter elution characteristics of ion exchange resin A used in Examples of the present invention. In addition, the characteristics of ordinary ion exchange resin B are shown by broken lines. Resin A was in contact with liquefied carbon dioxide gas for 4 hours, and a large number of four parts formed by falling protrusions were observed on its surface. On the contrary, many protrusions are observed on the surface of resin B.

第2図は、それぞれ同量の樹脂A及びBを10倍の蒸留
水で洗浄した後、100mQの蒸留水に浸漬したときの
有機物(Total Organic Carbon 
:以下、TOCと略称)溶出速度の経時変化を示す。
Figure 2 shows the amount of organic matter (Total Organic Carbon) obtained when the same amount of resins A and B were washed with 10 times as much distilled water and then immersed in 100 mQ of distilled water.
(hereinafter abbreviated as TOC) shows the change in elution rate over time.

T OC溶出速度は浸漬時間とともに減少とするがある
時間からは一定となり、定常状態となる。図中、印以降
は浸漬樹脂を同量の新しい蒸留水に入れ換えて実験を継
続した結果であるが、TOC溶出速度は変化しない、す
なわち、定常状態での溶出速度で、樹脂から有機物が溶
出し続ける。本発明の一実施例である樹脂AからのTO
C溶出速度は通常の樹脂Bの1/10以下である、通常
のイオン交換樹脂Bを用いた脱塩装置を含む現状の純水
製造システムにおいて製造される純水の有機物濃度は6
4にビット級LSIの水質基準を満足する3 00 p
pbが達成されている。したがって、本発明のイオン交
換樹脂を用いることにより、上記結果より、30ρρb
が達成でき、この水質は1〜4MBiVLS I(7)
水質基’Q! (50ppb )を満足する。
The TOC elution rate decreases with the immersion time, but after a certain time it becomes constant and reaches a steady state. In the figure, the results after the mark are the results of continuing the experiment by replacing the soaked resin with the same amount of fresh distilled water, but the TOC elution rate does not change, that is, the organic matter elutes from the resin at the elution rate in the steady state. continue. TO from resin A which is an example of the present invention
The elution rate of C is less than 1/10 of that of normal resin B.The organic matter concentration of pure water produced in the current pure water production system including a desalination device using normal ion exchange resin B is 6.
300p, which satisfies the water quality standards for bit-class LSIs.
pb has been achieved. Therefore, by using the ion exchange resin of the present invention, from the above results, 30ρρb
can be achieved, and this water quality is 1 to 4 MBiVLS I (7)
Water quality group'Q! (50 ppb).

第3図は、本発明の一実施例に用いた樹脂Aのイオン交
換性能を示す。樹脂Bの性能を破線で示した。同図は、
0.3%NaC1は溶液中に1゜mΩの樹脂を入れたと
きの同族の電気伝導度の経時変化を示す、樹脂AとBの
特性はほぼ同じである。一般に、脱落した突起物は樹脂
表面に付着している場合があり、液化炭酸ガスによる処
理後。
FIG. 3 shows the ion exchange performance of Resin A used in one example of the present invention. The performance of resin B is shown by a broken line. The figure is
0.3% NaCl shows the change over time in the electrical conductivity of the same group when a resin of 1 mmΩ is placed in the solution.The properties of resins A and B are almost the same. In general, fallen protrusions may be attached to the resin surface after treatment with liquefied carbon dioxide.

樹脂を密度の大きい流体(例えば水)で洗うことが望ま
しい、したがって、突起物を脱落する際には、超音波照
射等による機械的操作を併用することも可能である。
It is desirable to wash the resin with a high-density fluid (for example, water). Therefore, when removing the protrusions, it is also possible to use mechanical operations such as ultrasonic irradiation in combination.

溶剤としては、樹脂のイオン交換基と交換反応を起こす
ものは不適当である。液化炭酸ガスで陰イオン交換樹脂
を調製する場合、樹脂含水中に炭酸ガスが溶解し、炭酸
イオンとなり、これと、イオン交換反応を起こす、この
ような溶剤により。
As the solvent, those that cause an exchange reaction with the ion exchange groups of the resin are unsuitable. When preparing an anion exchange resin using liquefied carbon dioxide gas, the carbon dioxide gas dissolves in the resin-containing water, becomes carbonate ions, and causes an ion exchange reaction with these ions using such a solvent.

突起部を脱落させることは可能であっても、樹脂本来の
イオン交換性能が低下する結果となる。このような場合
には、■、I:、・記処理後、PHコントロール等によ
る脱ガス処理を施すが、あるいは■Na型、CQ型の状
態で、液化炭酸ガスと接触させることにより、イオン交
換性能を維持することができる。
Even if it is possible to remove the protrusions, this results in a decrease in the ion exchange performance of the resin. In such a case, after the treatment described above, degassing treatment such as pH control is performed, or ■ ion exchange is performed by contacting with liquefied carbon dioxide in the Na-type or CQ-type state. performance can be maintained.

第4図は本発明の洗浄効果を示すグラフで、前述の実験
で得た処理済み陽イオン交換樹脂と未処理の陽イオン交
換樹脂をそれぞれ別々に純水中に侵潰し、時間経過と共
に溶出する有機物の濃度(TOC)を測定し、100時
間経過後、陽イオン交換樹脂を純水で洗浄した後、再び
別々に純水中に浸漬し、再度時間経過と共に純水中の有
機物濃度がどう変るかを見たものである。その結果、ま
ず処理後直ちに純水に入れた陽イオン交換樹脂の場合は
、初めTOCの溶出が多いが徐々にその溶出速度が下が
り、ついには未処理のイオン交換樹脂のTOC溶出速度
が高くなる。そして、純水で洗浄した処理済イオン交換
樹脂と同じく純水で洗浄した未処理イオン交換樹脂とを
比べると、そのTOC溶出速度は著しく差があり、液化
炭酸ガス又は超臨界炭酸ガスによる処理の効果は顕著で
あることがわかる。なお、液化炭酸ガスと超臨界炭酸ガ
スの有機物の溶解作用は同等で、両者で異なるのは後者
が水を溶解する能力がある点だけである。
Figure 4 is a graph showing the cleaning effect of the present invention, in which the treated cation exchange resin and the untreated cation exchange resin obtained in the above experiment were separately crushed in pure water, and dissolved over time. The concentration of organic matter (TOC) was measured, and after 100 hours had passed, the cation exchange resin was washed with pure water, and then immersed separately in pure water again to see how the concentration of organic matter in the pure water changed over time. That's what I saw. As a result, in the case of a cation exchange resin that is placed in pure water immediately after treatment, a large amount of TOC elutes at first, but the elution rate gradually decreases, and eventually the TOC elution rate of the untreated ion exchange resin increases. . Comparing the treated ion exchange resin washed with pure water and the untreated ion exchange resin washed with pure water, there is a significant difference in the TOC elution rate. It can be seen that the effect is significant. Note that liquefied carbon dioxide gas and supercritical carbon dioxide gas have the same ability to dissolve organic matter, and the only difference between the two is that the latter has the ability to dissolve water.

また、第5図(a)及び(b)によって明らかなように
、未処理のイオン交換樹脂表面を示す第5図(a)には
樹脂凸起が見られるが、処理後のイオン交換樹脂の表面
第5図(b)を見ると、樹脂凸起の脱落跡が見られる。
Furthermore, as is clear from FIGS. 5(a) and (b), resin protrusions are seen in FIG. 5(a) showing the untreated ion exchange resin surface, but the ion exchange resin surface after treatment is Looking at the surface of FIG. 5(b), traces of resin convexities falling off can be seen.

また、イオン交換樹脂の表面にキレンが入っているのが
わかる。
It can also be seen that xylem is present on the surface of the ion exchange resin.

液化炭酸ガスあるいは超臨界炭酸ガスは高圧であるため
、高圧状態で樹脂と接触させるが、接触後、樹脂の圧力
を大気圧までに減圧する。この減圧にともなうガスの噴
出は、上記樹脂表面に付着した脱落マトリックスを除去
する効果があるが。
Since liquefied carbon dioxide gas or supercritical carbon dioxide gas is under high pressure, it is brought into contact with the resin at high pressure, but after the contact, the pressure of the resin is reduced to atmospheric pressure. The ejection of gas accompanying this pressure reduction has the effect of removing the fallen matrix adhering to the resin surface.

急激な減圧は、樹脂にき裂を発生させ、圧壊強度を著し
く低下する。この結果、樹脂群がらの微粒子発生を増大
する。適正な速度で減圧する必要がある。具体的には5
〜10分程度かけて減圧するのがよい。
Sudden pressure reduction causes cracks to occur in the resin, significantly reducing its crushing strength. As a result, the generation of fine particles from the resin group increases. It is necessary to depressurize at an appropriate speed. Specifically 5
It is best to reduce the pressure over about 10 minutes.

〔発明の効果〕〔Effect of the invention〕

本発明によれば■実用上、樹脂等からの純水への有機物
溶出を防止でき、上述したごとく超純水製造における障
害の根源である有機物フリーの超純水が得られる。
According to the present invention, (1) In practice, it is possible to prevent the elution of organic substances from resins and the like into pure water, and as mentioned above, it is possible to obtain ultrapure water that is free of organic substances, which is the source of problems in the production of ultrapure water.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の超純水製造装置を示すフロー図、第2
図及び第3図は本発明の一実施例になるイオン交換樹脂
の性能を示すグラフ、第4図は本発明の実施例によるイ
オン交換樹脂の洗浄効果を示すグラフ、第5図(、)及
び(b)は未処理のイオン交換樹脂及び本発明の実施例
による処理後のイオン交換樹脂の表面を示す電子顕微鏡
写真である。 1・・・濾過装置、2,2′・・・ポンプ、3・・・逆
浸透装置、4・・・脱気装置、5・・・脱塩装置、6・
・・イオン交換樹脂調製装置、7・・・殺菌装置、8・
・・ボリッシャ9・・・UFあるいはMF装置、10・
・・イオン交換樹脂。 第 図 イオノ交換時間 m1n1 第5図 !(′ Cどンどタハ」甲 くン毫る、を旨田否Y間、
り;、57G。 (,6) 1隆起部双各BF
FIG. 1 is a flow diagram showing the ultrapure water production apparatus of the present invention, and FIG.
3 and 3 are graphs showing the performance of an ion exchange resin according to an embodiment of the present invention, FIG. 4 is a graph showing the cleaning effect of an ion exchange resin according to an embodiment of the present invention, and FIGS. (b) is an electron micrograph showing the surface of an untreated ion exchange resin and an ion exchange resin after treatment according to an example of the present invention. 1... Filtration device, 2, 2'... Pump, 3... Reverse osmosis device, 4... Deaerator, 5... Desalination device, 6...
... Ion exchange resin preparation device, 7... Sterilization device, 8.
...Borisha 9...UF or MF device, 10.
...Ion exchange resin. Diagram ion exchange time m1n1 Diagram 5! ('C dondo taha' A kun plays, Umada Nai Y-ma,
ri;, 57G. (,6) 1 ridge each BF

Claims (1)

【特許請求の範囲】[Claims] 1、比較的大きな懸濁固形物を除去する濾過装置と、中
程度の懸濁固形物とイオンを除去する逆浸透装置と、酸
素を除去する脱気装置と、残留イオンを除去するイオン
交換樹脂脱塩装置と、雑菌を除去する殺菌装置と、残留
懸濁固形物を除去する限外濾過装置あるいは膜濾過装置
を具備する装置において、液化炭酸ガスあるいは超臨界
炭酸ガスによりイオン交換樹脂を洗浄するイオン交換樹
脂調製系統を前記イオン交換樹脂脱塩装置に接続したこ
とを特徴とする超純水の製造装置。
1. A filtration device to remove relatively large suspended solids, a reverse osmosis device to remove medium suspended solids and ions, a deaeration device to remove oxygen, and an ion exchange resin to remove residual ions. In a device equipped with a desalination device, a sterilization device to remove germs, and an ultrafiltration device or membrane filtration device to remove residual suspended solids, the ion exchange resin is washed with liquefied carbon dioxide gas or supercritical carbon dioxide gas. An apparatus for producing ultrapure water, characterized in that an ion exchange resin preparation system is connected to the ion exchange resin desalting apparatus.
JP1246315A 1989-09-25 1989-09-25 Device for producing ultra pure water using ion-exchange resin Granted JPH02119989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1246315A JPH02119989A (en) 1989-09-25 1989-09-25 Device for producing ultra pure water using ion-exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1246315A JPH02119989A (en) 1989-09-25 1989-09-25 Device for producing ultra pure water using ion-exchange resin

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59019982A Division JPS60166040A (en) 1984-02-08 1984-02-08 Ion exchange resin and its adjusting method and manufacturing apparatus of ultrapure water using said resin

Publications (2)

Publication Number Publication Date
JPH02119989A true JPH02119989A (en) 1990-05-08
JPH0516914B2 JPH0516914B2 (en) 1993-03-05

Family

ID=17146730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1246315A Granted JPH02119989A (en) 1989-09-25 1989-09-25 Device for producing ultra pure water using ion-exchange resin

Country Status (1)

Country Link
JP (1) JPH02119989A (en)

Also Published As

Publication number Publication date
JPH0516914B2 (en) 1993-03-05

Similar Documents

Publication Publication Date Title
JPS60166040A (en) Ion exchange resin and its adjusting method and manufacturing apparatus of ultrapure water using said resin
JPH0790219B2 (en) Pure water production apparatus and production method
CN87106114A (en) Method for manufacturing integrated circuit
JP6907514B2 (en) Ultrapure water production system and ultrapure water production method
CN111777244A (en) Ultrapure water preparation system and preparation process thereof
JPS62110795A (en) Device for producing high-purity water
JP2009240943A (en) Conditioning method of ion-exchange resin
JPH02119989A (en) Device for producing ultra pure water using ion-exchange resin
JP2514929B2 (en) Method for cleaning terminal reverse osmosis membrane device
JP2004050019A (en) Ultra-pure water supply equipment
CN212425742U (en) Ultrapure water preparation system
JPH0780259A (en) Treatment of reverse osmosis membrane and reverse osmosis membrane separation element
JP2005246126A (en) Device and method for manufacturing pure water or ultra pure water
JPH1080684A (en) Device and method for treating boron-containing water
JP3215277B2 (en) Method and apparatus for producing pure water or ultrapure water from which boron has been removed
JPH0780262A (en) Treatment of reverse osmosis membrane and reverse osmosis membrane separation element
JP2950621B2 (en) Ultrapure water production method
JPH1085740A (en) High purity water manufacturing device
JP3727156B2 (en) Desalination equipment
JPH0829317B2 (en) Method for producing ultrapure water and apparatus used for the method
JP3674475B2 (en) Pure water production method
KR100689693B1 (en) Manufacturing method of ultrapure water
JP2023037218A (en) Ozone water producing method and ozone water producing system
JPH0645037B2 (en) Ultrapure water production method
JPH01245893A (en) Method for making ultrapure water