JPH02117175A - Semiconductor memory - Google Patents

Semiconductor memory

Info

Publication number
JPH02117175A
JPH02117175A JP26946188A JP26946188A JPH02117175A JP H02117175 A JPH02117175 A JP H02117175A JP 26946188 A JP26946188 A JP 26946188A JP 26946188 A JP26946188 A JP 26946188A JP H02117175 A JPH02117175 A JP H02117175A
Authority
JP
Japan
Prior art keywords
region
silicon oxide
oxide film
film
semiconductor memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26946188A
Other languages
Japanese (ja)
Inventor
Kazuo Sato
和夫 佐藤
Kenji Yokozawa
賢二 横沢
Shinichi Uchida
内田 伸一
Ryoichi Ito
良一 伊藤
Makoto Kojima
誠 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP26946188A priority Critical patent/JPH02117175A/en
Publication of JPH02117175A publication Critical patent/JPH02117175A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To increase the withstand voltage of an MIOS semiconductor memory by providing the first region touching the end section of a channel region directly, and the second region touching the first region and having impurity density higher than that of the first region. CONSTITUTION:N<+> diffusion regions 7, 8 and N<-> diffusion regions 9, 10 are formed in a P-type silicon substrate 1; thin silicon oxide film 4 is provided spreading over the N<-> diffusion regions 9, 10; a silicon nitride film 5 and a gate electrode 6 are laminated on the thin silicon oxide film 4 in this order; and besides lateral wall films 11 made from silicon oxide films are provided at the sides of the gate section. This constitution lightens the electric field concentration in the channel regions in the vicinities of the drain and source regions of MIOS semiconductor memories, and makes it possible to enhance the voltage-withstanding characteristics.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、MIO8(金属−絶縁膜−酸化シリコン膜−
半導体)型の電界効果トランジスタからなる半導体記憶
装置に関し、特に、その信頼性向上を図ることのできる
新規な構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to MIO8 (metal-insulating film-silicon oxide film-
The present invention relates to a semiconductor memory device comprising a semiconductor type field effect transistor, and particularly to a novel structure capable of improving its reliability.

(従来の技術) MIO8型半導体記憶装置は、ゲート−基板間に20〜
25V程度の高電圧を印加して、酸化シリコン膜と絶縁
膜の界面、又はその近傍の絶縁膜中のトラップ準位に、
半導体側から電荷の注入、容積を行ない、トランジスタ
のしきい値電圧を変化させて情報を記憶させるものであ
る。
(Prior art) In the MIO8 type semiconductor memory device, there is a gap between the gate and the substrate of 20 to
Applying a high voltage of about 25 V to the trap level in the insulating film at or near the interface between the silicon oxide film and the insulating film,
Information is stored by injecting charge from the semiconductor side and increasing the volume to change the threshold voltage of the transistor.

従来、MIO8型半導体記憶装置の代表的なものとして
、第3図に示すようなMNOS(金属−窒化シリコン膜
−酸化シリコン膜−半導体)構造の半導体記憶装置がよ
く知られている。1はP型シリコン基板、2及び3はソ
ース、ドレイン領域。
Conventionally, a semiconductor memory device having an MNOS (metal-silicon nitride film-silicon oxide film-semiconductor) structure as shown in FIG. 3 is well known as a typical MIO8 type semiconductor memory device. 1 is a P-type silicon substrate, 2 and 3 are source and drain regions.

4は薄い酸化シリコン膜、5は窒化シリコン膜。4 is a thin silicon oxide film, and 5 is a silicon nitride film.

6はゲート電極である。第3図のような構造のMNO8
型半導体記憶装置では、ソース領域2及びドレイン領域
3の間にはさまれたチャネル領域に接して対向する部分
全体に、薄い酸化シリコン膜4が広がっており、通常そ
の厚さは電荷のトンネル領域を起こしやすくするために
、20人程度と薄くしている。また、薄い酸化シリコン
膜4上の窒化シリコン膜5の膜厚は、20〜25Vの電
圧で書き込み、消去を行なうことができるように300
〜500人程度と、比ヒナ薄くなっている。
6 is a gate electrode. MNO8 with structure as shown in Figure 3
In a type semiconductor memory device, a thin silicon oxide film 4 is spread over the entire portion facing and in contact with a channel region sandwiched between a source region 2 and a drain region 3, and its thickness is usually equal to that of a charge tunnel region. In order to make it easier to wake up, we have kept the number of participants small, about 20 people. The thickness of the silicon nitride film 5 on the thin silicon oxide film 4 is set at 300 V so that writing and erasing can be performed at a voltage of 20 to 25 V.
There are only about 500 people, which is a small number compared to the Philippines.

(発明が解決しようとする課題) 従って、従来の構成のMNO8型半導体記憶装置におい
て、ゲートをOvとし、ドレインに20〜25Vの高電
圧を印加した際に、ゲート電極−ドレイン間の電界が、
ドレイン基板間の電界に大きく影響を与え、ドレイン領
域近傍のチャネル領域で電界集中が起こり、ドレイン−
基板間にブレークダウンを生じたり、その領域上の薄い
酸化膜部分が破壊しやすいといった問題点を有しており
、回路設計上の一つの障害となっている。
(Problems to be Solved by the Invention) Therefore, in an MNO8 type semiconductor memory device with a conventional configuration, when the gate is Ov and a high voltage of 20 to 25 V is applied to the drain, the electric field between the gate electrode and the drain is
This greatly affects the electric field between the drain and substrate, causing electric field concentration in the channel region near the drain region, causing
There are problems in that breakdown occurs between the substrates and the thin oxide film on the area is easily destroyed, which is an obstacle in circuit design.

本発明の目的は、こうした問題点に鑑み、MNOS型の
半導体記憶装置の耐圧向上を図ることのできる新規な構
造を提供することにある。
SUMMARY OF THE INVENTION In view of these problems, an object of the present invention is to provide a novel structure that can improve the withstand voltage of an MNOS type semiconductor memory device.

(課題を解決するための手段) 上記目的を達成すべく、本発明は、−導電型半導体基板
中に設けられたソース領域、ドレイン領域にはさまれた
チャネル領域上に、トンネリング媒体となりつる薄い酸
化シリコン膜を備え、前記薄い酸化シリコン膜上に絶縁
膜を備え、前記絶縁膜上にゲート電極を備えたゲート構
造を有する半導体記憶装置において、前記ゲート構造の
側面に絶縁膜よりなる側壁膜を備え、前記ソース領域及
びドレイン領域の少なくとも一方の領域は、前記チャネ
ル領域端部に直接液する第1の領域と、前記チャネル領
域から離れた位置にあって前記第1の領域に接し不純物
濃度が第1の領域よりも高い第2の領域とを有している
ことを特徴とするものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides - a thin film that serves as a tunneling medium on a channel region sandwiched between a source region and a drain region provided in a conductive type semiconductor substrate; In a semiconductor memory device having a gate structure including a silicon oxide film, an insulating film on the thin silicon oxide film, and a gate electrode on the insulating film, a sidewall film made of an insulating film is provided on a side surface of the gate structure. At least one of the source region and the drain region includes a first region in which liquid is directly applied to an end of the channel region, and a first region located away from the channel region and in contact with the first region and having an impurity concentration. The second region is higher than the first region.

(作 用) この構成によれば、トンネル領域である薄い酸化シリコ
ン膜及びトンネルした電荷をトラップする領域である絶
縁膜からなるゲート絶縁膜の端部が側壁の絶縁膜によっ
て覆われているため、ゲート電極とソース及びドレイン
間の電界を緩和することができ、さらにソース及びドレ
イン領域を低濃度と高濃度の2種類の拡散領域で形成し
ているため、拡散耐圧を向上させることが可能となり、
従来構造に比べ、ソース及びドレイン領域近傍のチャネ
ル領域での電界集中を緩和でき、耐圧特性を従来(15
〜20V程度)に比べ10〜15V向上させることがで
きる。
(Function) According to this configuration, the end of the gate insulating film, which is made up of a thin silicon oxide film as a tunnel region and an insulating film as a region for trapping tunneled charges, is covered by the insulating film on the sidewall. The electric field between the gate electrode and the source and drain can be relaxed, and since the source and drain regions are formed with two types of diffusion regions: low concentration and high concentration, it is possible to improve the diffusion breakdown voltage.
Compared to the conventional structure, the electric field concentration in the channel region near the source and drain regions can be alleviated, and the withstand voltage characteristics are improved to the conventional structure (15
-20V) can be improved by 10 to 15V.

(実施例) 本発明の一実施例の半導体記憶装置を、第1図を参照し
て説明する。
(Embodiment) A semiconductor memory device according to an embodiment of the present invention will be described with reference to FIG.

これは、P型シリコン基板1の中にN+拡散領域7,8
.N″′拡散領域9,10が形成され、N−拡散領域9
,10にまたがって薄い酸化シリコン膜4が設けられ、
薄い酸化シリコン膜4の上に窒化シリコン@5、ゲート
電極6が順次積層され、さらにゲート部分の側面に酸化
シリコン膜よりなる側壁膜11が設けられた構造を有す
る。
This is the N+ diffusion region 7, 8 in the P type silicon substrate 1.
.. N″′ diffusion regions 9, 10 are formed, and N− diffusion regions 9
, 10 is provided with a thin silicon oxide film 4,
It has a structure in which silicon nitride@5 and a gate electrode 6 are sequentially laminated on a thin silicon oxide film 4, and a sidewall film 11 made of a silicon oxide film is further provided on the side surface of the gate portion.

次に、第1図に示すごとき構造を実現する製造方法の一
実施例を第2図に示す。
Next, FIG. 2 shows an example of a manufacturing method for realizing the structure shown in FIG. 1.

まず、第2図(A)に示すように、P型シリコン塙板1
全面に、酸化シリコン膜12を500人の厚さに形成し
、さらに窒化シリコン膜13を1200人程度形成した
後、素子分離のため所定の部分を公知のフォトエツチン
グ技術でエツチングする。
First, as shown in FIG. 2(A), P-type silicon wall plate 1
After forming a silicon oxide film 12 to a thickness of 500 mm over the entire surface and further forming a silicon nitride film 13 of about 1,200 thickness, predetermined portions are etched using a known photoetching technique for element isolation.

次いで、第2図(B)に示すように、通常の熱酸化法に
よりフィールド酸化膜14をIP程度形成する。
Next, as shown in FIG. 2(B), a field oxide film 14 is formed to an IP level by a normal thermal oxidation method.

次に、第2図(C)に示すように、窒化シリコン膜13
と、その下の酸化シリコン膜12を順次エツチング除去
した後、800℃、酸素雰囲気中で酸化して20人程度
の薄い酸化シリコン膜4を形成する。
Next, as shown in FIG. 2(C), the silicon nitride film 13
After the silicon oxide film 12 thereunder is sequentially removed by etching, the silicon oxide film 4 is oxidized at 800° C. in an oxygen atmosphere to form a thin silicon oxide film 4 having a thickness of about 20 layers.

次いで、第2図(D)に示すように、酸化シリコン膜4
上に、シラン(S i H4)とアンモニア(NH,)
の化学反応に基づく気相成長法により窒化シリコン膜5
を形成する。本実施例では、成長温度750℃、ガス流
量比N Hs / S x H4= 100の条件下で
窒化シリコン膜5を500人の厚さに形成した6次いで
、全面にリンをドープした(約2 XIO”an−”)
ポリシリコン膜15を4000人程度形成し、次いでゲ
ートとなりうる部分のみを残して、ポリシリコン膜15
、窒化シリコン膜5及び酸化シリコン膜4をフォトレジ
ストを用いた公知のフォトエツチング技術によりパター
ンニングし、次に、ポリシリコン膜15とフィールド酸
化膜14をマスクとして、リンイオンを打ち込み(50
keV、1XIO”cm−”)、N−拡散領域9,10
を形成する。
Next, as shown in FIG. 2(D), a silicon oxide film 4 is formed.
On top, silane (S i H4) and ammonia (NH,)
A silicon nitride film 5 is grown using a vapor phase growth method based on a chemical reaction.
form. In this example, a silicon nitride film 5 was formed to a thickness of 500 nm under the conditions of a growth temperature of 750° C. and a gas flow rate ratio of NHs/S x H4 = 100.Then, the entire surface was doped with phosphorus (approximately 2 XIO"an-")
A polysilicon film 15 is formed by about 4,000 layers, and then a polysilicon film 15 is formed, leaving only the portion that can become a gate.
, the silicon nitride film 5 and the silicon oxide film 4 are patterned by a known photoetching technique using a photoresist, and then phosphorous ions are implanted using the polysilicon film 15 and the field oxide film 14 as masks (50%
keV, 1XIO"cm-"), N-diffusion regions 9, 10
form.

次に、第2図(E)に示すように、全面に酸化シリコン
膜16をSiH,(J2ガスとN、Oガスとの化学反応
に基づく気相成長法により形成する0本実施例では、N
、O/SiH,Cff、= 2,900℃の条件下で約
3000人形成した。
Next, as shown in FIG. 2(E), a silicon oxide film 16 is formed on the entire surface by a vapor phase growth method based on a chemical reaction between SiH, (J2 gas and N, O gas.) N
, O/SiH, Cff, approximately 3000 people were formed under conditions of = 2,900°C.

次いで、第2図(F)に示すように、ゲート部分の側面
に酸化シリコン膜16の一部が側壁として残るように、
酸化シリコン膜16を公知の異方性エツチング技術によ
り除去する0本実施例では、フレオンガスと酸素ガスの
混合ガスを用いた異方性エツチングを適用した1次いで
、N”拡散領域7゜8を、フォトレジストをマスクとし
てヒ素イオンを打ち込み(40keV、 2 XIO”
am−”)形成する。
Next, as shown in FIG. 2(F), a portion of the silicon oxide film 16 remains as a sidewall on the side surface of the gate portion.
In this embodiment, the silicon oxide film 16 is removed by a known anisotropic etching technique. Next, the N'' diffusion region 7.8 is etched by anisotropic etching using a mixed gas of Freon gas and oxygen gas. Arsenic ions were implanted using a photoresist as a mask (40keV, 2XIO”
am-”) to form.

次いで、第2図(G)に示すように、公知の気相成長法
により、酸化シリコン膜17を全面に被着した後、ソー
ス、ドレインの押し込みと酸化シリコン膜17の緻密化
のために、1000℃で、20分、N2雰囲気中で熱処
理を行なう。最後に、公知のフォトエツチング技術によ
りコンタクト孔を開孔し、アルミニウム電極18を形成
し、第2図(G)に示すごときMNO8型半導体記憶装
置を作製することができる。
Next, as shown in FIG. 2(G), a silicon oxide film 17 is deposited on the entire surface by a known vapor phase growth method, and then in order to push in the source and drain and to densify the silicon oxide film 17, Heat treatment is performed at 1000° C. for 20 minutes in an N2 atmosphere. Finally, a contact hole is opened using a known photoetching technique, and an aluminum electrode 18 is formed, thereby producing an MNO8 type semiconductor memory device as shown in FIG. 2(G).

本実施例では、N0拡散領域7,8をフォトレジストを
マスクにして形成する方法を示したが、別の実施例とし
て側壁膜の形成条件を適当に選べば、側壁膜をマスクと
して自己整合的に形成できる。
In this embodiment, a method was shown in which the N0 diffusion regions 7 and 8 were formed using photoresist as a mask. However, in another embodiment, if the formation conditions of the sidewall film are appropriately selected, self-aligned formation can be achieved using the sidewall film as a mask. can be formed into

また1本実施例ではMIO3型半導体記憶装置としてM
NOS型の半導体記憶装置の場合について述べたが、ゲ
ート絶縁膜として窒化シリコン膜上を酸化したMONO
8(金属−酸化シリコン膜−窒化シリコン膜−酸化シリ
コン膜−半導体)構造でもよく、さらに窒化シリコン膜
の代りに、例えば酸化アルミニウム<Aa2o z )
、酸化タンタル(T am Oz )等の高誘電体膜を
用いてもよいことは言うまでもない。
In addition, in this embodiment, as an MIO3 type semiconductor memory device, M
Although we have described the case of NOS type semiconductor memory devices, MONO in which a silicon nitride film is oxidized as a gate insulating film
An 8 (metal-silicon oxide film-silicon nitride film-silicon oxide film-semiconductor) structure may also be used, and in place of the silicon nitride film, for example, aluminum oxide<Aa2oz) may be used.
It goes without saying that a high dielectric constant film such as tantalum oxide (T am Oz ) may also be used.

(発明の効果) 以上説明したところから明らがなように1本発明によれ
ば、MIO8IO8型半導体記憶装置イン及びソース領
域近傍のチャネル領域での電界集中が緩和され、耐圧特
性の向上を図ることが可能となり、MIO8IO8型半
導体記憶装置頼化に大きく寄与するものである。
(Effects of the Invention) As is clear from the above description, according to the present invention, electric field concentration in the channel region near the input and source regions of the MIO8IO8 type semiconductor memory device is alleviated, and the withstand voltage characteristics are improved. This makes it possible to greatly contribute to the reliability of MIO8IO8 type semiconductor memory devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1本発明の一実施例のMNO8型半導体記憶装
置の構成を示す断面図、第2図は、同半導体記憶装置の
製造方法を示す図、第3図は、従来のMNO8型半導体
記憶装置の構成を示す断面図である。 1 ・・・P型シリコン基板、 4・・・薄い酸化シリ
コン膜、 5 ・・・窒化シリコン膜。 6 ・・・ゲート電極、 7,8 ・・・No拡散領域
、9,10・・・N−拡散領域、 11・・・側壁酸化シリコン膜。 特許出願人 松下電子工業株式会社 第1図 1 ・・・ 4 ・・ 5 ・・・ 6 ・・ 7.8・・・ 9.10・・・ 11 ・・・ P型シリコン纂棟 簿−・醸化シリフン該 望化シ゛ノフi嗅 ケ゛−ト電極 N+J広岸0宍域 N−j九蘇預緘 イ[4’2φ良化シリコン騰 第2図 第2図 第3図 1・・P型シソコン基板 2.3・・ソース8よU・ドレイン@瑣4 ・・・薄り
1変化シリコン臘 5 、、、q化シリコン腰 6・・・ ケ゛−ト屯極
FIG. 1 is a cross-sectional view showing the structure of an MNO8 type semiconductor memory device according to an embodiment of the present invention, FIG. 2 is a diagram showing a method for manufacturing the same semiconductor memory device, and FIG. FIG. 2 is a cross-sectional view showing the configuration of a storage device. 1...P-type silicon substrate, 4...Thin silicon oxide film, 5...Silicon nitride film. 6...Gate electrode, 7,8...No diffusion region, 9,10...N- diffusion region, 11...Side wall silicon oxide film. Patent applicant Matsushita Electronics Co., Ltd. Figure 1 1... 4... 5... 6... 7.8... 9.10... 11... P-type silicon production record Chemical silicon phosphorescent silicon probe electrode 2.3...Source 8 to U/Drain @44 Thinness 1 change silicon 5 ,...Q silicon waist 6... Kate ton pole

Claims (1)

【特許請求の範囲】[Claims] 一導電型半導体基板中に設けられたソース領域及びドレ
イン領域にはされまたチャネル領域上に、トンネリング
媒体となりうる薄い酸化シリコン膜を備え、前記薄い酸
化シリコン膜上に絶縁膜を備え、前記絶縁膜上にゲート
電極を備えたゲート構造を有する半導体記憶装置におい
て、前記ゲート構造の側面に絶縁膜よりなる側壁膜を備
え、前記ソース領域及びドレイン領域の少なくとも一方
の領域は、前記チャネル領域の端部に直接接する第1の
領域と、前記チャネル領域から離れた位置にあって前記
第1の領域に接し不純物濃度が第1の領域よりも高い第
2の領域とを有していることを特徴とする半導体記憶装
置。
A thin silicon oxide film that can serve as a tunneling medium is provided on a source region and a drain region provided in a semiconductor substrate of one conductivity type, and on a channel region, an insulating film is provided on the thin silicon oxide film, and the insulating film is provided on the thin silicon oxide film. In a semiconductor memory device having a gate structure having a gate electrode thereon, a sidewall film made of an insulating film is provided on a side surface of the gate structure, and at least one of the source region and the drain region is located at an end of the channel region. and a second region located away from the channel region, in contact with the first region, and having an impurity concentration higher than that of the first region. semiconductor storage device.
JP26946188A 1988-10-27 1988-10-27 Semiconductor memory Pending JPH02117175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26946188A JPH02117175A (en) 1988-10-27 1988-10-27 Semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26946188A JPH02117175A (en) 1988-10-27 1988-10-27 Semiconductor memory

Publications (1)

Publication Number Publication Date
JPH02117175A true JPH02117175A (en) 1990-05-01

Family

ID=17472761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26946188A Pending JPH02117175A (en) 1988-10-27 1988-10-27 Semiconductor memory

Country Status (1)

Country Link
JP (1) JPH02117175A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04348080A (en) * 1991-05-25 1992-12-03 Rohm Co Ltd Nonvolatile memory
WO2003028112A1 (en) * 2001-09-20 2003-04-03 Renesas Technology Corp. Semiconductor integrated circuit device and its manufacturing method
US7585731B2 (en) 2004-02-20 2009-09-08 Renesas Technology Corp. Semiconductor integrated circuit device and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04348080A (en) * 1991-05-25 1992-12-03 Rohm Co Ltd Nonvolatile memory
WO2003028112A1 (en) * 2001-09-20 2003-04-03 Renesas Technology Corp. Semiconductor integrated circuit device and its manufacturing method
US7067875B2 (en) 2001-09-20 2006-06-27 Renesas Technology Corp. Semiconductor integrated circuit device and its manufacturing method
US7547602B2 (en) 2001-09-20 2009-06-16 Renesas Technology Corp. Semiconductor integrated circuit device and its manufacturing method
US7585731B2 (en) 2004-02-20 2009-09-08 Renesas Technology Corp. Semiconductor integrated circuit device and its manufacturing method

Similar Documents

Publication Publication Date Title
JPH053206A (en) Offset gate transistor and manufacture thereof
JP2002217318A (en) Non-volatile semiconductor storage element and its manufacturing method
JPH11135654A (en) Split-gate flash memory cell structure
JPH07169863A (en) Non-volatile semiconductor storage
JP2001044393A (en) Manufacture of semiconductor device and the semiconductor
JPH0964205A (en) Si nitride film forming method
JPH02117175A (en) Semiconductor memory
JP2004022575A (en) Semiconductor device
JP3095489B2 (en) Semiconductor device and manufacturing method thereof
JP3405664B2 (en) Semiconductor device and manufacturing method thereof
JPH061839B2 (en) Method of manufacturing nonvolatile memory device
JP3088556B2 (en) Semiconductor device manufacturing method
JPH02277269A (en) Manufacture of nonvolatile memory
JPH0888286A (en) Manufacture of semiconductor memory device
JP3198141B2 (en) Method for manufacturing semiconductor nonvolatile memory element
JPH03132079A (en) Semiconductor involatile memory device
JP2861025B2 (en) Semiconductor memory device and method of manufacturing the same
JPH0227773A (en) Manufacture of nonvolatile semiconductor memory
JPH0341775A (en) Manufacture of semiconductor memory
JPH05129632A (en) Charge trap film
JPS60113461A (en) Manufacture of semiconductor device
JPH06318709A (en) Nonvolatile semiconductor storage device and its manufacture
JPS6042632B2 (en) semiconductor equipment
JPS63131575A (en) Mos transistor and manufacture thereof
JPS5924548B2 (en) Method for manufacturing semiconductor memory device