JPH02111065A - Complementary semiconductor device - Google Patents

Complementary semiconductor device

Info

Publication number
JPH02111065A
JPH02111065A JP63265386A JP26538688A JPH02111065A JP H02111065 A JPH02111065 A JP H02111065A JP 63265386 A JP63265386 A JP 63265386A JP 26538688 A JP26538688 A JP 26538688A JP H02111065 A JPH02111065 A JP H02111065A
Authority
JP
Japan
Prior art keywords
diffusion layer
source
buried
drain diffusion
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63265386A
Other languages
Japanese (ja)
Other versions
JP2926723B2 (en
Inventor
Seiji Yoshihara
吉原 誠二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63265386A priority Critical patent/JP2926723B2/en
Publication of JPH02111065A publication Critical patent/JPH02111065A/en
Application granted granted Critical
Publication of JP2926723B2 publication Critical patent/JP2926723B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To improve latchup strength by forming an opposite-conductive type buried diffusion layer to a source.drain diffusion layer on a source.drain diffusion layer region. CONSTITUTION:An N<+> buried diffusion layer 7 in a P-channel transistor and a P<+> buried diffusion layer 9 in an N-channel transistor may be formed even before forming a gate electrode 5 provided that it is before forming the source.drain diffusion layers 6 and 8. However, the buried layers 7 and 9 are formed deeper than the source.drain diffusion layers 6 and 8 by heat treatment. Further, concentration of the buried layers 7 and 9 is desirably to be as high as possible, but on the other hand transistor pressure-tightness drops so that concentration is to be set up in consideration of operation voltage of a complementary insulated gate FET integrated circuit. Thereby, a latchup strength can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は相補型絶縁ゲート電界効果トランジスタ集積回
路(0MO3I C’)のトランジスタ構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a transistor structure of a complementary insulated gate field effect transistor integrated circuit (0MO3I C').

〔従来の技術〕[Conventional technology]

0MO8ICはPチャネルMO8電界効果トランジスタ
(以下MO3電界効果トランジスタを単にトランジスタ
という)とNチャネルトランジスタとの同一基板上に形
成しているため、内部に寄生サイリスタ構造が形成され
る。0MO8ICではこの寄生サイリスタが外部ノイズ
等によりトリガされ電源端子間が低インピーダンス状態
となる現象(いわゆるラッチアップ)が発生する。この
ラッチアップ耐量を向上させるための構造及び製法がい
ろいろ考案されているが、その中でエピタキシャル基板
を使う方法が最も一般的であり効果も大きい。
Since the 0MO8IC has a P-channel MO8 field effect transistor (hereinafter referred to simply as a MO3 field-effect transistor) and an N-channel transistor formed on the same substrate, a parasitic thyristor structure is formed inside. In the 0MO8IC, this parasitic thyristor is triggered by external noise or the like, resulting in a phenomenon in which the impedance between the power supply terminals becomes low (so-called latch-up). Various structures and manufacturing methods have been devised to improve this latch-up resistance, but among these, the method using an epitaxial substrate is the most common and highly effective.

第5図はN型のエピタキシャル基板を用いた従来技術に
よる0MO8ICの断面構造図である。
FIG. 5 is a cross-sectional structural diagram of a conventional 0MO8IC using an N-type epitaxial substrate.

高濃度のN+基板11上にN−エピタキシャル層12を
形成し、そのエピタキシャル層12中にPチャネルトラ
ンジスタを、エピタキシャル層12に形成したPウェル
2中にNチャネルトランジスタを形成している。この構
造によれば高濃度基板を用いることにより基板による寄
生抵抗をエピタキシャル基板を用いない場合の1/10
0以下にすることが可能なためラッチアップは発生しな
い。
An N- epitaxial layer 12 is formed on a heavily doped N+ substrate 11, a P-channel transistor is formed in the epitaxial layer 12, and an N-channel transistor is formed in a P-well 2 formed in the epitaxial layer 12. According to this structure, by using a highly doped substrate, the parasitic resistance due to the substrate can be reduced to 1/10 of that when no epitaxial substrate is used.
Latch-up does not occur because it can be set to 0 or less.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このようにエピタキシャル基板を用いることによりラッ
チアップ耐量を大幅に向上させることが可能であるが、
現状ではエピタキシャル基板は通常の基板に比較し2〜
3倍と非常に高価であり、ペレット価格が増大する結果
となっている。また、エピタキシャル基板にはスリップ
、マウンドと言われるエピタキシャル成長に伴う表面欠
陥が存在するため、ペレットの収率が低下するという欠
点もある。
Although it is possible to significantly improve latch-up resistance by using an epitaxial substrate in this way,
Currently, epitaxial substrates are 2 to 3 times smaller than regular substrates.
It is extremely expensive, three times as expensive, resulting in an increase in the pellet price. In addition, since the epitaxial substrate has surface defects called slips and mounds that accompany epitaxial growth, there is also a drawback that the yield of pellets decreases.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の耐ラツチアツプCMO8ICはPチャネルFE
TではN型、NチャネルFETではP型の、つまりチャ
ネル型と反対導電型の拡散層をソース・ドレイン拡散層
のチャネル領域を除いた領域に形成し、その拡散層の濃
度は、トランジスタの耐圧が動作電源電圧以上となる最
大濃度に制御している。
The latch-up resistant CMO8IC of the present invention is a P-channel FE
A diffusion layer of N-type for T and P-type for N-channel FET, that is, of the opposite conductivity type to the channel type, is formed in the region of the source/drain diffusion layer excluding the channel region, and the concentration of the diffusion layer is determined by the breakdown voltage of the transistor. is controlled to a maximum concentration that is higher than the operating power supply voltage.

本発明はエピタキシャル基板を用いずに、従来の製造方
法に若干の工程を変更するだけで、結果的に低価格でラ
ッチアップ耐量を大幅に向上させることができる。
The present invention does not use an epitaxial substrate, and by simply changing a few steps to the conventional manufacturing method, it is possible to significantly improve latch-up resistance at a low cost.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の断面図であり、1はN−基
板、2はPウェル、3はN+チャネルストッパ、4はP
+チャネルストッパ、5はゲート電極、6はP+ソース
・ドレイン拡散層、7はN+埋込拡散層、8はN+ソー
ス・ドレイン拡散層、9はP+埋込拡散層、10は金属
配線である。N−基板1へのPウェル2の形成、チャネ
ルストッパ3.4、ゲート電極5の形成、ソース・ドレ
イン拡散層6,7の形成は従来技術による方法と同一で
よい。
FIG. 1 is a cross-sectional view of one embodiment of the present invention, where 1 is an N- substrate, 2 is a P well, 3 is an N+ channel stopper, and 4 is a P well.
5 is a gate electrode, 6 is a P+ source/drain diffusion layer, 7 is an N+ buried diffusion layer, 8 is an N+ source/drain diffusion layer, 9 is a P+ buried diffusion layer, and 10 is a metal wiring. The formation of the P-well 2 on the N-substrate 1, the formation of the channel stopper 3.4, the gate electrode 5, and the formation of the source/drain diffusion layers 6 and 7 may be the same as the conventional method.

本発明の特徴であるPチャネルトランジスタにおけるN
+埋込拡散層7及びNチャネルトランジスタにおけるP
+埋込拡散層9は、ソース・ドレイン拡散層6,8の形
成前であればゲート電極5の形成前でも後でもよい。た
だし埋込拡散層7゜9はソース・ドレイン拡散層6,8
より深く形成する必要があり、若干の熱処理による埋込
処理が必要である。
N in a P-channel transistor, which is a feature of the present invention
+P in buried diffusion layer 7 and N-channel transistor
+The buried diffusion layer 9 may be formed before or after the formation of the gate electrode 5 as long as it is before the formation of the source/drain diffusion layers 6 and 8. However, the buried diffusion layer 7゜9 is the source/drain diffusion layer 6, 8.
It is necessary to form it deeper, and a embedding process using some heat treatment is required.

また埋込層7,9の濃度はラッチアップ耐量を上げるた
めにはできるだけ高いことが望ましいが、反面トランジ
スタ耐圧が低下するので、CMOSICの動作電圧を考
慮して設定する必要がある。
Further, it is desirable that the concentration of the buried layers 7 and 9 be as high as possible in order to increase the latch-up resistance, but since this lowers the transistor breakdown voltage, it is necessary to set the concentration in consideration of the operating voltage of the CMOSIC.

本実施例では、I X l 015cm−3のN−基板
表面濃度8 X 10 ”am−”(DP ウzル2E
対し5 X I O15cm−2のリンのイオン注入に
よりN型拡散層7を4X 1013cm−’のポロンの
イオン注入によりP+拡散層9を形成した。また、埋込
拡散層?、9形成のためのイオン注入の後1100℃9
0分の熱処理を実施し、トランジスタ耐圧はPチャネル
トランジスタ、Nチャネルトランジスタとも約10Vを
得ている。
In this example, the N-substrate surface concentration of I
On the other hand, an N-type diffusion layer 7 was formed by ion implantation of phosphorus at 5×I O of 15 cm −2 , and a P+ diffusion layer 9 was formed by ion implantation of poron at 4×10 13 cm −2 . Also, a buried diffusion layer? , 1100°C after ion implantation to form 9
The heat treatment was performed for 0 minutes, and the transistor breakdown voltage was approximately 10 V for both the P-channel transistor and the N-channel transistor.

第3図は第2図の構造における実施例の0MO8ICに
おける電源電圧・電流特性であり、第4図に示すように
ラッチアップ対策なしでは75mAでラッチアップして
いたのに対し、300mA以上までラッチアップが発生
しないことを確認した。
Figure 3 shows the power supply voltage and current characteristics of the 0MO8IC of the example with the structure shown in Figure 2.As shown in Figure 4, it latched up at 75mA without latch-up measures, but it latched up to 300mA or more. It was confirmed that no uploads occurred.

第2図は本発明の他の実施例の断面図である。FIG. 2 is a sectional view of another embodiment of the invention.

第1図においてはチャネルストッパと埋込拡散層を別々
に形成しているが埋込拡散層7,9がチャネルストッパ
3,4を兼用する構造であり、製造工程を簡略化するこ
とが可能である。
In FIG. 1, the channel stopper and the buried diffusion layer are formed separately, but the structure is such that the buried diffusion layers 7 and 9 also serve as the channel stoppers 3 and 4, which can simplify the manufacturing process. be.

本発明の実施例においてはPチャネルトランジスタ及び
Nチャネルトランジスタの両方に埋込拡散層を形成しラ
ッチアップ対策としたが、製造上の理由等でいずれか一
方しか埋込拡散層を入れられない場合でも、ラッチアッ
プ開始電流で2倍以上のラッチアップ耐量を確認してい
る。
In the embodiment of the present invention, a buried diffusion layer is formed in both the P-channel transistor and the N-channel transistor to prevent latch-up, but if a buried diffusion layer can only be inserted in one of them due to manufacturing reasons, etc. However, we have confirmed that the latch-up starting current is more than twice as strong.

〔発明の効果〕 以上説明したように本発明では、ソース・ドレイン拡散
層領域にソース・ドレイン拡散層と反対導電型の埋込拡
散層を形成することにより、高価なエピタキシャル基板
を使用することなくラッチアップ耐量を大幅に向上させ
ることができた。
[Effects of the Invention] As explained above, in the present invention, by forming a buried diffusion layer of a conductivity type opposite to that of the source/drain diffusion layer in the source/drain diffusion layer region, the invention can be realized without using an expensive epitaxial substrate. We were able to significantly improve latch-up resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の縦断面図、第2図は本発明
による他の実施例の縦断面図、第5図は従来技術の縦断
面図、第3図は本発明の一実施例における電源電圧・電
流特性図、第4図はラッチアップ対策なしの場合の電源
電圧・電流特性図である。 1・・・・・・N−基板、2・・・・・・Pウェル、3
・・・・・・N+チャネルストッパ、4・・・・・・P
+チャネルストッパ、5・・・・・・ゲート電極、6,
9・・・・・・P+拡散層、7゜8・・・・・・N+拡
散層、10・・・・・・金属配線、11・・・・・・N
+基板、12・・・t・・N−エピタキシャル層。 代理人 弁理士  内 原   晋 げ 束 紅 亀 し
FIG. 1 is a longitudinal sectional view of one embodiment of the present invention, FIG. 2 is a longitudinal sectional view of another embodiment of the invention, FIG. 5 is a longitudinal sectional view of the prior art, and FIG. 3 is a longitudinal sectional view of one embodiment of the present invention. FIG. 4 is a power supply voltage/current characteristic diagram in the embodiment without latch-up countermeasures. 1...N-substrate, 2...P well, 3
・・・・・・N+channel stopper, 4・・・・・・P
+ Channel stopper, 5... Gate electrode, 6,
9...P+diffusion layer, 7°8...N+diffusion layer, 10...metal wiring, 11...N
+substrate, 12...t...N-epitaxial layer. Agent: Patent Attorney Susumu Uchihara

Claims (1)

【特許請求の範囲】[Claims] 一の導電型の半導体基板及び逆の導電型のウェル内に独
立して形成したPチャネルMOSFETとNチャネルM
OSFETをもつ相補型電界効果トランジスタにおいて
、少なくとも一方のチャネル導電型のトランジスタにお
いてソース・ドレイン拡散層の下に該拡散層と反対導電
型でかつ深い拡散層を有することを特徴とする相補型半
導体装置
A P-channel MOSFET and an N-channel MOSFET formed independently in a semiconductor substrate of one conductivity type and a well of an opposite conductivity type.
A complementary field effect transistor having an OSFET, wherein at least one channel conductivity type of the transistor has a deep diffusion layer of opposite conductivity type to the source/drain diffusion layer under the source/drain diffusion layer.
JP63265386A 1988-10-20 1988-10-20 Complementary semiconductor device Expired - Fee Related JP2926723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63265386A JP2926723B2 (en) 1988-10-20 1988-10-20 Complementary semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63265386A JP2926723B2 (en) 1988-10-20 1988-10-20 Complementary semiconductor device

Publications (2)

Publication Number Publication Date
JPH02111065A true JPH02111065A (en) 1990-04-24
JP2926723B2 JP2926723B2 (en) 1999-07-28

Family

ID=17416457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63265386A Expired - Fee Related JP2926723B2 (en) 1988-10-20 1988-10-20 Complementary semiconductor device

Country Status (1)

Country Link
JP (1) JP2926723B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268058A (en) * 1985-05-23 1986-11-27 Casio Comput Co Ltd Manufacture of complementary type mos integrated circuit
JPS62281470A (en) * 1986-05-30 1987-12-07 Hitachi Ltd Manufacture of semiconductor integrated circuit device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268058A (en) * 1985-05-23 1986-11-27 Casio Comput Co Ltd Manufacture of complementary type mos integrated circuit
JPS62281470A (en) * 1986-05-30 1987-12-07 Hitachi Ltd Manufacture of semiconductor integrated circuit device

Also Published As

Publication number Publication date
JP2926723B2 (en) 1999-07-28

Similar Documents

Publication Publication Date Title
US8022446B2 (en) Integrated Schottky diode and power MOSFET
KR20100067566A (en) Semiconductor device and method for manufacturing the same
CN101040388B (en) A MOSFET for high voltage applications and a method of fabricating same
EP0091256A2 (en) CMOS device
US10128331B1 (en) High-voltage semiconductor device and method for manufacturing the same
JPS61263274A (en) Manufacture of semiconductor device
JP2658842B2 (en) Semiconductor device
JPS58170048A (en) Semiconductor device
JPS61240671A (en) Manufacture of complementary field effect transistor
JPH02111065A (en) Complementary semiconductor device
JPH08316335A (en) Semiconductor device and fabrication thereof
JPH03259537A (en) Semiconductor device and manufacture thereof
JPS62219554A (en) Manufacture of semiconductor integrated circuit device
KR100482950B1 (en) Semiconductor device and manufacturing method thereof
JPH0575041A (en) Cmos semiconductor device
JPS61203679A (en) Mos transistor of high withstand voltage
JPH07326739A (en) Insulated-gate field-effect transistor
JP2651033B2 (en) Double diffused MOS transistor
JPH03159173A (en) Manufacture of semiconductor integrated circuit device
JPS60132358A (en) Complementary mos integrated circuit device
JPH04151875A (en) Double diffusion type mos transistor
JPS63169059A (en) Semiconductor device and its manufacture
JPH03151669A (en) Manufacture of semiconductor device
JP3448465B2 (en) Method for manufacturing semiconductor device
JPH02102576A (en) Semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees