JPS61268058A - Manufacture of complementary type mos integrated circuit - Google Patents

Manufacture of complementary type mos integrated circuit

Info

Publication number
JPS61268058A
JPS61268058A JP60111033A JP11103385A JPS61268058A JP S61268058 A JPS61268058 A JP S61268058A JP 60111033 A JP60111033 A JP 60111033A JP 11103385 A JP11103385 A JP 11103385A JP S61268058 A JPS61268058 A JP S61268058A
Authority
JP
Japan
Prior art keywords
well
region
implanted
integrated circuit
type substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60111033A
Other languages
Japanese (ja)
Other versions
JPH0715971B2 (en
Inventor
Shunichi Sato
俊一 佐藤
Tomio Matsuzaki
松崎 富夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP60111033A priority Critical patent/JPH0715971B2/en
Publication of JPS61268058A publication Critical patent/JPS61268058A/en
Publication of JPH0715971B2 publication Critical patent/JPH0715971B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent the latch-up phenomenon of a complementary type MOS integrated circuit by implanting impurity ions to the inward section of a P-well from the direction along the direction of a crystal lattice of the P-well and forming a high concentration layer to a deep layer section. CONSTITUTION:A photo-resist 60 is applied onto a P-well 45, and impurity ions such as boron ions are implanted to an N-type substrate 41 to simultaneously shape a source region 62 and a drain region 63 in a P-MOS transistor Tr. The resist 60 is removed, a photo-resist 65 is applied onto a region 62, a gate electrode 57 and a region 63, and phosphorus is implanted to the P-well 45 to form a source region 66 and a drain region 67 in an N-MOSTr at the same time. Boron is implanted into the P-well 45 from the direction along the direction of a crystal lattice of the substrate 41 while penetrating the region 66 and the region 67, thus shaping high concentration layers 47 in predetermined thickness to inward sections. Accordingly, a latch-up can be prevented.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、相補型MOS集積回路の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of manufacturing a complementary MOS integrated circuit.

[従来技術] 一般に、相補型MOS4J積回路(C−MOSIC)は
第5図で示す様な構造になっており、Nチャンネルトラ
ンジスタのドレインDとPチャンネルトランジスタのソ
ースSとの間に高い電圧が印加された場合に、Nチャン
ネルトランジスタのN型のドレイン領域と、P−ウェル
と、N型基板と、及びPチャンネルトランジスタのP型
のソース領域とからなる経路(第5図破線で示す)が導
通して大電流が流れる現象、即ちラフチアツブを防ぐた
めに、N型基板のP−ウェルに形成されるNチャンネル
MOS構造の縦形NPNトランジスタの増幅度)1rt
を下げる必要がある。このため、従来では、P−ウェル
形成時にP−ウェル内部に不純物の高濃度層を作り、第
6図、に示すような不純物濃度分布を形成する方法があ
った。その方法は、第4図に示すような工程となってい
る。即ち、シリコンウェハーのN型基板lヒに形成され
た醸化膜(S+Oz)”を写真技術を用いたマスクと化
学処理により除去しP−ウェル用の穴3を開ける(4−
1)、次にこの穴3を通してN型基板lにほう素(ポロ
ンB・ イオン)を注入する。
[Prior Art] Generally, a complementary MOS 4J product circuit (C-MOSIC) has a structure as shown in Fig. 5, in which a high voltage is applied between the drain D of an N-channel transistor and the source S of a P-channel transistor. When the voltage is applied, a path (indicated by the broken line in FIG. 5) consisting of the N-type drain region of the N-channel transistor, the P-well, the N-type substrate, and the P-type source region of the P-channel transistor is In order to prevent the phenomenon of conduction and large current flow, that is, rough rise, the amplification factor of the vertical NPN transistor of the N-channel MOS structure formed in the P-well of the N-type substrate is 1rt.
need to be lowered. For this reason, conventionally, there has been a method of forming a high impurity concentration layer inside the P-well when forming the P-well to form an impurity concentration distribution as shown in FIG. The method includes steps as shown in FIG. That is, the "enriched film (S+Oz)" formed on the N-type substrate of the silicon wafer is removed by a mask using photographic technology and chemical treatment, and the hole 3 for the P-well is opened (4-
1) Next, boron (Poron B ions) is implanted into the N-type substrate l through this hole 3.

この際、N型基板の表面には薄い酸化膜4が形成される
(4−2)、N型基板lを加熱してほう素(ポロン)を
拡散させP−ウェル5を形成する(4−3)、穴3内の
薄い酸化膜4を除去した後に高電圧高加速のイオン注入
機によりほう素(ポロン)をP−ウェル5の深層部に注
入して高濃度層7を形成する(4−4)、P−ウェル5
に隣接した領域の酸化膜(Sl 02 )2の一部を写
真技術を用いたマスクと化学処理により除去しP−MO
Sトランジスタ用の六8を開ける(4−5)、次にN型
基板l全体を高温加熱処理してこの穴8に露出したN型
基板l及び穴3に露出したP−ウェル5の表面にゲート
酸化膜9.10を形成する(4−6)、このときP−ウ
ェル5の深層部に注入された高濃度層7が表面に向かっ
て拡散し高濃度層7の厚さが増大する。次にN型基板1
全面に多結晶又はアモルファスシリコン12の一様な膜
を堆積形成しく4−7)、写真技術を用いたマスクと化
学処理により多結晶又はアモルファスシリコン12の一
部を除去してN−MOSトランジスタのソース、ドレイ
ン用の穴13.14、及びP−MOS)ランジスタのソ
ース、ドレイン用の穴15.16を夫々開ける(4−8
)、又各ソース、ドレイン用の穴13.15、及び穴1
4.16とのそれぞれの間にゲート電極17.18が夫
々形成される。P−ウェル5上にフォトレジスト20を
916し、一方でP−MOSのソース、ドレイン用の穴
15.16を通してほう素(ポロンB・)をN型基板l
に注入してP−MOS)ランジスタのソース領域22、
ドレイン領域23を同時に形成する(4−9)、次に、
フォトレジスト20を除去し、P−MOS)ランジスタ
のソース領域22、ゲート電極18.  ドレイン領域
23上にフォトレジスト25を塗布し、N−MOSトラ
ンジスタのソース、ドレイン用の穴13.14を通して
リン(P−イオン)をP−ウェル5に注入してN−MO
S)ランジスタのソース領域26、ドレイン領域27を
同時に形成する(4−10)、フォトレジスト25を除
去し、更に各ゲート電極17.18上方以外の多結晶又
はアモルファスシリコン12の一様な膜を除去しく4−
11)、次にN型基板l全面に酸化膜(S+ 02 )
28を形成する(4−12)、各ソース領域22.26
.ドレイン領域23.27上の酸化膜(S+0z)28
を写真技術を用いたマスクと化学処理により除去し各電
極用の穴31.32.33.34を夫々開け(4−13
)、このN型基板l全面にアルミニューム35を蒸着し
、各電極以外のアルミニュームを除去する。このように
従来の方法で製造された相補型MOS集積回路は、第5
図に示すような断面を呈し、c−cliI上の不純物濃
度分布は。
At this time, a thin oxide film 4 is formed on the surface of the N-type substrate (4-2), and a P-well 5 is formed by heating the N-type substrate l to diffuse boron (poron) (4-2). 3) After removing the thin oxide film 4 in the hole 3, boron (poron) is injected into the deep part of the P-well 5 using a high-voltage, high-acceleration ion implanter to form a highly concentrated layer 7 (4). -4), P-well 5
A part of the oxide film (Sl 02 ) 2 in the area adjacent to the P-MO is removed by using a photo mask and chemical treatment.
68 for the S transistor is opened (4-5), and then the entire N-type substrate 1 is subjected to high-temperature heat treatment so that the N-type substrate 1 exposed in the hole 8 and the surface of the P-well 5 exposed in the hole 3 are heated. A gate oxide film 9.10 is formed (4-6). At this time, the heavily doped layer 7 injected into the deep part of the P-well 5 diffuses toward the surface, increasing the thickness of the heavily doped layer 7. Next, N type substrate 1
A uniform film of polycrystalline or amorphous silicon 12 is deposited on the entire surface (4-7), and a part of the polycrystalline or amorphous silicon 12 is removed using a mask using photo technology and chemical treatment to form an N-MOS transistor. Drill holes 13 and 14 for the source and drain, and holes 15 and 16 for the source and drain of the P-MOS transistor (4-8).
), and holes 13 and 15 for each source and drain, and hole 1
Gate electrodes 17 and 18 are formed between the gate electrodes 4 and 4 and 16, respectively. A photoresist 20 is applied on the P-well 5, and boron (Poron B) is applied to the N-type substrate l through the holes 15 and 16 for the source and drain of the P-MOS.
P-MOS) transistor source region 22,
Forming the drain region 23 at the same time (4-9), then
The photoresist 20 is removed, and the source region 22 of the P-MOS transistor, the gate electrode 18 . A photoresist 25 is applied on the drain region 23, and phosphorus (P- ions) is implanted into the P-well 5 through the holes 13 and 14 for the source and drain of the N-MOS transistor.
S) Simultaneously form the source region 26 and drain region 27 of the transistor (4-10), remove the photoresist 25, and further form a uniform film of polycrystalline or amorphous silicon 12 except above each gate electrode 17. Eliminate 4-
11) Next, an oxide film (S+ 02 ) is formed on the entire surface of the N-type substrate l.
28 (4-12), each source region 22.26
.. Oxide film (S+0z) 28 on drain region 23.27
were removed using a mask using photographic technology and chemical treatment, and holes 31, 32, 33, and 34 were opened for each electrode (4-13).
), aluminum 35 is deposited on the entire surface of this N-type substrate l, and aluminum is removed from areas other than each electrode. In this way, the complementary MOS integrated circuit manufactured by the conventional method is
The impurity concentration distribution on c-cliI has a cross section as shown in the figure.

第6図に示すような特性となっている0図中イはP−ウ
ェル5の、口は高濃度注入層7の、ハはソース26、ド
レイン27のホウ素濃度を示し、二はN&板1のリン濃
度を示す不純物濃度プロフィルである。
The characteristics are as shown in FIG. This is an impurity concentration profile showing the phosphorus concentration of .

[従来技術の問題点] この様な従来の相補型MOS)ランジスタでは、P−ウ
ェル形成時に高濃度層を形成するので、その後の酸化膜
形成時の高温熱処理によりP−ウェル中に注入された高
濃度層が拡散する(高濃度層の7クセプタ、ポロンが表
面に向かって拡散する)、このため、高濃度層の深さが
浅くなると、増幅度HFEは下るが、スレフスホールド
VTHの増大を引き起こす、このような現象を避けるた
めには、この高濃度イオン注入層をP−ウェル5に奥深
く打ち込む必要があり、高圧の数MevC例えばl O
OOKev)の加速電圧を持つ高価な特殊のイオン注入
機が必要とされていた。又この場合には高加速、高ドー
ズであるためP−ウェルの結晶格子にイオン注入欠陥が
起こるという問題もあった・ [発明の目的] この発明は、上述した事情に基きなされたもので、相補
型MOS集結回路のラッチアップ現象を防止するための
P−ウェル中の不純物の濃度分布を簡単な通常の工程で
形成し得る半導体回路の製造方法を提供することを目的
としている。
[Problems with the prior art] In such a conventional complementary MOS transistor, a high concentration layer is formed during the formation of the P-well, so that the high-concentration layer is injected into the P-well during the subsequent high-temperature heat treatment during the formation of the oxide film. The highly concentrated layer diffuses (7 receptors and porons in the highly concentrated layer diffuse toward the surface). Therefore, as the depth of the highly concentrated layer becomes shallower, the amplification degree HFE decreases, but the threshold hold VTH increases. In order to avoid such a phenomenon that causes
An expensive special ion implanter with an acceleration voltage of OOKev was required. Moreover, in this case, there was a problem that ion implantation defects occurred in the crystal lattice of the P-well due to high acceleration and high dose. [Objective of the Invention] This invention was made based on the above-mentioned circumstances. It is an object of the present invention to provide a method for manufacturing a semiconductor circuit that can form an impurity concentration distribution in a P-well through simple and ordinary steps to prevent latch-up phenomena in complementary MOS integrated circuits.

[発明の要点] この発明は、−上述した目的を達成するために、ゲート
酸化膜等を形成するための高温処理の後に、P−ウェル
とその他の部分との結晶状態が違うことを利用して、通
常のイオン注入機によりほう素(ポロンB−)をP−ウ
ェルの結晶格子の方向に沿った方向からそのP−ウェル
の奥深くに注入してその深層部に高濃度層を形成するよ
うにした点を要旨とするものである。
[Summary of the Invention] In order to achieve the above-mentioned object, the present invention utilizes the fact that the crystal states of the P-well and other parts are different after high-temperature treatment for forming a gate oxide film, etc. Then, using a normal ion implanter, boron (Poron B-) is injected deep into the P-well from the direction along the crystal lattice of the P-well to form a highly concentrated layer in the deep part. The main points are as follows.

[実施例] 以下、この発明を図面に示す一実施例に基き説明する。[Example] The present invention will be explained below based on an embodiment shown in the drawings.

シリコンウェハーのN型基板41上に形成された酸化膜
(S102 )42を写真技術を用いたマスクと化学処
理により除去しP−ウェル用の穴43を開ける(1−1
)、次に、この穴43を通してN型ノS板41にほう素
(ポロンB゛ イオン)を注入する。この際、N型基板
lの表面には薄い酸化膜44が形成される(1−2)、
このN型基板41を加熱してほう素(ポロン)を拡散さ
せP−ウェル45を形成する(1−3)、この薄い酸化
膜44とP−ウェル45に分離して隣接した領域の酸化
膜(S+ 02 )42を写真技術を用いたマスクと化
学処理により除去しN−MOSトランジスタ及びP−M
OSトランジスタ用の穴43.48を夫々開ける(1−
4)、このN型基板41全体を高温加熱処理してこの穴
48に露出したN型基板l及びP−ウェル45の穴43
に露出したP−’7zル45の表面にゲート酸化wJ4
9.5゜を形成する(1−5)、次にN型基板41全面
に多結晶又はアモルファスシリコン52の一様な膜を堆
積形成する(1−6)、写真技術を用いたマスクと化学
処理により多結晶又はアモルファスシリコン52の一部
を除去してP−MOS)ランジスタのソース、ドレイン
用の穴55.56を、及びP−ウェル45上にN−MO
Sトランジスタのソース、ドレイン用の穴53.54を
夫々開け。
The oxide film (S102) 42 formed on the N-type substrate 41 of the silicon wafer is removed by a photo mask and chemical treatment, and a hole 43 for a P-well is opened (1-1).
), then boron (Poron B ions) is implanted into the N-type S plate 41 through this hole 43. At this time, a thin oxide film 44 is formed on the surface of the N-type substrate l (1-2),
This N-type substrate 41 is heated to diffuse boron (poron) to form a P-well 45 (1-3).The thin oxide film 44 and the P-well 45 are separated and the oxide film in the adjacent region is (S+ 02 ) 42 is removed by a mask using photographic technology and chemical treatment to form an N-MOS transistor and a P-M transistor.
Drill holes 43 and 48 for the OS transistors (1-
4) The entire N-type substrate 41 is subjected to high-temperature heat treatment to expose the N-type substrate l and the hole 43 of the P-well 45 in the hole 48.
Gate oxidation wJ4 is applied to the surface of P-'7zle 45 exposed to
9.5° (1-5). Next, a uniform film of polycrystalline or amorphous silicon 52 is deposited on the entire surface of the N-type substrate 41 (1-6). A portion of the polycrystalline or amorphous silicon 52 is removed by processing to form holes 55 and 56 for the source and drain of the P-MOS transistor, and an N-MOS transistor is formed on the P-well 45.
Drill holes 53 and 54 for the source and drain of the S transistor, respectively.

各ソース、ドレイン用の穴53.54と穴55.56の
間にゲート電極57.58が夫々形成される(1−7)
、P−ウェル45上にフォトレジスト60を塗布し、一
方でP−MOSトランジスタのソース、ドレイン用の穴
55.56を通してほう素(ポロンB゛)をNy!l!
基板41に注入してP−MOS)ランジスタのソース領
域62、ドレイン領域63を同時に形成する(1−8)
、次に、フォトレジスト60を除去し、このP−MOS
トランジスタのソース領域62.ゲート電極57、ドレ
イン領域63上にフォトレジスト65を塗布してN−M
OS)ランジスタのソース、ドレイン用の穴53.54
を通してリン(P・イオン)をP−ウェル45に注入し
てN−MOSトランジスタのソース領域66、ドレイン
領域67を同時に形成する。この場合、リンイ°オンの
注入角度をP−ウエルの結晶格子の方向に対してほぼ7
度傾け、このリンイオンがP−ウェル中に必要以上深く
注入されないようにしている(1−9)、次にN−MO
Sトランジスタのソース、ドレイン用の穴53.54を
通り、且つソース領域66、ドレイン領域67を貫通さ
せて略200−Key程度のイオン注入機によりほう素
(ポロンB°)を、P−ウェル45中にN!X1tW板
41の結晶格子の方向に対して±10以下の方向から注
入してその奥深くに所定厚さの高濃度層47を形成する
(1−10)、この時略200Kevに加速されたポロ
ンイオンが一部ゲート電極58に降かかるが、ゲート1
[を極58は多結晶又はアモルファスであり、故に結晶
格子が揃っていないのでゲート電極58の深部にはほう
素(ポロンB4)は注入されない。
Gate electrodes 57.58 are formed between each source and drain hole 53.54 and hole 55.56 (1-7)
, a photoresist 60 is applied on the P-well 45, and boron (Poron B') is applied through the holes 55 and 56 for the source and drain of the P-MOS transistor. l!
Inject into the substrate 41 to form the source region 62 and drain region 63 of the P-MOS transistor at the same time (1-8)
, then the photoresist 60 is removed and this P-MOS
Transistor source region 62. A photoresist 65 is applied on the gate electrode 57 and the drain region 63, and N-M
OS) Holes 53 and 54 for transistor source and drain
Phosphorus (P. ions) is implanted into the P-well 45 through the process to simultaneously form the source region 66 and drain region 67 of the N-MOS transistor. In this case, the phosphorus ion implantation angle is approximately 7° with respect to the crystal lattice direction of the P-well.
The phosphorus ions are tilted to prevent the phosphorus ions from being implanted deeper into the P-well than necessary (1-9), and then the N-MO
Boron (Poron B°) is injected into the P-well 45 through the holes 53 and 54 for the source and drain of the S transistor and through the source region 66 and drain region 67 using an ion implanter with approximately 200-key. N inside! A high concentration layer 47 of a predetermined thickness is formed deep into the X1tW plate 41 by implanting it from a direction of ±10 or less with respect to the direction of the crystal lattice (1-10). At this time, poron ions accelerated to about 200 Kev are implanted. falls on the gate electrode 58, but the gate 1
[The electrode 58 is polycrystalline or amorphous, and therefore the crystal lattice is not aligned, so boron (Poron B4) is not implanted deep into the gate electrode 58.

フォトレジスト65を除去し、更に各ゲート電極57.
58上方以外の多結晶又はアモルファスシリコン52の
一様な膜を除去しく1−11)、次にN型基板41全面
に酸化膜(S+ 02 )68を形成する(’1−12
)、各ソース領域62,66、ドレイン領域63.87
上の酸化all(St02)88を写真技術を用いたマ
スクと化学処理により除去し各電極用の穴71.72,
73.74を夫々開ける、このN型基板41全面にアル
ミニューム75を蒸着し、各電極以外のアルミニューム
を除去する。
The photoresist 65 is removed, and each gate electrode 57.
Remove the uniform film of the polycrystalline or amorphous silicon 52 except above 58 (1-11), and then form an oxide film (S+ 02 ) 68 on the entire surface of the N-type substrate 41 ('1-12).
), each source region 62, 66, drain region 63,87
The upper oxidized all (St02) 88 is removed using a photo mask and chemical treatment to form holes 71, 72 for each electrode,
73 and 74 are opened, aluminum 75 is deposited on the entire surface of this N-type substrate 41, and the aluminum except for each electrode is removed.

このような方法で製造された相補型MOS集積回路は、
第2図に示すような断面を呈し、N−MOSトランジス
タのソース領域66下方のA−A線、同じくゲート電極
58下方のB−B線上の不純物C変時性は第3図(a)
、(b)に示すような分布を夫々示している。第3図中
イはP−ウェル45の、口は高濃度注入層47の、ハは
ソース66の、二はN基板41の、ホはゲート電極5B
の不純物濃度プロフィルである0点線はリンP。
Complementary MOS integrated circuits manufactured by this method are
The N-MOS transistor has a cross section as shown in FIG. 2, and the impurity C chronotropy on the A-A line below the source region 66 and the B-B line below the gate electrode 58 is as shown in FIG. 3(a).
, (b), respectively. In FIG. 3, A is the P-well 45, the mouth is the high concentration injection layer 47, C is the source 66, 2 is the N substrate 41, and E is the gate electrode 5B.
The 0 dotted line, which is the impurity concentration profile, is phosphorus P.

イオンの、実線はポロンB・イオンの濃度分布を夫々示
している。第3図(JL)に示すように高濃度層の中心
の深さが0.8μと深くなり、増幅度HF「が下る。又
、第3図(b)に示すように結晶格子が揃っていないゲ
ート電極58にはN型基板41(単結晶)の半分以下の
深さしかポロンB°イオンが入らない・ため(濃度層の
中心の深さが0.4ル)とa<N型基板41のゲート部
にポロンイオンが注入されることがない、この様に、ポ
ロンイオンをP〜ルウエルみに奥深く注入することがで
きるのでスレフスホルドVrnを変えずにNPN )ラ
ンジスタの増幅度Hrtを下げることができる。
The solid lines for ions indicate the concentration distribution of Poron B ions, respectively. As shown in Figure 3 (JL), the depth of the center of the high concentration layer becomes 0.8μ, and the amplification factor HF' decreases.Also, as shown in Figure 3 (b), the crystal lattice is aligned. Poron B° ions enter the gate electrode 58 at a depth less than half that of the N-type substrate 41 (single crystal) (the depth at the center of the concentration layer is 0.4 l), and a<N-type substrate. In this way, the poron ions are not implanted into the gate part of the transistor 41, and the amplification degree Hrt of the NPN transistor can be lowered without changing the threshhold Vrn. I can do it.

[発明の効果] 以上説明してきたように、本発明はゲート配化膜を形成
する工程の如く、基板を高温加熱処理する工程より後の
工程で高濃度層を形成するためのイオン注入を行なった
ものであり、その際注入角度を結晶格子の方向に対して
1″以下にし、ゲートと基板の結晶状態の違いを利用し
てイオンをP−ウェルのみに奥深く注入することができ
るので1通常のイオン注入機(加速゛電圧200Kev
以下)が使用でき、高加速、高ドーズでないためにイオ
ン注入による結晶格子の欠陥が生ずることもない、また
、高濃度層の注入工程が、その後の熱処理工程が少ない
工程で行うため拡散による濃度分布の広がりが少なく、
ドーズ量を少なくできる(注入時間の短縮化)、さらに
、多結晶′又はアモルファス状態のゲート電極及び絶縁
酸化膜の部分には単結晶に比べてイオンがわずかしか入
らないため、PチャンネルMOS部などをマスクするの
に通常の方法が使える。従って、スレッスホルドVT)
lを変えずにNPN)ランジスタの増幅度H「Eを下げ
、ラフチアツブを防止することができるいという効果が
得られる。
[Effects of the Invention] As explained above, the present invention performs ion implantation to form a high concentration layer in a process subsequent to the process of high-temperature heat treatment of the substrate, such as the process of forming a gate wiring film. In this case, the implantation angle is set to less than 1" with respect to the direction of the crystal lattice, and ions can be implanted deeply only into the P-well by utilizing the difference in the crystalline state between the gate and the substrate. Ion implanter (acceleration voltage 200Kev)
(below) can be used, and ion implantation does not cause defects in the crystal lattice due to high acceleration and high doses.Also, since the implantation process of the high concentration layer is performed with few subsequent heat treatment steps, the concentration due to diffusion The distribution is less spread,
It is possible to reduce the dose amount (shorten the implantation time), and because fewer ions enter the polycrystalline or amorphous gate electrode and insulating oxide film parts than single crystal, it is possible to reduce the amount of ions used in P-channel MOS parts, etc. Usual methods can be used to mask . Therefore, threshold VT)
This has the effect of lowering the amplification degree H and E of the NPN transistor without changing l and preventing rough rise.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の相補型MOS集積回路の製造方法の工
程図、第2図は本発明の製造方法により製造されたN−
MOS)ランジスタの断面図、第3図はその不純物濃度
特性を示す図であり、第4図は従来の相補型MOS集積
回路の製造方法の工程図、第5図は従来の製造方法によ
り製造されたN−MOS)ランジスタ及びP−MOS)
ランジスタの断面図、第6図はその不純物濃度特性を示
す図である。 41・・・・・・N型基板、45・・・・・・P−ウェ
ル、47・・・・・・高濃度層、49.50・・・・・
・ゲート酸化膜、62.66・・・・・・ソース領域、
63.67・・・・・・ドレイン領域、B−・・・・・
・ポロンイオン、Po・・・中リンイオン。 特許出願人 カシオ計算機株式会社 代理人 弁理士   町1)俊足、  ・”・1−t−
、′ 整椰“g
FIG. 1 is a process diagram of the method for manufacturing a complementary MOS integrated circuit according to the present invention, and FIG.
3 is a diagram showing its impurity concentration characteristics, FIG. 4 is a process diagram of a conventional complementary MOS integrated circuit manufacturing method, and FIG. 5 is a cross-sectional view of a transistor manufactured by the conventional manufacturing method. (N-MOS) transistor and P-MOS)
A cross-sectional view of the transistor, FIG. 6, is a diagram showing its impurity concentration characteristics. 41...N-type substrate, 45...P-well, 47...High concentration layer, 49.50...
・Gate oxide film, 62.66...source region,
63.67...Drain region, B-...
・Poron ion, Po... medium phosphorus ion. Patent applicant Casio Computer Co., Ltd. agent Patent attorney Machi 1) Quick-footed, ・”・1-t-
,' Coconut “g

Claims (1)

【特許請求の範囲】[Claims] 不純物を添加した基板に他の不純物を含む領域を形成し
、この領域内にソース領域、ドレイン領域及びこれらの
ソース領域、ドレイン領域よりも深部に前記他の不純物
の高濃度層を形成したMOSトランジスタを有する相補
型MOS集積回路の製造方法において、前記高濃度層は
ゲート酸化膜等を形成するための高温熱処理の後に、前
記他の不純物イオンを、前記基板の結晶格子の方向に沿
った方向から注入する工程によって形成することを特徴
とする相補型MOS集積回路の製造方法。
A MOS transistor in which a region containing another impurity is formed in a substrate doped with impurities, and a source region, a drain region, and a high concentration layer of the other impurity are formed deeper than the source region and drain region in this region. In the method for manufacturing a complementary MOS integrated circuit, the high-concentration layer is subjected to high-temperature heat treatment for forming a gate oxide film, etc., and then the other impurity ions are removed from the direction along the crystal lattice direction of the substrate. 1. A method for manufacturing a complementary MOS integrated circuit, characterized in that it is formed by an implantation process.
JP60111033A 1985-05-23 1985-05-23 Manufacturing method of complementary MOS integrated circuit Expired - Lifetime JPH0715971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60111033A JPH0715971B2 (en) 1985-05-23 1985-05-23 Manufacturing method of complementary MOS integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60111033A JPH0715971B2 (en) 1985-05-23 1985-05-23 Manufacturing method of complementary MOS integrated circuit

Publications (2)

Publication Number Publication Date
JPS61268058A true JPS61268058A (en) 1986-11-27
JPH0715971B2 JPH0715971B2 (en) 1995-02-22

Family

ID=14550697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60111033A Expired - Lifetime JPH0715971B2 (en) 1985-05-23 1985-05-23 Manufacturing method of complementary MOS integrated circuit

Country Status (1)

Country Link
JP (1) JPH0715971B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128170A (en) * 1985-11-29 1987-06-10 Hitachi Ltd Semiconductor device
JPH02111065A (en) * 1988-10-20 1990-04-24 Nec Corp Complementary semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310984A (en) * 1976-07-17 1978-01-31 Mitsubishi Electric Corp Complementary type mos integrated circuit
JPS5385157A (en) * 1977-01-05 1978-07-27 Hitachi Ltd Production of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310984A (en) * 1976-07-17 1978-01-31 Mitsubishi Electric Corp Complementary type mos integrated circuit
JPS5385157A (en) * 1977-01-05 1978-07-27 Hitachi Ltd Production of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128170A (en) * 1985-11-29 1987-06-10 Hitachi Ltd Semiconductor device
JPH02111065A (en) * 1988-10-20 1990-04-24 Nec Corp Complementary semiconductor device

Also Published As

Publication number Publication date
JPH0715971B2 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
US4662061A (en) Method for fabricating a CMOS well structure
US4554726A (en) CMOS Integrated circuit technology utilizing dual implantation of slow and fast diffusing donor ions to form the n-well
US4584027A (en) Twin well single mask CMOS process
US5652456A (en) Semiconductor structure containing multiple optimized well regions
JP2950577B2 (en) Method for manufacturing BiCMOS semiconductor integrated circuit
JPH0628298B2 (en) CMOS FET and manufacturing method thereof
KR100324931B1 (en) Method of Fabricating a Twin Well CMOS Device
JP2617177B2 (en) Integrated circuit isolation structure and method of forming the same
JPH0348458A (en) Bi-cmos integrated circuit and manufacture thereof
JPS61268058A (en) Manufacture of complementary type mos integrated circuit
JP2727552B2 (en) Method for manufacturing semiconductor device
JP2000138296A (en) Semiconductor storage device and its manufacture
JPH1065019A (en) Manufacturing method of cmos device
JPS60149149A (en) Manufacture of semiconductor device
JP2003031679A (en) Method for manufacturing semiconductor device
JPH0423329A (en) Manufacture of semiconductor device
JPS60137055A (en) Semiconductor device mixed with mosfet and bipolar transistor and manufacture thereof
JP2889246B2 (en) Semiconductor device
JP2735285B2 (en) Semiconductor device
JP3253712B2 (en) Method for manufacturing semiconductor device
JPH0296364A (en) Semiconductor device and manufacture thereof
JPS6362263A (en) Semiconductor device and manufacture thereof
JPS61220454A (en) Manufacture of semiconductor integrated circuit device
JPH11340335A (en) Manufacture of semiconductor device
JPH02189965A (en) Manufacture of semiconductor device