JPH0210773A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0210773A
JPH0210773A JP16233488A JP16233488A JPH0210773A JP H0210773 A JPH0210773 A JP H0210773A JP 16233488 A JP16233488 A JP 16233488A JP 16233488 A JP16233488 A JP 16233488A JP H0210773 A JPH0210773 A JP H0210773A
Authority
JP
Japan
Prior art keywords
film
region
drain region
oxide film
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16233488A
Other languages
Japanese (ja)
Inventor
Kazutoshi Ishii
石井 和敏
Yoshikazu Kojima
芳和 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP16233488A priority Critical patent/JPH0210773A/en
Publication of JPH0210773A publication Critical patent/JPH0210773A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To seek to improve reliability by putting a gate electrode, through iron oxide excellent in quality, on a drain region in low concentration. CONSTITUTION:A field oxide film 7 formed of a thermal oxide film is provided above a P-type silicon semiconductor 1, and a source region 3 and a drain region are provided on the surface of the lower substrate 1. A gate oxide film 9 is provided at the inside of the film 7 where a hole is opened beforehand by etching. A gate electrode 10 is provided on the films 7 and 9. A channel dope region 6 for deciding the threshold voltage of a MOS transistor with high breakdown strength is formed in self-alignment at the region of the film 9 at the inside of the film 7 by ion implantation. By doing channel dope of P type exceeding the concentrations and the depths of the regions 3 and 5 formed at the whole face below the film 7, the film 7 and the regions 6, 3 and 5 are formed respectively in self-alignment manner. N<+>-type source region 2 and drain region 4 in high concentration are provided in self-alignment with the film 7 as a mask. In this way, the reliability can be elevated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、表示素子である液晶の駆動集積回路に用いら
れている高耐圧トランジスタ用の半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device for a high voltage transistor used in a driving integrated circuit for a liquid crystal, which is a display element.

〔発明の概要〕[Summary of the invention]

本発明は、高耐圧を実現している薄い濃度のドレイン領
域上の絶縁膜を自己整合的に形成されたフィールド絶縁
膜を設けることにより、信頼性の高い高耐圧の半導体装
置を得るものである。
The present invention provides a highly reliable semiconductor device with a high breakdown voltage by providing a field insulating film formed in a self-aligned manner with an insulating film on a thinly doped drain region that achieves a high breakdown voltage. .

〔従来の技術〕[Conventional technology]

第2図に従来の高耐圧半導体装置の断面図を示す、ドレ
イン領域4の耐圧を上げるために、ゲート電極10とド
レイン領域4との間に薄い濃度のドレイン領域5を設け
た半導体装置が知られている。
FIG. 2 shows a cross-sectional view of a conventional high-voltage semiconductor device. In order to increase the breakdown voltage of the drain region 4, a semiconductor device is known in which a lightly doped drain region 5 is provided between the gate electrode 10 and the drain region 4. It is being

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来の半導体装置の場合、薄い濃度のドレイン
領域5の上にゲート電極10がなく、さらに、薄い濃度
のドレイン領域5の上の絶縁膜は、一般に熱酸化ではな
い低温で形成されたCVD酸化膜で形成されているため
に、外部からの異物の侵入に対して保護能力が劣るため
に、濃度の薄いドレイン領域5の抵抗値か長期動作に対
して変動しゃずいという問題点かあった。
However, in the case of a conventional semiconductor device, there is no gate electrode 10 on the thinly doped drain region 5, and furthermore, the insulating film on the thinly doped drain region 5 is generally formed by CVD, which is not formed by thermal oxidation but at a low temperature. Since it is formed of an oxide film, its ability to protect against the intrusion of foreign matter from the outside is poor, so there was a problem that the resistance value of the drain region 5 with a thin concentration did not fluctuate over long-term operation. .

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点を解決するために、高いドレイン電圧によっ
て強電界が加わる表面領域に、品質の良い熱酸化膜によ
り形成されたフィールド絶縁膜を設け、さらに、フィー
ルド絶縁膜上ンゲート電極を設けることにより、信頼性
の高い高耐圧半導体装置を実現した。
In order to solve the above problems, a field insulating film made of a high-quality thermal oxide film is provided in the surface area where a strong electric field is applied due to a high drain voltage, and a gate electrode is further provided on the field insulating film. A highly reliable high-voltage semiconductor device has been realized.

〔実施例〕〔Example〕

本発明の実施例を図面にもとづいて説明する。 Embodiments of the present invention will be described based on the drawings.

第1図に示すN型窩耐圧pA OS (H6tal−O
xide−3eniconductor) t−ランジ
スタの場合について説明する。P型の場合は、導電型を
逆に構成すればよい。
The N-type fossa pressure resistance pAOS (H6tal-O
xide-3eniconductor) The case of a T-transistor will be explained. In the case of P type, the conductivity type may be reversed.

P型シリコン半導体1の操向に、熱酸化膜により形成さ
れたフィールド酸化膜7を設ける。フィールド酸化11
1!!7の下の半導体基板1の表面には、薄い濃度のソ
ース領域3及びドレイン領域5が設けられている。フィ
ールド酸化膜7の内側には、エツチングにより穴あけ後
設けられたゲート酸化WA9か設けられている。このゲ
ート酸化膜9及びフィールド酸化膜7の上にゲート電極
lOが設けられている。この高耐圧MOSトランジスタ
の閾値電圧を決めるチャネルドープ領域は、フィールド
酸化膜の内側に設けられたゲート酸化膜9の領域に自己
整合的にイオン注入により形成されている。フィールド
酸化膜7の下に全面に形成された薄いソース領域3及び
ドレイン領域5の濃度及び深さを越えるP型のチャネル
ドー1をすることにより、フィールド酸化膜7とチャネ
ルドープ領域6と薄い濃度のソース領域3と薄い濃度の
ドレイン領域5をそれぞれ自己整合的に形成されている
A field oxide film 7 formed of a thermal oxide film is provided for steering the P-type silicon semiconductor 1. field oxidation 11
1! ! A lightly doped source region 3 and a drain region 5 are provided on the surface of the semiconductor substrate 1 under the region 7 . A gate oxide WA9 is provided inside the field oxide film 7, which is formed after drilling by etching. A gate electrode lO is provided on gate oxide film 9 and field oxide film 7. A channel doped region that determines the threshold voltage of this high voltage MOS transistor is formed by ion implantation in a self-aligned manner into a region of gate oxide film 9 provided inside the field oxide film. By forming a P-type channel dope 1 that exceeds the concentration and depth of the thin source region 3 and drain region 5 formed entirely under the field oxide film 7, the field oxide film 7 and the channel doped region 6 have a thin concentration. A source region 3 and a lightly doped drain region 5 are formed in a self-aligned manner.

また、濃い濃度N+型のソース領域2及びドレイン領域
4は、フィールド酸化11!7をマスクとして自己整合
的に設けられている。
Further, the heavily doped N+ type source region 2 and drain region 4 are provided in a self-aligned manner using the field oxidation 11!7 as a mask.

本発明の半導体装置においては、濃い濃度のソース領域
2及びドレイン領域5のLに品質の優れた厚いフィール
ド熱酸化膜7が形成されており、さらに、ゲート電[!
10か設けられているために、耐圧が高く、かつ、外部
からの異物及び電界に対して強い構造になっている。フ
ィールド酸化膜は、熱酸化膜であるために、従来の半導
体装置に用いられているPSG膜の分極による薄い濃度
のドレイン領域5の抵抗変化にような問題もない。第1
図は、ソース及びドレイン領域をともに高耐圧構造にし
た場合の例であるが、第3図のように、ドレイン領域の
み高耐圧構造にしてもよい。
In the semiconductor device of the present invention, a thick field thermal oxide film 7 of excellent quality is formed on the L of the heavily doped source region 2 and drain region 5, and the gate electrode [!
10, the structure has a high breakdown voltage and is strong against external foreign matter and electric fields. Since the field oxide film is a thermal oxide film, there is no problem such as the change in resistance of the lightly doped drain region 5 due to polarization of the PSG film used in conventional semiconductor devices. 1st
Although the figure shows an example in which both the source and drain regions have a high breakdown voltage structure, only the drain region may have a high breakdown voltage structure as shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、高耐圧の半導体装置において、薄
い濃度のドレイン領域上に品質の良い酸化膜を介してゲ
ート電極を重ねることにより、より高耐圧で、かつ、信
頼性を高くする効果がある。
As explained above, in a high-voltage semiconductor device, stacking the gate electrode on a thinly doped drain region with a high-quality oxide film interposed therebetween has the effect of increasing the breakdown voltage and reliability. .

置の断面図である。FIG.

4・・・濃い濃度のドレイン領域 5・・・薄い濃度のドレイン領域 10・ ・ ・ゲート電極 以  上 出願人 セイコー電子工業株式会社 代理人 弁理士  林   敬 之 助4...Densely concentrated drain region 5...Light concentration drain region 10・・・Gate electrode that's all Applicant: Seiko Electronics Industries Co., Ltd. Agent: Patent Attorney: Keinosuke Hayashi

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明にかかわる半導体装置の断面図であり
、第2図は従来の半導体装置の断面図である。第3図は
、本発明の池の実施例の半導体装キ斗捧*!の釘面図 第1図 従来の午1μ本装置の呵゛市図 第2図 イでの七篠体装置の直面図 第 3 図
FIG. 1 is a sectional view of a semiconductor device according to the present invention, and FIG. 2 is a sectional view of a conventional semiconductor device. FIG. 3 shows a semiconductor device according to an embodiment of the present invention. Fig. 1. Diagram of the nail surface of the conventional 1 μm device.

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の半導体基板表面に間隔をおいて設けられた
第2導電型の濃い濃度のソース領域と濃い濃度のドレイ
ン領域と、前記半導体基板表面に前記濃い濃度のドレイ
ン領域に接して設けられた第2導電型の薄いドレイン領
域と、前記濃度の濃いドレイン領域に接して前記濃い濃
度のソース領域との間の前記半導体基板表面上に設けら
れた第1導電型のチャネルトンプ領域と、前記チャネル
ドープ領域上に設けられたゲート絶縁膜と、前記濃い濃
度のドレイン領域上に設けられたフィールド絶縁膜と、
前記ゲート絶縁膜と前記フィールド絶縁膜上に設けられ
たゲート電極とからなる半導体装置。
A heavily doped source region and a heavily doped drain region of a second conductive type are provided at intervals on the surface of a semiconductor substrate of a first conductive type; a channel dump region of a first conductivity type provided on the surface of the semiconductor substrate between a thin drain region of a second conductivity type and the heavily doped source region in contact with the heavily doped drain region; a gate insulating film provided on the channel doped region; a field insulating film provided on the heavily doped drain region;
A semiconductor device comprising the gate insulating film and a gate electrode provided on the field insulating film.
JP16233488A 1988-06-28 1988-06-28 Semiconductor device Pending JPH0210773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16233488A JPH0210773A (en) 1988-06-28 1988-06-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16233488A JPH0210773A (en) 1988-06-28 1988-06-28 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0210773A true JPH0210773A (en) 1990-01-16

Family

ID=15752574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16233488A Pending JPH0210773A (en) 1988-06-28 1988-06-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0210773A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007013080A (en) * 2005-06-30 2007-01-18 Hynix Semiconductor Inc Method for manufacturing semiconductor device
JP2009032820A (en) * 2007-07-25 2009-02-12 Denso Corp Lateral type mos transistor, and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007013080A (en) * 2005-06-30 2007-01-18 Hynix Semiconductor Inc Method for manufacturing semiconductor device
JP2009032820A (en) * 2007-07-25 2009-02-12 Denso Corp Lateral type mos transistor, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JPH11274493A (en) Semiconductor device containing lateral type mos element
JPS59193066A (en) Mos semiconductor device
US5844273A (en) Vertical semiconductor device and method of manufacturing the same
JP2000269487A (en) Semiconductor device and its manufacture
EP0562352B1 (en) High voltage structures with oxide isolated source and RESURF drift region in bulk silicon
JPH04107867A (en) Semiconductor device
JPH0770717B2 (en) Semiconductor device
JP2882291B2 (en) High breakdown voltage diode and method of manufacturing the same
JPH0210773A (en) Semiconductor device
JPH0555560A (en) Semiconductor device
JP3211291B2 (en) Thin film transistor
US5523601A (en) High-breakdown-voltage MOS transistor
JPH04125972A (en) Mos semiconductor element and manufacture thereof
JPH06349852A (en) Mos type field-effect transistor
EP0268472B1 (en) Step-cut insulated gate static induction transistors and method of manufacturing the same
JPH09246545A (en) Semiconductor element for power
JPS63177566A (en) Field-effect transistor
JPS63254769A (en) Vertical insulated-gate type field effect transistor
JPH04241463A (en) Semiconductor device
JP3074064B2 (en) Lateral MOS field effect transistor
JPH07249760A (en) Fabrication of semiconductor device
JPH0669502A (en) High-tension mis transistor
JPH0770722B2 (en) Method for manufacturing semiconductor device
KR0150679B1 (en) Thin film transistor
JPH06104429A (en) Mos transistor