JPH02103906A - Resin coupled type magnet excellent in corrosion resistance - Google Patents

Resin coupled type magnet excellent in corrosion resistance

Info

Publication number
JPH02103906A
JPH02103906A JP25787788A JP25787788A JPH02103906A JP H02103906 A JPH02103906 A JP H02103906A JP 25787788 A JP25787788 A JP 25787788A JP 25787788 A JP25787788 A JP 25787788A JP H02103906 A JPH02103906 A JP H02103906A
Authority
JP
Japan
Prior art keywords
synthetic resin
resin
zinc powder
permanent magnet
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25787788A
Other languages
Japanese (ja)
Inventor
Yoshitaka Sato
義隆 佐藤
Tadafumi Sakauchi
阪内 孚史
Takuji Nomura
卓司 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP25787788A priority Critical patent/JPH02103906A/en
Publication of JPH02103906A publication Critical patent/JPH02103906A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent oxidation deterioration and rust generation by forming a synthetic resin film wherein zinc powder is mixed and dispersed at the surface of a permanent magnet which is obtained by a compression molding method. CONSTITUTION:A permanent magnet is constituted of scalelike intermetallic compound magnetic powder, which is mainly composed of rare earth metal being expressed by R-Fe-B (R is Nd and/or Pr or the one that some of them are replaced with one or more kinds of rare earth elements) and transition metal and whose average grain diameter is below 200mum and thickness is 10-30mum, and synthetic resin as a binder, and is obtained by an compression molding method. A synthetic resin film wherein zinc powder is mixed and dispersed is formed at the surface of this permanent magnet. Hereby, uniform film forming action by synthetic resin and electrochemical anticorrosive actions of zinc powder and R-Fe-B alloy magnetic powder act synergetically whereby oxidation deterioration and rust generation can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は樹脂結合型磁石に関し、更に詳しくは製造工程
中並に使用中における酸化劣化を防止した樹脂結合型磁
石に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a resin-bonded magnet, and more particularly to a resin-bonded magnet that prevents oxidative deterioration during the manufacturing process and during use.

〔従来技術と問題点〕[Prior art and problems]

希土類金属と遷移金属とを主成分とする合金磁石(以下
、希土類磁石という)は、従来のフェライト系、アルニ
コ系磁石と比べて、優れた磁気特性を有しているため、
近年小型モーターを中心として多方面に利用されている
Alloy magnets whose main components are rare earth metals and transition metals (hereinafter referred to as rare earth magnets) have superior magnetic properties compared to conventional ferrite and alnico magnets.
In recent years, it has been used in a variety of fields, mainly in small motors.

かかる希土類磁性粉体をバインダー樹脂で固着せしめた
プラスチック磁石は、樹脂との混練時又は成形時に高温
に曝されるが、希土類磁性粉体は非常に酸化され易く、
プラスチック磁石を製造する工程で酸化される。その結
果、得られる希土類プラスチック磁石の磁気特性は著し
く低下し、かつ錆の発生が顕著となる。また、製造中に
酸化が惣激に進み、発火する場合も起こり得る。
Plastic magnets in which such rare earth magnetic powder is fixed with binder resin are exposed to high temperatures during kneading with resin or molding, but rare earth magnetic powder is very easily oxidized.
Oxidized during the manufacturing process of plastic magnets. As a result, the magnetic properties of the resulting rare earth plastic magnet are significantly degraded, and the occurrence of rust becomes noticeable. In addition, oxidation may progress rapidly during manufacturing, and ignition may occur.

そこで、製造中にできるだけ高温に曝されない圧縮成形
方法等により製造することが考えられるが、この場合に
おいても製品をバインダー樹脂の耐熱温度近辺で使用す
る場合には、使用中の酸化劣化は避けられず、磁気特性
が次第に低下するという問題を孕んでいる。
Therefore, it may be possible to manufacture the product using a compression molding method that minimizes exposure to high temperatures during manufacturing, but even in this case, if the product is used near the heat-resistant temperature of the binder resin, oxidative deterioration during use can be avoided. First, there is a problem in that the magnetic properties gradually deteriorate.

かかる問題を克服するために、特開昭61−25330
2号には希土類磁性粉体をp)(aが4以下の活性プロ
トンを有するリン化合物と接触させ、酸素を含有する雰
囲気に曝す方法が提案され、また特開昭61−1848
04号には希土類磁性粉体を高分子樹脂で被覆する方法
が開示されている。
In order to overcome this problem, Japanese Patent Application Laid-Open No. 61-25330
No. 2 proposes a method in which rare earth magnetic powder is brought into contact with a phosphorus compound having an active proton with p) (a being 4 or less) and exposed to an oxygen-containing atmosphere.
No. 04 discloses a method of coating rare earth magnetic powder with a polymer resin.

しかし乍ら、上記いずれの方法も成る程度の酸化劣化防
止効果は認められるものの、実用上十分に満足し得るも
のとは言い難い。
However, although all of the above-mentioned methods have been found to be effective in preventing oxidative deterioration, they cannot be said to be fully satisfactory in practical terms.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らはかかる実情に濡み、鋭意研究の結果、上記
従来技術において十分な効果を得られない原因は、圧縮
成形時において被覆処理された磁性粉体が破壊され、酸
化され易い磁性粉体表面が露出することにあることを突
きとめた。そこで、本発明者らはより耐酸化性の優れた
樹脂結合型磁石を得るべく鋭意研究の結果、圧縮成形後
の磁石の表面に、亜鉛粉末を混合分散した合成樹脂被膜
を形成させることにより、合成樹脂による均一な造膜作
用と、亜鉛粉末とR−Fe−B合金磁性粉体との電気化
学的防蝕作用が相乗的に作用して、酸化劣化防止並びに
錆発生防止が達成されることを見出し、本発明を完成さ
せたものである。
The present inventors were aware of this situation, and as a result of intensive research, the reason why the above conventional technology cannot obtain sufficient effects is that the coated magnetic powder is destroyed during compression molding, and the magnetic powder is easily oxidized. They discovered that this is due to the fact that the body surface is exposed. Therefore, as a result of intensive research to obtain a resin-bonded magnet with better oxidation resistance, the present inventors formed a synthetic resin coating mixed and dispersed with zinc powder on the surface of the magnet after compression molding. The uniform film-forming effect of the synthetic resin and the electrochemical anticorrosion effect of the zinc powder and R-Fe-B alloy magnetic powder act synergistically to achieve prevention of oxidative deterioration and rust generation. The heading completes the invention.

即ち、本発明はR−Fe−B(RはNd及び/又はPr
、又はこれらの一部を1種又は2種以上の希土類元素で
置換したもの)で表される希土類金属と遷移金属とを主
成分とする金属間化合物磁性粉体と結合剤である合成樹
脂とからなり、圧縮成形法により得られる永久磁石にお
いて、前記永久磁石の表面に、亜鉛粉末を混合分散させ
た合成樹脂被膜を形成させたことを特徴とする樹脂結合
型磁石を内容とするものである。
That is, the present invention provides R-Fe-B (R is Nd and/or Pr
, or a part of these is replaced with one or more rare earth elements), an intermetallic compound magnetic powder whose main components are a rare earth metal and a transition metal, and a synthetic resin as a binder. A permanent magnet obtained by a compression molding method, characterized in that a synthetic resin coating in which zinc powder is mixed and dispersed is formed on the surface of the permanent magnet. .

本発明で用いられる希土類金属と遷移金属とを主成分と
する金属間化合物磁性粉体とはR−Fe3系(RはNd
及び/又はP r %又はこれらの一部を1種又は2種
以上の希土類元素でrIl換したものであって、磁気特
性を改善するために、^1、Co、 Ga、 Dy等を
添加してもよい)で表される鉄元素を主体とするT合金
系磁性粉体であって、その平均粒径は200μm以下、
より好ましくは10〜150μm程度が適当である。平
均粒径が10μm未満の場合は磁性粉体の表面積の増大
により酸化が著しく、磁気性能への悪影響が出てくる。
The intermetallic compound magnetic powder mainly composed of rare earth metals and transition metals used in the present invention is R-Fe3 type (R is Nd
and/or P r % or a part thereof is replaced with rIl by one or more rare earth elements, and ^1, Co, Ga, Dy, etc. are added to improve the magnetic properties. T-alloy magnetic powder mainly composed of the iron element represented by
More preferably, the thickness is about 10 to 150 μm. When the average particle size is less than 10 μm, the surface area of the magnetic powder increases, causing significant oxidation, which adversely affects magnetic performance.

また平均粒径が200μmを越えると、磁性粉の酸化と
いう問題は減少するものの、圧縮成形時の粉体の流動性
が悪化するため、生産性の点で好ましくない。より好ま
しい磁性粉体としては、平均粒径が200μm以下で、
厚みが10〜30μmの鱗片状のものである。
If the average particle size exceeds 200 μm, although the problem of oxidation of the magnetic powder is reduced, the fluidity of the powder during compression molding deteriorates, which is not preferable in terms of productivity. More preferable magnetic powder has an average particle size of 200 μm or less,
It is a scale-like substance with a thickness of 10 to 30 μm.

本発明で用いられる結合剤としての合成樹脂は、フェノ
ール樹脂、エポキシ樹脂、メラミン樹脂その他の熱硬化
性樹脂、更にはポリアミド、ポリオレフィン、ポリフェ
ニレンサルファイド、その他の熱可塑性樹脂が例示でき
るが、高温に保持した状態において軟化、変形しない熱
硬化性樹脂が好ましい。
Examples of the synthetic resin used as a binder in the present invention include phenolic resin, epoxy resin, melamine resin, and other thermosetting resins, as well as polyamide, polyolefin, polyphenylene sulfide, and other thermoplastic resins, but the resins are kept at high temperatures. A thermosetting resin that does not soften or deform in a heated state is preferable.

本発明において、必要に応じて可塑剤が用いられるが、
本発明で用いられる可塑剤としては、ポリエステル系可
塑剤、フタル酸エステル系可塑剤、エポキシ化油可塑剤
、脂肪酸エステル系可塑剤、その他であり、使用する樹
脂の種類に応じて選択使用する。特に、フェノール樹脂
を用いた場合には、アジピン酸ポリエステル系可塑剤、
フタル酸ポリエステル系可塑剤、リン酸エステル系可塑
剤、フタル酸ジブチル及びエポキシ化大豆油等が極めて
好適である。
In the present invention, a plasticizer is used as necessary, but
Plasticizers used in the present invention include polyester plasticizers, phthalate plasticizers, epoxidized oil plasticizers, fatty acid ester plasticizers, and others, and are selected depending on the type of resin used. In particular, when using phenolic resin, adipic acid polyester plasticizer,
Phthalate polyester plasticizers, phosphate ester plasticizers, dibutyl phthalate, epoxidized soybean oil, and the like are extremely suitable.

上記希土類磁性粉体と合成樹脂との配合割合は、該磁性
粉体50〜95体積部に対し、合成樹脂50〜5体積部
が好ましい。該磁性粉体が50体積部未満では所望の磁
気特性が得られ難<、一方、95体積部を越えると、機
械的強度の低下が現れる。可塑剤はO〜10体積部の範
囲で使用され、更に、滑剤、熱安定剤、その他改質剤等
通常用いられる添加剤を加えることができる。上記の如
き樹脂磁石組成物は常法により圧縮成形された後、結合
剤を硬化させて永久磁石成形体を得る。
The mixing ratio of the rare earth magnetic powder and the synthetic resin is preferably 50 to 5 parts by volume of the synthetic resin to 50 to 95 parts by volume of the magnetic powder. If the amount of the magnetic powder is less than 50 parts by volume, it is difficult to obtain the desired magnetic properties, while if it exceeds 95 parts by volume, a decrease in mechanical strength appears. The plasticizer is used in an amount of 0 to 10 parts by volume, and commonly used additives such as lubricants, heat stabilizers, and other modifiers can also be added. The resin magnet composition as described above is compression molded by a conventional method, and then the binder is cured to obtain a molded permanent magnet.

上記の如くして得られた永久磁石成形体の表面に亜鉛粉
末を混合分散させた合成樹脂被膜を形成させる。該合成
樹脂被膜の形成は、予め含浸処理液を調製し、これを磁
石成形体表面に含浸被覆させる方法が好適である。含浸
処理液としては、例えばバインダーとしての反応型合成
樹脂に亜鉛粉末を混合分散させ、所定の固型分濃度にな
る様に有8!l溶媒にて稀釈して得られる。ここでバイ
ンダーとしての合成樹脂としては、フェノール樹脂、エ
ポキシ樹脂、アクリルシリコン樹脂、メラミン樹脂等の
高温に保持した状態において軟化・変形しない反応型合
成樹脂が好ましい。また亜鉛粉末としては平均粒径30
μm以下が好ましく、より好ましくは5〜lOμ川のも
のが適当である。5μm未満では亜鉛粉末自身の酸化の
進行が激しく、本来の電気化学的作用の効果を発揮出来
ない。また30μmを越えると被膜厚みに近くなり、最
終仕上がり状態が極めて凹凸の著しいものになり、美観
を損なうばかりでな(、バインダーとしての合成樹脂へ
の均一分散が困難となって、亜鉛粉末の電気化学的作用
による防錆効果が発揮出来なくなる。亜鉛粉末と合成樹
脂との混合比率は合成樹脂100重量部に対して亜鉛粉
末が5〜20重量部である。亜鉛粉末が5重量部未満で
は亜鉛粉末の添加効果が十分ではなく、また20重量部
を越えると形成される被膜強度の低下が著しく、亜鉛粉
の脱落、被膜の亀裂等を生じることとなる。本発明に用
いられる有機溶媒としては、メチルエチルケトン、トル
エン、エタノール、メタノール等が挙げられ、これらは
単独又は混合して用いられる。
A synthetic resin coating containing zinc powder mixed and dispersed is formed on the surface of the permanent magnet molded body obtained as described above. A suitable method for forming the synthetic resin coating is to prepare an impregnating treatment liquid in advance and impregnating and coating the surface of the magnet molded body with the impregnating treatment liquid. The impregnating treatment liquid can be prepared by mixing and dispersing zinc powder in a reactive synthetic resin as a binder, for example, to obtain a predetermined solid content concentration. Obtained by diluting with l solvent. The synthetic resin used as the binder is preferably a reactive synthetic resin that does not soften or deform when kept at high temperatures, such as phenol resin, epoxy resin, acrylic silicone resin, or melamine resin. Also, as zinc powder, the average particle size is 30
It is preferably less than .mu.m, more preferably 5 to 10 .mu.m. If the thickness is less than 5 μm, oxidation of the zinc powder itself progresses rapidly, and the original electrochemical effect cannot be exerted. Moreover, if the thickness exceeds 30 μm, the thickness will be close to that of the film, and the final finished state will be extremely uneven, which not only spoils the aesthetics (also, it becomes difficult to uniformly disperse zinc powder into the synthetic resin as a binder, and The rust prevention effect due to chemical action cannot be exerted.The mixing ratio of zinc powder and synthetic resin is 5 to 20 parts by weight of zinc powder to 100 parts by weight of synthetic resin.If the zinc powder is less than 5 parts by weight, zinc The effect of adding the powder is not sufficient, and if the amount exceeds 20 parts by weight, the strength of the film formed will drop significantly, resulting in falling off of the zinc powder and cracking of the film.As the organic solvent used in the present invention, , methyl ethyl ketone, toluene, ethanol, methanol, etc., and these may be used alone or in combination.

上記含浸処理液の永久磁石成形体表面への含浸被覆方法
としては、例えば浸漬法、スプレー法、刷毛塗り法等が
挙げられるが、特に浸漬法が好適である。含浸処理され
た永久磁石成形体は乾燥工程で乾燥又は乾燥と同時に樹
脂の硬化が行われる。
Examples of the method for impregnating and coating the surface of the permanent magnet molded body with the above-mentioned impregnation treatment solution include a dipping method, a spraying method, a brush coating method, etc., and the dipping method is particularly suitable. The impregnated permanent magnet molded body is dried in a drying process, or the resin is cured simultaneously with drying.

亜鉛粉末を混合分散させた合成樹脂被膜の厚みは5〜5
0μmが好ましい、5μm未満では十分な防錆効果が期
待出来ず、また50μmを越えると含浸被覆直後の被膜
のだれが無視出来ず、美観上好ましくない。
The thickness of the synthetic resin coating mixed and dispersed with zinc powder is 5 to 5.
0 μm is preferable; if it is less than 5 μm, a sufficient antirust effect cannot be expected, and if it exceeds 50 μm, sagging of the coating immediately after impregnation coating cannot be ignored, which is not aesthetically pleasing.

〔実施例〕〔Example〕

以下、本発明を実施例及び比較例を挙げて説明するが、
本発明はこれらにより何ら制限されるものではない。
The present invention will be explained below with reference to Examples and Comparative Examples.
The present invention is not limited to these in any way.

実施例 平均粒径150μm、厚みが20μmの鱗片状のNd−
Fe−BTli性粉体性粉体8%とレゾール型フェノー
ル樹脂20体積%を撹拌混合し、得られた混合物を常温
でプレス成形した後、180℃X2Hrでフェノール樹
脂を硬化せしめ、外径8箇−1内径6鶴、高さ4flの
リング状成形体を得た。
Example Scale-shaped Nd- with an average particle size of 150 μm and a thickness of 20 μm.
After stirring and mixing 8% Fe-BTli powder and 20% by volume of resol-type phenolic resin, the resulting mixture was press-molded at room temperature, and the phenolic resin was cured at 180°C for 2 hours. -1 A ring-shaped molded body with an inner diameter of 6 mm and a height of 4 fl was obtained.

しかる後、アクリルシリコン樹脂に対し平均粒径10μ
mの亜鉛粉末を17−tχ混合した後、メチルエチルケ
トンにて稀釈して低粘度の含浸処理液を調製し、前記リ
ング状成形体を含浸処理液に浸漬し、1分間保持した。
After that, the average particle size was 10μ for the acrylic silicone resin.
After mixing 17-tχ of zinc powder, the mixture was diluted with methyl ethyl ketone to prepare a low-viscosity impregnating solution, and the ring-shaped molded body was immersed in the impregnating solution and held for 1 minute.

その後、リング状成形体を含浸処理液より取り出しアク
リルシリコン樹脂の硬化温度下で加熱処理し、樹脂を硬
化させた。
Thereafter, the ring-shaped molded body was taken out from the impregnating treatment liquid and heat-treated at the curing temperature of the acrylic silicone resin to harden the resin.

成形体表面ち形成された被膜厚は25μmであった。パ
ルス着磁法でlO極着磁を行い、試験試料とした。
The thickness of the coating formed on the surface of the molded product was 25 μm. 1O pole magnetization was performed using the pulse magnetization method, and a test sample was obtained.

以上の操作で得られたリング状試験試料を60℃×95
%RHの恒温恒温槽に静置し、100時間経過後の試料
の錆の発生状況の観察と総磁束量の変化率を測定した。
The ring-shaped test sample obtained by the above procedure was heated at 60°C x 95°C.
The sample was placed in a constant temperature bath at %RH, and after 100 hours, the state of rust on the sample was observed and the rate of change in total magnetic flux was measured.

総磁束量はフラックスメーターを用いて測定した。その
結果、錆の発生は全く認められず、総磁束量の変化率は
−1.01%であった。
The total amount of magnetic flux was measured using a flux meter. As a result, no rust was observed, and the rate of change in total magnetic flux was -1.01%.

比較例1 表面に被覆処理を施していないリング状成形体を用い、
実施例と同様の操作を行い、同様のテストを行った。そ
の結果、成形体表面は錆で覆われ、総磁束量の変化率は
−1,8%であった。
Comparative Example 1 Using a ring-shaped molded body whose surface was not coated,
The same operation as in the example was performed and the same test was conducted. As a result, the surface of the compact was covered with rust, and the rate of change in total magnetic flux was -1.8%.

比較例2 実施例において、亜鉛粉末を混合しない他は実施例と同
様にして含浸処理を行い、成形体表面に25μmの被覆
膜を形成させ、調整した含浸処理液に実施例と同様の操
作、テストを行った。その結果、成形体表面の錆は比較
例1の場合に比べて減少したが、特にエツジ部を中心に
全面にわたって鯖が認められた。総磁束量の変化率は−
1,4%であった。
Comparative Example 2 In the example, impregnation treatment was performed in the same manner as in the example except that zinc powder was not mixed, a coating film of 25 μm was formed on the surface of the compact, and the prepared impregnation treatment solution was subjected to the same operation as in the example. , conducted a test. As a result, rust on the surface of the molded product was reduced compared to Comparative Example 1, but mackerel was observed over the entire surface, especially around the edges. The rate of change in total magnetic flux is −
It was 1.4%.

〔作用・効果〕[Action/Effect]

以上の通り、本発明によれば永久磁石の表面に亜鉛粉末
を含存分散した合成樹脂の均一な被覆が形成され、しか
も該被膜は永久磁石表面の多孔質部に含浸硬化され、所
謂アンカー効果により強固に固定されているので永久磁
石の取り扱い時や使用時においても容易にff1l+離
することがなく、酸化劣化による磁気性能の低下や湿気
による発錆のない永久磁石を得ることができる。
As described above, according to the present invention, a uniform coating of synthetic resin containing and dispersing zinc powder is formed on the surface of a permanent magnet, and the coating is hardened by impregnating into the porous portion of the surface of the permanent magnet, resulting in the so-called anchor effect. Since it is firmly fixed, it does not easily separate when handling or using the permanent magnet, and it is possible to obtain a permanent magnet that does not deteriorate magnetic performance due to oxidative deterioration or rust due to moisture.

特許出願人 鐘淵化学工業株式会社Patent applicant Kanebuchi Chemical Industry Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 1.R−Fe−B(RはNd及び/又はPr、又はこれ
らの一部を1種又は2種以上の希土類元素で置換したも
の)で表される希土類金属と遷移金属とを主成分とする
金属間化合物磁性粉体と結合剤である合成樹脂とからな
り、圧縮成形法により得られる永久磁石において、前記
永久磁石の表面に、亜鉛粉末を混合分散させた合成樹脂
被膜を形成させたことを特徴とする樹脂結合型磁石。
1. A metal whose main components are a rare earth metal represented by R-Fe-B (R is Nd and/or Pr, or a part of these is substituted with one or more rare earth elements) and a transition metal. A permanent magnet made of an intermediate compound magnetic powder and a synthetic resin as a binder and obtained by a compression molding method, characterized in that a synthetic resin coating in which zinc powder is mixed and dispersed is formed on the surface of the permanent magnet. Resin bonded magnet.
2.金属間化合物磁性粉体の平均粒径が200μm以下
で、厚みが10〜30μmの鱗片状である請求項1記載
の樹脂結合型磁石。
2. 2. The resin-bonded magnet according to claim 1, wherein the intermetallic compound magnetic powder has a scale-like shape with an average particle size of 200 μm or less and a thickness of 10 to 30 μm.
3.亜鉛粉末の平均粒径が30μm以下である請求項1
又は2記載の樹脂結合型磁石。
3. Claim 1: The average particle size of the zinc powder is 30 μm or less.
Or the resin-bonded magnet according to 2.
4.亜鉛粉末の混合比率が合成樹脂100重量部に対し
て5〜20重量部である請求項1記載の樹脂結合型磁石
4. 2. The resin-bonded magnet according to claim 1, wherein the mixing ratio of zinc powder is 5 to 20 parts by weight based on 100 parts by weight of the synthetic resin.
5.亜鉛粉末を混合分散させた合成樹脂被膜の厚みが5
〜50μmである請求項1記載の樹脂結合型磁石。
5. The thickness of the synthetic resin coating mixed and dispersed with zinc powder is 5.
The resin-bonded magnet according to claim 1, which has a diameter of 50 μm.
JP25787788A 1988-10-13 1988-10-13 Resin coupled type magnet excellent in corrosion resistance Pending JPH02103906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25787788A JPH02103906A (en) 1988-10-13 1988-10-13 Resin coupled type magnet excellent in corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25787788A JPH02103906A (en) 1988-10-13 1988-10-13 Resin coupled type magnet excellent in corrosion resistance

Publications (1)

Publication Number Publication Date
JPH02103906A true JPH02103906A (en) 1990-04-17

Family

ID=17312423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25787788A Pending JPH02103906A (en) 1988-10-13 1988-10-13 Resin coupled type magnet excellent in corrosion resistance

Country Status (1)

Country Link
JP (1) JPH02103906A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7208856B2 (en) * 2004-01-19 2007-04-24 Mitsubishi Denki Kabushiki Kaisha Electric rotating machine
JP2012251248A (en) * 2012-09-13 2012-12-20 Sofutemu:Kk Galvanic anode
JP2013047387A (en) * 2012-09-13 2013-03-07 Sofutemu:Kk Corrosion preventive method for permanent magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7208856B2 (en) * 2004-01-19 2007-04-24 Mitsubishi Denki Kabushiki Kaisha Electric rotating machine
JP2012251248A (en) * 2012-09-13 2012-12-20 Sofutemu:Kk Galvanic anode
JP2013047387A (en) * 2012-09-13 2013-03-07 Sofutemu:Kk Corrosion preventive method for permanent magnet

Similar Documents

Publication Publication Date Title
EP0166597B1 (en) Magnetic powder and production process thereof
JPH04328804A (en) Corrosion-proof permanent magnet and manufacture thereof
JPH02103906A (en) Resin coupled type magnet excellent in corrosion resistance
JP2692834B2 (en) Dust core
KR101094839B1 (en) Non-ageing permanent magnet made from an alloy powder and method for the production thereof
JPH0666176B2 (en) Method for manufacturing resin-bonded magnet
JPH01147806A (en) Manufacture of resin-bonded type magnet
JP3160817B2 (en) Rare earth bonded magnet material, rare earth bonded magnet, and method for manufacturing rare earth bonded magnet
JP4721357B2 (en) Manufacturing method of Nd-based bonded magnet
JP2019036667A (en) Manufacturing method of magnet alloy powder with coating
JPS61263208A (en) Manufacture of magnetic molded unit
JPH04273413A (en) Manufacture of rare-earth bonded magnet
JPH11204320A (en) Bonded magnet and its manufacture
JP2008010726A (en) Rare earth bond magnet
JPH03108702A (en) Magnet and manufacture thereof
JP2018206834A (en) Dust core
JPH06333713A (en) Bonded magnet and manufacture of bonded magnet
JPH036963B2 (en)
JP3430686B2 (en) COMPOUND FOR HIGH CORROSION RESISTANCE BOND MAGNET, BOND MAGNET, AND PROCESS FOR PRODUCING THEM
JPH04354104A (en) Manufacture of rare earth bond magnet
JP2001342501A (en) Powder compact and its producing method, and iron powder used for it
JPH01205503A (en) Resin-bonded permanent magnet and its manufacture
JPH06314607A (en) Highly rust-resistant rare earth bonded magnet and its manufacture
JP4972975B2 (en) Rare earth magnet and manufacturing method thereof
JP2005268352A (en) Resin bonded magnet and method for manufacturing the same