JPH0666176B2 - Method for manufacturing resin-bonded magnet - Google Patents

Method for manufacturing resin-bonded magnet

Info

Publication number
JPH0666176B2
JPH0666176B2 JP62139382A JP13938287A JPH0666176B2 JP H0666176 B2 JPH0666176 B2 JP H0666176B2 JP 62139382 A JP62139382 A JP 62139382A JP 13938287 A JP13938287 A JP 13938287A JP H0666176 B2 JPH0666176 B2 JP H0666176B2
Authority
JP
Japan
Prior art keywords
resin
magnetic powder
rare earth
synthetic resin
bonded magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62139382A
Other languages
Japanese (ja)
Other versions
JPS63304602A (en
Inventor
好司 瀬▲崎▼
義隆 佐藤
卓司 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP62139382A priority Critical patent/JPH0666176B2/en
Publication of JPS63304602A publication Critical patent/JPS63304602A/en
Publication of JPH0666176B2 publication Critical patent/JPH0666176B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明の樹脂結合型磁石の製造方法に関し、更に詳しく
は製造工程中並び使用中における酸化劣化を防止した樹
脂結合型磁石に製造方法に関するものである。
The present invention relates to a method for producing a resin-bonded magnet according to the present invention, and more particularly to a method for producing a resin-bonded magnet that prevents oxidative deterioration during the manufacturing process and during use. Is.

「従来技術と問題点」 希土類金属と遷移金属とを主成分とする合金磁石(以
下、希土類磁石という)は、従来のフェライト系、アル
ニコ系磁石と比べて、優れた磁気特性を有しているた
め、近年小型モーターを中心として多方面に利用されて
いる。
"Prior Art and Problems" Alloy magnets containing rare earth metals and transition metals as main components (hereinafter referred to as rare earth magnets) have superior magnetic characteristics to conventional ferrite-based and alnico-based magnets. Therefore, in recent years, it has been used in various fields mainly for small motors.

かかる希土類磁性粉体を結合剤である合成樹脂で固着せ
しめた樹脂結合型磁石(以下、プラスチック磁石と称す
る)は、樹脂との混練時又は成形時に高温に曝される
が、希土類磁性粉体は非常に酸化され易く、プラスチッ
ク磁石を製造する工程で酸化される。その結果、得られ
る希土類プラスチック磁石の磁気特性は著しく低下し、
かつ錆の発生が顕著となる。また、製造中に酸化が急激
に進み、発火する場合も起こり得る。
A resin-bonded magnet (hereinafter referred to as a plastic magnet) in which such a rare earth magnetic powder is fixed with a synthetic resin as a binder is exposed to a high temperature during kneading with a resin or during molding. It is highly susceptible to oxidation and is oxidized in the process of manufacturing plastic magnets. As a result, the magnetic properties of the obtained rare earth plastic magnet are significantly reduced,
Moreover, the occurrence of rust becomes remarkable. In addition, a case may occur in which oxidation rapidly progresses during manufacture and a fire occurs.

そこで、製造中にできるだけ高温に曝されない圧縮成形
方法等により製造することが考えられるが、この場合に
おいても製品を結合剤である合成樹脂の耐熱温度近辺で
使用される場合には、使用中の酸化劣化は避けられず、
磁気特性が次第に低下するという問題を孕んでいる。
Therefore, it is conceivable to manufacture by a compression molding method or the like that is not exposed to as high a temperature as possible during manufacturing, but even in this case, when the product is used near the heat resistant temperature of the synthetic resin as the binder, Oxidative deterioration is unavoidable,
It has a problem that the magnetic properties gradually deteriorate.

かかる問題を克服するために、特開昭61−25330
2号には希土類磁性粉体をpKaが4以下の活性プロト
ンを有するリン化合物と接触させ、酸素を含有する雰囲
気に曝す方法が提案され、また特開昭61−18480
4号には希土類磁性粉体を高分子樹脂で被覆する方法が
開示されている。しかし乍ら、上記いずれの方法も或る
程度の酸化劣化防止効果は認められるものの、実用上十
分に満足し得るものとは言い難い。
In order to overcome such a problem, JP-A-61-23303
No. 2 proposes a method in which a rare earth magnetic powder is brought into contact with a phosphorus compound having an active proton having a pKa of 4 or less and exposed to an atmosphere containing oxygen, and JP-A-61-18480.
No. 4 discloses a method of coating a rare earth magnetic powder with a polymer resin. However, although any of the above methods has some effect of preventing oxidative deterioration, it cannot be said to be sufficiently satisfactory in practical use.

「問題点を解決するための手段」 本発明者らはかかる実情に鑑み、鋭意研究の結果、上記
従来技術において十分な効果を得られない原因は圧縮成
形時において被覆処理された磁性粉体が破壊され、酸化
され易い磁性粉体表面が露出することにあることを突き
とめ、圧縮成形後の成形体の空隙部に合成樹脂を含浸さ
せ磁性粉体と外気とを遮断することにより、上記問題が
解消されることを見出し、本発明を完成させたものであ
る。
“Means for Solving Problems” In view of such circumstances, the present inventors have earnestly studied, and as a result, the reason why sufficient effects cannot be obtained in the above-mentioned conventional technique is that the magnetic powder coated during compression molding is a cause. It was found that the surface of the magnetic powder that is easily destroyed and oxidized is exposed, and the above problem is solved by impregnating the magnetic powder and the outside air by impregnating the voids of the molded body after compression molding with synthetic resin. That is, the present invention has been completed and the present invention has been completed.

即ち、本発明はR−Fe−B(RはNd及び/又はP
r、又はこれらの1部を1種又は2種以上の希土類元素
で置換したもの)で表され、表面にリン酸塩を被覆せし
めた希土類金属と遷移金属とを主成分とする防錆金属間
化合物磁性粉体と結合剤である合成樹脂とを圧縮成形し
た後結合剤を硬化固化せしめて多孔質成形体を形成し、
該多孔質成形体の空隙部に合成樹脂を含浸させ酸化劣化
を防止したことを特徴とする樹脂結合型磁石を内容とす
るものである。
That is, in the present invention, R-Fe-B (R is Nd and / or P
r, or one of these substituted with one or more rare earth elements), and a rust-preventive metal mainly composed of a rare earth metal and a transition metal whose surface is coated with phosphate. After compression molding the compound magnetic powder and the synthetic resin as the binder, the binder is cured and solidified to form a porous molded body,
The present invention relates to a resin-bonded magnet, characterized in that the voids of the porous molded body are impregnated with a synthetic resin to prevent oxidative deterioration.

本発明で用いられる希土類金属と遷移金属とを主成分と
する金属間化合物磁性粉体とはR−Fe−B系(RはN
d及び/又はPr、又はこれらの一部を1種又は2種以
上の希土類元素で置換したものであって、磁気特性を改
善するために、Al、Co、Ca、Dy等を添加しても
よい)として知られている磁性粉体である。該磁性粉体
の粒径は1〜150μm程度が好ましい。
The intermetallic compound magnetic powder mainly composed of a rare earth metal and a transition metal used in the present invention is an R—Fe—B system (R is N
d and / or Pr, or a part of them substituted with one or more rare earth elements, and Al, Co, Ca, Dy or the like may be added to improve magnetic properties. It is a magnetic powder known as (good). The particle size of the magnetic powder is preferably about 1 to 150 μm.

本発明で用いられる結合剤としての合成樹脂は、フェノ
ール樹脂、エポキシ樹脂、メラミン樹脂その他の熱硬化
性樹脂、更にはポリアミド、ポリオレフィン、ポリフェ
ニレンサルファイドその他の熱可塑性樹脂が例示できる
が、高温に保持した状態において軟化、変形しない熱硬
化性樹脂が好ましい。
Examples of the synthetic resin used as the binder in the present invention include phenol resins, epoxy resins, melamine resins and other thermosetting resins, as well as polyamide, polyolefin, polyphenylene sulfide and other thermoplastic resins, but they were kept at a high temperature. A thermosetting resin that does not soften or deform in the state is preferable.

更に、滑剤、熱安定剤、可塑剤、その他改質剤等通常用
いられる添加剤を加えることもできる。
Further, additives usually used such as a lubricant, a heat stabilizer, a plasticizer and other modifiers may be added.

本発明に用いられるリン酸塩としては、防錆を目的とし
たリン酸塩皮膜処理剤が好適で、例えばリン酸マンガン
系、リン酸亜鉛系、リン酸鉄系、リン酸ナトリウム系等
の化合物が挙げられ、更に具体的にはMn(H2PO4)2,Zn(H2
PO4)2,Fe(H2PO4)2,NaH2PO4等が挙げられる。また、助剤
としては、H3PO4,NO3,ClO3,BrO3等が例示される。希土
類磁性粉体表面にリン酸塩を被覆する方法としては、浸
漬法、噴霧法等により、通常、常温〜100℃で数分〜
数時間接触させた後乾燥する。
As the phosphate used in the present invention, a phosphate coating agent for the purpose of rust prevention is suitable, for example, manganese phosphate-based, zinc phosphate-based, iron phosphate-based, sodium phosphate-based compounds, etc. And more specifically Mn (H 2 PO 4 ) 2 , Zn (H 2
PO 4) 2, Fe (H 2 PO 4) 2, NaH 2 PO 4 and the like. As the aid, H 3 PO 4, NO 3 , ClO 3, BrO 3 , and the like. As a method for coating the surface of the rare earth magnetic powder with a phosphate, a dipping method, a spraying method, or the like is usually used, and the temperature is usually room temperature to 100 ° C. for several minutes to
After contacting for several hours, it is dried.

本発明に用いられる成形体の空隙部及び表面に含浸被覆
される合成樹脂としては、上記結合剤としての合成樹脂
の他、メチルセルローズ、エチルセルローズ、ニトロセ
ルローズ、ポリビニルアルコール等が例示されるが、特
に希土類磁性粉体との接着性に優れたエポキシ樹脂が好
適である。合成樹脂の含浸は樹脂溶液中に成形体を浸漬
する方法(好ましい真空中で)、静水圧プレスを用いて
圧力下で樹脂溶液を成形体の空隙部に浸透させる方法等
が好適である。樹脂溶液の濃度は余り低濃度すぎると含
浸は容易となるが、磁性粉体表面を十分に被覆すること
が困難となり、一方、余り高濃度となると成形体表面の
被覆の厚みにバラツキが生じ寸法精度が低下する。従っ
て、固形分として5〜20重量%の範囲が好適である。
Examples of the synthetic resin that is impregnated and coated on the voids and the surface of the molded body used in the present invention include synthetic resins as the above-mentioned binder, methyl cellulose, ethyl cellulose, nitro cellulose, polyvinyl alcohol, and the like. Epoxy resin having excellent adhesiveness to the rare earth magnetic powder is particularly preferable. For the impregnation of the synthetic resin, a method of immersing the molded product in the resin solution (in a preferable vacuum), a method of using a hydrostatic press to allow the resin solution to permeate into the voids of the molded product, and the like are suitable. If the concentration of the resin solution is too low, impregnation will be easy, but it will be difficult to sufficiently coat the surface of the magnetic powder, while if the concentration is too high, the coating thickness on the surface of the compact will vary, and The accuracy decreases. Therefore, the solid content is preferably in the range of 5 to 20% by weight.

「実施例」 以下、本発明を実施例及び比較例を挙げて説明するが、
本発明はこれらにより何ら制限されない。参考例1:リ
ン酸塩による処理磁性粉体Aの調製Nd−Fe−B磁性
粉体100gを主剤:Zn(H2PO4)2、酸化剤:硝酸からな
る温度60℃、pH=2.5のリン酸亜鉛皮膜処理液に浸漬
し、15分間攪拌を行った。その後、処理液の上澄液を
除き、処理磁性粉体を水洗し、100℃×3hrの条件で
乾燥させて処理磁性粉体Aを得た。
"Examples" Hereinafter, the present invention will be described with reference to Examples and Comparative Examples.
The present invention is not limited to these. Reference Example 1: base compound prepared Nd-Fe-B magnetic powder 100g of phosphate by treatment magnetic powder A: Zn (H 2 PO 4 ) 2, oxidant: temperature 60 ° C. consisting of nitric acid, pH = 2.5 in It was immersed in the zinc phosphate coating solution and stirred for 15 minutes. Thereafter, the supernatant of the treatment liquid was removed, the treated magnetic powder was washed with water, and dried at 100 ° C. for 3 hours to obtain a treated magnetic powder A.

参考例2:リン酸塩による処理磁性粉体Bの調製 参考例1と同一の磁性粉体100gを主剤:Mn(H2P
O4)2、酸化剤:硝酸からなるリン酸Mn皮膜処理液に浸漬
する以外は参考例1と同様の操作を行い、処理磁性粉体
Bを得た。
Reference Example 2: Preparation of Treatment Magnetic Powder B with Phosphate 100 g of the same magnetic powder as in Reference Example 1 was used as the base compound: Mn (H 2 P
O 4 ) 2 , Oxidizing agent: Treated magnetic powder B was obtained in the same manner as in Reference Example 1 except that the phosphoric acid Mn coating solution containing nitric acid was immersed.

実施例1〜5 参考例1と2によって得られた処理磁性粉体AとBと、
第1表に示した成分割合の合成樹脂とを攪拌混合し、得
られた混合物を常温でプレス成形した後、180℃×2
hrの温度下で合成樹脂を硬化せしめ、外径8mm、内径6
mm、高さ4mmのリング状成形体を得た。
Examples 1 to 5 Treated magnetic powders A and B obtained in Reference Examples 1 and 2,
After mixing with a synthetic resin having the component ratios shown in Table 1 by stirring and press-molding the resulting mixture at room temperature, 180 ° C. × 2
Synthetic resin is cured at a temperature of hr, outer diameter 8 mm, inner diameter 6
A ring-shaped molded body having a size of 4 mm and a height of 4 mm was obtained.

しかる後、第1表に記した含浸処理樹脂を溶剤で希釈し
て低粘度液とし、前記リング状成形体を含浸処理液に浸
漬し、1分間保持した。その後、リング状成形体を含浸
処理液より取り出し含浸処理樹脂の硬化温度下で処理樹
脂を硬化させパルス着磁法で10極着磁を行い、試験試
料とした。
After that, the impregnation-treated resin shown in Table 1 was diluted with a solvent to obtain a low-viscosity liquid, and the ring-shaped molded body was dipped in the impregnation-treated liquid and held for 1 minute. Then, the ring-shaped compact was taken out from the impregnation treatment liquid, the treatment resin was cured at the curing temperature of the impregnation treatment resin, and 10-pole magnetization was performed by the pulse magnetization method to obtain a test sample.

以上の操作によって得られた各試験試料を90℃×95
%PHの恒温恒湿槽に静置し、100時間経過後の各試料
の錆の発生状況の観察と総磁束量の変化率を測定し、結
果を第1表に記した。総磁束量はフラックスメーターを
用いて測定した。
Each test sample obtained by the above operation was 90 ° C. × 95
The sample was left to stand in a thermo-hygrostat of% PH, and after 100 hours, the rust generation state of each sample was observed and the change rate of the total magnetic flux was measured, and the results are shown in Table 1. The total amount of magnetic flux was measured using a flux meter.

第1表より、本発明によれば、錆の発生を大巾に軽減で
きるだけでなく、総磁束量の減少率も小さくなり、酸化
を防止していることがわかる。
From Table 1, it can be seen that according to the present invention, not only the generation of rust can be greatly reduced, but also the reduction rate of the total magnetic flux is small, and oxidation is prevented.

比較例1〜2 参考例1と2によって得られた処理磁粉AとBを、第1
表に示した成分割合の合成樹脂とを攪拌混合し、得られ
た混合物を常温でプレス成形した後、180℃×2hrの
温度下で合成樹脂を硬化せしめ、外径8mm、内径6mm、
高さ4mmのリング状成形体を得た。該リング状成形体を
実施例1〜5と同様の条件で耐湿テストを行い、結果を
第1表に記した。
Comparative Examples 1-2 The treated magnetic powders A and B obtained in Reference Examples 1 and 2 were
After mixing the synthetic resins with the component ratios shown in the table with stirring and press-molding the obtained mixture at room temperature, the synthetic resin was cured at a temperature of 180 ° C. × 2 hr to obtain an outer diameter of 8 mm, an inner diameter of 6 mm,
A ring-shaped molded body having a height of 4 mm was obtained. The ring-shaped molded body was subjected to a moisture resistance test under the same conditions as in Examples 1 to 5, and the results are shown in Table 1.

比較例3 リン酸塩処理を施していないNd−Fe−B磁性粉体を
用いる事以外は実施例1〜5と同様の操作を行い、耐湿
テスト後の結果を第1表に記した。
Comparative Example 3 The same operations as in Examples 1 to 5 were carried out except that Nd-Fe-B magnetic powder not subjected to the phosphate treatment was used, and the results after the moisture resistance test are shown in Table 1.

「作用・効果」 叙上の通り、本発明によれば、発錆、酸化劣化が防止さ
れ、酸化に起因する磁気特性の低下が回避される。
[Operation / Effect] As described above, according to the present invention, rusting and oxidative deterioration are prevented, and deterioration of magnetic properties due to oxidation is avoided.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭54−121999(JP,A) 特開 昭49−110528(JP,A) 特開 昭61−253302(JP,A) 特開 昭61−9501(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-54-121999 (JP, A) JP-A-49-110528 (JP, A) JP-A-61-253302 (JP, A) JP-A-61- 9501 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】R−Fe−B(RはNd及び/又はPr、
又はこれらの1部を1種又は2種以上の希土類元素で置
換したもの)で表され、表面にリン酸塩を被覆せしめた
希土類金属と遷移金属とを主成分とする防錆金属間化合
物磁性粉体と結合剤である合成樹脂とを圧縮成形した後
結合剤を硬化固化せしめて多孔質成形体を形成し、該多
孔質成形体の空隙部及び表面に合成樹脂を含浸被覆させ
ることにより酸化劣化を防止したことを特徴とする樹脂
結合型磁石の製造方法。
1. R-Fe-B (R is Nd and / or Pr,
Or one part of these is replaced with one or more rare earth elements), and a rust-preventive intermetallic compound magnetic material composed mainly of a rare earth metal and a transition metal whose surface is coated with a phosphate. After the powder and the synthetic resin as the binder are compression-molded, the binder is hardened and solidified to form a porous molded body, and the voids and the surface of the porous molded body are impregnated with the synthetic resin to oxidize. A method for producing a resin-bonded magnet, characterized in that deterioration is prevented.
JP62139382A 1987-06-03 1987-06-03 Method for manufacturing resin-bonded magnet Expired - Lifetime JPH0666176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62139382A JPH0666176B2 (en) 1987-06-03 1987-06-03 Method for manufacturing resin-bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62139382A JPH0666176B2 (en) 1987-06-03 1987-06-03 Method for manufacturing resin-bonded magnet

Publications (2)

Publication Number Publication Date
JPS63304602A JPS63304602A (en) 1988-12-12
JPH0666176B2 true JPH0666176B2 (en) 1994-08-24

Family

ID=15244013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62139382A Expired - Lifetime JPH0666176B2 (en) 1987-06-03 1987-06-03 Method for manufacturing resin-bonded magnet

Country Status (1)

Country Link
JP (1) JPH0666176B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2019257A1 (en) * 1989-06-27 1990-12-27 Takuji Nomura Magnet and method for manufacturing the same
JP2757040B2 (en) * 1989-09-25 1998-05-25 株式会社トーキン Method for producing Nd-Fe-B bonded magnet
JPH07106110A (en) * 1993-10-06 1995-04-21 Yasunori Takahashi Powder composition for manufacturing bond magnet, and magnetic anisotropic permanent magnet, and manufacture of magnetic anisotropic permanent magnet
JPH07272913A (en) * 1994-03-30 1995-10-20 Kawasaki Teitoku Kk Permanent magnet material, and its manufacture and permanent magnet
DE102006019614B4 (en) 2006-04-25 2010-06-17 Vacuumschmelze Gmbh & Co. Kg Aging resistant permanent magnet made of an alloy powder and process for its preparation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332330B2 (en) * 1973-02-23 1978-09-07
JPS54121999A (en) * 1978-03-14 1979-09-21 Toshiba Corp Manufacture of permanent magnet
JPS619501A (en) * 1984-06-25 1986-01-17 Mitsui Toatsu Chem Inc Treatment of magnetic powder
JPS61253302A (en) * 1985-05-02 1986-11-11 Mitsui Toatsu Chem Inc Treatment of magnetic powder

Also Published As

Publication number Publication date
JPS63304602A (en) 1988-12-12

Similar Documents

Publication Publication Date Title
US6102980A (en) Dust core, ferromagnetic powder composition therefor, and method of making
CN102076448B (en) Iron-based magnetic alloy powder containing rare earth element, method for producing same, resin composition for bonded magnet obtained from same, bonded magnet, and compacted magnet
JP2009228107A (en) Iron-based soft magnetic powder for dust core, method for manufacturing the same, and dust core
KR19990087118A (en) Phosphate coated iron powder and method for the manufacturing thereof
EP0166597B1 (en) Magnetic powder and production process thereof
KR101537886B1 (en) Iron-base soft magnetic powder for dust cores, manufacturing method thereof, and dust core
US20100214046A1 (en) Bonded magnet and process for its manufacture
JPH0666176B2 (en) Method for manufacturing resin-bonded magnet
US8105443B2 (en) Non-ageing permanent magnet from an alloy powder and method for the production thereof
JP3857356B2 (en) Manufacturing method of magnetic powder for dust cores
JPH01147806A (en) Manufacture of resin-bonded type magnet
JP3160817B2 (en) Rare earth bonded magnet material, rare earth bonded magnet, and method for manufacturing rare earth bonded magnet
JP2005232535A (en) Iron powder for powder magnetic core, and powder magnetic core
JPS61263208A (en) Manufacture of magnetic molded unit
JPS6414902A (en) Resin-bound type magnet
JP4492576B2 (en) Bond magnet and manufacturing method thereof
JP4972975B2 (en) Rare earth magnet and manufacturing method thereof
JPS61253302A (en) Treatment of magnetic powder
JPH036963B2 (en)
JP3149549B2 (en) Rare earth bonded magnet manufacturing method
JPH0494501A (en) Bond magnet and its production method
JP2004214409A (en) Method for manufacturing oxidation-resistant rare earth system magnet powder
JP2020123703A (en) Rare earth bonded magnet manufacturing method
EP0468449A1 (en) Bonded rare earth magnet and a process for manufacturing the same
JPH05175021A (en) Rare-earth bonded magnet material, rare earth bonded magnet and manufacture of the magnet