JPS61253302A - Treatment of magnetic powder - Google Patents

Treatment of magnetic powder

Info

Publication number
JPS61253302A
JPS61253302A JP60093765A JP9376585A JPS61253302A JP S61253302 A JPS61253302 A JP S61253302A JP 60093765 A JP60093765 A JP 60093765A JP 9376585 A JP9376585 A JP 9376585A JP S61253302 A JPS61253302 A JP S61253302A
Authority
JP
Japan
Prior art keywords
powder
rare earth
magnetic powder
magnetic
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60093765A
Other languages
Japanese (ja)
Inventor
Tadatoshi Honda
本多 忠敏
Takeshi Tsuda
武 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP60093765A priority Critical patent/JPS61253302A/en
Priority to US06/746,884 priority patent/US4668283A/en
Priority to EP85304498A priority patent/EP0166597B1/en
Priority to DE8585304498T priority patent/DE3579511D1/en
Publication of JPS61253302A publication Critical patent/JPS61253302A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To prevent the oxidation deterioration during the process for production and using of a magnet by bringing magnetic powder consisting of an intermetallic compd. with a specific phosphorus compd. and exposing the same to an oxygen-contg. atmosphere. CONSTITUTION:The magnetic powder consisting of the intermetallic compd. contg. a rare earth element such as Sm and ferrous metal a sesential constituting components is brought into contact with the phosphorus compd. of a phosphoric acid, etc. having active proton of <=4pKa. The powder is exposed to the atmosphere contg. oxygen such as air simultaneously or after the contact. The exposing time is usually several minutes to several hours. The powder is substantially kept free from oxidation during the process of production and use of the magnet when the rare earth magnet powder treated by the above- mentioned method is used. The safe and easy production of the rare earth plastic magnetic having a magnetic characteristic is thus made possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁性粉末の処理方法に関する。詳しくは、結
晶磁気異方性が高く、その粉末は希土類プラスチック磁
石の原料として有用である希土類金属と鉄族金属を主構
成要素とする金属間化合物、例えば、RCo 5系、R
2Co17系(Rは希土類元素) Nd−Fe−B基金
属間化合物の粉末の酸化劣化を防止する処理方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for processing magnetic powder. Specifically, it is an intermetallic compound whose main constituents are rare earth metals and iron group metals, which have high crystal magnetic anisotropy and whose powder is useful as a raw material for rare earth plastic magnets, such as RCo 5 series, R
The present invention relates to a treatment method for preventing oxidative deterioration of powder of a 2Co17-based (R is a rare earth element) Nd-Fe-B-based intermetallic compound.

〔従来の技術〕[Conventional technology]

プラスチック磁石は、一般に1〜150μsの範囲の磁
性粉末と液状の熱硬化性樹脂または熔融状態の熱可塑性
樹脂とを混練し、圧縮成型、射出成型、押出し成型など
の通常のプラスチック成型法により製造される。焼結法
または鋳造法による磁石とは異り、成型加工が容易で、
弾力性および耐薬品性があるという特徴を有している。
Plastic magnets are generally manufactured by kneading magnetic powder in the range of 1 to 150 μs with liquid thermosetting resin or molten thermoplastic resin, and using ordinary plastic molding methods such as compression molding, injection molding, and extrusion molding. Ru. Unlike magnets made by sintering or casting, it is easy to mold.
It has the characteristics of elasticity and chemical resistance.

従来より磁性粉末としてフェライトが用いられてきたが
、より強力な磁石が求められるようになり、フェライト
より結晶磁気異方性が高い希土類金属と鉄族金属を主構
成要素とする金属間化合物(以後、希土類磁石と略称す
る)の微粉末を磁性粉末として用いることが試みられる
ようになった。
Ferrite has traditionally been used as a magnetic powder, but as stronger magnets are required, intermetallic compounds (hereinafter referred to as Attempts have been made to use fine powder of rare earth magnets (abbreviated as rare earth magnets) as magnetic powder.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

プラスチック磁石の製造に際しては、樹脂との混線時な
いしは成型時に高温に曝される。希土類磁石粉末は、フ
ェライトとは異なり、例えば特開昭54−11iHe号
および特開昭54−71031号に述べられているよう
に非常に酸化され易いのでプラスチッグ磁石とする工程
で酸化され、その結果、得られる希土類プラスチック磁
石の磁気特性は著しく劣ったものとなるという問題があ
る。また極端な場合には、製造中に酸化が急激に進み着
火するという事態にもなり安全性の面でも問題があった
When manufacturing plastic magnets, they are exposed to high temperatures when mixed with resin or during molding. Rare earth magnet powder, unlike ferrite, is very easily oxidized as described in, for example, JP-A-54-11iHe and JP-A-54-71031, so it is oxidized during the process of making plastic magnets, and as a result, However, there is a problem in that the magnetic properties of the resulting rare earth plastic magnet are significantly inferior. Furthermore, in extreme cases, oxidation may rapidly progress during production and ignition may occur, posing a safety problem.

製造中の高温に曝されるということの少ない方法、例え
ば圧縮成型などの方法で製造するにしても、製品によっ
てはバインダー樹脂の耐熱温度近くで使用されることも
あり、使用中に酸化によって経時的に磁気特性が劣化す
るという問題があった。
Even if the product is manufactured using a method that is less likely to be exposed to high temperatures during manufacturing, such as compression molding, some products may be used near the heat-resistant temperature of the binder resin, and may deteriorate over time due to oxidation during use. However, there was a problem in that the magnetic properties deteriorated over time.

高性能な希土類プラスチック磁石を製造する方法は数多
く提案されているがその中の1つとして磁性粉末をリン
化合物で被覆し、粉末の表面摩擦係数を低下させて磁石
の密度と磁性粉体の配向性を高め、粉末法による磁石の
高性能化を計る方法がある(例えば、特開昭57−28
104) 、この方法は、従来使用されていた油、パラ
フィン、フッ素樹脂等に代えてリン化合物を被覆剤とす
るところに特徴がある。
Many methods have been proposed for manufacturing high-performance rare earth plastic magnets, one of which is to coat magnetic powder with a phosphorus compound to reduce the surface friction coefficient of the powder and increase the density of the magnet and the orientation of the magnetic powder. There are methods to improve the performance of magnets using powder methods (for example, Japanese Patent Application Laid-Open No. 57-28
104), this method is characterized in that a phosphorus compound is used as a coating agent instead of conventionally used oil, paraffin, fluororesin, etc.

使用するリン化合物としては、磁性粉末の構成元素とリ
ンの化合物、リンを含む有機化合物、無機化合物と広範
囲であるが、具体的にはリン酸マンガン系、リン酸亜鉛
系、リン酸鉄系、リン酸亜鉛・マンガン系、リン酸亜鉛
Oカルシウム系等を挙げている。これらはいずれも鋼板
のリン酸塩皮膜化成液の主成分として公知である。すな
わち、この方法は通常鋼板のリン酸塩皮膜化成処理方法
を磁性粉末に適用したものである。
Phosphorus compounds used range widely, including compounds of the constituent elements of the magnetic powder and phosphorus, organic compounds containing phosphorus, and inorganic compounds, but specifically include manganese phosphates, zinc phosphates, iron phosphates, Zinc phosphate/manganese type, zinc phosphate O calcium type, etc. are listed. All of these are known as main components of a phosphate coating solution for steel sheets. That is, this method is an application of the phosphate film chemical conversion treatment method for ordinary steel sheets to magnetic powder.

この方法により調製した磁性粉末では、その表面はリン
酸塩皮膜化成液の主成分に由来する皮膜が形成されてい
るが、嵩比重が小さく、この粉末を原料として用いて得
た希土類プラスチック磁石は性能が不充分なものであっ
た(比較例4参!@)。
The magnetic powder prepared by this method has a film formed on its surface derived from the main component of the phosphate film chemical solution, but its bulk specific gravity is small, and rare earth plastic magnets obtained using this powder as a raw material are The performance was insufficient (see Comparative Example 4!@).

したがって、本発明の目的は希土類磁性粉末を、それを
原料とする希土類プラスチック磁石の製造工程中および
使用時における酸化劣化を防止しうるように処理する方
法を提供することにある。
Therefore, an object of the present invention is to provide a method for treating rare earth magnetic powder so as to prevent oxidative deterioration during the manufacturing process and during use of rare earth plastic magnets made from the rare earth magnetic powder.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の上記目的は、次の磁性粉末の処理方法により達
成される。
The above object of the present invention is achieved by the following method for processing magnetic powder.

希土類金属および鉄族金属を主構成成分とする金属間化
合物からなる磁性粉末をpKaが4以下である活性プロ
トンを有するリン化合物と接触させると同時に、あるい
は接触させたのちに酸素を含有する雰囲気に曝すことを
特徴とする磁性粉末の処理方法。
A magnetic powder made of an intermetallic compound whose main constituents are rare earth metals and iron group metals is brought into contact with a phosphorus compound having active protons having a pKa of 4 or less, or at the same time, the powder is placed in an oxygen-containing atmosphere. A method for processing magnetic powder, characterized by exposing it to magnetic powder.

本発明においては、希土類磁石の微粉末をpeaが4以
下であるプロトンを有するリン化合物、例えば、リン酸
、酸性リン酸エステル類、ジアルキルジチオリン酸、亜
リン酸、酸性亜リン酸エステル類と接触させる。接触さ
せる方法は、リン化合物の溶液に浸漬する。リン化合物
の溶液を噴霧する。あるいはリン化合物の蒸気に触れさ
せるなどの方法が用いられる。なお、浸漬あるいは噴霧
に用いる溶液中のリン化合物の濃度は、通常。
In the present invention, fine powder of a rare earth magnet is brought into contact with a phosphorus compound having a proton having a pea of 4 or less, such as phosphoric acid, acidic phosphoric acid esters, dialkyldithiophosphoric acid, phosphorous acid, and acidic phosphite esters. let The method of contact is immersion in a solution of a phosphorus compound. Spray with a solution of phosphorus compounds. Alternatively, a method such as exposure to vapor of a phosphorus compound may be used. Note that the concentration of phosphorus compounds in the solution used for dipping or spraying is normal.

0.1〜20wt%の範囲が適当である。また、接触さ
せる際の温度は室温から100℃の範囲で、接触時間は
、通常、数分から数時間の範囲である。
A range of 0.1 to 20 wt% is suitable. Further, the temperature during contact is in the range of room temperature to 100° C., and the contact time is usually in the range of several minutes to several hours.

本発明においては、希土類磁石粉末をリン化合物と接触
させると同時に、あるいは接触した後に、酸素を含む雰
囲気、通常は空気に曝す。
In the present invention, the rare earth magnet powder is exposed to an oxygen-containing atmosphere, usually air, at the same time as or after the rare earth magnet powder is brought into contact with the phosphorus compound.

曝す時間は希土類磁石の組成、結品の成長程度、粉末の
粒度、雰囲気の酸素濃度、温度、リン化合物の種類、そ
の濃度により、広い範囲に変化しうるが、通常、数分か
ら数時間の間である。
The exposure time can vary over a wide range depending on the composition of the rare earth magnet, the degree of growth of crystals, the particle size of the powder, the oxygen concentration of the atmosphere, the temperature, the type of phosphorus compound, and its concentration, but it usually ranges from several minutes to several hours. It is.

なお、リン化合物と接触させると同時に酸素を含む雰囲
気に曝す場合は、リン化合物と接触させる条件を取ると
よく、接触させたのちに酸素を含む雰囲気に曝す場合は
、50″〜250℃、より好ましくは50°〜200℃
の温度で曝すのが適当である。
In addition, when contacting with a phosphorus compound and exposing it to an atmosphere containing oxygen at the same time, it is better to use the conditions of contact with the phosphorus compound, and when exposing to an atmosphere containing oxygen after contact, the temperature should be set at 50'' to 250℃, or higher. Preferably 50° to 200°C
It is appropriate to expose at a temperature of .

本発明においては、希土類磁石の粉末の粒径としては、
組成、用途等により異なるが、通常1〜150μs、特
に1〜100uが適当である。
In the present invention, the particle size of the rare earth magnet powder is as follows:
Although it varies depending on the composition, use, etc., 1 to 150 μs, particularly 1 to 100 μs is appropriate.

〔実施例〕〔Example〕

以下に実施例を示して本発明の方法をより具体的に説明
する。
The method of the present invention will be explained in more detail with reference to Examples below.

実施例l Sm25.8%、Fe14.7%、Cu 7.7%、Z
r 1.9%残りがGOよりなるSs+2Co17磁性
粉末(粒径44〜63鱗)を、 0゜5wt%リン酸水
溶液に室温で30分間浸漬し、水洗した後、80℃で3
0分間、空気に曝した。
Example 1 Sm 25.8%, Fe 14.7%, Cu 7.7%, Z
r 1.9% Ss+2Co17 magnetic powder (particle size 44 to 63 scales), the remainder of which is GO, was immersed in a 0.5 wt% phosphoric acid aqueous solution at room temperature for 30 minutes, washed with water, and then heated at 80°C for 30 minutes.
Exposure to air for 0 minutes.

この粉末の97重量部をエポキシ樹脂および硬化剤の混
合物の3重量部と混合して圧縮成形し、次いで 130
℃で30分間加熱し硬化させた後、着磁した。得られた
磁石140℃の空気中で800時間の温度特性テスト後
の磁束密度は0.90KGであった。
97 parts by weight of this powder were mixed with 3 parts by weight of a mixture of epoxy resin and curing agent, compression molded, and then 130 parts by weight
After curing by heating at ℃ for 30 minutes, it was magnetized. The obtained magnet had a magnetic flux density of 0.90 KG after a temperature characteristic test for 800 hours in air at 140°C.

実施例2 0.5wt%のリン酸水溶液の代りに5wt%亜リン酸
メタノール溶液を用いた他は実施例1と同様の操作を行
った。磁束密度は0.92KGであった。
Example 2 The same operation as in Example 1 was performed except that a 5 wt % phosphorous acid methanol solution was used instead of the 0.5 wt % phosphoric acid aqueous solution. The magnetic flux density was 0.92KG.

実施例3 実施例1と同一の磁性粉末を10wt%酸性リン酸ジメ
チルのメタノール溶液に、空気雰囲気下50℃で2時間
浸漬した後、乾燥した。この粉末の87重量部をエポキ
シ樹脂および硬化剤の混合物の3重量部と混合し、圧縮
成形し、 130℃で30分間加熱し硬化させた後、着
磁した。得られた磁石の、140℃の空気中で800時
間の温度特性テスト後の磁束密度は0.89KGであっ
た。
Example 3 The same magnetic powder as in Example 1 was immersed in a methanol solution of 10 wt % acidic dimethyl phosphate at 50° C. in an air atmosphere for 2 hours, and then dried. 87 parts by weight of this powder was mixed with 3 parts by weight of a mixture of epoxy resin and curing agent, compression molded, heated at 130° C. for 30 minutes to cure, and then magnetized. The obtained magnet had a magnetic flux density of 0.89 KG after a temperature characteristic test for 800 hours in air at 140°C.

比較例1 曝気処理を行わなかった他は実施例1と同様の操作を行
った。磁束密度は0.79KGであった。
Comparative Example 1 The same operation as in Example 1 was performed except that no aeration treatment was performed. The magnetic flux density was 0.79KG.

比較例2 リン酸水溶液に浸漬しなかった他は実施例1と同様の操
作を行った。Fi1束密度は0 、75KGであった。
Comparative Example 2 The same operation as in Example 1 was performed except that the sample was not immersed in the phosphoric acid aqueous solution. The Fi1 flux density was 0.75 KG.

比較例3 リン酸水溶液に浸漬せず曝気処理を行わなかった他は実
施例1と同様の操作を行った。磁束密度は0.75KG
であった。
Comparative Example 3 The same operation as in Example 1 was performed except that the sample was not immersed in an aqueous phosphoric acid solution and no aeration treatment was performed. Magnetic flux density is 0.75KG
Met.

比較例4 実施例1で用いた磁性粉末をMn(H2POa)22.
0重量部、Mn(NO3)2− ffH2O0,5重量
部、Fe(H2POa)20.1重量部、83P04 
0.2重量部、H2O17,2重量部からなるリン酸塩
皮膜化成液で80℃、 10分間化成処理を行った。得
られた粉末のXRF分析値は、Sm38998(cps
)、 Ca211492(cps)、Fe10337(
cps)。
Comparative Example 4 The magnetic powder used in Example 1 was replaced with Mn(H2POa)22.
0 parts by weight, Mn(NO3)2-ffH2O0.5 parts by weight, Fe(H2POa) 20.1 parts by weight, 83P04
A chemical conversion treatment was performed at 80° C. for 10 minutes using a phosphate film conversion solution consisting of 0.2 parts by weight and 17.2 parts by weight of H2O. The XRF analysis value of the obtained powder was Sm38998 (cps
), Ca211492 (cps), Fe10337 (
cps).

Mn3H85(cps)、 P70881(cps)で
あり、嵩密度は1.771 g/crm3であった。こ
の粉末を実施例1と同様にして成形、硬化させて着磁し
た0着磁後の磁束密度は0.84KGであった。
Mn3H85 (cps), P70881 (cps), and the bulk density was 1.771 g/crm3. This powder was molded, hardened and magnetized in the same manner as in Example 1, and the magnetic flux density after zero magnetization was 0.84 KG.

〔発明の効果〕〔Effect of the invention〕

本発明の方法で処理した希土類磁石粉末を用いると製造
工程中及び使用時に実質的に酸化を受けず、したがって
、高い磁気特性を有する希土類プラスチック磁石を安全
に且つ容易に製造することができる。
When rare earth magnet powders treated by the method of the present invention are used, they are substantially free from oxidation during the manufacturing process and during use, and therefore rare earth plastic magnets with high magnetic properties can be produced safely and easily.

Claims (1)

【特許請求の範囲】[Claims] 1、希土類金属および鉄族金属を主構成成分とする金属
間化合物からなる磁性粉末を、pKaが4以下である活
性プロトンを有するリン化合物と接触させると同時に、
あるいは接触させたのちに酸素を含有する雰囲気に曝す
ことを特徴とする磁性粉末の処理方法。
1. At the same time, contacting a magnetic powder made of an intermetallic compound whose main constituents are rare earth metals and iron group metals with a phosphorus compound having active protons having a pKa of 4 or less,
Alternatively, a method for processing magnetic powder, which comprises exposing it to an oxygen-containing atmosphere after contacting it.
JP60093765A 1984-06-25 1985-05-02 Treatment of magnetic powder Pending JPS61253302A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60093765A JPS61253302A (en) 1985-05-02 1985-05-02 Treatment of magnetic powder
US06/746,884 US4668283A (en) 1984-06-25 1985-06-20 Magnetic powder and production process thereof
EP85304498A EP0166597B1 (en) 1984-06-25 1985-06-25 Magnetic powder and production process thereof
DE8585304498T DE3579511D1 (en) 1984-06-25 1985-06-25 MAGNETIC POWDER AND THEIR PRODUCTION PROCESS.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60093765A JPS61253302A (en) 1985-05-02 1985-05-02 Treatment of magnetic powder

Publications (1)

Publication Number Publication Date
JPS61253302A true JPS61253302A (en) 1986-11-11

Family

ID=14091521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60093765A Pending JPS61253302A (en) 1984-06-25 1985-05-02 Treatment of magnetic powder

Country Status (1)

Country Link
JP (1) JPS61253302A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63281409A (en) * 1987-05-13 1988-11-17 Nippon Steel Chem Co Ltd Surface treatment of fe-nd-b magnetic powder
JPS63304602A (en) * 1987-06-03 1988-12-12 Kanegafuchi Chem Ind Co Ltd Resin-bonded magnet
JPH01234502A (en) * 1988-03-11 1989-09-19 Hirata Michitoshi Fine metal powder and production thereof
JPH0264141U (en) * 1988-11-01 1990-05-14

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63281409A (en) * 1987-05-13 1988-11-17 Nippon Steel Chem Co Ltd Surface treatment of fe-nd-b magnetic powder
JPS63304602A (en) * 1987-06-03 1988-12-12 Kanegafuchi Chem Ind Co Ltd Resin-bonded magnet
JPH01234502A (en) * 1988-03-11 1989-09-19 Hirata Michitoshi Fine metal powder and production thereof
WO1989008516A1 (en) * 1988-03-11 1989-09-21 Michitoshi Hirata Fine metal powder and method of producing same
JPH0264141U (en) * 1988-11-01 1990-05-14

Similar Documents

Publication Publication Date Title
KR101369109B1 (en) Method for producing dust core, and dust core obtained by the method
KR102249376B1 (en) Non-corrosive soft-magnetic powder
KR101537886B1 (en) Iron-base soft magnetic powder for dust cores, manufacturing method thereof, and dust core
JPH04328804A (en) Corrosion-proof permanent magnet and manufacture thereof
CN102543350A (en) Production process of dust core and dust core obtained thereby
EP0166597B1 (en) Magnetic powder and production process thereof
JP2003142310A (en) Dust core having high electrical resistance and manufacturing method therefor
JPS61253302A (en) Treatment of magnetic powder
US3964939A (en) Bodies including passivated metal particles
JPH0319201A (en) Permanent magnet on basis of ndfeb and method of passivating surface thereof
JPS619501A (en) Treatment of magnetic powder
JPH01220407A (en) Dust core
JPS63304602A (en) Resin-bonded magnet
KR101094839B1 (en) Non-ageing permanent magnet made from an alloy powder and method for the production thereof
JPS61263208A (en) Manufacture of magnetic molded unit
US20240038421A1 (en) Soft magnetic powder, preparation method therefor, and use thereof
JPH01147806A (en) Manufacture of resin-bonded type magnet
JPS63232304A (en) Permanent magnet excellent in oxidation resistance and manufacture thereof
WO2004033135A1 (en) Moulded soft magnetic part produced by metal powder processing technique and exhibiting high maximum permeability, related manufacturing methods and uses
JPS63262802A (en) Fe-nd-b plastic magnet
JPS5754304A (en) Manufacture of permanent magnet
JP4411840B2 (en) Method for producing oxidation-resistant rare earth magnet powder
JPH0232511A (en) Surface treatment of rare earth-fe-b magnet
JPH0230564B2 (en) PURASUCHITSUKUMAGUNETSUTOSOSEIBUTSU
JP2004211129A (en) Metal powder for powder magnetic core, and powder magnetic core using it