JP3160817B2 - Rare earth bonded magnet material, rare earth bonded magnet, and method for manufacturing rare earth bonded magnet - Google Patents

Rare earth bonded magnet material, rare earth bonded magnet, and method for manufacturing rare earth bonded magnet

Info

Publication number
JP3160817B2
JP3160817B2 JP34503991A JP34503991A JP3160817B2 JP 3160817 B2 JP3160817 B2 JP 3160817B2 JP 34503991 A JP34503991 A JP 34503991A JP 34503991 A JP34503991 A JP 34503991A JP 3160817 B2 JP3160817 B2 JP 3160817B2
Authority
JP
Japan
Prior art keywords
rare earth
thermosetting resin
bonded magnet
binder
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34503991A
Other languages
Japanese (ja)
Other versions
JPH05175024A (en
Inventor
谷 嵩 司 古
直 樹 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP34503991A priority Critical patent/JP3160817B2/en
Priority to AT92310935T priority patent/ATE134792T1/en
Priority to DE69208624T priority patent/DE69208624T2/en
Priority to EP92310935A priority patent/EP0549149B1/en
Publication of JPH05175024A publication Critical patent/JPH05175024A/en
Priority to US08/176,645 priority patent/US5393445A/en
Application granted granted Critical
Publication of JP3160817B2 publication Critical patent/JP3160817B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/0533Alloys characterised by their composition containing rare earth metals in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

A rare-earth bonded magnet is improved in its heat resistance by coating rare-earth magnetic powder with heat resisting addition polymerized thermosetting resin consisting mainly of triazine resin because oxidation of the rare-earth magnetic powder is prevented or retarded by triazine rings formed in the coating film of the thermosetting resin consisting mainly of the triazine resin. The heat resistance of the bonded magnet is further improved by curing the thermosetting resin in a vacuum and by adding organometallic salt in the thermosetting resin as a metallic catalyser since the coating film is formed more firmly.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、自動車,事務機器,家
電製品,音響機器などの幅広い製品類に使用される希土
類ボンド磁石を提供するのに好適な希土類ボンド磁石材
料,希土類ボンド磁石および希土類ボンド磁石の製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare-earth bonded magnet material, a rare-earth bonded magnet, and a rare-earth bonded magnet suitable for providing a rare-earth bonded magnet used in a wide variety of products such as automobiles, office equipment, home appliances, and audio equipment. The present invention relates to a method for manufacturing a bonded magnet.

【0002】[0002]

【従来の技術】従来、永久磁石としてはアルニコ磁石や
フェライト磁石などが多く使用されてきたが、これらの
磁石よりもさらに磁気特性に優れた希土類磁石が開発さ
れそしてこの用途および使用量は急激に拡大しつつあ
る。
2. Description of the Related Art Conventionally, alnico magnets and ferrite magnets have been used as permanent magnets in many cases. Rare earth magnets having better magnetic properties than these magnets have been developed, and their use and usage are rapidly increasing. Is expanding.

【0003】このような希土類磁石は活発な金属を含む
ため、酸化しやすく、それにより耐蝕性,耐温度特性が
悪いという欠点を有しており、特に室温以上では著しく
酸化されやすく耐熱性に劣るという欠点を有している。
[0003] Such a rare-earth magnet contains active metals and thus has a drawback that it is easily oxidized, thereby deteriorating corrosion resistance and temperature resistance characteristics. There is a disadvantage that.

【0004】また、希土類磁石の中でも、R−Fe−B
系,R−Fe−N系の磁石は、R(希土類)の他にFe
(鉄)を主成分としているため、Sm−Co系の磁石に
比べて酸化はより著しい。したがって、R−Fe系の希
土類磁石は磁気特性には優れているものの耐酸化性,耐
蝕性,室温以上での温度特性,耐熱性の点で大きな問題
点となっている。
[0004] Among the rare earth magnets, R-Fe-B
, R-Fe-N based magnets, in addition to R (rare earth),
Since (Fe) is the main component, oxidation is more remarkable than that of the Sm-Co magnet. Therefore, although R-Fe-based rare earth magnets have excellent magnetic properties, they have significant problems in terms of oxidation resistance, corrosion resistance, temperature characteristics at room temperature or higher, and heat resistance.

【0005】その中でも、焼結磁石は焼結反応により高
密度化しており、磁石製造の最終工程で製品表面を例え
ばNiメッキ処理や樹脂コーティングすることにより耐
蝕性などはかなり防止できる。また、ボンド磁石の中で
もポリアミド樹脂などの熱可塑性樹脂を用いて射出成形
した磁石は、その磁性粉末の回りが樹脂で完全に覆われ
ているため、焼結磁石と同様に製品の表面をコーティン
グすることにより防止できる。
[0005] Among them, sintered magnets are densified by a sintering reaction. Corrosion resistance and the like can be considerably prevented by, for example, Ni plating or resin coating on the product surface in the final step of magnet production. In addition, among the bonded magnets, magnets that are injection-molded using a thermoplastic resin such as polyamide resin coat the surface of the product in the same way as a sintered magnet because the magnetic powder is completely covered around the resin. This can be prevented.

【0006】[0006]

【発明が解決しようとする課題】一方、ボンド磁石の中
で、エポキシ樹脂などの熱硬化性樹脂や金属等のバイン
ダーを用いて圧縮成形した磁石は、磁性材料とバインダ
ーのほかに空孔が多く存在しているため、磁石表面を完
全にコーティングしても、磁石内部の空孔のため、酸化
を防ぐことができない。また、コーティングを通しそし
てさらに内部の空孔を通して、磁性材料が酸化すること
は避けられない。その結果、室温での磁気特性の経時変
化ならびに室温以上での磁気特性の経時変化が大きくな
り、耐熱性に劣ったものになるという欠点を有している
ことから、これらの欠点を解消することが課題となって
いた。
On the other hand, among the bonded magnets, a magnet formed by compression molding using a binder such as a thermosetting resin such as an epoxy resin or a metal has many holes in addition to the magnetic material and the binder. Due to the presence, even if the magnet surface is completely coated, oxidation cannot be prevented due to vacancies inside the magnet. It is also unavoidable that the magnetic material oxidizes through the coating and through the pores inside. As a result, the time-dependent change of the magnetic properties at room temperature and the time-dependent change of the magnetic properties at and above room temperature have a disadvantage that the heat resistance is inferior. Was an issue.

【0007】[0007]

【発明の目的】本発明は、上記した従来の課題にかんが
みてなされたもので、希土類磁性材料の酸化をできるだ
け防止して、室温での磁気特性の経時変化,室温以上で
の磁気特性の経時変化が少ないものとなり、耐熱性が改
善された希土類ボンド磁石を提供することを目的として
いる。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and aims to prevent the rare earth magnetic material from being oxidized as much as possible and to change the magnetic characteristics with time at room temperature and the magnetic characteristics at room temperature or higher. It is an object of the present invention to provide a rare-earth bonded magnet with little change and improved heat resistance.

【0008】[0008]

【課題を解決するための手段】本発明に係わる希土類ボ
ンド磁石材料は、希土類磁性粉末の表面に、熱硬化性樹
脂であるバインダーとしてのエポキシ樹脂と共にシアネ
ート基を含む樹脂を主成分とする高耐熱付加重合型熱硬
化性樹脂をコーティングしてなる構成としたことを特徴
としている。
According to the present invention, there is provided a rare-earth bonded magnet material comprising, on the surface of a rare-earth magnetic powder, a resin containing a cyanate group together with an epoxy resin as a binder which is a thermosetting resin as a main component. It is characterized in that it is configured to be coated with an addition polymerization type thermosetting resin.

【0009】また、本発明に係わる希土類ボンド磁石
は、熱硬化性樹脂であるバインダーとしてのエポキシ樹
脂と共にシアネート基を含む樹脂を主成分とする高耐熱
付加重合型熱硬化性樹脂を表面にコーティングした希土
類磁性粉末を前記バインダーにより結合してなる構成と
したことを特徴としている。
The rare earth bonded magnet according to the present invention has a surface coated with an epoxy resin as a thermosetting resin as a binder and a high heat-resistant addition polymerization type thermosetting resin mainly composed of a resin containing a cyanate group. It is characterized in that a rare earth magnetic powder is bonded by the binder.

【0010】さらに、本発明に係わる希土類ボンド磁石
の製造方法は、希土類磁性粉末にバインダーを添加し、
圧縮成形して希土類ボンド磁石を製造するに際し、前記
希土類磁性粉末に熱硬化性樹脂であるバインダーとして
のエポキシ樹脂と共にシアネート基を含む樹脂を主成分
とする高耐熱付加重合型熱硬化性樹脂を前記バインダー
の添加と同時にないしは相前後して添加し、前記希土類
磁性粉末の表面に前記高耐熱付加重合型熱硬化性樹脂を
コーティングしたあと圧縮成形する構成としたことを特
徴としており、実施態様においては、バインダーとして
のエポキシ樹脂およびシアネート基を含む樹脂を主成分
とする高耐熱付加重合型熱硬化性樹脂と共に金属触媒と
して有機金属塩を添加する構成とし、同じく実施態様に
おいて、熱硬化性樹脂の硬化処理を真空中において15
0℃以上で行う構成としたことを特徴としている。
Further, in the method for producing a rare earth bonded magnet according to the present invention, a binder is added to the rare earth magnetic powder,
Upon producing a rare earth bonded magnet by compression molding, the rare earth magnetic powder is a high heat resistant addition polymerization type thermosetting resin mainly containing a resin containing a cyanate group together with an epoxy resin as a binder which is a thermosetting resin. At the same time as or before or after the addition of the binder, it is characterized in that the surface of the rare earth magnetic powder is coated with the high heat-resistant addition polymerization type thermosetting resin and then compression-molded. A configuration in which an organic metal salt is added as a metal catalyst together with a highly heat-resistant addition polymerization type thermosetting resin mainly containing an epoxy resin as a binder and a resin containing a cyanate group, and in the same embodiment, curing of the thermosetting resin Process in vacuum for 15 minutes
It is characterized in that the structure is performed at 0 ° C. or higher.

【0011】本発明において、希土類磁性粉末として
は、R−Fe系,R−Fe−B系,R−Fe−N系など
の希土類を含む磁性粉末が使用される。
In the present invention, as the rare earth magnetic powder, a magnetic powder containing a rare earth such as R-Fe, R-Fe-B or R-Fe-N is used.

【0012】また、このような希土類磁性粉末の表面に
コーティングする樹脂としては、不飽和3重結合を有す
るシアネート基(−R−O−C≡N)を含む樹脂を主成
分とする高耐熱付加重合型熱硬化性樹脂が用いられる。
As a resin to be coated on the surface of such a rare earth magnetic powder, a high heat resistant resin mainly composed of a resin containing a cyanate group having an unsaturated triple bond (—RO—C≡N) is used. A polymerizable thermosetting resin is used.

【0013】そして、本発明に係わる希土類ボンド磁石
材料は、前記希土類磁性粉末の表面に、熱硬化性樹脂で
あるバインダーとしてのエポキシ樹脂と共に上記シアネ
ート基を含む樹脂を主成分とする高耐熱付加重合型硬化
性樹脂をコーティングしてなるものであるが、コーティ
ングに際しては、シアネート基を含む樹脂を主成分とす
る高耐熱付加重合型熱硬化性樹脂を含む溶液中(例え
ば、溶剤としてメチルエチルケトンなどを使用)に希土
類磁性粉末を浸漬してコーティングする手法や、希土類
磁性粉末にシアネート基を含む樹脂を主成分とする前記
熱硬化性樹脂を添加混合する手法や、シアネート基を含
む樹脂を主成分とする前記熱硬化性樹脂を蒸発させて希
土類磁性粉末の表面にコーティングする手法などが採用
される。
The rare-earth bonded magnet material according to the present invention is characterized in that a high heat-resistant addition polymerization mainly comprising the above-mentioned resin containing a cyanate group together with an epoxy resin as a binder which is a thermosetting resin is provided on the surface of the rare-earth magnetic powder. It is formed by coating a mold-curable resin. In the coating, a solution containing a high heat-resistant addition-polymerization-type thermosetting resin whose main component is a resin containing a cyanate group (for example, using methyl ethyl ketone or the like as a solvent) A) coating a rare earth magnetic powder by immersing it in a rare earth magnetic powder, adding a thermosetting resin containing a resin containing a cyanate group as a main component to the rare earth magnetic powder, or mixing a resin containing a cyanate group as a main component. A method of evaporating the thermosetting resin and coating the surface of the rare earth magnetic powder is employed.

【0014】本発明に係わる希土類ボンド磁石は、熱硬
化性樹脂であるバインダーとしてのエポキシ樹脂と共に
前記シアネート基を含む樹脂を主成分とする高耐熱付加
重合型熱硬化性樹脂を表面にコーティングした希土類磁
性粉末を前記バインダーにより結合してなるものである
が、この場合のバインダーとしては、同じく熱硬化性樹
脂であるエポキシ樹脂などが用いられ、圧縮成形などの
成形法によって所定の形状に成形(ボンディング)され
る。
The rare earth bonded magnet according to the present invention is a rare earth bonded magnet whose surface is coated with a high heat resistant addition polymerization type thermosetting resin mainly composed of the resin containing a cyanate group together with an epoxy resin as a binder which is a thermosetting resin. The magnetic powder is bonded with the binder. In this case, the binder is an epoxy resin, which is also a thermosetting resin, and is molded into a predetermined shape by a molding method such as compression molding (bonding). ) Is done.

【0015】そして、成形後には熱硬化性樹脂である前
記バインダーとしてのエポキシ樹脂、およびシアネート
基を含む樹脂を主成分とする熱硬化性樹脂の硬化処理を
非酸性雰囲気ないしは真空中において150℃以上で行
うようにするのが良い。この硬化処理において、熱硬化
性樹脂が硬化することとなるが、熱硬化性樹脂のうちの
シアネート基を含む樹脂は加熱により硬化してトリアジ
ン環が形成され、このトリアジン環は熱エネルギーに対
して著しく安定であるので、耐熱性に優れたものとな
る。
After the molding, the curing treatment of the epoxy resin as the binder, which is a thermosetting resin, and the thermosetting resin containing a resin containing a cyanate group as a main component is performed at 150 ° C. or more in a non-acidic atmosphere or vacuum. It is better to do it. In this curing treatment, the thermosetting resin is cured, but among the thermosetting resins, the resin containing a cyanate group is cured by heating to form a triazine ring, and this triazine ring is exposed to heat energy. Since it is extremely stable, it has excellent heat resistance.

【0016】また、希土類磁性粉末の個々の表面により
均一にシアネート基を含む樹脂を主成分とする熱硬化性
樹脂をコーティングするために、硬化処理を真空中にお
いて150℃以上で行うと、シアネート基を含む樹脂が
いったん蒸発して希土類磁性粉末の表面に蒸着し、これ
が硬化することとなるので、より均一に付着する。
In order to coat a thermosetting resin having a resin containing a cyanate group as a main component more uniformly on the individual surfaces of the rare earth magnetic powder, if the curing treatment is performed at 150 ° C. or more in a vacuum, the cyanate group Once evaporates and deposits on the surface of the rare-earth magnetic powder, which hardens, and thus adheres more uniformly.

【0017】さらに、このようにして、希土類ボンド磁
石を製造するに際し、バインダーとしてのエポキシ樹脂
およびシアネート基を含む樹脂を主成分とする高耐熱付
加重合型熱硬化性樹脂と共に、金属触媒としてオクチル
酸亜鉛やアセチルアセトン鉄などの有機金属塩を添加す
るようになすことも必要に応じて望ましく、金属触媒と
して有機金属塩を添加することによって、希土類磁性粉
末とシアネート基を含む樹脂を主成分とする熱硬化性樹
脂との密着性が向上し、より強固な耐熱性のコーティン
グ膜が得られるので、磁気特性の経時変化をより一層小
さなものにすることが可能となる。
Further, in producing the rare earth bonded magnet in this manner, together with an epoxy resin as a binder and a high heat-resistant addition polymerization type thermosetting resin mainly composed of a resin containing a cyanate group, octylic acid is used as a metal catalyst. It is also desirable to add an organic metal salt such as zinc or iron acetylacetone, if necessary.By adding an organic metal salt as a metal catalyst, a heat mainly composed of a rare earth magnetic powder and a resin containing a cyanate group can be obtained. Since the adhesiveness with the curable resin is improved and a stronger heat-resistant coating film can be obtained, it is possible to further reduce the change over time in the magnetic properties.

【0018】[0018]

【発明の作用】本発明に係わる希土類ボンド磁石材料,
希土類ボンド磁石および希土類ボンド磁石の製造方法で
は、希土類磁性粉末の表面に熱硬化性樹脂であるバイン
ダーとしてのエポキシ樹脂と共にシアネート基を含む樹
脂を主成分とする高耐熱付加重合型熱硬化性樹脂をコー
ティングしたものとし、そしてこれを用いるようにして
いるので、磁性材料の酸化を避けないしは遅くすること
が可能となって、希土類ボンド磁石の室温での磁気特性
の経時変化および室温以上での磁気特性の経時変化が小
さなものとなることにより耐熱性がさらに向上したもの
となる。
The rare earth bonded magnet material according to the present invention,
In the method for manufacturing a rare earth bonded magnet and a rare earth bonded magnet, a high heat resistant addition polymerization type thermosetting resin mainly containing a resin containing a cyanate group together with an epoxy resin as a binder which is a thermosetting resin is provided on the surface of the rare earth magnetic powder. The coating and the use of this coating make it possible to avoid or slow down the oxidation of the magnetic material. The heat resistance is further improved by making the change with time of the material small.

【0019】[0019]

【実施例】(実施例1) 28重量%Nd−0.9重量%B−5.0重量%Co−
残部Feを主成分とする希土類磁石合金溶湯を周速25
m/secで回転する銅製ロールの表面に噴射し、約3
0μm厚さのリボンを製造したのち、200μm以下の
大きさに粉砕して希土類磁性粉末を得た。次いで、前記
希土類磁性粉末を550℃で10分間焼鈍した。
EXAMPLES (Example 1) 28% by weight Nd-0.9% by weight B-5.0% by weight Co-
A rare earth magnet alloy melt containing Fe as the main component
Spray onto the surface of a copper roll rotating at m / sec.
After producing a ribbon having a thickness of 0 μm, the ribbon was pulverized to a size of 200 μm or less to obtain a rare earth magnetic powder. Next, the rare earth magnetic powder was annealed at 550 ° C. for 10 minutes.

【0020】次に、前記焼鈍後の希土類磁性粉末に熱硬
化性樹脂であるバインダーとしてのエポキシ樹脂を2重
量%添加し、さらにシアネート基を含む樹脂を主成分と
する高耐熱付加重合型熱硬化性樹脂として、三菱瓦斯化
学(株)製のBT2000を表1に示す添加量だけ添加
混合した。また、一部においてはさらに有機金属塩とし
てオクチル酸亜鉛を前記BT2000に対し0.000
6重量%添加した。
Next, an epoxy resin as a binder, which is a thermosetting resin, is added to the rare earth magnetic powder after annealing in an amount of 2% by weight, and a heat-resistant addition polymerization type thermosetting resin mainly containing a resin containing a cyanate group is used as a main component. As a conductive resin, BT2000 manufactured by Mitsubishi Gas Chemical Co., Ltd. was added and mixed in an amount shown in Table 1. Further, in some cases, zinc octylate was added as an organometallic salt to the BT2000 in an amount of 0.000.
6% by weight was added.

【0021】次いで、前記各混合粉末を直径10mm×
高さ7mmの大きさに圧縮成形した後、アルゴン中にお
いて170℃で1時間の硬化処理を施した。
Next, each of the mixed powders was weighed 10 mm ×
After compression molding to a height of 7 mm, a hardening treatment was performed at 170 ° C. for 1 hour in argon.

【0022】さらに、前記各圧縮成形品を50kOeの
パルス磁界中で着磁し、オープンフラックス値を測定し
た後、180℃×1000時間加熱保持したあと再び室
温でオープンフラックス値を測定し、オープンフラック
ス値の変化率すなわち不可逆減磁率を求めた。表1にエ
ポキシ樹脂およびシアネート基を含む樹脂(BT200
0)の添加量および180℃×1000時間後の不可逆
減磁率の測定結果を示す。
Further, each of the compression-molded articles was magnetized in a pulse magnetic field of 50 kOe, and the open flux value was measured. After heating at 180 ° C. for 1000 hours, the open flux value was measured again at room temperature. The rate of change of the value, ie, the irreversible demagnetization rate, was determined. Table 1 shows epoxy resins and resins containing cyanate groups (BT200
The measurement results of the addition amount of 0) and the irreversible demagnetization rate after 180 hours at 180 ° C. are shown.

【0023】[0023]

【表1】 [Table 1]

【0024】表1に示すように、希土類磁性粉末の表面
にBT2000をコーティングしない従来例No.1の
場合には、180℃×1000時間後の不可逆減磁率が
かなり大きくなっているのに対して、シアネート基を含
む樹脂としてBT2000をコーティングした本発明例
No.2〜8の場合にはBT2000のコーティング量
がある程度多くなると上記不可逆減磁率がかなり小さく
なっていることが認められた。しかし、BT2000の
コーティング量が多くなりすぎると磁気特性が低下する
こととなるので、2重量%以下とするのが望ましいこと
が認められた。また、有機金属塩を添加した場合の方が
不可逆減磁率がより小さいことが認められた。
As shown in Table 1, the surface of the rare earth magnetic powder was not coated with BT2000. In the case of No. 1, while the irreversible demagnetization rate after 180 ° C. × 1000 hours was considerably large, BT2000 coated with BT2000 as a resin containing a cyanate group was used. In the case of Nos. 2 to 8, it was recognized that the irreversible demagnetization rate was considerably reduced when the coating amount of BT2000 was increased to some extent. However, it was recognized that it is desirable to set the content to 2% by weight or less, because if the coating amount of BT2000 is too large, the magnetic properties deteriorate. It was also found that the irreversible demagnetization rate was smaller when the organic metal salt was added.

【0025】(実施例2) 28重量%Nd−0.9重量%B−5.0重量%Co−
残部Feを主成分とする希土類磁石合金溶湯を周速25
m/secで回転する銅製ロールの表面に噴射し、約3
0μm厚さのリボンを製造したのち、200μm以下の
大きさに粉砕して希土類磁性粉末を得た。次いで、前記
希土類磁性粉末を550℃で10分間焼鈍した。
Example 2 28% by weight Nd-0.9% by weight B-5.0% by weight Co-
A rare earth magnet alloy melt containing Fe as the main component
Spray onto the surface of a copper roll rotating at m / sec.
After producing a ribbon having a thickness of 0 μm, the ribbon was pulverized to a size of 200 μm or less to obtain a rare earth magnetic powder. Next, the rare earth magnetic powder was annealed at 550 ° C. for 10 minutes.

【0026】次に、前記焼鈍後の希土類磁性粉末に熱硬
化性樹脂であるバインダーとしてのエポキシ樹脂を2重
量%添加し、さらにシアネート基を含む高耐熱付加重合
型熱硬化性樹脂である上記BT2000を表2に示す量
だけ添加混合した。また、一部においてはさらに有機金
属塩としてオクチル酸亜鉛を前記BT2000に対し
0.0006重量%添加した。
Next, 2% by weight of an epoxy resin as a binder, which is a thermosetting resin, is added to the annealed rare earth magnetic powder, and the BT2000, which is a high heat-resistant addition polymerization type thermosetting resin containing a cyanate group, is further added. Was added and mixed in the amounts shown in Table 2. Further, in some cases, 0.0006% by weight of zinc octylate as an organic metal salt was added to the BT2000.

【0027】次いで、前記各混合粉末を直径10mm×
高さ7mmの大きさに圧縮成形した後、真空中において
170℃で1時間の硬化処理を施した。
Next, each of the mixed powders was 10 mm in diameter ×
After compression molding to a size of 7 mm in height, a curing treatment was performed at 170 ° C. for 1 hour in a vacuum.

【0028】さらに、前記各圧縮成形品を50kOeの
パルス磁界中で着磁し、オープンフラックス値を測定し
た後、180℃×1000時間加熱保持したあと再び室
温でオープンフラックス値を測定し、オープンフラック
ス値の変化率すなわち不可逆減磁率を求めた。表2にエ
ポキシ樹脂およびBT2000の添加量および180℃
×1000時間後の不可逆減磁率の測定結果を示す。
Further, each of the above-mentioned compression molded articles was magnetized in a pulse magnetic field of 50 kOe, and the open flux value was measured. After heating at 180 ° C. × 1000 hours, the open flux value was measured again at room temperature, and the open flux value was measured. The rate of change of the value, ie, the irreversible demagnetization rate, was determined. Table 2 shows the amounts of epoxy resin and BT2000 added and 180 ° C.
The measurement results of the irreversible demagnetization rate after × 1000 hours are shown.

【0029】[0029]

【表2】 [Table 2]

【0030】表2に示すように、硬化処理を真空中で行
った場合には、磁性粉末の個々の表面により均一にシア
ネート基を含む樹脂(BT2000)がコーティングさ
れることとなるので、180℃×1000時間後の不可
逆減磁率がさらに小さくなり、磁石の耐熱性がより一層
向上することが認められた。
As shown in Table 2, when the curing treatment is performed in a vacuum, the resin containing a cyanate group (BT2000) is uniformly coated on the individual surfaces of the magnetic powder. It was recognized that the irreversible demagnetization rate after × 1000 hours was further reduced, and the heat resistance of the magnet was further improved.

【0031】(実施例3) 31.0重量%Nd−1.0重量%B−残部Feを主成
分とする希土類磁性粉末を実施例1と同様の方法にて作
製したのち、焼鈍後の希土類磁性粉末に熱硬化性樹脂で
あるバインダーとしてのエポキシ樹脂2.0重量%と、
シアネート基を含む樹脂を主成分とする高耐熱付加重合
型熱硬化性樹脂(BT2000)0.3重量%を添加混
合した。また、一部においてはさらに有機金属塩として
オクチル酸亜鉛を前記BT2000に対し0.0006
重量%添加した。
Example 3 A rare earth magnetic powder containing 31.0% by weight of Nd-1.0% by weight of B and the balance of Fe as a main component was prepared in the same manner as in Example 1, and then the rare earth after annealing was prepared. 2.0% by weight of an epoxy resin as a binder which is a thermosetting resin in the magnetic powder;
0.3% by weight of a high heat-resistant addition polymerization type thermosetting resin (BT2000) containing a resin containing a cyanate group as a main component was added and mixed. Further, in some parts, zinc octylate was added as an organometallic salt to the BT2000 by 0.0006.
% By weight.

【0032】次いで、各混合粉末を直径10mm×高さ
7mmの大きさに圧縮成形した後、一部については大気
中において、また、他の一部についてはアルゴン中にお
いて、さらにまた他の一部については真空中においてそ
れぞれ170℃で1時間の硬化処理を施した。
Next, after compression-molding each mixed powder to a size of 10 mm in diameter × 7 mm in height, one part is in the air, another part is in argon, and another part is further. Was subjected to a curing treatment at 170 ° C. for 1 hour in a vacuum.

【0033】さらに、前記各圧縮成形品を50kOeの
パルス磁界中で着磁し、オープンフラックス値を測定し
た後、180℃×1000時間加熱保持したあと再び室
温でオープンフラックス値を測定し、オープンフラック
ス値の変化率すなわち不可逆減磁率を求めた。表3にこ
れらの結果を示す。
Further, each of the above-mentioned compression molded articles was magnetized in a pulse magnetic field of 50 kOe, and the open flux value was measured. After heating at 180 ° C. × 1000 hours, the open flux value was measured again at room temperature, and the open flux value was measured. The rate of change of the value, ie, the irreversible demagnetization rate, was determined. Table 3 shows these results.

【0034】[0034]

【表3】 [Table 3]

【0035】表3に示すように、シアネート基を含む樹
脂(BT2000)および有機金属塩を添加しない従来
例No.17〜19では180℃×1000時間後の不
可逆減磁率が大きな値を示していたのに対して、BT2
000を添加し有機金属塩を添加しない本発明例No.
20〜22ならびにBT2000および有機金属塩の両
方を添加した本発明例No.23〜25では180℃×
1000時間後の不可逆減磁率がかなり小さなものとな
っており、硬化処理を真空中で行った場合に不可逆減磁
率が最も小さくなっていて耐熱性のより一層の向上に有
効であることが認められ、有機金属塩を添加した場合に
はさらに不可逆減磁率を小さなものにできることが認め
られた。
As shown in Table 3, a resin containing a cyanate group (BT2000) and Conventional Example No. 17 to 19, the irreversible demagnetization rate after 180 ° C. × 1000 hours showed a large value.
Inventive Example No. 000 to which no organic metal salt was added.
Inventive Example No. 20 to which both BT2000 and BT2000 and an organic metal salt were added 180 ° C for 23-25
The irreversible demagnetization rate after 1000 hours is considerably small, and it is recognized that the irreversible demagnetization rate is the smallest when the curing treatment is performed in a vacuum, which is effective for further improving the heat resistance. It was also found that the irreversible demagnetization rate could be further reduced when an organic metal salt was added.

【0036】(実施例4) Sm2Fe17の成分を有するインゴットを1100℃
で24時間加熱して均一化処理を施した後、120メッ
シュ以下に機械的に粉砕し、その粉末をN2雰囲気中に
おいて550℃で5時間熱処理して、窒化処理を施し
た。
Example 4 An ingot having a component of Sm2Fe17 was heated at 1100 ° C.
, And then mechanically pulverized to 120 mesh or less, and the powder was heat-treated at 550 ° C. for 5 hours in an N 2 atmosphere to perform a nitriding treatment.

【0037】次いで、窒化処理後の粉末をジェットミル
にて平均粒径3μmまで粉砕して微細な希土類磁性粉末
を得た後、前記希土類磁性粉末に熱硬化性樹脂であるバ
インダーとしてのエポキシ樹脂を2重量%添加し、さら
にシアネート基を含む高耐熱付加重合型熱硬化性樹脂と
して上記BT2000を0.3重量%添加し、一部につ
いてはさらに有機金属塩としてアセチルアセトン鉄をB
T2000に対し0.0015重量%加えた。
Next, the powder after nitriding is pulverized by a jet mill to an average particle size of 3 μm to obtain a fine rare earth magnetic powder, and then an epoxy resin as a binder which is a thermosetting resin is added to the rare earth magnetic powder. 2% by weight, and 0.3% by weight of BT2000 as a high heat-resistant addition polymerization type thermosetting resin containing a cyanate group.
0.0015% by weight was added to T2000.

【0038】次いで、前記各混合粉末を15kOeの磁
界中で縦磁場成形して直径10mm×高さ7mmの成形
体を得た後、一部についてはアルゴン中において、他の
一部については真空中においてそれぞれ170℃で1時
間の硬化処理を施した。
Next, each of the mixed powders was subjected to a vertical magnetic field molding in a magnetic field of 15 kOe to obtain a molded body having a diameter of 10 mm and a height of 7 mm. At 170 ° C. for 1 hour.

【0039】続いて、実施例1と同様にして180℃×
1000時間後の不可逆減磁率を測定したところ、表4
に示す結果であった。
Subsequently, in the same manner as in Example 1, 180 ° C. ×
The irreversible demagnetization rate after 1000 hours was measured.
The results are shown in FIG.

【0040】なお、この希土類磁石の代表的な磁気特性
は、Br−8.0kG,iHc=8.5kOe,(B
H)max=11.8MGOeであった。
The typical magnetic characteristics of this rare earth magnet are Br-8.0 kG, iHc = 8.5 kOe, (B
H) max = 11.8 MGOe.

【0041】[0041]

【表4】 [Table 4]

【0042】表4に示すように、BT2000および有
機金属塩を添加しない従来例No.26では180℃×
1000時間後の不可逆減磁率が大きな値を示していた
のに対して、BT2000を添加し有機金属塩を添加し
ない本発明例No.27,28ならびにBT2000お
よび有機金属塩の両方を添加した本発明例No.29,
30では180℃×1000時間後の不可逆減磁率がか
なり小さなものとなっており、硬化処理を真空中で行っ
た場合に不可逆減磁率がより小さくなものとなっていて
耐熱性のより一層の改善に有効であることが認められ、
有機金属塩を添加した場合には不可逆減磁率をさらに小
さなものにできることが認められた。
As shown in Table 4, BT2000 and Conventional Example No. 180 ℃ at 26
Although the irreversible demagnetization rate after 1000 hours showed a large value, BT2000 was added and the inventive example No. Inventive Example Nos. 27 and 28 and BT2000 and an organometallic salt were both added. 29,
In the case of No. 30, the irreversible demagnetization rate after 180 ° C. × 1000 hours is considerably small, and the irreversible demagnetization rate becomes smaller when the curing treatment is performed in a vacuum, further improving the heat resistance. Is found to be effective,
It was recognized that the irreversible demagnetization rate could be further reduced when an organic metal salt was added.

【0043】[0043]

【発明の効果】本発明に係わる希土類ボンド磁石材料,
希土類ボンド磁石および希土類ボンド磁石の製造方法に
よれば、酸化を著しく生じやすい希土類磁性材料の酸化
がより一層防止されるようになることから、室温での磁
気特性の経時変化,室温以上での磁気特性の経時変化が
少ないものとなり、耐熱性が改善された希土類ボンド磁
石を提供することが可能であるという著しく優れた効果
がもたらされる。
The rare earth bonded magnet material according to the present invention,
According to the rare-earth bonded magnet and the method of manufacturing the rare-earth bonded magnet, the oxidation of the rare-earth magnetic material, which is liable to be remarkably oxidized, is further prevented. A remarkably excellent effect is obtained in that the change in characteristics with time is small and a rare earth bonded magnet with improved heat resistance can be provided.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01F 1/06 H01F 1/08 H01F 41/02 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) H01F 1/06 H01F 1/08 H01F 41/02

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 希土類磁性粉末の表面に、熱硬化性樹脂
であるバインダーとしてのエポキシ樹脂と共にシアネー
ト基を含む樹脂を主成分とする高耐熱付加重合型熱硬化
性樹脂をコーティングしてなることを特徴とする希土類
ボンド磁石材料。
1. A method for coating a surface of a rare earth magnetic powder with a heat-resistant addition polymerization type thermosetting resin mainly composed of a resin containing a cyanate group together with an epoxy resin as a binder which is a thermosetting resin. Rare earth bonded magnet material.
【請求項2】 熱硬化性樹脂であるバインダーとしての
エポキシ樹脂と共にシアネート基を含む樹脂を主成分と
する高耐熱付加重合型熱硬化性樹脂を表面にコーティン
グした希土類磁性粉末を前記バインダーにより結合して
なることを特徴とする希土類ボンド磁石。
2. A rare earth magnetic powder having a surface coated with a high heat-resistant addition polymerization type thermosetting resin containing a resin containing a cyanate group as a main component together with an epoxy resin as a binder which is a thermosetting resin, is bound by the binder. Rare earth bonded magnet characterized by the following.
【請求項3】 希土類磁性粉末にバインダーを添加し、
圧縮成形して希土類ボンド磁石を製造するに際し、前記
希土類磁性粉末に熱硬化性樹脂であるバインダーとして
のエポキシ樹脂と共にシアネート基を含む樹脂を主成分
とする高耐熱付加重合型熱硬化性樹脂を前記バインダー
の添加と同時にないしは相前後して添加し、前記希土類
磁性粉末の表面に前記高耐熱付加重合型熱硬化性樹脂を
コーティングしたあと圧縮成形することを特徴とする希
土類ボンド磁石の製造方法。
3. A binder is added to the rare earth magnetic powder,
Upon producing a rare earth bonded magnet by compression molding, the rare earth magnetic powder is a high heat resistant addition polymerization type thermosetting resin mainly containing a resin containing a cyanate group together with an epoxy resin as a binder which is a thermosetting resin. A method for producing a rare earth bonded magnet, characterized in that the binder is added simultaneously with or before or after the addition of the binder, and the surface of the rare earth magnetic powder is coated with the high heat resistant addition polymerization type thermosetting resin and then compression molded.
【請求項4】 バインダーとしてのエポキシ樹脂および
シアネート基を含む樹脂を主成分とする高耐熱付加重合
型熱硬化性樹脂と共に金属触媒として有機金属塩を添加
することを特徴とする請求項3に記載の希土類ボンド磁
石の製造方法。
4. The method according to claim 3, wherein an organic metal salt is added as a metal catalyst together with a high heat-resistant addition polymerization type thermosetting resin mainly composed of an epoxy resin as a binder and a resin containing a cyanate group. Of manufacturing rare earth bonded magnets.
【請求項5】 熱硬化性樹脂の硬化処理を真空中におい
て150℃以上で行うことを特徴とする請求項3または
4に記載の希土類ボンド磁石の製造方法。
5. The method for producing a rare-earth bonded magnet according to claim 3, wherein the curing treatment of the thermosetting resin is performed in a vacuum at 150 ° C. or higher.
JP34503991A 1991-12-26 1991-12-26 Rare earth bonded magnet material, rare earth bonded magnet, and method for manufacturing rare earth bonded magnet Expired - Fee Related JP3160817B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP34503991A JP3160817B2 (en) 1991-12-26 1991-12-26 Rare earth bonded magnet material, rare earth bonded magnet, and method for manufacturing rare earth bonded magnet
AT92310935T ATE134792T1 (en) 1991-12-26 1992-12-01 RARE EARTH COMPOSITE MAGNET, MATERIAL THEREOF AND PRODUCTION METHOD OF A BONDED MAGNET
DE69208624T DE69208624T2 (en) 1991-12-26 1992-12-01 Rare earth bonded magnet, material therefor and method of manufacturing a bonded magnet
EP92310935A EP0549149B1 (en) 1991-12-26 1992-12-01 Rare-earth bonded magnet, material therefor and method for manufacturing a bonded magnet
US08/176,645 US5393445A (en) 1991-12-26 1994-01-03 Rare-earth bonded magnet, material and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34503991A JP3160817B2 (en) 1991-12-26 1991-12-26 Rare earth bonded magnet material, rare earth bonded magnet, and method for manufacturing rare earth bonded magnet

Publications (2)

Publication Number Publication Date
JPH05175024A JPH05175024A (en) 1993-07-13
JP3160817B2 true JP3160817B2 (en) 2001-04-25

Family

ID=18373877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34503991A Expired - Fee Related JP3160817B2 (en) 1991-12-26 1991-12-26 Rare earth bonded magnet material, rare earth bonded magnet, and method for manufacturing rare earth bonded magnet

Country Status (4)

Country Link
EP (1) EP0549149B1 (en)
JP (1) JP3160817B2 (en)
AT (1) ATE134792T1 (en)
DE (1) DE69208624T2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5393445A (en) * 1991-12-26 1995-02-28 Daido Tokushuko Kabushiki Kaisha Rare-earth bonded magnet, material and method for manufacturing the same
JP3171558B2 (en) * 1995-06-30 2001-05-28 株式会社東芝 Magnetic materials and bonded magnets
AU4331500A (en) 1999-04-06 2000-10-23 Du Pont Pharmaceuticals Company Pyrazolotriazines as crf antagonists
WO2000059908A2 (en) 1999-04-06 2000-10-12 Du Pont Pharmaceuticals Company Pyrazolopyrimidines as crf antagonists

Also Published As

Publication number Publication date
DE69208624D1 (en) 1996-04-04
ATE134792T1 (en) 1996-03-15
JPH05175024A (en) 1993-07-13
EP0549149B1 (en) 1996-02-28
EP0549149A1 (en) 1993-06-30
DE69208624T2 (en) 1996-09-19

Similar Documents

Publication Publication Date Title
US5562782A (en) Method for producing magnetically anisotropic permanent magnet
JP3160817B2 (en) Rare earth bonded magnet material, rare earth bonded magnet, and method for manufacturing rare earth bonded magnet
US5393445A (en) Rare-earth bonded magnet, material and method for manufacturing the same
JP3028337B2 (en) Rare earth magnet alloy powder, method for producing the same, and polymer composite rare earth magnet using the same
JPH07302705A (en) Corrosion-resistant rare earth magnet and its manufacture
JP3149549B2 (en) Rare earth bonded magnet manufacturing method
JPH0569282B2 (en)
JP3248077B2 (en) Manufacturing method of rare earth-iron-nitrogen permanent magnet
JPH05175021A (en) Rare-earth bonded magnet material, rare earth bonded magnet and manufacture of the magnet
JPH04206805A (en) Manufacture of rare earth element-fe-b based magnet excellent in magnetic characteristics and corrosion resistance
JPH01111843A (en) Rare-earth permanent magnet material and its manufacture
JPH0380508A (en) Manufacture of rare earth element magnet
JPH05230501A (en) Alloy powder for rare-earth element-iron magnet and bond magnet using the powder
JP3168484B2 (en) Method for manufacturing rare earth-iron-nitrogen permanent magnet
JP3430686B2 (en) COMPOUND FOR HIGH CORROSION RESISTANCE BOND MAGNET, BOND MAGNET, AND PROCESS FOR PRODUCING THEM
JPH0752685B2 (en) Corrosion resistant permanent magnet
JPS62177146A (en) Manufacture of permanent magnet material
JPH0831363B2 (en) Method for manufacturing corrosion-resistant permanent magnet
JP2546990B2 (en) Permanent magnet with excellent oxidation resistance
JP2993255B2 (en) Manufacturing method of resin magnet
EP0480722A2 (en) Method of making a Nd-Fe type permanent magnetic material
JPH0645832B2 (en) Rare earth magnet manufacturing method
JP2000114019A (en) Rare-earth bond magnet and its manufacture
JP3182961B2 (en) Composition for bonded magnet and method for producing the same
KR940003341B1 (en) Magnetic materials

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees